

24

International Journal of Computer (IJC)

ISSN 2307-4523 (Print & Online)

http://ijcjournal.org/

Integrated Flow Shop and Vehicle Routing Problem Based

on Tabu Search Algorithm

Quang Chieu Ta
a*

, Phuong Mai Pham
b

a,b
Department of Artificial Intelligence, Thuyloi University, 175 Tay Son, Dong Da, Hanoi. Vietnam

a
Email: quangchieu.ta@tlu.edu.vn,

b
Email: maihoamieu@gmail.com

Abstract

We consider in this paper a m-machine permutation flow shop scheduling problem and vehicle routing problem

(VRP) integrated [1]. The manufacturing workshop is a flow shop and there is only one vehicle available. We

are interested in the minimization of the total tardiness. related to the delivery completion times. Therefore, we

are faced to three interdependent problems: scheduling the jobs in the flow shop environment, batching the

completed jobs, and routing the batches. Then, we present the resolution method based on Tabu search and the

results that have been obtained. Computational experiments are performed on random data sets and show the

efficiency of the methods. Finally, a conclusion and some future research directions are proposed.

Keywords: flow shop problem; vehicle routing problem; metaheuristic algorithm; Tabu search.

1. Introduction and notations

We consider that the jobs have to be delivered to the customers after their production by using a single vehicle.

The processing time of each job on each machine and the due date of delivery for each job are known, and a

matrix of travel times is given. The jobs have to be scheduled in a m-machine flow shop environment, then

batches have to be defined (one batch corresponds to one trip of the vehicle) and a route has to be determined

for each batch, so that the total tardiness of delivery is minimized. The vehicle routing problem consists in

defining a route starting from the production site, visiting the customers associated to the jobs in the batch, and

finishing at the production site. Each customer requiring goods is visited by the vehicle (see Figure 1). The aim

of this paper is to propose an algorithm for scheduling the jobs on the m-machines flow shop, for constituting

batches of jobs and for determining the vehicle routing for each batch, so that the total tardiness of delivery is

minimized. This problem is clearly an NP-hard problem [2].

* Corresponding author.

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

25

Figure 1: Illustration of the integrated production scheduling and vehicle routing problems.

The specific notations that are used in this chapter are the following:

 To each job 𝐽𝑗 is associated a customer location number j, the location of the production facility has an index

0.

 The delivery time between each pair of locations i and j is denoted by 𝑙𝑖.𝑗.

 The number of vehicles is equal to 1.

2. Tabu search algorithm

2.1. Coding of a solution

We use an array of 3n elements to represent a complete solution. The first n elements represent the sequence of

jobs (i.e. the schedule), the next 2𝑛 elements give for each trip the number of jobs in the trip and the list of jobs

(the routing of these jobs is implicitely the order of the jobs in this list). In the following, the first part of the

coding of a solution 𝑆 (first 𝑛 elements) is denoted by 𝑆0 and the second part (2n elements) is denoted by 𝑆𝑇.

The second part is decomposed into several trips. Each trip λ of 𝑆𝑇 is denoted by 𝑆𝜆
𝑇 and is composed by the

number of visits 𝑘𝜆 and the list of visits (𝑆𝜆[1]
𝑇 ,…, 𝑆𝜆[𝑘𝜆]

𝑇). The coding is illustrated in Figure 2.

Figure 2: Illustration of the coding of a solution and notations.

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

26

Example: In the example presented in Figure 3, the schedule is {J1, J5, J2, J6, J4, J3, J7}, the number jobs in

each trip is (2, 2, 3, 0, 0, 0, 0), i.e. two jobs in the first two trips and three jobs in the third trip, the remaining

trips are empty.

Figure 3: Example of the coding of a solution.

2.2. Initial solution

EDD algorithm is used for giving an initial solution for the scheduling problem. For the trips, each trip contains

only one job. The customers are visited in the same order as in the sequence.

Example: An example of an initial solution is given in Figure 4.

Figure 4: Example of initial solution.

2.3. Neighborhood definitions

We assume that S = 𝑆0//𝑆𝑇 is the current complete solution with sequence 𝑆0 and trips 𝑆𝑇, where:

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

27

 𝑆0 = 𝑆1
0/𝑆[𝑖]

0 /𝑆2
0/𝑆[𝑗]

0 /𝑆3
0 with 𝑆[𝑖]

0 and 𝑆[𝑗]
0 the jobs in positions 𝑖 and 𝑗 (i < j) in 𝑆0 and 𝑆1

0, 𝑆2
0 and 𝑆3

0 three

partial sequences.

 𝑆𝑇 = 𝑘1, 𝑆1
𝑇/ …/𝑘𝜆−1, 𝑆𝜆−1

𝑇 /𝑘𝜆, 𝑆𝜆
𝑇/𝑘𝜆 + 1, 𝑆𝜆+1

𝑇 /𝑘𝑛 , 𝑆𝑛
𝑇 with 𝑘𝜆 the number of jobs in trip λ. 𝑆𝜆

𝑇 is the

sequence of jobs in trip λ, ∀ λ ∈ {1, 2, …, n}.

If 𝑘𝜆 = 0 then 𝑆𝜆
𝑇 is empty. Notice also that ∑ 𝑘𝜆

𝑛
𝜆=1 = 𝑛.

Neighborhood based on the sequence of jobs

We use SWAP
0
 operator for creating the neighbors of sequence S

0
. This operator is the same as the one

described [3].

 SWAP
0
: A neighbor of S is created by interchanging the jobs in position i and j in sequence S

0
. The

corresponding jobs are also swapped in S
T
. See Figure 5 for an illustration of this operator.

Figure 5: Illustration of SWAP
0
 operator.

Neighborhood based on a single trip

We use SWAP
T
, EBSR

T
, ESFR

T
 and Inversion

T
 operators for creating the neighbors of a trip 𝑆λ

𝑇. These operators

are the same as those described [3,4].

Given a sequence of visits 𝑆λ
𝑇 of trip λ, two random positions i and j in 𝑆λ

𝑇 (𝑖 < 𝑗 and 𝑗 ≤ 𝑘𝜆): 𝑆λ
𝑇 = 𝑆λ1

𝑇 , 𝑆𝜆[𝑖]
𝑇 ,

𝑆λ2
𝑇 , 𝑆𝜆[𝑗]

𝑇 , 𝑆λ3
𝑇 .

 SWAP
T
: A neighbor of 𝑆λ

𝑇 is created by interchanging the jobs in position i and j, leading to sequence 𝑆λ
𝑇′ =

𝑆λ1
𝑇 , 𝑆𝜆[𝑗]

𝑇 , 𝑆λ2
𝑇 , 𝑆𝜆[𝑖]

𝑇 , 𝑆λ3
𝑇 , See Figure 6 for example.

Figure 6: Illustration of SWAP
T
 operator for a trip.

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

28

 EBSR
T
: A neighbor of 𝑆𝜆

𝑇 is created by extracting the visit in position j and reinserting this visit backward just

before the visit in position i, leading to sequence 𝑆𝜆
𝑇′ = 𝑆𝜆1

𝑇 , 𝑆𝜆[𝑗]
𝑇 , 𝑆𝜆[𝑖]

𝑇 , 𝑆𝜆2
𝑇 , 𝑆𝜆3

𝑇 , See Figure 7 for example.

Figure 7: Illustration of EBSR
T
 operator for a trip.

 ESFR
T
: A neighbor of 𝑆𝜆

𝑇 is created by extracting the visit in position i and reinserting it forward immediately

after the visit in position j, leading to a sequence 𝑆𝜆
𝑇′ = 𝑆𝜆1

𝑇 , 𝑆𝜆2
𝑇 , 𝑆𝜆[𝑗]

𝑇 , 𝑆𝜆[𝑖]
𝑇 , 𝑆𝜆3

𝑇 . See Figure 8 for example.

Figure 8: Illustration of ESFR
T
 operator for a trip.

 Inversion
T
: A neighbor of 𝑆𝜆

𝑇 is created by inserting 𝑆𝜆[𝑖]
𝑇 , 𝑆𝜆2

𝑇 , 𝑆𝜆[𝑗]
𝑇 in the inverse order between 𝑆𝜆1

𝑇 and 𝑆𝜆3
𝑇 .

See Figure 9 for example.

Figure 9: Illustration of Inversion
T
 operator for a trip.

Moves and selection of the best neighbor

The aim of the problem is to minimize the total tardiness. The best neighbor in the candidate item that is non-

tabu and with the smallest total tardiness. For managing the tabu list, we use the first-in-first-out (FIFO)

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

29

strategy. Old attributes are deleted as new attributes are inserted.

Tabu list

We define three tabu lists and the size of the tabu lists is fixed. An element of the tabu list is defined by (λ, µ, Ji,

Jj), λ, µ are the indexes of two trips, Ji and Jj are two jobs:

 For a swap of two jobs Ji and Jj in the sequence, we insert in the Tabu list the element (0, 0, Ji, Jj). For

example, see Error! Reference source not found., the element inserted in the Tabu list is (0, 0, J5, J2). In this

case λ = µ = 0.

 For a move in two trips λ and µ, we insert in the Tabu list the element (λ, µ, Ji, Jj) where i and j are the

positions that are concerned in trips λ and µ respectively. For a move in a single trip, we have λ = µ. For

example, see Error! Reference source not found., where the tabu list is (1, 1, J1, J5).

Stopping condition

The algorithm is stopped when the time limit has been reached. This time limit is denoted by TimeLimitTS =

n(m/2)t ms [5], where t = 90.

Detailed algorithm

The detailed TS algorithm is given in Algorithm 1

 FlagSwap
o
 allow to make a selection of the neighbor operator of sequence.

 LimitSwap
o
 allow to limit the size of the neighborhood in sequence.

 FlagOpera
T
 allow to make a selection of the neighbor operators in sequence of a trip (FlagOperaT ∈

{FlagSwapT, FlagEBSRT, FlagEF SRT, FlagInversionT}).

 LimitOpera
T
 allow to limit the size of the neighborhood in a trip (LimitOpera

T
 ∈ {LimitSwap

T
, LimitEBSR

T
,

LimitEFSR
T
, LimitInversion

T
}).

 FlagOpera
T

2 allow to make a selection of the neighbor operators in sequence of two different trips

(FlagOpera
T
 2 ∈ {FlagSwap

T
2, FlagEBSR

T
2, FlagEFSR

T
2}).

 Del(T) deletes the upper element of TS

 Add(T,(λ, µ, Ji, Jj)) adds element (T,(λ, µ, Ji, Jj)) to T (tabu list), ∀λ, µ ∈ {0, 1, 2, ...}. In Algo. 15, the

Test(SWAP
o
), Test(Opera

T
), Test(Opera

T
2) are described in Algorithm 2, 3, 4:

1: Initialization

2: S0 = initial solution, S = current solution

3: S’ = S0 // best solution of N(S)

4: S
*
 = S0 // best solution of N(S) and non-tabu

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

30

5: f
*
 = f(S0) // f∗ value of S

*
 and f(S0) value of S0

6: T = ∅ // T is the tabu list

7: while (CPU ≤ TimeLimitTS) do

8: f(S0) = ∞,

9: //Selecting neighbor in sequence

10: for i = 0 to n − 1 do

11: for j = i + 1 to n do

12: Test(SWAP
o
)

13: end for

14: end for

15: //Selecting neighbor of a trip

16: for λ = 0 to n − 1 do

17: for i = 0 to nbjoboftrip[λ] − 2 do

18: //nbjobof trip[λ] is the number jobs of trip λ

19: for j = i + 1 to nbjoboftrip[λ] − 1 do

20: Test(Opera
T
)

21: end for

22: end for

23: end for

24: //Selecting neighbor in two trips

25: for λ = 0 to n − 2 do

26: for µ = 0 to n − 1 do

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

31

27: for i = 0 to nbjoboftrip[λ] − 1 do

28: //nbjobof trip[λ], nbjoboftrip[µ] are the number jobs of trip λ, µ

29: for j = 0 to nbjoboftrip[µ] − 1 do

30: Test(Opera
T

2)

31: end for

32: end for

33: end for

34: end for

35: if (f(S0) < f
*
) then S

*
 = S0, f

*
 = f(S), end if

36: if (SizeTabu ≥ TabuMax) then Del(T) end if

37: Add(T,(λ, µ, i, j))

38: end while

Algorithm 1. Tabu search algorithm for scheduling and vehicle routing

1: if (FlagSwap
o
 = 1) and (j − i ≤ LimitSwap

o
) then

2: S = S0, f(S) = f(S0), SWAP
o
 (S,(0, 0, i, j)),

3: if ((0, 0, i, j) T) then

4: Calculate(f(S)),

5: if (f(S) < f(S0)) then S0 = S, f(S0) = f(S), move = (0, 0, i, j), end if

6: end if

7: end if

Algorithm 2. Test(SWAP
o
)

1: if (FlagOpera
T
 = 1) and (j − i ≤ LimitOpera

T
) then

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

32

2: S = S0, f(S) = f(S0), Opera
T
(S,(λ, λ, i, j)),

3: if ((λ, λ, i, j) T) then

4: Calculate(f(S)),

5: if (f(S) < f(S0)) then S0 = S, f(S0) = f(S), move = (λ, λ, i, j), end if

6: end if

7: end if

Algorithm 3. Test(Opera
T
)

1: if (FlagOperaT2 = 1) then

2: S = S0, f(S) = f(S0), OperaT2(S,(λ, µ, i, j)),

3: if ((λ, µ, i, j) T) then

4: Calculate(f(S)),

5: if (f(S) < f(S0)) then S0 = S, f(S0) = f(S), move = (λ, µ, i, j)), end if

6: end if

7: end if

Algorithm 4. Test(Opera
T

2)

3. Computational experiments

We present in this section the generation of data and we discuss the results.

Generation data

We have tested the algorithms on a PC Intel core
TM

i5 CPU 2.4GHz. Data sets have been randomly generated

(notice that there is no benchmark instance for the m-machine flow shop and vehicle routing problem

integrated). The processing times pi,j have been generated in [1,100], the due dates dj have been generated in [50,

50n], the position of “custom” j is given by its coordinates (xj, yj) generated in [1, 70] (see Figure 10). The

delivery time li,j is the classical Euclidian distance 𝑙𝑖,𝑗 = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)2. Ten instances are used for

each combination of n and m, with n {20, 30, 50, 70, 100, 150, 200} and m {2, 4}. For the TS algorithm,

some preliminary experiments have conducted to the following parameters settings: TimeLimitTS = 10 seconds.

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

33

Tabu list = {10, 40, 60,120} elements.

Figure 10: Illustration of calculation of li,j.

4. Results

In Error! Reference source not found., column ‘Best’ for TSX (X {10, 40, 60, 120}) indicates the number of

times this method strictly outperforms other method. Column ‘∆TSX’ indicates the average deviation between

TSX and the best method between TS10, TS40, TS60 and TS120.

∆𝑇𝑆𝑋 =
𝑇𝑆𝑋 − min (𝑇𝑆10, 𝑇𝑆40, 𝑇𝑆60, 𝑇𝑆120)

𝑇𝑆𝑋

Table 1: Tabu search results.

n x m
TS10 TS40 TS60 TS120

Best ∆TS10 Best ∆TS40 Best ∆TS60 Best ∆TS120

20 × 2

30 × 2

50 × 2

70 × 2

100 × 2

150 × 2

200 × 2

20 × 4

30 × 4

50 × 4

70 × 4

100 × 4

150 × 4

200 × 4

3

1

0

0

1

0

0

0

0

0

1

0

0

0

17.58%

11.62%

17.40%

16.12%

19.24%

23.42%

26.35%

9.51%

9.28%

8.67%

7.34%

17.60%

19.08%

18.52%

7

7

1

0

1

0

4

9

10

5

2

3

2

3

4.16%

13.34%

21.81%

21.88%

25.61%

15.27%

5.60%

0.00%

0.00%

3.19%

9.54%

9.84%

2.84%

2.60%

3

3

2

2

0

4

3

1

0

2

3

2

4

5

17.58%

10.97%

12.49%

10.99%

14.93%

5.29%

5.67%

9.51%

9.28%

3.27%

5.38%

9.23%

3.08%

4.16%

0

0

7

8

8

6

3

0

0

1

5

5

4

2

24.81%

30.19%

3.23%

2.50%

1.65%

5.95%

8.19%

12.04%

17.63%

4.60%

4.47%

4.75%

4.10%

10.73%

 6 14.98% 54 10.46% 34 8.49% 49 9.94%

We can see that the TS40 (with tabu list is 40) leads to the best results with a number of best solutions equal to

54. On average, the deviation between the solutions returned by this method and the best solutions is 10.46%.

This value is around and 14.98% for TS10, 10.46% for TS40, 8.49% for TS60 and 9.94% for TS120.

In Table 2, column ‘Best TS < EDD’ indicates the number of times the method TS outperforms method EDD,

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

34

column Cpu(s) indicates the average computation time of TS per 10 instances. Column ‘∆’ indicates the average

deviation between EDD and TS.

∆=
𝐸𝐷𝐷 − 𝑇𝑆

𝐸𝐷𝐷

Table 2 : Comparison of the TS40 and EDD algorithm.

n × m Best TS<EDD Cpu(s) ∆

20 × 2

30 × 2

50 × 2

70 × 2

100 × 2

150 × 2

200 × 2

20 × 4

30 × 2

50 × 4

70 × 4

100 × 4

150 × 4

200 × 4

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10.00

10.00

10.00

10.01

10.01

10.03

10.06

10.00

10.00

10.00

10.01

10.01

10.03

10.03

72.0%

79.7%

88.3%

85.2%

91.4%

90.0%

81.3%

55.9%

69.2%

75.9%

71.4%

83.7%

77.7%

70.4%

As we can see in Table 2, TS improves significantly the initial solution given by EDD, with 78,0% of

improvement in average.

5. Conclusions and discussions

We approach a problem where a m-machine permutation flow shop scheduling problem and a vehicle routing

problem are integrated to minimize the total tardiness. To our knowledge, this is the first time that this problem

is approached in the literature. We present a direct coding for a complete solution and a neighborhood method

for finding a sequence and trips. We propose a tabu search algorithm for this problem, the first results show that

the TS greatly improves the initial solution given by EDD and where each trip serves only one job at a time.

In the future, the first research directions are about the evaluation of the method. We will develop genetic

algorithms and other methods in order to see the real quality of the tabu search. Then, we will combine

mathematical programming and local search (matheuristic), in order to see if matheuristic are performing

methods for this problem.

Acknowledgements

The authors would like to thank to Professor Jean-Charles Billaut of University of Tours, France who provided

insight and expertise that greatly assisted the research.

International Journal of Computer (IJC) (2022) Volume 43, No 1, pp 24-35

35

References

 [1] Q. C. Ta, J. C. Billaut, J. L. Bouquard and P-E. Morin. “Minimisation de la somme des retards pour un

problème d’ordonnancement de type flow-shop à deux machines et un problème de livraison intégrés.”

15ème congrès de la Société de la Société Française de Recherche Opérationnelle et d'Aide à la

Décision Roadef’, 2014. Bordeaux, France.

[2] J. K. Lenstra and A. H. G. Rinnooy Kan. “Complexity of vehicle routing and scheduling problems”.

Networks, vol 11, pp. 221-227, 1981.

[3] Q. C. Ta, J. C. Billaut and J. L. Bouquard. “An hybrid metaheuristic. a hybrid lower bound and a tabu

search for the two-machine flowshop total tardiness problem.” Proceedings of the 10th IEEE RIVF

International Conference on Computing and Communication Technologies (RIVF’13), 2013, Hanoi,

Vietnam.

[4] Q. C. Ta, J. C. Billaut and J. L. Bouquard. “Minimizing total tardiness in the m-machine flow-shop by

genetic and matheuristic algorithms”. Journal of Intelligent Manufacturing, vol 29, pp. 617- 628, 2015.

[5] E. Vallada, R. Ruiz and G. Minella. “Minimising total tardiness in the m- machine flowshop problem: A

review and evaluation of heuristics and metaheuristics”. Computers & Operations Research, vol 35,

pp. 1350-1373, 2008.

