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Abstract

Real-world complex networks are evident in the social networks, the internet, and

biological networks. The complexities of most real-world networks make them have

community structures that can be divided into subgroups based on some statistical

features or how strongly the vertices are closely connected. A vertex may be a member

of more than one community, resulting in overlapping communities in such a real-world

network.

The ISEBEL story network is yet another complex network with varieties of folklore

of werewolves, witches, and legends which form communities with overlapping vertices.

Many algorithms for detecting overlapping communities in real-world networks exist. In

this work, we propose a framework built on Apache spark using the BigClam algorithm

that is able to detect overlapping communities in ISEBEL dataset.

Keywords: Graph mining , Community detection, Overlapping community detec-

tion, BigCLam
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Chapter 1

Introduction

Stories matter, who told them, where they are told and what it is told about. Good

stories of an event or people are a source of promotion. The people’s cultural heritage

is also being known to the outside world through stories. Because of the importance

of stories, it is important to preserve the original content of a story as it is transferred

from generation to generation.

The ISEBEL project (Intelligent Search Engine for Belief Legends) is an important story

search engine that aims to build an intelligent search platform to make stories from three

existing databases namely: Dutch Folktale Database, the Danish Folktale Database and

the Mechlenburgian Folklore Database readily accessible. ISEBEL initiators also aim

for extensibility, whereby the system is also able to accommodate collections of stories

from other countries in different languages and dialects.

The search for information in a modern search engine has taken a new dimension

since the discovery of better data mining techniques. Modern information retrieval

systems such as Google and Yahoo have leveraged big data processing techniques to

retrieve content related to each other. In addition, the use of some methods in graph

mining, such as motif finding, has proven to be effective in retrieving related content

and predicting content that is likely to be related in the future, just like in the Facebook

friend’s suggestion system.

Stories in the ISEBEL search engine, just like the Google contents or Facebook friend’s

suggestions, are related not just in the content of the stories but also to the author’s

co-authorship relationship. The reality of storytelling, how authentic the story is,

the richness of the content drills down to the narrator’s viewpoint and the volume of

information available to the narrator during the content creation. Thus, the content of

a story is never complete when judged by one narrator’s write-up. As a result, we need
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to compile stories across different slits in the ISEBEL search platform to get an entire

account, and that is the need for an effective way of mining stories in the system.

Various techniques of mining data have proven to be effective in learning-related con-

tent. The community detection technique is used for massive amounts of data mining

that represent this data in a graphical format, with vertices defined as the main sub-

ject and connections between topics represented as edges. Many community detection

techniques exist, some of which will be discussed and made use of in implementation

in this thesis.

As this platform accumulates data from various sources, existing now and future, more

information overlaps will occur. Therefore, in mining a massive volume of data with

overlaps, it is crucial not just to use only an overlapping community detection algorithm

but also to employ a system that can work along with an overlapping community

detection algorithm to facilitate data processing. And that is why we will be looking

at combining a big data processing engine with an overlapping community detection

method to achieve a sound system in this thesis.

1.1 Thesis Objective

This work is aimed at making the search of the users of the ISEBEL archive more

relevant to their query. To achieve this objective, one needs to mine the data to find

stories and their motifs that are related.

Also, Stories may belong to more than one group, that is an overlapping Story which

may occur due to some network matrices being similar and Story narrators contributing

to more than one Story, and unavailing these overlaps in the dataset gives a more robust

search result when incorporated into the overall ISEBEL system.

1.2 Thesis outline

The remaining part of this work is structured as follows:

Chapter 2 Background. In this chapter, we discuss basic concepts required for an easier

understanding of the rest of the work. The chapter first introduced the basics of graphs,

application areas of graphs, techniques used in graph mining and community detection.

Chapter 3 Literature Review. To understand what is new in graph mining, we have

taken this chapter to review the state of the arts in graph mining. First, the chapter

reviewed some algorithms for non-overlapping community detection, then a detailed

discussion of three well-known algorithms for detecting overlapping communities; the

2



chapter ends with a review of tools used in graph mining.

Chapter 4 Analysis. This chapter presents the analysis of various datasets from the

ISEBEL archive used in this thesis. This analysis has been carried out mainly using the

Gephi visualization tool, which gives a good representation of the dataset in a graphical

format and some statistical features of the network.

Chapter 5 Proposed Framework. This chapter explains the design and implementation

of the framework for detecting overlapping communities in ISEBEL.

Chapter 6 Result and evaluation. This chapter discusses the results obtained from

implementing and testing the framework.

Chapter 7 Conclusion and future work. The conclusions of the thesis are explained

3



Chapter 2

Background

2.1 Graph mining concepts

2.1.1 What is a Graph?

A graph provides a convenient way to represent the relation between entities and

respective data. A vertex represents each entity, and their relationship is de-

fined by an edge, where the vertex and/or edges can have an arbitrary label

[Diane J Cook, 2006].Mathematically, a graph ‘G’ composed of a set of vertices ‘V’

and a set of edges ξ can be represented as G = (V, ξ).

Figure 2.1: Forming a Graph

A graph can be undirected or directed.

Undirected graphs are graphs having edges with no direction associated with them.

Thus, undirected graphs can be traversed in either direction.

Figure 2.2: Undirected graph example
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A directed graph is a graph with a set of vertices connected by edges, with each vertex

having a direction associated with it.

Figure 2.3: Directed graph example

Graph Examples

• Web pages

• Social Networks

• Computer Networks

• Transportation Networks

• Power Networks

2.1.2 Graph Mining

For a graph dataset, we need to exploit relational information to extract patterns and

gain new knowledge in the dataset; this process is called graph mining. New knowledge

can be a pattern such as a subgraph, an undiscovered relation to other elements, or on

a more abstract level expression of trends in data [Diane J Cook, 2006]. The purpose

of graph mining is to discover valuable insights from graph data. For example, in figure

(2.4), new knowledge has been gained in the part of the graph with people having similar

behaviour using graph clustering technique. In like manner, the prediction technique

has been used in the graph to identify people with a probability of connecting in the

near future.
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Figure 2.4: Graph mining

2.1.3 Applications of graph mining

Web graphs

A web graph is a collection of web pages connected by hyperlinks. In a web graph,

static HTML pages represent the graph’s nodes, while hyperlinks represent the edges

[Kumar et al., 2000].

Web graphs find application in:

• Providing more accurate search services

• Identifying hubs and authorities

• Computing PageRank of www-pages

• Computing personalized PageRank

Social Network graphs

A social network is a network where individuals collaborate. Such networks are

naturally modelled as a graph called a social network graph, where individu-

als represent nodes, and the connection between them represents the graph edges

[Leskovec et al., 2020]. Social network graphs can be undirected, such as the Facebook

friends’ graph, where individuals connected are both friends. It can also be directed; an

example is the Twitter followers’ graph, where person A can follow person B without

person B following person A. Social network graphs find applications in:

• Identifying the most influential people

• Recommending friends

6



• Companies targeting the right consumers of a product

Cybersecurity graphs

Cybersecurity graphs are graphs where computers represent the graph nodes and mes-

sage traffic means the graph edges. Such a graph provides insight of:

• Knowledge of computer viruses’ propagation

• Identifying intruders’ machines

• Predict computers without proper authorization.

Entertainment graphs

Entertainment graphs are graphs where actors/movies represent the graph nodes, and

the movies’ attribute represent the graph edges. Such a graph finds applications in:

• Predicting upcoming movies’ popularity

• Most likely movies to win award

• Determining most popular movies

2.1.4 Graph mining techniques

Frequency subgraph mining technique

Frequency subgraph mining (FSM) is a graph mining technique which discovers sub-

graphs that often occur in a graph. The discovery of frequent subgraphs usually consists

of two steps:

• Candidate generation

• Support calculation

The process of discovering the frequent subgraph from the figure 2.5 is as follows: The

input to the FSM algorithm is a graph dataset G, and user-defined minimum support

(min-sup), and the output is the set of frequent subgraphs S. The support can be calcu-

lated by evaluating the number of isomorphs in a given graph [Dhiman and Jain, 2016].
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Figure 2.5: The Input Graph G and Subgraphs S of G.

[Dhiman and Jain, 2016]

The candidate generation techniques can be classified into two:

• Apriori based approach

• Pattern-growth approach

Apriori based approach

The apriori-based approach algorithm works by joining two subgraphs which are fre-

quently occurring. The apriori-based approach is similar to frequent item-set mining,

which is recursive. The AGM [Inokuchi et al., 2000] algorithm is one of the algorithms

for generating a candidate graph that increases the substructure size by one vertex at

each iteration of the algorithm. Two frequent graphs of size k can be merged together

only if they have the same (k − 1) subgraph. The new candidate subgraph has (k − 1)

sized component, and the additional two vertices [Diane J Cook, 2006]. A possible

problem of this algorithm is the generation of multiple candidates.

Figure 2.6: AGM

[Diane J Cook, 2006]

Pattern based growth approach

The pattern growth algorithm extends the frequent graph by adding a new edge in

each possible position. Using this edge-extension method prevents the overhead caused

by merging two subgraphs in Apriori approach-based algorithms. However, a potential

problem with this technique is that the same subgraph can be discovered many times

[Diane J Cook, 2006].
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Link prediction

The relationship between two individuals in a network could be identified by studying

the network and predicting a possible existence of a link between them. The sole aim of

link prediction is to identify individuals in the network that have the chance of forming

a connection or not in the future.

The statement of the link prediction problem is as follows:

Given the connections in a social network at time t or during a time interval I, we

wish to predict the connections that will be added to the network during the later time

interval from time t
′
to some given time in the future [Al Hasan and Zaki, 2010].

Examples of application of link prediction in a real-world network:

• Friend recommendation in social networks

• Product recommendation in ecommerce

• Interaction prediction in biological networks

• Knowledge graph completion

• Suggesting collaborations between researchers based on co-authorship

Figure 2.7: Link prediction

Methods of link prediction

• Node neighborhood based

• Ensemble of all path-based
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Classification technique

Graph classification is a supervised learning problem that focuses on calculating certain

graph statistics (graph features) that help in differentiating between graphs of different

classes. The statistical features of the graph that the classification is based upon could

be the total count of different subgraphs or graphlets [Lee et al., 2018]. For a graph

classification task, a set of graphs, say, g1, g2, . . . , gn, is given, in which only the labels

of a subset of graphs is seen, the goal is to predict the label of unseen graphs. Various

methods of graph classification have been developed, some of which are:

• Graph classification using neural network

• Kernel graph

• Classification using structural attention

Kernel Graph

The kernel method is a machine learning method that measures the similarity of

data points used for classification. Different kernel methods exist; the difference

between these methods is usually based on how they extract features from graphs.

The common kernel methods are: Radom-walk graph kernels [Borgwardt et al., 2005],

shortest-path graph kernel [Borgwardt and Kriegel, 2005], graphlet graph kernels

[Shervashidze et al., 2009]. In the random-walk kernel, two graphs g1 and g2 are com-

pared by measuring the random walks of the graphs. Given a graph gi with vertex

v ∈ V and edges lv ∈ l1, l2, lk. A vector q(gi) with edges li and lj is formed by counting

the number of tuples (lis, l
d
j ,m) in the source vertex s and destination vertex d in a

walk with m as the length of the walk. In the shortest-path kernel method, the tu-

ple (lis, l
d
j ,m) is formed from the shortest path instead of random walk. The graphlet

kernels count the number of substructures, graphlets, in the graph.

Graph classification using neural network

Two methods used for graph classification using neural networks are Convolutional

neural networks (CNNs) and deep learning.

The model developed by Niepert et al. [Niepert et al., 2016] for CNNs graph classifica-

tion technique is a case in which a collection of graphs is given, “the CNNs is required

to learn a function that can be used for classification and regression problem of unseen

graphs or a large graph is given, and the CNNs is required to learn a representation(s)

that can be used to infer unseen graph properties such as vertices and edges”. The

CNNs solve this problem by extracting features from local regions (receptive field) of

the input by moving a filter over different areas of the graph.

One of the approaches of graph classification using deep learning developed by Li et
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al. [Li et al., 2016] called the DeepGraphs uses heat kernels to capture the features

from the input graphs needed for the network training. They defined heat kernels

over graphs using the eigenvalues and eigenvectors of the normalized graph Laplacian:

LN = D
−1
2 AD

−1
2 .

Clustering technique

Graph clustering (also called graph partitioning) divides data in the form of a graph.

This could be vertex clustering which tends to group nodes of the graph into a group of

densely related regions based on either edge weights or edge distances, or the graph

is treated as an object to be clustered and cluster these objects based on similar-

ity [Aggarwal, 2010].

Many algorithms used for graph clustering have been developed. Based on the input

parameter, these algorithms are broadly divided into global and local techniques. In the

global clustering technique, the whole graph is used as input for the clustering process,

while in local clustering, only a certain seed vertex is used. Figure (2.8) shows a

grouping of the algorithms into local or global clustering technique [Salem et al., 2019].
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Figure 2.8: Different techniques of Graph Clustering

[Salem et al., 2019]
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2.2 Community detection

Communities in a network are a group of nodes that are distinguishable from the rest of

the nodes in the network [Yang et al., 2010]. In a social network, communities represent

a group of individuals in the network that have a dense connection to each other than

to the rest of the group in the network.

Community detection is the task of discovering groups of nodes/individuals in a network

based on their structural attributes. This is often difficult in a large-scale network with

millions of nodes and edges, such as in a social or biological network (for example,

a protein-protein interaction network). In such a huge network, one often needs a

community detection algorithm to unravel the structure and dynamic characteristics

of the network.

Various community detection algorithms exist which can detect non-overlapping, over-

lapping and nested communities in a network. In this work, the major focus will be

on the study and application of the algorithms used to detect non-overlapping and

overlapping communities. Some of these algorithms will be reviewed in chapter three.
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Chapter 3

Literature review

To know the best method for detecting overlapping communities in the ISEBEL dataset,

we need to review the state-of-the-art known to have achieved good results. In this

chapter, we present some established related work on community detection, with a

major focus on methods of detecting overlapping communities. At the end of this

chapter, the reader should have a good understanding of suitable performing methods

in non-overlapping and overlapping community detection and also some tools used in

graph mining in general.

3.1 Non-overlapping community detection algorithms

3.1.1 D-walks

The D-walks (discriminative random walks) is a technique introduced by Callut et al.

in [Callut et al., 2008] that can tackle semi-supervised classification problems in large

graphs. The input graph is interpreted as a Markov chain (MC) in which random

walks (D-walks) are performed. This technique is based on betweenness measures, in

which the betweenness of a node ‘x’ with respect to class ‘y’ is measured as the average

number of times ‘x’ is visited during D-walks. The D-walks can classify the unlabelled

nodes of both directed or undirected graphs with a linear time complexity θ(|y|.m.L)

and memory requirement of θ(m + L.n) where |y| is the number of classes, ‘m’ is the

number of edges in the input graph and ‘L’ is the maximum walk length considered.

With such low complexities, this technique can deal with huge graphs containing several

millions of nodes and edges. Moreover, a different experiment performed with the

implementation of this technique in the CORA database shows that this technique can

efficiently and accurately classify the unlabelled nodes of the graphs.
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3.1.2 Multi-level kernel k-means

This is a general algorithm for graph clustering presented by Dhillon et al. in

[Dhillon et al., 2005] that is based on multilevel methods using weighted kernel K-

means objective function as refinement algorithms. This technique can handle a graph

having many nodes and very large number of edges. The technique is divided into

three phases: coarsening phase, initial clustering phase and refinement phase. In the

coarsening phase, a graph G0 is passed through a transformation function which trans-

forms G0 into a smaller set G1, G2, . . . , Gm. In the initial clustering phase, a parameter

which indicates how small the coarsest graph should be is specified using the spectral

algorithm of Yu and Shi [Yu and Shi, 2003]. The refinement phase is an improvement.

The technique has been implemented on the IMDB movie dataset. The dataset has

1.2 million nodes and 7.6 million edges. The proposed techniques compute 5000 cluster

and 5000 eigenvectors.

3.1.3 Bi-partite graph co-clustering

Chen et al., in [Fonseca, 2003] proposed a graph model used to handle the many-to-

many correspondences problem among concepts in ontologies. Their proposed tech-

nique made use of a weighted bipartite graph to model ontologies. Weights of graph

edges are calculated through the use of similarity measure techniques; the similarity

degree is then assigned to the weights of the edges in the graph. Graph partition tech-

niques are applied to co-cluster the vertex sets of the bipartite graph, and mappings are

established between two ontologies based on the resulting cluster pairs. The proposed

technique used a threshold, in which the edges in the graph having a weight greater

than the threshold are maintained while others are purged out. The main success of

this technique is that many-to-many mapping can be established among ontologies.

3.2 Overlapping community detection algorithms

3.2.1 Community-Affiliation Graph Model (AGM)

In [Yang and Leskovec, 2012] Yang et al. motivated by the “findings that community

overlaps are more densely connected than the non-overlapping parts” introduced the

Community-Affiliation Graph Model (AGM) for overlapping network community de-

tection.

The AGM is a generative type of model that:

• Generates a network from a model
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Figure 3.1: Generate graph from model

• For a network, defines a good generative model for the network.

Figure 3.2: How to define good generative model from graph

The question of which AGM provides a solution is how communities generate the net-

work’s edges given a set of nodes.

Figure 3.3: Model to Network of AGM

They defined the underlying model of AGM as a bipartite community affiliation, de-

noted as B(V,C,M) where V: represents individuals in the community which corre-

spond to a set of vertices in the network’s graph representation, C: represents the

communities within the network, M: represents membership/affiliation of the commu-

nity.

To generate a network from the model, the model assigns a parameter pc to each

community c ∈ C, which denotes the probability for two individuals in the same com-

munity ’c’ to connect with each other. The intra-community connectivity probabilities
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pc can be computed as a non-negative vector p = (pc)c∈C

In an AGM, given a bipartite community affiliation model B(V,C,M), with p as the

probability of connection between two members of the community, the AGM generates

a graph G(V,E) by creating an edge (u, v) between a pair of nodes u, v ∈ V with

probability given by:

p(u, v) = 1−
∏

k∈Cuv

(1− Pk)[Yang and Leskovec, 2012]. (3.1)

where cuv ⊂ C is a set of communities that u and v share. Thus, this ensures that

individuals belonging to multiple common communities have a higher probability to

connect.

The probability equation (3.1) does not permit individuals with no mutual community

affiliation to link with each other. To create this possibility of link between these

individuals, AGM uses an assumed additional community called ε-community with a

very small probability of connection, given by:

ε =
2|E|

|V |(|V | − 1)
[Yang and Leskovec, 2012]. (3.2)

Given a graph G(V,E), how does AGM detect the network communities?

AGM does community detection by “fitting”. In this process, the AGM tries to find

affiliation graph B and parameters {pc} to G using maximum likelihood estimation

L(B, {pc}) = P (G|B, {pc}) of G:

arg max
B,{pc}

L(B, {pc}) =
∏

(u,v)∈E

p(u, v)
∏

(u,v)/∈E

(1− p(u, v))[Yang and Leskovec, 2012].

(3.3)

where ’B’ is the same as B(V,C,M), and E is the set of edges in the given network. ’P ’

can be updated by reformulating the log-likelihood as a convex function, thus enabling

the use of gradient ascent or Newton’s method to obtain a global optimum for ’p’. ’B’

is updated using Metropolis-Hasting [Janke, 2008] algorithm.

The flexibility of AGM is in its ability to detect non-overlapping, overlapping and nested

communities, see figure (3.4). However, it is unable to handle very large dataset.
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Figure 3.4: AGM flexible community representation

3.2.2 Cluster Affiliation Graph Model for Big Networks (BigClam)

In [Yang and Leskovec, 2013] Yang and Leskovec present the BigClam “an overlap-

ping community detection technique that scales to large networks of millions of nodes

and edges” The BigClam is built on AGM [Yang and Leskovec, 2012], but instead of

modelling an intra-community connection probability where communities are detected

through “fitting” (which is so hard), the BigClam models a community with weights

associated with each community member. This model assigns a non-negative weight

to each edge of a bipartite graph; the strength of this weight defines the degree of

affiliation.

Figure 3.5: Community Affil-
iation Network

Figure 3.6: Weight for affilia-
tion

[Yang and Leskovec, 2013]

Given the graphs as shown in figure (3.5, 3.6), here a membership vector F is assigned

to each node, and this membership vector tells us how strongly a node belongs to the

communities. FuA is the membership strength of node u to community A. If, FuA = 0

then u and A has no membership relationship between them.
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For example, each community in the network, “A”, has a probability of having an edge

with the nodes (u, v) independently. This independent edge probability of community

A with node (u, v) is proportional to the product of strengths and is given by:

PA(u, v) = 1− exp(−FuA · FvA)[Yang and Leskovec, 2013]. (3.4)

There also exists a probability of at least one common community C having an edge

with the nodes (u, v) given by:

P (u, v) = 1−
∏
C

(1− PC(u, v)), (3.5a)

= 1− exp(
∑
C

Fuc · Fvc), (3.5b)

= 1− exp(−Fu · F T
v )[Yang and Leskovec, 2013]. (3.5c)

Equation (3.5c) holds on the assumption that when two nodes share the same commu-

nity, there is an independent, non-zero chance of connection between the two nodes.

Consequently, the more the number of common communities between two nodes, the

higher their chances of connecting. Also, the higher the edge weight, the higher the

chances of connecting.

BigClam, just like the AGM, also assumes a ε-community with a very small chance of

connection ε for nodes that does not share a community in common.

Given a network G(V,E), how does BigClam detect network communities?

The BigClam does community detection by finding the most likely affiliation factor

matrix F̂ to the network G by maximizing the likelihood l(F ) = logP (G|F ) of G:

F̂ = argmax
F≥0

L(F ), (3.6)

where

l(F ) =
∑

(u,v)∈E

log(1− exp(−Fu · F T
v ))−

∑
(u,v)/∈E

(Fu · F T
v )[Yang and Leskovec, 2013].

(3.7)

To obtain the gradient for a single row Fu of F :
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▽ l(Fu) =
∑

v∈N(u)

Fv(
exp(−FuF

T
v )

1− exp(−FuF T
v )

)−
∑

v/∈N(u)

(Fv)[Yang and Leskovec, 2013]. (3.8)

where N(u) is a set of neighbours of u under G.

Computing l(F ) and ▽l(Fu) will take a linear time (every node in the network needs

to be iterated through) of O(N) which is not scalable for a network with node greater

than a million. In order to reduce the complexity to, O(|N(u)|) we compute as in equa-

tion(3.9) which will significantly speed up the computation speed for large networks.

∑
v/∈N(u)

Fv = (
∑
v

Fv − Fu −
∑

v∈N(u)

Fv)[Yang and Leskovec, 2013]. (3.9)

3.2.3 Ego-Splitting Framework

In [Epasto et al., 2017] Alessandro et al. present the Ego-splitting framework, which is

based on the concept of Ego-net. Ego-networks are subnetworks that are centred on a

certain node. The Ego-net of node E (see figure (3.7)) is defined as the subgraph of E

(i.e., the Ego-net minus ego E )

Figure 3.7: Example of an Ego-net of a node

The Ego-Splitting framework works as follows:

• Create the ego-net of each node

• Split up each ego-net with a non-overlapping clustering algorithm A1

• Create the persona Graph

• Split up the persona Graph with a non-overlapping clustering algorithm A2

• Get the overlapping clusters of the original graph

In a more formal definition, the Ego-net framework requires two clustering algorithms

Al (a local clustering algorithm) and Ag (a global clustering algorithm). For a node u
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with an ego-net Gu. The following five steps are required for the ego-splitting algorithm

to create an overlapping cluster of a graph:

• Step 1: Given a node u, partition the ego-net of u using a local clustering algo-

rithm. such that Al(Gu) = N1
u , N

2
u , . . . , N

tu
u

• Step 2: Create a set V
′
of personas. Each node corresponds to tu personas

denoted as ui, i = 1, . . . , tu

• Step 3: Add edges between personas. For each edge (u, v) ∈ V , find $(ui, vj such

that u ∈ N i
u and v ∈ N j

v . Add (ui, vj) to persona edge E
′
.

• Step 4: Using the global clustering algorithm on persona graph G
′
to obtain

clusters C
′ ·Al(Gu) = C

′
.

• Step 5: Creation of communities in G. For each cluster c
′ ∈ C

′
, create the

associated community c ⊆ V formed by the corresponding nodes of V : c(c)
′
) =

u ∈ V |∃is.t.ui ∈ c
′
. Output is C = {c(c′)|c′ ∈ C

′}.

Figure 3.8: Clustering the ego-nets, splitting the ego and building the persona graph

[Epasto et al., 2017]

Figure 3.9: Clustering the persona graph

[Epasto et al., 2017]
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Figure (3.8) illustrates the execution steps of the framework using connected com-

ponents as clustering algorithm. In figure (3.8b), the ego-net of ‘a’ is obtained and

partitioned into two clusters. In figure (3.8c), for each of the two clusters detected in

figure (3.8b), a persona is created. For example, a1 is associated with the nodes b, c, e.

The same is done for node c in figure (3.8d) but this time only one cluster is detected,

and one persona c1 associated to nodes a, b, e, d is created. After this is done for all

the nodes (in parallel), then a persona graph as shown in figure (3.8e) is created with

edges as in the original graph. In figure (3.9a), a global clustering algorithm is applied

on the persona graph. Finally, in figure (3.9b), the clusters defined on the personas are

mapped to the overlapping clusters on the original nodes.

Calculating the computational complexity of the ego-nets could be done in the order

of, O(mn) which is computationally expensive. An optimal algorithm can create all

ego-nets in time, O(m
3
2 ) with the upper bound depending on the number of triangles

in the graph.

The beauty of the ego-splitting framework is that it does not rely on any specific

clustering algorithms. Any appropriate algorithm could be used depending on the re-

quirements. The framework can also handle weighted and/or directed graphs, provided

that the local and global algorithms also support it.
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3.2.4 Summary

Table 3.1: Summary of Overlapping community detection methods reviewed

Algorithms Idea Advantages Disadvantages

Community-Affiliation

Graph Model (AGM)

Detects communities

through fitting method

It can be used to

express a variety of

community structures:

Non-overlapping, Over-

lapping, and Nested

communities

It is unable to handle

very large dataset

Cluster-Affiliation

Graph Model for Big

Networks (BigClam)

Detects communities

by assigning a non-

negative weight to each

edge of a bipartite

graph, the strength of

this weight defines the

degree of affiliation.

Can detect communities

in large networks

Computing l(F ) and

▽l(Fu) will take a lin-

ear time of O(N) which

is not scalable for a net-

work with node greater

than a million

Ego-Splitting Frame-

work

Detects communities

based on the concept of

ego-net analysis

Can make use of any

clustering algorithm.

Can handle weighted

and/or directed graphs.

Can handle graphs with

tens of billions of edges.

Computational cost

usually depends on the

clustering algorithm

used.

[Yang and Leskovec, 2012] [Yang and Leskovec, 2013] [Epasto et al., 2017]

3.3 Graph mining tools

There are several tools available for graph mining. This section discusses a review of

some tools currently used for graph mining.

3.3.1 Gephi

Gephi is a modular and extensible open-source Java visualisation application built on

the NetBeans platform. It is suitable for analysing complex networks and is mainly

used for social network analysis. Gephi uses OpenGL, a cross-language, cross-platform

API for the 3D rendering of large networks in real-time and speeds up the exploration.

The features of Gephi which make it a good tool for graph visualisation are:

• Real-time visualization: Gephi is powered by OpenGL, which makes it a rich tool

for real-time visualization of graphs.

• Layout: It has a good layout palette which allows users to change layout settings

to increase user experience.
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• Metrics: Gephi has a good statistics and metrics framework suitable for social

network analysis and scale-free networks.

• Networks over time: In Gephi, users can manipulate the embedded timeline,

allowing them to visualize how the network evolves.

• Dynamic filtering: With Gephi interactive user interface, users can filter the

network in real-time and gives them the ability to select nodes and/or edges

based on the network structure.

• Input/Output: Different graph file formats such as CSV and relational databases

import are supported by Gephi.

• Extensibility: One of Gephi’s menu items is “Plugins”, which makes it possible

to import a wide range of community-built plugins to extend its functionalities

[Bastian et al., 2009].

3.3.2 NetworkX

NetworkX is a python language package for exploring and analysing networks and

network algorithms. Data structures for representation of many types of networks or

graphs. Its flexibility makes it ideal for representing networks and large real-world

graphs found in many fields. Its good features are:

• Ability to convert graphs to several formats

• Ability to find subgraphs, cliques, k-cores

• Draw networks in 2D and 3D

• Ability to convert graphs to several formats

• Explore adjacency, degree, diameter, radius, centre, betweenness, etc

[NetworkX, ].

3.3.3 Neo4j

Neo4j is the world’s leading graph database implemented in Java and accessible from

software written in other languages using the Cypher query language through a trans-

actional HTTP endpoint or Bolt protocol. It scales billions of nodes and connections

in a system. Its first version was released in 2007 and is available in a GPLv3-licensed

open-source “community edition”, with advanced and enterprise versions accessible

under AGPLv3.
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Neo4j uses edges, nodes, or attributes as its data structure. In version 2.0, indexing

was added to Cypher with the introduction of schemas [Neo4j, ].

3.3.4 Cytoscape

Cytoscape is an open-source visualization data mining tool initially developed at the In-

stitute of Systems Biology in Seattle in 2002 to visualize molecular interaction networks

and integrate them with gene expression profiles and other state data. The biomedical

research community started using this first, and it is helpful to understand the gene

and protein interaction in biology. Its core features are:

• Support for many standard network and annotation file formats like SIF, GML,

XGMML, BioPAX, GraphML etc

• Ability to connect to external public databases and import network and annota-

tion data

• Supports RESTful API for programmatic access

• Support for different image export, including PDF, PS, SVG, PNG, JPEG, and

BMP files.

• Filter used to select subsets of nodes and/or interactions based on current data

[cytoscape, ].

3.3.5 Apache Spark

Apache Spark is a unified analytics engine first released in 2014 with Apache 2.0 licence.

It is suitable for a large-scale data process, ETL functions, machine learning, and cluster

computing. The main advantages of Apache Spark are:

• Speed: It has great performance for both streaming and batch data

• Multiple language support (e.g., Python, Scala, Java, etc)

• Easy to use

• Good cluster management

• Supports for RDDs

• Fault tolerance [Apache Spark, a]

Figure 3.10 is a representation of the Apache Spark ecosystem. It shows that Apache

spark supports languages such as Scala, Python, and R. Also, it has support for libraries

as listed in the figure. Of interest to this study is the GraphFrames, a graph processing

25



library for Spark that succeeded GraphX. GraphX uses GraphFrame, which provides

DataFrame-based graphs[Needham and Hodler, 2019].

Figure 3.10: Apache Spark Ecosystem

[Needham and Hodler, 2019]
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3.3.6 Summary

Table 3.2: Summary of reviewed tools

Tools Uses Advantages Disadvantages

Gephi Analysis and visualiza-

tion of large networks

graphs

Extremely fast

Simple

Modular

Easy data import

Few visual glitches

Navigation of the graph

can be improved

Neo4j For visualization of

data,

Data analysis and pat-

tern detection

Fast retrieval and ease

of representation of con-

nected graphs,

It uses simple and pow-

erful data model

Ease of representation

of relationships without

joins or indexes

It does not support

Sharding.

Cystoscope Visualize and analyze

large networks in life

sciences

Support of community-

provided applications

that enhance it and

offer additional func-

tionality,

It is free,

open source,

works on all operating

systems with Java

Requires high memory

consumption while

working with big net-

work,

Analysis on other net-

work that are non-life

science may require

other tools

Apache spark Large-scale data pro-

cessing,

ETL functions,

Machine learning,

Cluster computing

Fast speed for stream-

ing and batch data pro-

cessing,

Good cluster manage-

ment,

Supports for RDDs,

Support for multiple

languages

It does not have a file

management system of

its own,

No support for real-time

processing,

Fewer algorithms,

Small files issue

[Bastian et al., 2009] [NetworkX, ] [Neo4j, ] [cytoscape, ] [Apache Spark, a]

[Needham and Hodler, 2019]
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Chapter 4

Analysis

4.1 Problem Definition

We are presented with the ISEBEL project, a digital archive of stories from belief

legends found in three well known digital collections by Evald Tang Kristensen from

Denmark (Etkspace), Richard Wossidlo from Mecklenburg (Wossidia) and several col-

lectors and narrators from the Netherlands (Verhaalenbank). These databases are made

up of stories originating from different sources. Stories are composed by various au-

thors and spread across many slips of papers in the database; stories in these papers

have facts and contents which are related, and also, an author may contribute related

ideas to the content of different papers. Thus, these databases are stocked with var-

ious stories, with some stories so interrelated that comprehensive information cannot

be found in a single slit; stories have to be compiled from slits all across the archive.

Furthermore, the facts and contents of the stories may be related either by the stories

themselves or by the author and co-authorship.

Therefore, we are faced with the challenge of modelling and implementing a framework

to present the users of ISEBEL search system with a more relevant search result that

effectively gives results of stories, related stories, possible stories that will be intercon-

nected in the feature and a way to visualize stories interrelatedness through the use of

data mining techniques.

4.2 Data Extraction Process

One of the critical steps toward successful data mining is data availability. In this

research, the XML story data is harvested from the three databases (Wossidia, Ver-

haalenbank and Etkspace) using the Open Archives Initiative Protocol for Metadata
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Harvesting (OAI-PMH). The OAI-PMH defines an open interface for the exchange of

metadata. It has an architectural model that allows data providers to make metadata

available through a well-defined protocol. The metadata exposed by the data provider

enables the service providers to harvest it and then aggregate it, post-process it, and

refine it to develop services that add value[oaipmh, b], see figure (4.1).

Figure 4.1: OAI-PMH Architecture

[oaipmh, b]

For this project, communication occurs between the following databases (Wossidia,

Verhaalenbank, Etkspace, Icelandic and some other Scandinavian) as the data provider

and the ISEBEL archive as the service provider. See the pictorial representation of the

communication topology in the figure (4.2).

Figure 4.2: OAI-PMH Architecture for ISEBEL

[oaipmh, a]

In simple terms, the OAI-PMH has been implemented in our system, allowing access

to metadata in XML format made available from different sources and used for further

analysis in this project.
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4.3 Dataset Analysis

To make all the sources of data that are harvested and made available in the ISEBEL

archive to be realizable as graph data, a general schema has been defined, which sets the

minimum requirements for the structure of the ISEBEL XML story document. Hence,

all sources must use this schema to provide their stories. The schema defines all the

valid elements and attributes in the XML documents. It also specifies tags that are

allowed within another tag. The code snippet shows a portion of the XML document

for the person roles element 4.1.

1 <!-- Person roles. -->

2 <xs:simpleType name="typePersonRole">

3 <xs:restriction base="xs:string">

4 <!-- Content roles. -->

5 <xs:enumeration value="actor"/>

6 <!-- Provenience roles. -->

7 <xs:enumeration value="narrator"/>

8 <xs:enumeration value="contributor"/>

9 <xs:enumeration value="scholar"/>

10 <xs:enumeration value="collector"/>

11 <xs:enumeration value="observer"/>

12 <xs:enumeration value="informant"/>

13 </xs:restriction>

14 </xs:simpleType>

Listing 4.1: Person roles code snippet

This element describes an enumeration of possible role values that a person authoring

a story can have. This means that, outside the possible enumerated roles of actor,

narrator, contributor, scholar, collector, observer, and informant, the element cannot

accept any other value from a source for the person role. Likewise, other elements in

the document, though there are still some elements that do not have restricted values,

such as the element for story texts in code 4.2. Code 4.3 shows an extract of an XML

story document from Wossidia where all the elements defined within the story root

element have been represented to form a complete XML story document.

1 <!-- Container type for all story texts. -->

2 <xs:complexType name="typeContents">

3 <xs:sequence>

4 <xs:element name="content" type="typeContent" maxOccurs="unbounded"/>

5 </xs:sequence>

6 </xs:complexType>

Listing 4.2: Story texts code snippet
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1 <?xml version=’1.0’ encoding=’UTF-8’?>

2 <isebel:story xmlns:isebel="http://www.isebel.eu/ns/isebel" xmlns:dc="http:// ←↩
purl.org/dc/elements/1.1/" xml:id="xmd-s001-000-002-749" xml:lang="deu">

3 <dc:identifier>de.wossidia.xmd-s001-000-002-749</dc:identifier>

4 <isebel:purl>https://apps.wossidia.de/webapp/run/node/XMD-S001-000-002-749</ ←↩
isebel:purl>

5 <dc:title>[2749] grausame Herrin</dc:title>

6 <dc:title xml:lang="deu"/>

7 <dc:title xml:lang="nds"/>

8 <isebel:contents>

9 <isebel:content xml:lang="deu">Katelbogen</isebel:content>

10 <isebel:content xml:lang="nds">Katelbogen</isebel:content>

11 </isebel:contents>

12 <isebel:places>

13 <isebel:place id="1980">

14 <dc:title>Neukloster</dc:title>

15 <isebel:point>

16 <datacite:pointLatitude xmlns:datacite="http://datacite.org/schema/ ←↩
kernel-4">53.86765</datacite:pointLatitude>

17 <datacite:pointLongitude xmlns:datacite="http://datacite.org/schema/ ←↩
kernel-4">11.68002</datacite:pointLongitude>

18 </isebel:point>

19 <isebel:role>narration</isebel:role>

20 </isebel:place>

21 <isebel:place id="1331">

22 <dc:title>Katelbogen</dc:title>

23 <isebel:point>

24 <datacite:pointLatitude xmlns:datacite="http://datacite.org/schema/ ←↩
kernel-4">53.84266</datacite:pointLatitude>

25 <datacite:pointLongitude xmlns:datacite="http://datacite.org/schema/ ←↩
kernel-4">11.86807</datacite:pointLongitude>

26 </isebel:point>

27 <isebel:role>action</isebel:role>

28 </isebel:place>

29 </isebel:places>

30 <isebel:persons>

31 <isebel:person id="10005511">

32 <isebel:name>Roggentin</isebel:name>

33 <isebel:gender>Frau</isebel:gender>

34 <isebel:role>narrator</isebel:role>

35 <isebel:livingPlace id="1331">

36 <dc:title>Katelbogen</dc:title>

37 <isebel:point>

38 <datacite:pointLatitude xmlns:datacite="http://datacite.org/schema/ ←↩
kernel-4">53.84266</datacite:pointLatitude>

39 <datacite:pointLongitude xmlns:datacite="http://datacite.org/schema/ ←↩
kernel-4">11.86807</datacite:pointLongitude>
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40 </isebel:point>

41 </isebel:livingPlace>

42 </isebel:person>

43 </isebel:persons>

44 <isebel:events>

45 <isebel:event id="990011391">

46 <isebel:date>1915-12-27</isebel:date>

47 <isebel:role>narration</isebel:role>

48 </isebel:event>

49 </isebel:events>

50 <isebel:keywords>

51 <isebel:keyword id="XMD-M030-000-001-628">eisern</isebel:keyword>

52 <isebel:keyword id="XMD-M030-000-001-685">Ofen</isebel:keyword>

53 </isebel:keywords>

54 </isebel:story>

Listing 4.3: Wossidia XML code snippet

Of more importance to this thesis is how elements in a schema can be related across the

document to form an interconnection, which helps to relate stories across documents

that eventually form the nodes and edges of graph data. A close look at the Wossidia

XML document shows that some tags such as a person, event and place have an ”id”,

which can be used to identify them. It means that for two stores authored by the same

person or in the same place, or during the same event but represented in a different

document, there exists a possibility of the two stories having the same person ID or

event ID or place ID or a combination of two or maybe even the three. Thus, an edge

has been created between the two-story documents, and that is how a graph is formed

using different XML story documents, see illustration in figure 4.3.

Also, for elements without an identifier, such as the content tag, edges can still be

formed using such elements by mining-related keywords of texts placed between the

tags using a natural language processing method. However, employing the natural

language processing method to obtain these fine-grain details may be above the scope

of this study; thus, we will not discuss it further.

Figure 4.3: XML Story document relationship
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From visual analysis of this XML document, two inferences can be drawn:

• XML story documents/story schemas are likely to represent graph nodes

• Elements attributes like person ID, event ID, place ID and content keywords are

likely candidates for graph edges.

To understand and make a more informed decision about the XML story data harvested

from the ISEBEL archive, these data have been further converted to a comma-separated

value (CSV) file, which can be easier to process as a graph data.

4.3.1 WossiDiA data

The WossiDiA dataset is a dataset extracted from WossiDiA digital archive information

system. The archive contains more than 2.5 million digital presentations of Richard

Wossidlo’s folklore, an ethnologist and ethnographer who, in his study, gathered stories

related to the ancient customs originating from Mecklenburg between 1883 and 1939

[Schering et al., 2007]. The archive is rich with stories that narrate people’s cultural

heritage from different authors in different places and times.

The dataset has been extracted from the archive in XML format and converted to CSV

files for this thesis. Two CSV files are presented, one containing the node details and

the other containing the edge list. Table 4.1 and 4.2 shows the first ten rows of the

node and edge dataset, respectively.To understand the dataset better, a comparison

was made between the two tables and a Gephi file extract got by a combination of

the two tables, and it can be observed that the node table has an ID, label and type

which represents the nodes’ ID, name and type of interconnection relationship with

other nodes respectively. Matching this observation with the edge table, we notice that

the edge table has a source and target, which shows the connected nodes and a label

that is the attribute that connects the two nodes. In addition to understanding this

node-edge relationship better, a view of code 4.4, shows that this logic follows seeing

that nodes that are related in the edge tables share the same attribute value in common

in the XML snippet.
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Table 4.1: wossidia node list

id label type

1 xmd-s001-000-001-510 story

2 [1510] Werwolf story

3 Man macht einen... content

4 100001647 place

5 Laupin place

6 53.25098 place

7 narration place

8 Ernst Pegel person male contributor

12 Lehrer person male contributor

Table 4.2: wossidia edge list

id source target label

1 1 2 title

2 1 3 content

3 1 4 place

4 4 5 title

5 4 6 pointLatitude

6 4 7 pointLongitude

7 4 8 role

8 1 9 person

11 9 12 profession

12 1 13 keyword

1 <nodes>

2 <node id="1" label="xmd-s001-000-001-510">

3 <attvalues>

4 <attvalue for="0" value="story" />

5 <attvalue for="1" value="deu" />

6 </attvalues>

7 </node>

8 <node id="2" label="[1510] Werwolf">

9 <attvalues>

10 <attvalue for="0" value="story" />

11 </attvalues>

12 </node>

13 <node id="3" label="Man macht einen Werwolf.">

14 <attvalues>

15 <attvalue for="0" value="content" />

16 <attvalue for="1" value="deu" />

17 </attvalues>

18 </node>

19 <node id="4" label="100001647">

20 <attvalues>
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21 <attvalue for="0" value="place" />

22 </attvalues>

23 </node>

24 <node id="5" label="Laupin">

25 <attvalues>

26 <attvalue for="0" value="place" />

27 </attvalues>

28 </node>

29 </nodes>

Listing 4.4: Node-Edge listing

Since the Wossidia dataset is graph data, to get an in-depth analysis of it, it is important

to visualize it using a data visualization tool like Gephi. Figure 4.7 represents a network

obtained when the dataset is imported into the Gephi tool.

The partitioning of this network has been done based on the betweenness centrality

measure, and colour code has also been applied. Statistics obtained based on this show

that most of the nodes have an interconnection; as can be seen in the attached table

beside the network, 87.1 percentage of the nodes are somehow linked together; this is

also evident in the visualization of the network. Other statistics obtained from the

network have also been tabulated in the table 4.3

Table 4.3: WossiDia graph statistics

Graph type Number of nodes Number of edges Average degree Network diameter Graph density Average Path length

Directed 682 1133 1.661 3 0.002 1.288
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Figure 4.4: Gephi View of Wossidia dataset
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Figure 4.5: Gephi View of Wossidia dataset based on keyword

4.3.2 Verhalenbank

Table 4.4: Verhalenbank graph statistics

Graph type Number of nodes Number of edges Average degree Network diameter Graph density Average Path length

Directed 1653 2944 1.781 2 0.001 1.172
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Figure 4.6: Gephi View of Verhalenbank dataset
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Figure 4.7: Gephi View of Verhalenbank dataset based on keyword

4.3.3 Summary of Data-set

Table 4.5 shows the summary of the statistics gathered from all available story data-set

Table 4.5: Graph statistics

Data-set Graph type No. of nodes No. of edges Avg. degree Network diameter Graph density Avg. Path length

Verhalenbank Directed 1653 2944 1.781 2 0.001 1.172

Wossidia Directed 682 1133 1.661 3 0.002 1.288

wossidia-werewolf Directed 682 1000 1.466 3 0.002 1.281

wossidia-witches Directed 639 1000 1.565 3 0.002 1.249
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Chapter 5

Proposed Framework

This research aims to design and implement a framework capable of detecting over-

lapping communities in the ISEBEL dataset. Considering that a well-designed system

will give a better performance, we have taken the time to provide a detailed design of

our proposed framework. At the end of this chapter, the reader should understand the

architecture of our proposed framework and the road map for the implementation of

the framework.

5.1 Framework Design

The proposed framework presented in this section has been built based on the already

existing overlapping community detection algorithm discussed in the chapter 3 while

leveraging on the good quality of the GraphX module in the Spark parallel processing

engine. This novel framework for detecting overlapping communities in the ISEBEL

dataset consists of four major execution phases. As shown in the framework architec-

tural diagram in figure 5.1, the four execution steps are:

• File processing

• Spark processing

• Community detection

• Performance evaluation
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Figure 5.1: Framework Architecture

As mentioned earlier in chapter 4, the XML story data for the ISEBEL archive is

harvested from different databases using OAI-PMH, but mining graph data is easier

done when the data is in CSV or JSON format; that is why the first step of our proposed

algorithm is to convert the XML data to a more suitable format (CSV), the output of

this phase is fed to the Spark processing step.

The output of the file processing step is imported into the Spark processing step, where

the CSV file is converted to graph data using GraphFrames, a graph processing library

for spark. GraphFrame: DataFrame-based graphs is a distributed graph processing

framework on top of the Spark DataFrames. This step can output a graph network

suitable for clustering using a graph clustering algorithm.

The community detection step applies a community detection algorithm to detect the

non-overlapping and overlapping communities. In this step, we have used the BigCLAM

algorithm introduced in chapter 3. First, the algorithms generate the non-overlapping

clusters and then find the overlapping candidate node. In the final step of the algorithm,

we try to measure the algorithm’s performance on our dataset. This performance

measure will be based on the computation time of the algorithm.
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5.2 Implementation

The BIGCLAM algorithm for detecting communities in this framework requires four

execution steps, as shown in the figure 5.2. The Factor Matrix Initialization step is

an essential step in which a matrix called the Factor matrix with N × k dimension is

initialized. N— represents the number of nodes in the community, and k-represents the

number of communities. The k value used for this implementation has been generated

using three different methods:

• Random generation by defining k = 8, 50, 100 . . .

• Using some node property (for example, node type)

• Parallel community seed set generation algorithm (example Girven-Newman al-

gorithm on Spark)

Thus, the initially proposed algorithm in figure 5.1 has been modified to figure 5.2.

Other execution steps of the BIGCLAM algorithm remains as discussed in the literature

review.

Figure 5.2: Framework Architecture with parallel community seed selection

This experiment has been implemented on an Intel Core i7-2600K CPU and 32 GB of

RAM, with Apache Spark as the analytical engine.

The main benefit of using Apache Spark as the analytical engine is its capacity to write
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jobs in multiple steps and its ability to execute jobs in parallel. Multiple threads can

use a single SparkContenxt instance to submit multiple Spark jobs, which may or may

not be executed in parallel, depending on the available CPUs to handle the task. With

enough CPUs, multiple spark jobs will be running concurrently.

Two types of job scheduling are possible in Spark: FIFO and FAIR scheduling mode. In

a FIFO scheduling mode, jobs are divided into “stages” (for example. map and reduce

phases). The first job has higher precedence in the available resources over the second

job. The resources are distributed equally to all running jobs for a FAIR scheduling

mode [Apache Spark, b].

Figure 5.3: Spark UI showing how jobs are executed

Figure 5.3 shows a presentation of one of the executions of a block of code implemented

in this work in Spark UI (a web interface used to monitor Spark applications during

execution). The figure explains various physical execution units of Spark application:

Job, Stage, and Task.
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Chapter 6

Result and evaluation

6.1 Evaluation of BigClam result

The framework developed based on the BigClam algorithm on Apache spark using

Python programming language has been tested on four ISEBEL real-world datasets,

with the summary as shown in table 4.5.

To evaluate the performance of a community detection algorithm, it is always common

to evaluate its ability to unravel so-called “ground truth” communities. Ground truth

communities are easier to obtain in synthetic networks where such communities are

explicitly defined. However, there are no explicitly defined communities for real-world

networks such as the ISEBEL network; instead, the ground-truth communities are

obtained using some discrete-valued node properties, arbitrarily chosen random values

and using a parallel community seed set generation algorithm.

6.2 Result Analysis

The performance of the algorithm has been tested for different numbers of k (number

of communities) on the various datasets presented in this research; the plot in figure

6.1 shows the result for k = 8, 50, 100 while figure 6.2 is a Gephi view of communities

obtained using Verhalenbank data-set for k=8. Furthermore, the graph shows the

decrease in run-time of the algorithm as the number of k increases.
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Figure 6.1: Plot of run-time using different k values

Figure 6.2: Gephi View of Verhalenbank communities for K=8
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To verify the statement in figure 6.1 more, a plot of the run-time of the algorithm against

k with k-values equal to the Network matrix (node properties) and the number of com-

munities obtained from the Girvan-Newman algorithm for each of the datasets is pre-

sented in figure 6.3. The following values were obtained for k given that k = the network

node matrix: Wossida-29, Wossidia-witches-27, Verhalenbank-118, Wossidia-werewolf-

8 and the following values were obtained for k given that k = number of communi-

ties obtained by the Girvan-Newman algorithm; Wossidia-144, Wossidia-witches-126,

Verhalenbank-308,Wossidia-werewolf-128. The plot of figure 6.3 still shows a decrease

in the run-time of the algorithm as the value of k increases.

Figure 6.3: Plot of run-time using Network matrix and girvan newman algorithm as
ground-truth
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Chapter 7

Conclusion

In this thesis, overlapping community detection in ISEBEL, three overlapping commu-

nity detection methods have been studied, and we have developed a framework based

on BigClam on Apache Spark for detecting overlapping communities in ISEBEL. Fur-

thermore, the framework’s performance has been evaluated based on its run-time for

different community sizes.

Based on the evaluation of the implemented framework, we can say an inverse rela-

tionship exists between the assumed number of communities and the run-time of the

BigClam algorithm on Apache Spark.

7.1 Contribution

Having thoroughly defined the problem of detecting overlapping communities in

ISEBEL, we have, through this thesis, made the following contributions:

• Review of the state of the arts for detecting non-overlapping and overlapping

communities.

• Review of state of the arts in graph mining techniques and tools.

• Analysis of ISEBEL data-set using graph mining tools.

• Designed a framework for detecting overlapping communities in ISEBEL.

• Python Implementation of BigClam framework on Apache spark for detecting

overlapping communities in ISEBEL.

• This framework has been evaluated based on some pre-defined values of commu-

nities derived as follows:
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– Arbitrarily choosing some community values (for example, K=8,50,100. . . ).

– Selecting the number of community values based on some network node

matrix.

– Determining the number of communities based on the number of communi-

ties defined by the Girven-Newmann algorithm.

7.2 Challanges

While implementing this framework, some challenges were encountered, especially in

working with Spark and Hadoop; here, we discuss some problems and how to resolve

them.

Small File Problem in HDFS

Hadoop faces many performance issues if the files being processed are extremely smaller

than the block size. By default, the block size of HDFS is 128 MB. When files are

processed in HDFS, each file will have to occupy one block even if its size is less than

the default HDFS block size. As a result, if you have many small files of sizes like

150 bytes, 120 bytes etc.; you are not utilizing your full block size capacity as each

of these small files will have to occupy 128 MB each, and this will make the HDFS

memory to fill up and cause lots of performance issue. Performance issues will also

arise while processing these files. For example, applying a map task to them, each map

task will have to process a block, so if there are one million small files, there will also

be one million map tasks processing very little inputs which impose booking overhead

[Aggarwal et al., 2021].

In this thesis, the small file issue was encountered while trying to execute the connected

components’ algorithm. This algorithm was used to get the neighbours of each node

in a graph, and for each node, it has to store its neighbours in a separate small file.

Processing these small files slowed down the speed of computing to up to 2 hours for

graphs with nodes up to 1000. This problem was solved by eliminating the process

which generated the small file issue, in this case, replacing the connected component

algorithm with another neighbourhood search algorithm.

Error Handling in Spark

The datasets contain some null value rows which cause errors when loaded to the

Spark system for processing. Spark provides different options to handle such errors.

The method used to handle the errors caused by null rows during implementation is

the DROPMALFORMED mode. In this mode, Spark drops any null records in
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the file when it is imported. Listing B.3 is the code block that shows how these null

values were dropped in Spark while importing the records.

7.3 Future work

A way to determine the number of communities k has always been an issue in im-

plementing the BigClam algorithm for a real-world network. In this thesis, we have

used three methods to determine k, of which the technique using the Girven-Newman

algorithm seems to be closer to the actual values of the communities in the network.

I propose a future work that evaluates other algorithms’ performance, such as the

Louvain algorithm, to determine the value of k.
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Appendix A

Abbreviations

ISEBEL - Intelligent Search Engine for Belief Legends

FSM – Frequency Subgraph Mining

AGM - Apriori-based approach algorithm

CNNs – Convolutional Neural Networks

D-walks – Discriminative Random Walks

MC – Markov Chain

AGM – Community-Affiliation Graph Model

BIGCLAM - Cluster Affiliation Graph Model for Big Networks

ETL – Extraction, Transformation, and Load

RDD - Resilient Distributed Dataset

XML – Extensible Markup Language

OAI-PMH – Open Archives Initiative Protocol for Metadata Harvesting

ID – Identity

CSV – Comma-Separated Value

JSON – JavaScript Object Notation

CPU – Central Processing Unit

FIFO – First In First Out
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UI – User Interface

HDFS - Hadoop Distributed File System

k - Number of Communities
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Appendix B

Code Documentation

This code documentation only highlights the important parts, the k value has been

left out for the user of this documentation to decide the process to use and generate k

for the network under examination.

1 import pyspark

2 from pyspark.sql import *

3 from pyspark import SparkContext, SparkConf, StorageLevel

4 from pyspark.sql.types import *

5 from graphframes import *

6 from pyspark.sql.functions import collect_set, expr

7 from tqdm import tqdm

8 import random

9 import community

10 import numpy as np

11 from typing import Dict

Listing B.1: Import packages

1 sc = pyspark.SparkContext("local[*]")

2 spark = SparkSession \

3 .builder\

4 .appName(’BigClam-ISEBEL’)\

5 .getOrCreate()

6 SparkContext.setSystemProperty(’spark.executor.memory’, ’8g’)

7 SparkContext.setSystemProperty(’spark.driver.memory’, ’8g’)

8 SparkContext.setSystemProperty(’spark.sql.shuffle.partitions’, ’4’)

9 ss = SparkSession(sc)

Listing B.2: Set-up spark session
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1 def create_graph_frames():

2 """

3 Import nodes and edge csv files and create graphframes with them

4 """

5 vertices_fields = [

6 StructField("id",IntegerType(), True),

7 StructField("label",StringType(), True),

8 StructField("type",StringType(), True)

9 ]

10 vertices = (spark.read.option("mode","DROPMALFORMED")

11 .option("columnNameOfCorruptRecord","corrupt_record")

12 .csv("nodes.csv",header=True,schema=StructType(vertices_fields)) ←↩
)

13

14 edge_fields = [

15 StructField("id",IntegerType(), True),

16 StructField("src",StringType(), True),

17 StructField("dst",StringType(), True),

18 StructField("label",StringType(), True)

19 ]

20 edges = (spark.read.option("mode","DROPMALFORMED")

21 .option("columnNameOfCorruptRecord","corrupt_record")

22 .csv("edges.csv",header=True,schema=StructType(edge_fields)))

23

24 return GraphFrame(vertices, edges)

Listing B.3: Import nodes and edge csv files and create graphframes with them

1 def process(entry):

2 revisedEntries= entry[0].split(’,’)

3 return (revisedEntries[0], revisedEntries[1])

4

5 def generate_community_users(user_business_map, filter_threshold):

6 nearby_users_map = {}

7 users = user_business_map.keys()

8

9 for u1 in users:

10 related_users = set()

11 for u2 in users:

12 if u1 != u2:

13 u1_businesses = set(user_business_map.get(u1))

14 u2_businesses = set(user_business_map.get(u2))

15 common_businesses = u1_businesses.intersection(u2_businesses ←↩
)

16

17 if len(common_businesses) >= filter_threshold:

18 related_users.add(u2)
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19 if len(related_users) > 0:

20 nearby_users_map.update({u1:related_users})

21

22 return nearby_users_map

Listing B.4: Generate community users

1 def get_neighbors():

2 input_file_path = "edges.csv"

3 filter_threshold = 1

4 user_businessRdd = sc.textFile(input_file_path)\

5 .map(lambda entry: entry.split(’\n’))\

6 .map(lambda entry: process(entry))

7 headers = user_businessRdd.take(1)

8 finalRdd = user_businessRdd.filter(lambda entry: entry[0] != headers ←↩
[0][0]).persist()

9 user_business_map = finalRdd\

10 .groupByKey()\

11 .mapValues(lambda entry: list(set(entry)))\

12 .collectAsMap()

13 nearby_users_map = generate_community_users(user_business_map, ←↩
filter_threshold)

14 return nearby_users_map

15

16 neighbors = get_neighbors()

Listing B.5: Get node neighbors

1 def bfs(graph, node):

2 visited = []

3 queue = [node]

4 while queue:

5 node = queue.pop(0)

6 if node not in visited:

7 visited.append(node)

8 try:

9 neighbours = graph[node]

10 except KeyError as e:

11 continue

12 for neighbour in neighbours:

13 queue.append(neighbour)

14 return visited

Listing B.6: Get each node neighbors with bfs

1 class BigClamISEBEL(object):

2 def __init__(

3 self,
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4 dimensions: int = k,

5 iterations: int = 50,

6 learning_rate: int = 0.005,

7 seed: int = 42,

8 ):

9 self.dimensions = dimensions

10 self.iterations = iterations

11 self.learning_rate = learning_rate

12 self.seed = seed

13

14 def _initialize_features(self, number_of_nodes):

15 self._embedding = np.random.uniform(0, 1, (number_of_nodes, self. ←↩
dimensions))

16 self._global_features = np.sum(self._embedding, axis=0)

17

18 def _calculate_gradient(self, node_feature, neb_features):

19 raw_scores = node_feature.dot(neb_features.T)

20 raw_scores = np.clip(raw_scores, -15, 15)

21 scores = np.exp(-raw_scores) / (1 - np.exp(-raw_scores))

22 scores = scores.reshape(-1, 1)

23 neb_grad = np.sum(scores * neb_features, axis=0)

24 without_grad = (

25 self._global_features - node_feature - np.sum(neb_features, axis=0)

26 )

27 grad = neb_grad - without_grad

28 return grad

29

30 def _do_updates(self, node, gradient, node_feature):

31 self._embedding[node] = self._embedding[node] + self.learning_rate * ←↩
gradient

32 self._embedding[node] = np.clip(self._embedding[node], 0.00001, 10)

33 self._global_features = (

34 self._global_features - node_feature + self._embedding[node]

35 )

36

37 def get_memberships(self) -> Dict[int, int]:

38 indices = np.argmax(self._embedding, axis=1)

39 memberships = {i: membership for i, membership in enumerate(indices)}

40 return memberships

41

42 def get_embedding(self) -> np.array:

43 embedding = self._embedding

44 return embedding

45

46 def get_graph_nodes(self,graph):

47 nodes = graph.vertices.rdd.map(lambda x: x.id).collect()

48 self.graph_nodes = nodes
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49

50 def neighbours(self,graph):

51 connected = graph.connectedComponents()

52 connected.persist(StorageLevel.DISK_ONLY)

53 group = connected.select("*").groupby("component").agg(

54 collect_set(’id’).alias(’nodes’)).sort("component")

55 self.group = group

56

57 def get_neighbours(self,nodeid):

58 group = self.group

59 node_1 = group.select(’nodes’).where("component="’’+nodeid+’’)

60 node_2 = node_1.rdd.map(lambda x: x.nodes).collect()

61 return node_2[0]

62

63 def fit(self, graph):

64 self.graph = graph

65 self.get_graph_nodes(graph)

66 number_of_nodes = graph.vertices.count()

67 self._initialize_features(number_of_nodes)

68 nodes = [node for node in self.graph_nodes]

69 for i in range(self.iterations):

70 random.shuffle(nodes)

71 for node in nodes:

72 try:

73 nebs = [neb for neb in (bfs(neighbors,str(node)))]

74 neb_features = self._embedding[nebs, :]

75 node_feature = self._embedding[node, :]

76 except IndexError as e:

77 continue

78 gradient = self._calculate_gradient(node_feature, neb_features)

79 self._do_updates(node, gradient, node_feature)

Listing B.7: Class to compute BigClam algorithm

1 big = BigClamISEBEL()

2 graph = create_graph_frames()

3 big.fit(graph)

4

5 membership = big.get_memberships()

6

7 print(membership)

Listing B.8: Output result

1 import numpy as np

2 import csv

3

4 nodes = graph.vertices.rdd.map(lambda x: x.id).collect()
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5 edges = graph.edges.select("id").rdd.map(lambda x: x.id).collect()

6

7 memberships = [v for k, v in membership.items()]

8 nodes = [node for node in nodes]

9 edges = [edge for edge in edges]

10

11 dictA = dict(zip(nodes,memberships))

12

13 with open(’result.csv’, ’w’, newline=’’) as csvfile:

14 header_key = [’id’, ’memberships’]

15 new_val = csv.DictWriter(csvfile, fieldnames=header_key)

16

17 new_val.writeheader()

18 for new_k in dictA:

19 new_val.writerow({’id’: new_k, ’memberships’: dictA[new_k]})

Listing B.9: Output result to CSV

1 sc.stop()

Listing B.10: Stop spark session
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