

VOL. 7. NO. 2 FEBRUARY 2022.
 .

DOI: 10.33480/jitk.v7i2.2758.

37

IMPLEMENTATION OF CONCOLIC UNIT TESTING IN TESTING BINARY
SEARCH ALGORITHM USING JCUTE

Neneng Rachmalia Feta1*); Fitria2

Information Systems and Technology1,2

Institut Teknologi dan Bisnis BRI
http://bri-institute.ac.id/

nenengrachmaliafeta@gmail.com1*), fitria.fitrib@gmail.com2

(*) Corresponding Author

Abstract— Testing is the process of implementing a program to find an error. A good test case is one of the
tests that have the possibility of finding an undisclosed error. One of the existing types of testing is the Concolic
Unit Testing Engine. In this research, testing is applied using the JCute tool, which is a tool to systematically
and automatically test sequential C programs (including instructions) and Java programs together. This test
is carried out on the search function of an element of data in the Binary Search Search Algorithm. However, to
check whether concolic testing can detect bugs in the software practically through case studies. This research
describes a case study of the application of a test tool to a Java application. Through this research, we tested
the path coverage and Branches Covered. We can also find out the details of total branches covered; total
functions invoked, percentage of branches covered, and the number of iterations. JCute can also find an
interleaving of two sequences or circuits that results in an infinite loop.

Keywords: Testing, Concolic Unit Testing Engine, JCute, Binary Search.

Abstrak— Pengujian adalah suatu proses pelaksanaan suatu program dengan tujuan menemukan suatu
kesalahan. Suatu kasus test yang baik adalah apabila test tersebut mempunyai kemungkinan menemukan
sebuah kesalahan yang tidak terungkap. Salah satu dari jenis pengujian yang ada adalah Concolic Unit Testing
Engine. Pada penelitian ini diterapkan pengujian dengan menggunakan tools JCute yang merupakan alat
untuk secara sistematis dan otomatis menguji program C berurutan (termasuk petunjuk) dan program Java
bersamaan. Pengujian ini dilakukan pada fungsi pencarian suatu elemen atau data pada Algoritma Pencarian
Binary Search. Namun untuk memeriksa apakah pengujian concolic dapat mendeteksi bug pada perangkat
lunak secara praktis melalui studi kasus. Penelitian ini menjelaskan studi kasus penerapan alat uji coba ke
aplikasi Java. Melalui penelitian ini, kami melakukan pengujian terhadap path coverage dan Branches
Covered. Kita juga dapat mengetahui detail total branches covered, total functions invoked, percentantage of
branches covered dan number of iterations. JCute juga dapat menemukan sebuah interleaving dari dua
urutan/rangkaian yang menghasilkan loop tak terbatas.

Kata Kunci: Pengujian, Concolic Unit Testing Engine, JCute, Binary Search.

INTRODUCTION

Testing is a series of activities that can be
planned and carried out systematically. Activities
related to testing include analyzing items and
programs and features of software items. [1].
Software testing is an essential part of determining
software quality, every software that has been built
needs to be tested so that there are no logical
process errors and to ensure the software is 100%
correct according to needs, errors in the software
built not because a programmer does not pay
attention to the processes that occur or do not pay
attention to the quality of the software he creates,
errors can occur because of the complexity of the

software logic and the broad scope of the software
can be the reason for these errors.

The purpose of software testing is to detect
differences between the output of the software and
the expected conditions and find errors. By testing,
the quality and trust in the functioning of the
software will increase. Bortolino, in his research
"Software Testing Research: Achievements,
Challenges, Dreams", mentions several approaches
that can be used in software testing, including
model approaches, engineering approaches, search-
based approaches for the generation of test inputs
and attribute performance assessment approaches
[2].

VOL. 7. NO. 2 FEBRUARY 2022
.

DOI: 10.33480 /jitk.v7i2.2758

38

Binary Search Algorithm is implemented to
assist software testing. This algorithm is a method
of searching for data or elements in an array with
data conditions in an ordered state. The binary
search process can only be done on a set of data that
has been sorted beforehand. The researcher
implements the Binary Search Algorithm into the
JCute software to perform computerized software
testing. JCute (Java Concolic Unit Testing Engine) for
C and Java is a tool for systematically and
automatically testing sequential C programs
(including hints) and concurrent Java programs.

According to Sen. K and Agh. G [3], during
execution, the algorithm collects a constraint on the
symbolic value at each branch point (that is, a
symbolic constraint). At the end of implementation,
the algorithm has calculated the sequence of
symbolic constraints corresponding to each branch
point. We call this constraint conjunction a path
constraint. Note that all input values that satisfy a
given path constraint will explore the same
execution path, provided we follow the same thread
schedule. In addition to collecting symbolic
constraints, the algorithm also calculates race
conditions (data race and lock race) between
various events in program execution, where
informally, an event represents the execution of a
statement in the program by a thread.

According to Kim. M, and Jang. Y [4]”.
Concolic Testing (concrete and symbolic) is a hybrid
software verification technique that performs
symbolic execution, a classical technique that treats
program variables as symbolic variables, along a
concrete execution path (testing on specific inputs).

Concrete testing explores possible paths in
the same way as symbolic execution. [5][6]. Unit
tests are built to map symbolic input to function
parameters. This technique then aggregates the
symbolic input value constraint and a set of path
constraints and problem solvers. In addition, this
technique collects input values with a constraint
solver that produces test input values that can make
high path coverage. When this technique resolves
all constraints, it uses the tangible value of
execution for the algorithm to continue. Moreover,
since the algorithm performs a concrete
implementation, all errors inferred by the technique
are real.

The concolic test tool can also identify input
and output variables used to generate test cases to
determine input/output dependencies on the
application [7]. And it can also get a high execution
scope and is widely used in the industry for program
testing [8].

JCute combines concrete and symbolic
execution in a way that avoids overtesting as well as
false warnings. The tool also introduces a race-
flipping technique to efficiently test and check

programs along with data input. Related to testing,
the JCute Binary Search Algorithm can
automatically search for possible input data for the
test case design.

Based on the background of the problem as
described previously, this research designs and
builds software using a binary search algorithm and
JCute as tools used to test software. And analyze
software testing using the Concolic Unit Testing
Engine approach, which can find undiscovered
errors using JCute.

MATERIALS AND METHODS

The research methods applied in obtaining

data and information that support this research are
as follows :
Study of literature

Literature research is used as the basis for
theoretical discussion by using data obtained from
observations and evaluating the results of journal
research, theories and views from books, internet
searches and other sources in this study.

Software Testing Method

The basis of any software testing life cycle is
first of all the knowledge about the specified system
to be developed and all influencing factors. From the
point of view of a model-centric approach to the
problem, this knowledge base was created by first
developing a concept that enables a lightweight
integration of model information from all modeling
domains (influencing factors) [9].

The method in writing this research consists
of several steps, which we can see in Figure 1 below.

Figure 1. Software Testing Life Cycle [10] (STLC)

Requirements Analysis

In this first stage of the software testing cycle,
the test team reviews each document and design
requirements to determine what can be tested. By
studying the needs, the test team understands the
scope of the test. This phase may involve
conversations with developers, designers, and
stakeholders [11].

VOL. 7. NO. 2 FEBRUARY 2022.
 .

DOI: 10.33480/jitk.v7i2.2758.

39

Test Planning
What to test, how the test needs to be done,

and who will try it. These are things that are
determined during the testing planning stage. Once
the requirements have been reviewed, it's time to
plan a test project. A test plan document is created
during this phase. This phase keeps everyone on the
same page about how the test project will be
approached.

Test Case Development

This stage aims to determine in detail the
"how" to test. Test cases should be written to guide
the tester through each test. If old test cases are
used, make sure they are up to date. Many tests may
require test data. Prepare the test data needed to
run the test during this phase, so you don't have to
spend time doing this during the trial.

Environment Setup

Ensure that the required test data is entered
into the system and is ready for use. The test
environment is the software and/or hardware
configuration in which the test team performs
testing. Without a ready-to-use test environment,
you will run into a bottleneck.

Test Execution

Now that the tests are ready to run and the
environment is set up, it's time to run the tests.
Using test cases, the tester executes each test,
compares the expected result with the actual
outcome of each test and marks it as pass or fail or
skip. If the test fails, the examiner must document
what actually happened during the trial. This phase
also involves bugs in the designated bug tracking
system (defined in the planning phase)[12].

Test Cycle Closure

After all test cases have been run, the test
manager must ensure that all required testing has
been completed. This involves analyzing the defects
found and other metrics such as how many test
cases were passed/failed. This final stage in the
software testing cycle may also include a
project/testing process retrospective. This allows
the team to learn from and improve future test
projects.

RESULTS AND DISCUSSION

Requirements Analysis

The analysis is the first step in testing
software. At this stage, the analysis process includes
problem analysis software specification analysis.
This analysis combines literature study data
obtained from the data collection process and
methods in testing. In this stage of testing, identify

the requirements that can be tested. Activities that
must be carried out in the needs analysis stage are
as follows:
1. Analyze the system requirements specification

from a testing point of view
2. Identify testing techniques and types of tests
3. Prioritize features that require focused testing
4. Analyze the feasibility of automation
5. Identify details about the test environment in

which the actual testing will be carried out

Test Planning

The activities that will be carried out in the
Test Planning stage are as follows :
1. Estimated testing effort
2. Selection of Testing Approach
3. Preparation of Test Plan, a Test Strategy

document
4. Selection of Testing tools

Deliverables (Results) from the Test Planning stage
are :
1. The most suitable Test Approach: Concolic Unit

Testing
2. Test equipment to be used: JCute

Test Case Development

The activities that will be carried out in the
Test Case Development stage are as follows :
1. Making test cases, namely binary search

application cases
2. Test script creation if needed
3. Verify test cases and automation scripts
4. Test Data Creation in the test environment

Class BinarySearch.java
1. public class BinarySearch {
2. private int[] mData;
3. private int mSize;
4. public BinarySearch(int[] data) {
5. this.mData = data;
6. this.mSize = data.length;
7. }
8.
9. public int search(int key) {
10. int low = 0;
11. int high = this.mSize - 1;
12. while(high >= low) {
13. int middle = (low + high) / 2;
14. if(this.mData[middle] == key) {
15. return middle;
16. }
17. if(this.mData[middle] < key) {
18. low = middle + 1;
19. }
20. if(this.mData[middle] > key) {
21. high = middle - 1;
22. }

VOL. 7. NO. 2 FEBRUARY 2022
.

DOI: 10.33480 /jitk.v7i2.2758

40

23. }
24.
25. return -1;
26. }
27. }

Class MainConsole.java

public class MainConsole {
 public static void main(String[] args) {
 if(args.length == 0) {
 System.out.println("Parameternya
belom");
 return;
 }
 int[] data = {1,2,3,4,5,6,7,8,9,10};
 BinarySearch binarySearch = new
BinarySearch(data);

 int search = Integer.parseInt(args[1]);
 int result = binarySearch.search(search);
 if(result != -1) {
 System.out.println("Yang dicari: " + result +
" ada pada index ke: " + result);
 } else {
 System.out.println("Ndak ado");
 }
 }
}

Environment Setup

The activities that must be carried out in the
Test Environment Setup stage are as follows :
1. According to the requirements and Architectural

documents, prepared a list of software and
hardware

2. Setting up the test environment
3. Generating test data
4. Install build and test execution

Potongan Sourcode yang akan di Uji
1. public int search(int key) {
2. int low = 0;
3. int high = this.mSize - 1;
4.
5. while(high >= low) {
6. int middle = (low + high) / 2;
7. if(this.mData[middle] == key) {
8. return middle;
9. }
10. if(this.mData[middle] < key) {
11. low = middle + 1;
12. }
13. if(this.mData[middle] > key) {
14. high = middle - 1;
15. }
16. }

17.
18. return -1;
19. }

In the algorithm snippet above, the low

variable value is inputted 0; then the high variable
is calculated using the formula mSize – 1. Then we
try to violate this statement: int middle = (low +
high) / 2;. Then we assign a random value to the
variable int low = 0; the value is 10 and the variable
int high = this.mSize - 1; the value is 6. In Table 1 it
is Randomly input concrete value Concolic
Execution.

Table 1. Randomly input concrete value
 Concrete Symbolic

low 10 i0
 high 6 i1

Enter the concrete value, which is the new input:
Low = 10 which is a concrete value, and i0 is a
symbolic value
High = 6 which is a concrete value, and i1 is a
symbolic value.

Then we execute the Execution Tree based on
the equation below:

Where variable int middle = (low + high) / 2;
. Then we try again to make a new input, this time
the variable int low = 0; the value is 8 and the
variable int high = this.mSize – 1; its value is 20, and
the following statement corresponds to the
equation int middle = (low + high) / 2;. We input for
the new concrete value of concolic execution after
we got for the low variable the concrete value is 8,
and the high concrete value is 20, which can be seen
in Table 2 for the concrete value and its symbolic
value.

Table 2. Enter the new concrete value
 Concrete Symbolic

low 8 i0
 high 20 i1

Enter the concrete value, which is the new input:

Low = 8 which is a concrete value, and i0 is a

symbolic value

High = 20 which is a concrete value, and i1 is a

symbolic value

i0 >= i1

𝑖0≤𝑖1

Eliminating Obstacles :
Result i0 and i1 s.t. i0 < i1

VOL. 7. NO. 2 FEBRUARY 2022.
 .

DOI: 10.33480/jitk.v7i2.2758.

41

Then we can re-execute the Execution Tree
based on the concrete and symbolic values in Table
2 to produce the following equation:

Then we try again to make a new input, but at

this time, the variable int low = 0; has value 100 and
variable int high = this.mSize - 1; the value is 4. The
value of the two variables is obtained based on the
following equation int middle = (low + high) / 2; In
Table 3, we can see the low and high variable values
that we got earlier, and we inputted them as new
concrete values for the concolic execution.

Table 3. Enter the next new concrete value
 Concrete Symbolic

low 100 i0
 high 4 i1

Enter the concrete value, which is the new input:

Low = 100 which is a concrete value, and i0 is a

symbolic value

High = 4 which is a concrete value, and i1 is a

symbolic value
For the next experiment, we can execute the

Execution Tree again based on the concrete and
symbolic values in Table 3 so as to produce the
following equation

Testing experiments carried outrun the
program concretely and symbolically. Symbolic
execution differs from traditional symbolic
execution in that the algorithm follows a path that
requires concrete execution. During execution, the
algorithm collects a constraint on the symbolic
value at each branch point (that is, a symbolic
constraint). At the end of execution, the algorithm
has calculated the sequence of symbolic conditions

corresponding to each branch point. We can notice
that all input values that satisfy a given path
constraint will explore the same execution path,
provided we follow the same thread schedule.

In addition to collecting symbolic constraints,
concolic unit testing also calculates race conditions
(data race and lock race) between various events in
program execution, where informally, an event
represents the execution of a statement in the
program by a thread. The first algorithm generates
random input and a schedule, which determines the
execution order. Then the algorithm does the
following in a loop: it executes the code with the
information and the resulting program. At the same
time, the algorithm calculates the race conditions
between various events and the symbolic
constraints. It generates backtracks and generates a
new schedule or new input, either by reordering the
circumstances involved in the race or by breaking
symbolic barriers, respectively, to explore all
possible different execution paths using a deep first
search strategy. Note that the algorithm performs a
concrete execution, i.e., all the bugs it finds are
actual.

Test Execution

After executing several test cases on the
binary search algorithm by automatically
generating inputs and schedules so that each
program execution path is performed at once, we
can see in Figure 2 that JCute develops a testing path
of 16 paths. Incorrect paths are indicated by an
asterisk (*) to view appropriate inputs and traces.
The asterisk symbol (*) on path 10 will also cause
program error, while on path 7, it is not wrong
because there is no sign (*).

Figure 2. Incorrect traced program

Tests carried out on all existing paths when

searching for paths manually will take a long time,
but using JCute can be found automatically and
thoroughly. It can determine error paths for certain
data cases.

i0 >= i1

i0 < i1

(i
0

+ i
1) / 2

Eliminating
Obstacles:
Result i0 and i1 s.t.
i0 < i1 and middle
= return -1;

i0 >= i1 i0 < i1

middle = (i
0

+ i
1) / 2

middle = return -1

VOL. 7. NO. 2 FEBRUARY 2022
.

DOI: 10.33480 /jitk.v7i2.2758

42

Figure 3. Branch coverage for each function

In Figure 3, it can be seen that JCute

generates different inputs for each path and is also
visualized in Figure 3 to the right of the code to be
executed. It can be seen that the input variable is the
branch we want to run. Trace performed as many as
72 TraceList.

Figure 4. Details of branch coverage

Java programming with the input data

provided, the results are shown in Figure 4 and
more details are shown in Table 4 include 5 total
functions invoked, 16 total branches coverage,
88.88 percentage of branches coverage, and 13
number of iterations.

Table 4. Evaluation results of binary search
testing using JCute.

Number
Of
Iterations

Total
Functions
Invoked

Total
Branches
Coverage

Percentage
Of Brances
Coverage

13 5 16 88.88
8 4 11 79.56
2 3 9 70.03

If the number of iterations is 2, the Percentage Of
Branches Coverage only reaches 70.03. If the

number Of Iterations is 8, the Percentage Of
Branches Coverage reaches 79.56. If the number of
iterations is 13, the Percentage Of Branches
Coverage reaches 88.88.

CONCLUSION

In this study, the results obtained from
analyzing the program source code for software
testing using the Concolic Unit Testing Engine
approach that the JCute application has been
successfully used in testing the binary search
algorithm. The binary search algorithm built in the
Java programming language with the input data
resulted in 5 total invoked functions, 16 total
branches coverage, 88.88 percentage of branches
coverage, and 13 iterations. The obtained
percentage of branches coverage is above 70
percent. And the total function invoked is more than
0. The test driver also calls the algorithm by
entering the concrete value and the number of
iterations generated according to the function and
concrete value entered. Testing the binary search
algorithm in the Java programming language has
been successfully carried out using JCute
automatically.

REFERENCE

[1] B. B. Agarwal, S. P. Tayal, and M. Gupta,

Software Engineering and Testing. 2010.
[2] A. Bertolino, “Software testing research:

Achievements, challenges, dreams,” FoSE
2007 Futur. Softw. Eng., no. September, pp.
85–103, 2007, doi: 10.1109/FOSE.2007.25.

[3] K. Sen and G. Agha, “CUTE and jCUTE:
Concolic unit testing and explicit path
model-checking tools,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 4144 LNCS,
pp. 419–423, 2006, doi:
10.1007/11817963_38.

[4] M. Kim, Y. Kim, and Y. Jang, “Industrial
application of concolic testing on embedded
software: Case studies,” Proc. - IEEE 5th Int.
Conf. Softw. Testing, Verif. Validation, ICST
2012, pp. 390–399, 2012, doi:
10.1109/ICST.2012.119.

[5] S. Godboley, A. Dutta, A. Das, and D. P.
Mohapatra, “Measuring MC/DC at design
phase using UML sequence diagram and
concolic testing,” 2016 IEEE Annu. India
Conf. INDICON 2016, pp. 0–5, 2017, doi:
10.1109/INDICON.2016.7839079.

[6] S. Godboley, D. P. Mohapatra, A. Das, and R.
Mall, “An improved distributed concolic
testing approach,” 2017, doi:
10.1002/spe.2405.

VOL. 7. NO. 2 FEBRUARY 2022.
 .

DOI: 10.33480/jitk.v7i2.2758.

43

[7] M. E. Ruse and S. Basu, “Detecting cross-site
scripting vulnerability using concolic
testing,” Proc. 2013 10th Int. Conf. Inf.
Technol. New Gener. ITNG 2013, pp. 633–
638, 2013, doi: 10.1109/ITNG.2013.97.

[8] R. Ahmadi, K. Jahed, and J. Dingel, “MCUTE:
A model-level concolic unit testing engine
for UML state machines,” 2019, doi:
10.1109/ASE.2019.00132.

[9] R. Pröll, “Towards a model-centric software
Testing life cycle For early and consistent
testing Activities,” University of Augsburg,
2021.

[10] I. Bhatti, J. A. Siddiqi, A. Moiz, and Z. A.
Memon, “Towards Ad hoc testing technique
effectiveness in software testing life cycle,”
2019, doi: 10.1109/ICOMET.2019.8673390.

[11] Guddi Singh, “A study on software testing
life cycle in software engineering,” Int. J.
Manag. IT, vol. Vol 9, no. No 2, 2018,
[Online]. Available:
https://globusjournal.com/wp-
content/uploads/2018/12/9227Guddi.pdf.

[12] N. Honest, “Role of Testing in Software
Development Life Cycle,” Int. J. Comput. Sci.
Eng., 2019, doi:
10.26438/ijcse/v7i5.886889.

VOL. 7. NO. 2 FEBRUARY 2022
.

DOI: 10.33480 /jitk.v7i2.2758

44

