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Cardiovascular disease(CVDs) is one of the leading causes of death world-
wide. Iraq ranks 20th in the age adjusted Death Rate due to CDVs. In
recent years, the treatment of many diseases, especially heart disease, has
significantly improved, so the number of patients who do not experience the
desired outcome, including death, has increased. In statistical analysis of this
type of diseases, cure models are used instead of the usual survival models.
In this paper, a sample include 919 patients referred to Sulaimani Hospital
with heart disease (including 365 female and 554 male) were followed up for
a maximum of 650 days, during the years 2020 to 2022. Of these, 162 people,
or 17.6%, have died. Since the Maller-Zhou test was significant (P < 0.01)
and considering the cured fraction in this population, the mixture cure model
with some statistical distributions was fitted to the data. Based on the re-
sults and comparing AIC and BIC, it was observed that the healed model
combined with Weibull distribution for survival time and Poisson distribu-
tion for the number of deaths with the AIC=1972.54 , BIC=2092.985 was
the best model.
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1 Introduction

Unfortunately, in recent years, cardiovascular disease (CVDs) has been one of the lead-
ing causes of death worldwide. According to the World Health Organization, published
in 2018, about 17.9 million people die annually. The countries of the Middle East, es-
pecially Iraq, are in a worse position than the rest of the world. According to the latest
WHO report, about 19 percent of all deaths in Iraq are due to coronary heart disease.
According to these statistics, Iraq ranks 20th in the age adjusted Death Rate 230.27 per
100,000 people.
In recent years, the treatment of many diseases, especially heart disease, has significantly
improved, so the number of patients who do not experience the desired outcome, includ-
ing death, has increased. In statistical analysis of this type of diseases, cure models are
used instead of the usual survival models.
Survival analysis models are common models in statistics in order to estimate the prob-
ability of diseasers’ survival and to investigate the factors affecting them. Cox regression
models are the most widely used of these methods in such situations by fitting a variety
of survival time distribution functions, such as exponential distribution. However, as
the treatment of many diseases, especially heart disease, has progressed significantly in
recent years, the number of patients who have received the desired results and mostly
do not experience death has increased.
Ordinal survival models assume that all subjects are prone to the event (death) and will
eventually experience it. It is not appropriate because the fraction of people who have
not experienced the event is not considered in the model and therefore incorrect and
sometimes misleading estimates will be obtained from the model parameters (Farewell,
1982; Maller and Zhou, 1996). The use of cure models eliminates these problems. One
of the advantages of the cure model is that in these models both the factors affecting
the survival functions and the cure ratio are considered (Tsodikov A, 2003).
In the recent 20 years, several studies have been performed on cure models and signif-
icant advances have been made in this field. But these models are not common in all
areas, and most of them focus on diseases with high chance to cure related issues. There
are various statistical methods for estimating and evaluating the factors affecting the
incidence of death in such patient, which are mostly done by standard survival models
(Cox model, parametric models) and without considering high censorship in these mod-
els.They focus on the event in question and do not pay attention to the high percentage
of censorship in the study so data analysis is biased (Klein and Moeschberger, 2005;
Kleinbaum and Klein, 2012).
cure models are divided into two general types: mixture cure model and non mixture
cure model. The mixture Cure model can be an alternative to cox proportional hazard
models in these situations when we have significant fraction of cured subject in the co-
hort (John P. Klein and Scheike, 2014).
The purpose of this study was to identify the factors affecting patient cure Cardiovas-
cular using Weibull and Poisson models.
In the northern part of Iraq, the Kurdistan Region, many medical facilities and special-
ized doctors help these diseasers return to normal life. When a significant fraction of
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the studied cohort are improved and returned to the community, alternative statistical
models called mixed cured models are used in the analysis of these diseases instead of
the ordinary survival models. In the section 2, we will examine these types of models
and their differences with normal survival analysis models. In the section 3, we will
analysis the follow-up data from 919 diseaser identified at the Sulaimani Hospital in
Iraqi Kurdistan.
In this paper, a sample include 919 patients referred to Sulaimani hospital with heart
disease (including 365 female and 554 male) were followed up for a maximum of 650 days
in 2020 to 2022. Of these, 162 people, or 17.6%, have died.Since by Maller and Zhou
test, observed the significance cured fraction in this cohort, the mixture cure model with
some statistical distributions was fitted to the data (Maller and Zhou, 1996). Based on
the results and comparing AIC and BIC, it was observed that the cured model combined
with Weibull distribution for survival time and Poisson distribution for the number of
deaths has the less AIC and BIC as the others models.

2 Cure survival model

For the first time cure models introduced by Boag (1949), and further study was done
by Berkson and Gage (1952). The fraction that survives the event is called the cured
or immune individuals and the other fraction of the cohort that is prone to the event is
called the uncured individuals. Generally in parametric survival analysis there are two
kinds of cure models as follows are divided into mixture and non mixture models.

2.1 Mixture models

The survival function of the community in the mixture models is defined as follows:

S(t) = P (T > t) = P (T > t|B = 1)P (B = 1)+P (T > t|B = 0)P (B = 0) = π+(1−π)Su(t)
(1)

In the above equation, S(t) is the probability function of survival over time t for any
case in the cohort, π is the probability of curing and Su(t) is the probability function of
survival over time t for event-prone individuals with a parametric distribution. In this
model, the π as the ratio of cured or immune individuals can be modeled by logistics
regression. It should be noted that the cured models in the absence of cure individuals
are the same as the standard models of survival. where in parametric methods to its
modeling, lifetime distributions such as exponential, Weibull, etc are Used.

2.2 Non mixture models

The non mixture model introdused first time for modeling of tumor recurrence, where
the cure fraction is the probability that no clonogenic cancer cells remain (Tsodikov A,
2003). However, non mixture model can be considered a useful mathematical function
with an asymptote that can be applied to estimate the cure fraction and also is useful for
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data that do not fit the above biological definition as long as assuming cure is reasonable
(Chen and Sinha, 2001). In the non mixture cure model, the survival function is:

S(t) = e(ln(π)Fz(t)) (2)

where π is the cure probability and Fz(t) is a distribution function to be same 1−Sz(t),
here Sz(t) is a standard parametric survival function, such as as the Weibull or the others
distribution function.

2.3 Maller and Zhou test for existence of cured fraction

Cure survival models is based on existence significant fraction of cure or immune in-
dividuals in the cohort. In (1) this proportion shown by π. Maller and Zhou (1992)
proposed an estimator for this proportion when a sample of censored failure times is
available. This is to use one minus the maximum observed value of the Kaplan-Meier
empirical distribution function. By data simulation they shown this estimator is to be
consistent and asymptotically normal, under modest conditions on the censoring mech-
anism. Since the estimator is approximately normal for a small sample size, provided
the immune proportion is not too close to zero. This is a non parametric statistic to test
whether the assumptions of the cure fraction analysis are likely to be valid.

2.4 Parametric distributions in cure models

A wide range of time-based statistical distributions can be implemented in survival
analysis to model survival time. Also these parametric distributions used for too the
mixture and non mixture cure models. In This paper for cardiovascular disease(CVDs),
the some distribution such as exponential, Weibull, log-logistic, extreme value, gamma,
log-normal, Marshall–Olkin exponential, generaliesd gamma and generalised F distribu-
tions are all implemented and compered results.

Choice of parametric distribution can be effective on the estimate of the cure fraction.
Lambert (2007) found that in his experience, the Weibull distribution works well for
most examples, except when there is a high cure fraction (e.g., > 80%) or a high excess
mortality rate in the first few weeks of follow-up. This problem may be often occurs in a
cohort with a aged patients. The log-normal distribution rarely provides a good estimate
of the cure fraction in cancer studies because of its having a long tail and an imposed
rise and fall of the (excess) hazard function. The (generalized) gamma distribution is
potentially useful because it has the Weibull, exponential, log-normal, and standard
gamma distributions as special cases. About cardiovascular disease we observed a same
result.

2.5 Akaike and Bayesian Information criterion

Model evaluation is an important step in statistical analysis and modeling, specially in
survival analysis. There are many criterion for model selection. Although most of them
are based on errors, but information criteria provide an attractive basis this aim.
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The Akaike Information Criterion (AIC), is an index for scoring and selecting a model.
Collett (2015) introdused the AIC for survival models as follows:

AIC = −2log(likelihood) + 2(p+ 2 + k) (3)

where k = 0 for the exponential model, k = 1 for the Weibull, log-logistic and log-
normal models, and k = 2 for the generalized gamma model.
Liang and Zou (2008) suggested following formula for survival model:

AICSUR = AIC +
2(p+ 2)(p+ 3)

n− p− 3
(4)

This criterion indicates the amount of information loss due to model acceptance in-
stead of data, so the model with the lowest AIC is better and will be selected. To use
AIC for model selection, we simply choose the model giving smallest AIC over the set
of models considered. (Hastie et al., 2001)
Bayesian Information Criterion (BIC) Like AIC, it is appropriate for models fit under
the maximum likelihood estimation framework. BIC is a close approximation to the
Bayes factor when a unit prior information about the parameter space is used. Volin-
sky CT (2000) introduced a revision of the penalty term in BIC so that it is defined in
terms of the number of uncensored events instead of the number of observations. AIC,
Compared to the BIC, penalizes complex models less, meaning that AIC may be select
more complex models. (Murphy, 2013)

2.6 Cox proportional hazards cure regression model

Cox (1972) introduced proportional hazards (PH) model based on regression model
which have been widely used in survival analysis. When these models are specified
parametrically, the underlying assumption is that the event of interest will eventually
occur. This assumption is not appropriate for a cohort with cured fraction. The Cox PH
model can be used potentially for the cure information by setting the survival function
to 0 after a time threshold. But, when modeling this way, long-term survivors cannot
be distinguished from cured fraction.(Wu et al., 2014)
The Cox PH cure model can be written as a mixture model in terms of the survival
function such as formula (1) with an additional covariate vector:

S(t|X,Z) = P (T > t|X,Z) = π(Z) + (1− π(Z))Su(t|X) (5)

and
F (t|X,Z) = 1− S(t|X,Z) (6)

then

f(t|X,Z) =
−dS(t|X,Z)

dt
= −(1− π(Z))fu(t|X) (7)

where X and Z are the covariate vectors, π(Z) is the cured probability for an individ-
ual, and S(t|X,Z) is the survival function. Let fu(t|X) and Su(t|X) be the probability
density function and the survival function for uncured fraction.
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The “incidence” part (1 − π(Z)) is modeled by logistic regression. The “latency” part
fu(t|X) or Su(t|X) is modeled by the Cox PH model.

In multiple regression model with X and Z vector covariats, let β and γ be the
parameter vectors related to X and Z, respectively. If we model this follwoup data
by using the Cox PH cure model specified in (5), π(Z) = 1

1+exp(γ′Z) , and hu(t|X) =

h0(t)exp(β
′X) and Su(t|X) = S0(t)

exp(β′X) are the hazard function and survival function
of uncured individual, where h0(t) and S0(t) = exp(−

∫ t
0 h0(u) du ) are unspecified basic

hazard and survival functions, respectively.

When we have some covariates to a better control of survival and hazard function, the
conditional survival function of the cohort can be modeled by using cure model which
is based on the probability of being uncured (incidence) and the conditional survival
function of the uncured individual (latency), and a mixed of logistic regression and Cox
proportional hazards (PH) regression is used to model the incidence and latency. Mo-
hammad et al. (2020) in their paper have shown the asymptotic normality of the profile
likelihood estimator via asymptotic expansion of the profile likelihood and obtain the
explicit form of the variance estimator with an implicit function in the profile likelihood.

In many studies, there are different methods available to provide additional informa-
tion about whether an individual is cured. However, the further information about cured
status may not be available for all individuals, and all procedures are likely associated
with a certain degree of accuracy in terms of sensitivity and specificity. Complete separa-
tion of cured and uncured individuals in the censored fraction can be difficult to achieve.
Hence the PH cure model that incorporates the further information also needs to take
into account the sensitivity and specificity of the diagnostic procedure that produces this
further information. (Sy and Taylor, 2000)

3 Data Analysis

As mentioned in the introduction, this study was conducted to model and analyze the
survival time of cardiovascular patients recognized in Sulaimani Hospital. The sample
includes 919 cardiovascular patients, who were followed up in a maximum of 650 days
between 2020 to 2022. Demographic characteristics of patients such as gender, age,
place of residence, job, etc., as well as interventions performed by the medical team,
such as the type of surgery, the treating physician, etc., have been recorded as covariate
variables. All data in the form of survival setting is entered in the R program and all
relevant analyzes are performed in this environment.
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Figure 1: Histograms of survival time for three different parts of cohort, respectively for
all, failed and censored patients

According to the histograms (Figure 1) it is seen that unfortunately some patients died
only a few days after entering the hospital. However, a closer look at the 3rd histogram,
the time of censoring of non-failed patients, existence of a cured fraction is obvious from
those who have failed.

3.1 Survival Analysis

In a standard survival setting, without considering the cured and uncured fractions, the
results of the Kaplan-Meier model are shown in Table 1 and Figure 2. The smoothing
of the tail in the Kaplan Meier plot also confirms the existence of a significant cured
fraction in this cohort.

Table 1: Kaplan-Meier life table

time n.risk n.event survival std.err lower 95% CI upper 95% CI

30 826 96 0.896 0.0101 0.876 0.916

60 814 9 0.886 0.0105 0.865 0.907

90 808 7 0.878 0.0108 0.857 0.900

180 751 15 0.862 0.0114 0.840 0.884

270 593 19 0.838 0.0123 0.814 0.862

360 181 7 0.825 0.0130 0.800 0.851

450 81 7 0.779 0.0211 0.739 0.822

540 27 0 0.779 0.0211 0.739 0.822

630 9 1 0.692 0.0837 0.546 0.878

As can be seen from the table and Kaplan-Meier plots, for the probability of survival
in the first days, there is a break down, that is due to the presence of emergency patients.
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Figure 2: Kaplan-Meier plot

So that the probability of survival for more than 30 days is S(30) = P (T > 30) = 0.896.
But gradually we will reach patients who are in a more stable condition, as it can be
seen at the end of the table that the probability of survival for more than 630 days is
S(30) = P (T > 30) = 0.692. In Kaplan-Meier plot in Figure 1, this can be seen as
smoothing on the right tail of the plot. This in fact reinforces the formation of the idea
of cure survival analysis in this study.



Electronic Journal of Applied Statistical Analysis 103

Figure 3: Kaplan-Meier plot

Also, according to Kaplan-Meier plots, based on dummy (binary) variables: gender
(Figure 2), occupation (Figure 3), location (Figure 4), type of medical intervention (Fig-
ure 5) and physician (Figure 6), the probability of patients’ survival in different levels
of these variables can be compared.
The comparison of the survival plot of male and female in Figure 2, shows that men
had a higher probability of survival in the first months, but this trend was changed
after the about 400th day onwards. In other words, women have better conditions, after
stabilization. Although this difference is not significant (P > 0.05).
Regarding jobs, in Figure 3, business as a job with a high level of welfare and labor as a
job with a low level of welfare was choices. It is clear that those who were businessmen
were more higher survival, but those who worked as laborers were had lower survival
probability than others. These differences are significant (P < 0.001).
In Figure 4, the habitation of the patients is the factor that separates the plots. In
order to understand the conditions of cardiovascular patients referred to Sulaimani city
hospital, in two separate plots, Sulaimani city as the host city and its Kurdish neigh-
bor province, but outside the Kurdistan region, ie Kerkuk has been selected. Patients
admitted from Kerkuk are more likely to survive than others, as they are largely non-
emergency due to their relatively long journey. Although this difference is not significant
(P¿0.05). However, in the case of the city of Sulaimani, where the hospital is located, it
can be seen that patients coming from the city themselves are less likely to survive than
others who have been transferred to more distant places, because they also include the
emergency patients (P < 0.001).
As mentioned earlier, significant advances in the treatment of cardiovascular disease have
played a significant role in increasing the likelihood of survival of this type of patient.
Coronary angiography, especially if associated with PCI, as well as Coronary Artery By-
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Figure 4: Kaplan-Meier plot

Figure 5: Kaplan-Meier plot

pass Graft (CABG) surgery are very effective in maintaining the survival of this cohort
of patients. Figure 5 shows that all three types of interventions significantly increased
the probability of survival (P < 0.001).
The role of the human factor in the treatment sector, especially doctors, is very im-
portant. To investigate this role, Kaplan-Meier plot of patients with three different
physicians is shown in Figure 6. To protect medical ethics, in this article, treating
physicians are named A, B and C. Looking at the plots in Figure 6, it is clear that
patients treated by these physicians were more likely to survive than others. This dif-
ference was significant for A at P < 0.001, B at P < 0.01 and for C at P < 0.05 level.
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Figure 6: Kaplan-Meier plot

3.2 Mixture Cure Survival Analysis

First, Maller and Zhou test for testing of existence of cured fraction was applied.

Table 2: Maller-Zhou test

statistic n p.value

6 919 0.002430466

As the results of the non-parametric Maller and Zhou test show in Table 2, the null
hypothesis is rejected and the existence of a cure fraction is accepted (P < 0.01). So
appling a cure model can be useful for this situation.
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Figure 7: Fitting Some Distributions on the Kaplan-Meier Survival Plot

Based on the results of fitting the cure regression model with the covariate variables
and comparing the Akaike and Bayesian information criteria (AIC and BIC) shown in
Table 3 and Figure 8, it can be seen that the mixture cure model with the Weibull
distribution fitting over the survival time is the best model for the data. In this case,
AIC, BIC and Log Liklihood criteria provide the same results. Therefore, for the data
analysis of this from cardiovascular patients cohort , the best survival model is mixture
cure Weibull. The results of the model is summarized in Table 4 and 5.
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Table 3: AIC, BIC and Log-Likelihood of the Cure Regression Models with Some Sur-
vival Time Distribution

Exponential Weibull Gamma Gen. Gamma Log-normal Gen. F

AIC 2207.647 1965.864 2145.791 1995.768 1972.198 1990.205

BIC 2323.275 2086.31 2266.236 2121.031 2092.644 2120.287

Log-Likelihood -1079.824 -957.932 -1047.895 -971.8839 -961.0991 -968.1027

Figure 8: AIC, BIC and Log-Likelihood of the Cure Regression Models with Some Sur-
vival Time Distribution

n = 914, Events: 158, Censored: 756 Log-likelihood = -957.932 AIC = 1965.864

4 Conclusions

Analysis of 650-day follow-up data from 919 cardiovascular patients referred to a hospital
in the city of Sulaimani in the Iraqi Kurdistan region, showed that there was a significant
cure fraction among them. Maller and Zhou nonparametric test also confirmed this
conjecture. By testing the variables correlated with patient survival, mixture cure several
regression models with some different survival probability distributions were fitted to
the data. Comparisons of AIC, BIC, and log of the likelihood function all identified the
Weibull distribution as the best distribution. So we chose the Weibel distribution model
to fit. Age, occupational, place of residence, medical interventions and physician were
the identified variables and affected the survival of patients.
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Table 4: Estimation of Coefficient in Cure Survival Regression Model, Distribution:
Weibull promotion time model

Covariates
Cure probability

model

Failure time

distribution model

(Intercept) -2.9172 4.4315

Age 0.4520 0.9510

Labor 0.1087 -1.5406

Business -0.0270 1.6741

Sulaimani 0.0331 -0.0377

Kerkuk -1.3694 -0.3082

Dr.A -0.9897 1.9312

Dr.B -2.0322 -2.3022

Dr.C -1.3374 -0.4380

Coronaryangio -1.9118 1.0772

Coronaryangio&pci -2.9989 -0.5095

CABG -1.3922 -1.5868

Log(shape) - -0.8488
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