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ABSTRACT 

The selection of an appropriate parameter in a water absorption process experiment is an important route to reducing 

fabrication wastes and ensuring the optimum deployment of scarce process resources to the appropriate parameter. 

However, the literature is inadequate in providing an appropriate direction on selecting parameters for the hull of the 

ships' application due to the conflicting requirements of the interested parties. A novel method called the Data 

Environment Analysis (DEA) to overcome this problem. Preference Ranking Organization Method for Enrichment of 

Evaluations (PROMETHEE) method is deployed to establish the appropriate parameter in a water absorption process on 

epoxy composite. The net outranking results show that criterion B (final weight) is placed in the first position. The 

criterion A (initial weight), D (thickness), and C (length) are placed in the second, third, and fourth positions, respectively, 

while E (time) is not necessary to the achievement of the system's goals. The key novelty is the unique application of the 

fused DEA-PROMETHEE method to a composite using the Taguchi signal-to-noise ratio response table for the hull of a 

ship. The method enhances the performance of multiple inputs (parameters) and multiple outputs (responses). The results 

of the DEA method-PROMETHEE method established the potential of epoxy composite to be used on the ship for the 

hull component. This could reduce the waste generated in the system, and guided allocation of resources are made to the 

appropriate parameters and, consequently, enhance the shipping company's profit. Furthermore, the results could improve 

the shipping vessel performance and develop a sustainable practice, which will lengthen the lifespan of the shipping 

industry. 
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1. INTRODUCTION 

 This article examines a case study to illuminate a 

research gap in composite water absorption literature 

relevant to a ship's hull (Maduekwe and Oke, 2020; 

Maduekwe and Oke, 2021). This is of wide interest to 

composite developers, surface coating engineers, 

materials engineers, and structural engineers (Georgiev 

and Pentschew, 2002; Zheng et al., 2016; Nair et al., 2017; 

Guo et al., 2017; Lindstad and Bø, 2018; Moreira and 

Soares, 2020). At present, the literature is inadequate in 

providing a direction on selecting an appropriate 

parameter (Koh et al., 1998; Kim and Chi, 2010; Lindstad 

et al., 2013; Hou, 2017; Jeong and Jeong, 2020). Serious 

challenges are imposed on the interested party (i.e., 

composite development engineers) because of various 

options in parameters to choose from (Cerka et al., 2017; 

Cheng et al., 2018; Deng et al., 2021). Furthermore, the 

challenge to satisfy multiple and conflicting requirements 

by the aforementioned interested parties, such as the 

surface coating engineers and structural engineers, is 

extremely hard to tackle without an adequate scientific 

guide (Maduekwe and Oke, 2020; Maduekwe and Oke, 

2021). Therefore, very scanty selection models are 

presently deployed to solve this problem, and the present 

success level is accomplished by the overwhelming 

pressure from researchers and practitioners. 
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Furthermore, at the conceptual design stage of the hull 

of a ship, several essential considerations exist, and 

optimization is desired (Bales, 1980; Kim and Chi, 2010; 

Lindstad et al., 2013; Pechenyuk, 2017; Hou, 2017; Deng, 

2017; Cerka et al., 2017; Cheng et al., 2018; Feng et al., 

2018; Lindstad and Bø, 2018; Oliveira et al., 2018; Jeong 

and Jeong, 2020). In practice, a ship is subjected to speed 

loss on the real seaways. This loss by the actions of wind 

and waves causes environmental loads on the ship and 

thus impair the ship's operational efficiency (Jing and 

Kim, 2019). Consequently, as the water resistance of the 

ship is considered along with the ship's speed loss under 

wind and waves, it is compelling to consider the 

composite behavior, which is proposed for the hull of a 

ship.  

Besides, a ship's hull from composites tends to develop 

micro and macro cracks at the operational level from 

welding imperfections, corrosion, loading corrosion, 

loading situations, and fatigue (Zhang et al., 2016; Guo et 

al., 2017; Nair et al., 2017). Thus, several important 

factors at the design and operational stages should be 

considered for the most comprehensive capture of the 

behavior of the hull of a ship at the operational level. 

Unfortunately, testing all the conditions and parameters is 

not feasible due to the exorbitant experimental cost to 

institute the experiment. This makes it compelling for 

researchers and practicing engineers to seek guidance 

from the literature for economic models (Georgiev and 

Pentschew, 2002; Ajibade et al., 2019). These models 

should be comprehensive, which could save the cost of 

experimentation and provide the necessary information 

and control measures to attain the research goal of 

selecting the best alternative among the composite 

parameters. In this context, depending on the literature 

data and the classical Taguchi method, the parameters (the 

thickness of the composite, its length, the initial and final 

weights of the composite in water) and the immersion 

time of the ship hull composite in water have been relied 

upon (Georgiev and Pentschew, 2002; Ajibade et al., 

2019).  

However, knowledge concerning the best criterion of 

these stated criteria to evaluate the water absorption of a 

ship's hull may be needed (Abiola and Oke, 2021a; Abiola 

and Oke,2021b; Maduekwe and Oke, 2021). To tackle 

this problem, the Taguchi SN ratio response table is 

coupled with the combined DEA-PROMETEE method to 

select the best criterion from those controlling the water 

absorption process of the composite for the development 

of the hull of a ship. The Taguchi SN ratio response table 

is the final optimization form of the water absorption 

process parameters of a composite whose evaluation 

commenced with the establishment of factors and levels, 

an institution of orthogonal arrays, signal to noise ratios, 

and the averaging of the SN ratios (Ajibade et al., 2019; 

Maduekwe and Oke, 2021). For the DEA-PROMETHEE 

method, the DEA approach the efficiency of the 

alternative water absorption parameters of the composite 

for the hull of a ship with competence to analyze several 

inputs and outputs. However, based on the weakness of 

the inability to rank the criteria in order of importance, the 

PROMETHEE method is introduced to correct its 

weakness (Maduekwe and Oke, 2021).  

The PROMETHEE method is adequate to complement 

the strength of the DEA method and correct its weakness 

since it offers a total ranking of the alternatives (Babaee 

et al., 2015; Macharis and De Smet, 2015; 

Bagherikahvarin and Smet, 2016; Bagherikahvarin and 

Smet, 2017; Bagherikahvarin, 2019; Mahad et al., 2020). 

Unlike the previous reports on combined DEA and 

PROMETHEE methods, the present study introduces the 

Taguchi scheme by adopting a Taguchi SN ratio response 

table to optimize the alternatives while selecting the best 

one. This study aims to evaluate the efficiency of the 

water absorption parameters of the hull of a ship 

composite and offer a total ranking of alternatives using 

the DEA-PROMETHEE method. 

Thus, the research novelty is implementing the DEA-

PROMETHEE method to evaluate the efficiency and 

offer a total ranking of the investigated alternatives. This 

study provides information to assist in managing the ship 

design process more efficiently in the shipbuilding sector 

and the shipping industry. Efficient alternatives could be 

viewed as a benchmark model for other alternatives, while 

inefficient alternatives can imitate the paramount practice 

of efficient alternatives to achieve superior efficiency 

(Mahad et al., 2020).
  

  

2. LITERATURE REVIEW 

This section presents a literature review to support both 

the method, DEA–PROMETHEE, and the case analyzed, 

the hull of a ship. First, a brief review of the DEA-

PROMETHEE method is given, followed by the literature 

review on other methods used for the ship system. Then, 

the literature on the hull of a ship application is disclosed 

to support the article's novelty. 
 

 

2.1. The DEA-PROMETHEE method 

 The data envelopment analysis (DEA) is an 

efficiency-oriented method with non-parametric 

characteristics, initiated in 1957 by Farwell (Fare et al., 

1994; Mahad et al., 2020). However, Charnes et al. (1978) 

are one of the later but vastly influential contributors to 

extend the previous platform of alternative remains 

profitable in production. It lacks discrimination power 

such that the DEA offers a solution, which labels the 

decision-making units ass efficient (Mahad et al., 2020). 

Although DEA can distinguish efficient from inefficient 

DMU or alternative, it lacks the competence to institute 

ranking for the member alternatives (Mahed et al., 2010). 

However, ranking alternatives and selecting the best 

alternative inefficiency is generally compelling to 

decision-makers in ship manufacturing and the shipping 

industry. Fortunately, there is compelling evidence on 

PROMETHEE as a competent tool to correct the 

drawback of the DEA mentioned earlier. More so, the 

PROMETHEE could function appropriately in the 

absence of rich data and therefore becomes an attractive 

tool to fuse to the DEA method as the DEA-

PROMETHEE method. Interestingly, PROMETHEE has 

an impressive subscription; as of 2015, Miacheris and 

Smet (2015) reported that roughly 1000 publication on the 

PROMETHEE method exists, and these are largely 

methodology-related.  
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Then, the history of the development of PROMETHEE 

of often linked to the initiative by Jean-Pierre Brans 

(1982) and has since expanded in frontiers to applications, 

methodological growth, and software implementation 

(Macharis and De Smet, 2015). PROMETHEE has 

several versions, while PROMETHEE I and II are two 

common. However, PROMETHEE II is used in this 

article. A multi-attribute decision-making approach 

establishes mutual comparison among composites' water 

absorption process parameters for the hull of ship 

application. The PROMETHEE ranks from the best case 

to the worst-case alternative in a situation where pairs of 

alternatives are compared on the bans of selection criteria 

(Mahad et al., 2020). Furthermore, Mahad et al. (2020) 

argued that a total ranking is achieved for the alternatives 

analyzed if PROMETHEE is integrated with the DEA. 

Consequently, the DEA PROMETHEE is a candidate for 

evaluations in many projects. For instance, Babaee et al. 

(2015), Bagherikahvarin and Smet (2016), 

Bagherikahvarin (2019), Mahad et al. (2020) and 

Karasakal et al. (2021).  

Bagherikahvarin (2019) instituted a two-step method to 

rank the multiple outputs and inputs. It was shown that 

compatibility between the outcomes of the DEA to a more 

robust structure that it showcases today. Afterward, the 

DEA has been affirmed as effective in the efficiency 

appraisal of organizational decision-making units to 

reveal essential modifications to attain utmost efficiency 

(Mahad et al., 2020). For instance, Andersen and Petersen 

(1993) and Bal et al. (2010) support the effectiveness of 

DEA usage for efficiency monitoring. Unfortunately, 

despite the utility of DEA as a tool to ascertain that 

organizations remain competitive when applied to 

decision-making units or that the product ranking using 

DEA and integrated DEA-PROMETHEE approach for 

the case of an input and an output. The monotonicity 

property of the method was discussed, and a numerical 

example was demonstrated to compare the developed 

DEA-PROMETHEE and DEA-AHP methods.  

In Bagherikahvarin and De Smet (2016), the restriction 

of weight values regarding the DEA method by deploying 

the multi-criteria decision analysis was made. The 

outcome of the method is realistic inputs/outputs weights. 

It enhances the model's performance compared with the 

traditional DEA method, while it is often experienced that 

extremely high or low weights are possible. The stability 

interval was deployed to attain the goal, and his feature in 

PROMETHEE II ranking was deployed for the solution. 

The feasibility of the approach was confirmed with 

examples.  

Furthermore, Babaee et al. (2015) assessed the total 

performance of elderly drivers and ranked them using a 

study sample of 55 drivers. The DEA was used to 

compute the score representing the optimal performance 

of the driers. A multi-criteria decision-making analysis 

was deployed to complement the work. Finally, the 

PROMETHEE II was introduced. It was concluded that 

there is a high correlation between the results. In another 

work, Karasakal et al. (2020) proposed two new methods 

based on PROMETHEE but integrated with the DEA 

approach. One of the approaches tackles the imprecise 

elements contained in criteria weights, while the second 

method employs a combination of threshold and weights. 

The practical use of the methods was shown with 

examples. In another study, Bagherikahvarin and Smet 

(2017) showcased an approach to establish new weights 

using combined PROMETHEE and DEA methods. In 

specific terms, the authors proposed an adjustment to the 

"decision maker brain" concept operational in the GAIA 

plane. A numerical description was shown to validate the 

method.   

In the literature on the integrated DEA-PROMETHEE 

method, researchers have established methodological 

development that warrants adjusting the feature of DEA 

to remove the shortcomings using the PROMETHEE 

method. Also, very few novel works on using the DEA-

PROMETHEE method in case applications have been 

accomplished. The transportation case is one of the very 

few cases explored in the literature where old drivers were 

evaluated. Surprisingly, there is no case implementation 

on a ship's hull, which is extremely important for fuel 

efficiency in bulk carriers. There is a complete omission 

of how the DEA-PROMETHEE is used to enhance the 

efficiency of alternatives in the choice of composites 

tested for water absorption in water bodies. Thus, the 

parameters of water absorption of composites need to be 

tested as a novel adventure. Thus, the novel element of 

this article is the implementation of an integrated DEA-

PROMETHEE method to the water absorption process 

parameters of composites developed and tested in a water 

environment.  

However, despite the growing popularity of the DEA-

PROMETHEE method, the gap for the hull of a ship 

remains unattended. But the hull of a ship is a major 

aspect whose information about the best parameter in its 

composite design remains essential. Consequently, there 

is an open problem of selecting parameters of composites 

to be solved using the DEA-PROMETHEE method for 

the hull of a ship. 

 

2.2. Parameter selection methods 

In the domain of parameter selection, several methods 

have been reported with success, including Taguchi 

methods, factor analysis, and neural networks. However, 

the DEA PROMETHEE method is rarely discussed. 

Furthermore, the case of a ship's hull with the application 

of the DEA-PROMETHEE method has not been reported 

in the literature. Yet, developing a case study for the hull 

of a ship based on the DEA-PROMETHEE method might 

be quite beneficial for the related practices for the ship 

manufacturer and shipping industry. Thus, the approach 

in this review is to analyze the literature according to the 

Taguchi and neural networks methods.  

 Although the parametric selection was not made by 

some researchers investigating hull form optimization 

while minimizing ship resistance, the influence of the hull 

from parameters was analyzed (Deng et al., 2021). The 

analysis is closely related to the Taguchi method, 

reviewed from the perspective of being a selection method. 

It is also an optimization method. The author (Deng et al., 

2021) analyzed the hull form influence on the 

hydrodynamic accomplishment of a ship while employing 

a combined optimization procedure to incorporate 

maneuverability, ship resistance, and seakeeping in 
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association with the key measuring of the ship. Besides, 

the study concluded it is possible to attain a good parent 

ship using the key dimensional optimization process; also, 

an enhanced hull form optimization was argued as 

possible by combined optimization using key dimensions 

and hull form. 

 

2.2.1. Taguchi methods for the hull of a ship 

 In seakeeping research activities, the optimization of 

various ship hull designs has been a center point of 

attention. The Taguchi method has been developed to 

fulfill this goal as an engineering design method. In the 

Taguchi application domain, interest has been to analyze 

the effect of hull form parameters on resistance 

displacement proportions (Georgiev and Pentschew, 

2002). In this case, the 42000 TDW bulk carrier was 

analyzed, and the NAPA system was used to examine the 

ship hull design and the changes to the specification of the 

parameters (Georgiev and Pentschew, 2002). Furthermore, 

the complete analysis involves resistance for various 

standard speeds through the Danckward approach. 

Additionally, the frontier of mathematical analysis on a 

ship's hull has been extended to incorporate genetic 

algorithms by robust design (ho et al., 1998). The article 

by Koh et al. (1998) argued for using a genetic algorithm-

based robust design to enhance the speed of the hull of a 

ship and advanced a practical example to validate the 

claim. 

 

2.2.2. Related artificial neural network research in the 

hull of a ship 

An artificial neural network (ANN) is a structure that 

mimics the human brain. This machine-learning 

algorithm could propose design solutions in shipbuilding 

activities through trial and error and thus predict the 

outputs by training from a given set of parameters. In 

shipbuilding, ANN has been used in hull form design with 

details following: Jung et al. (2019) optimized the ship 

dimensions from the hydrodynamic performance in 

waves; a non-dominated sorting genetic algorithm was 

introduced to reduce the resistance of the ship on its 

maneuvering in the seaways. The model accounts for 

speed loss and resistance using the slender-body theory, 

empirical method on-resistance due to short waves, and 

Maruo's far-field procedure. The use of numerical 

examples affirmed the feasibility of the study.  

 Moreira and Soares (2020) analyzed an artificial neural 

network to predict the bending moment and the shear 

force experienced by the ship's hull during the action of 

waves on it. Thus, the authors argued serves as a tool for 

a ship's motion. The principal parameters studied are the 

yaw rate, roll angle, heading angle, sway acceleration, 

vertical acceleration, and pitch angle. Furthermore, the 

authors deployed a mathematical model to provide the 

ship's motion data based on the strip theory. Nair et al. 

(2017) established criteria for evaluating cracks rooted in 

inducement parameters that affect crack initiation within 

the hull structure. The authors established an association 

between inducement parameters and the operational life 

of ships using a visualization method. 

 

2.2.3. Water absorption studies on composites 

Ajibade et al. (2019) analyzed the epoxy composites 

based on various agro-wastes. Maduekwe and Oke (2020) 

examined the ship's hull by proposing an integrated model 

based on the analytic hierarchy process and the 

PROMETHEE method. Furthermore, Maduekwe and 

Oke (2021) studied composites' water absorption process 

problem, evolving a DEMATEL-PROMETHEE method 

to establish the parameters of the process. Abiola and Oke 

(2021a) elaborated on six parameters that influenced the 

water absorption process parametric assessment. The 

mentioned factors are the weight of the initial matrix 

weight, particulate weight (final weight), particulate 

loading, rate of water absorption, and the weight after 150 

days. 

Furthermore, an extension of a previous study was 

reported in Abiola and Oke (2021b), where analysis of 

uncertainty and imprecision using the fuzzy analytic 

hierarchy process (see Hou, 2017; Karasakal et al., 2021). 

In this sub-section, parametric analysis relating to ship 

using the Taguchi and the artificial neural network 

methods were reviewed. Furthermore, the water 

absorption literature on composite with relevant studies to 

the ship was briefly reviewed. However, only a case was 

established for the selection process for composite 

parameters for a ship's hull in these instances. But the 

efficiency of the process was not analyzed, which creates 

a gap for further investigations. 

 

2.3. Hull studies 

 The ship's framework is the hull but excludes the 

elements of sails, masts, rigging, and yards. The part of 

the ship rides two ways as it navigates and is on top of the 

water. However, expensive mild steel and manganese 

materials are currently deployed to construct the ship. 

While the percentage of carbon in the mild steel used is 

controlled to be within the limits of 0.15% to 0.23% 

carbon, a high quantity of manganese content should be 

maintained. Besides, the challenge of material control for 

the ship is complicated as the composition of the sulfur 

and phosphorus must be limited to less than 0.05% to 

avoid complications in welding the ship's hull. However, 

they enhance the ship's fuel efficiency, limit energy 

consumption, and control greenhouse gas emissions. 

These conventional materials have failed to satisfy ship 

manufacturers' global and industrial demands. 

 In the hull of ship research, there is a tradition of 

analyzing the hull's surface for enhanced performance. 

While some authors argued that panel redesign is essential 

for enhanced speed through surface adjustment of the ship 

(Kim et al., 2006), a recent study has diverged from this 

opinion to surface modification material and chemical 

application. In the study by Kim et al. (2016), an 

algorithm called the panel cutting method was established 

to solve the flow problem as the ship advances on the free 

surface of the water at a regular speed. The authors used 

iteration on the non-linear free surface boundary situation 

while considering a raised panel situation in the analysis. 

The principal factors considered are the wave resistance 

coefficients, wave heights, and wave patterns. The other 

aspect of surface research mentioned earlier involves 

blasting and surface cleaning activities for the ship's hull 
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from corrosion. Zhang et al.'s (2016) study are relevant to 

this case. The authors established a mathematical method 

to explain the association between various inputs and the 

blasting quality; interestingly, the author deployed the 

method of Taguchi as an effective means of analysis. 

From these reviews and other papers surveyed during this 

investigation, the hull of a ship has been extensively 

discussed but solving the selection problem of parameters 

in composites remains unresolved. 

 

2.4. Summary and observations from the literature 

From the review of literature, the following 

observations are valid: 

a) The hull of a ship is a vital part of the ship and 

substantially influences the maneuvering and fuel 

efficiency of the ship. 

b) Substantial efforts have been invested in the design 

improvement of a ship's hull through surface integrity 

improvement, power setups, fuel enhancement, and 

reduction of greenhouse gas emissions and costs.  

c) Although the DEA-PROMETHEE method has since 

emerged in 2015 from the work of Babaee et al. 

(2015), it has restricted applications, and only a case 

in the transportation sector has been reported so far.  

d) The Taguchi method with a robust economic potential 

to reduce the cost of experimentation has not been 

reportedly linked with the integrated DEA-

PROMETHEE method. 

e) Despite the central point of hull of a ship in 

influencing ship's performance, the development of 

composites with optimized parametric setting and 

selection potential for the best parameter using the 

Taguchi method as the basis and the DEA-

PROMETHEE method has not been previously 

documented in the ship manufacturer's literature or 

shipping industry in general. 

 

3. RESEARCH METHODOLOGY 

 This section discusses the DEA-PROMETHEE 

method and its application to a ship's hull. 

Procedure for testing the DEA-PROMETHEE method 

The following procedure should be observed to apply the 

DEA-PROMETHEE method to a problem: 

 

Step 1. Obtain the Taguchi SN ratios response table 
DEA procedure (Bagherikahvarin and Smet, 2016) 

 

Step 2. Classification of beneficial and non-beneficial 

criteria 

DEA model employs the concept of system efficiency that 

uses output or input to establish the overall efficiency of 

DMU. A DMU or alternative is considered inefficient if it 

fails to yield maximum output and minimum input. 

Beneficial criteria (output): These are criteria whose 

values are favored when increased or minimized. In this 

design model, criterion E is considered as the beneficial 

criterion. 

Non-Beneficial criteria (input): The criteria favored by 

minimizing their values are considered non-beneficial 

criteria. Criteria A, B, C, and D are all considered as non-

beneficial criteria.  

 

Step 3. The normalization of the decision matrix 

The normalization of the decision matrix is achieved 

through Equation (1) (Mathew et al., 2017):  




2

ij

ij

ij

X

X
N

  

Step 4. Adapting the Charnes et al. (1978) (CCR) model 

of DEA 

Charnes et al. (1978) developed a linear programming 

model of CCR to replace the basic fractional CCR model. 

The model aims to either maximize the output or 

minimize the input criteria. Opting for the minimization 

of the input criteria, using the underlisted formulas 

(Charnes et al., 1978): 

Minimizing the input criteria,  









 



ik

n

i

ik XVg
1

min  

subject to  


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m
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0     (3) 

1
1




s

r

rkrYu                             (4) 

ur≥ 0, r = 1,…, s    

vi ≥ 0,  i = 1,…,m 

where n is the number of alternatives/DMUs, 4, and m is 

the number of input criteria, 1. While s is the number of 

output criteria, 4, xik and yrk denote the values of ith input. 

rth is output criteria for the kth alternative. ur and vi are the 

non-negative variable weights to be determined by the 

solution of the minimization problem.  

 
Step 5. The efficiency measure of the Kth DMU is 

computed 

This is given by the formula (Charnes et al., 1978),  

k

k
g

H
1

  

but,  

WA + WB + WC + WD + WE ≤ 1     (6) 

pre-process before applying the PROMETHEE method. 

 

Step 6. Normalize the decision matrix to prepare for the 

implementation of the PROMETHEE method  

(Mathew et al., 2017; Maduekwe and Oke, 2020) 

This done be classifying the factors as beneficial and non-

beneficial, Equations (7) and (8): 

Beneficial: 

)]min()[max(

])[max(

ijij

ijij

ij
xx

xx
R




     (7) 

where i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4, 5 

Non-beneficial: 

)]min()[max(

)]min()[(

ijij

ijij

ij
xx

xx
R




      (8) 

where i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4, 5 

PROMETHEE procedure (Bagherikahvarin and Smet, 

2016; Maduekwe and Oke, 2020). 

 

Step 7: Evaluative difference of ith alternatives with 

respect to other alternatives 

The difference of each alternative with respect to other 

(1) 

(2) 

(5) 
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alternatives in the same criteria/attributes is evaluated 

using the expression  

D [Ri - Rj];         where if i = 1, then  j = 2, 3, 4, 5. 

                and if i = 2, then j = 1, 3, 4, 5.    

 

Step 8. Calculation of the preference function 

The preference function is calculated using the given 

formulae, Equations (9) and (10): 

Pj(a, b), then Pj (a-b) = 0 if Raj< Rbj D(Ra-Rb) < 0  (9) 

If the difference between the two alternatives is less than 

or equal to zero, that value automatically becomes zero. 

Pj(a, b) = (Raj-Rbj) if Raj > Rbj D(Ra-Rb) > 0      (10) 

If the difference between one alternative with respect to 

others is greater than zero, then it retains its value. 

 
Step 9. Calculate the aggregated preference function 

This is done by considering the criteria weights using 

Equation (11): 
 

 





j

jj

W

baPW
ba

),(
),(                    (11) 

where ),( ba  is the aggregated preference function, Wj 

is the criteria weight, and Pj(a,b) is the preference 

function. 

Notice Equation (12):  

Pj(a,b) = P(Raj - Rbj)                          (12) 

 

Step 10. Determination of leaving and entering 

outranking flows 

Apply the formulae for the leaving (positive) and 

entering (negative) flows, Equations (13) and (14): 

Leaving (positive) flow for ath alternative,  

 


 )();,(
1

1
baab

n
    (13) 

where n is the number of alternatives, which is 4. 

Entering (negative) flow for ath alternative, 

 


 )();,(
1

1
baab

n
    (14) 

where n is the number of alternatives, which is 4 

 
Step 11. Compute the net outranking flow of each 

alternative 

The net outranking flow is evaluated using the following 

Equation (15): 

)()()( aaa     (15)  

 

 

 

 

4. APPLICATION OF THE DEA-PROMETHEE 

METHOD 

The data used in the study is based on the results 

declared by Ajibade et al. (2019) that conducted 

experiments on pairs of agro-waste reinforcements in 

epoxy resin to form composites, which were tested in the 

water absorption process. The methodology of the DEA 

method – PROMETHEE method demands the use of 

experienced composite practitioners to evaluate the 

questionnaire as decision-makers. However, one of the 

authors served that purpose in the present study. The 

composite practitioner is expected to showcase 

preferences of a parameter over others on a measuring 

scale. So the results obtained from such an analysis were 

assembled and indicated in the present study. Besides, the 

present study is robust as it adopts a second case study to 

validate the method discussed. 

To apply the DEA–PROMETHEE method, effort 

should first be directed to applying the Taguchi method to 

develop the response table. The steps involve identifying 

factors from any given set of data and creating levels for 

the factors taking into consideration the repeatability of 

data to affirm a level. Then the orthogonal array is then 

specified by using standard software such as the 

Minitab18, which helps establish the orthogonal array fit 

for the problem. Then the signal-to-noise ratios are 

developed as the criterion of smaller the better, larger the 

better, and nominal the best is chosen from the alternative 

criteria. Then the signal-to-noise ratios are summarised as 

the response tables. This article assumes that the ship 

manufacturer could establish the response table; hence, it 

adopts data in the final form of the Taguchi SN ratio 

response table from Ajibade et al. (2019) to illustrate the 

workability of the DEA PROMETHEE method proposed. 

To sum up, the parameters utilized in this work have been 

optimized using the Taguchi method before being used as 

an input to the DEA-PROMETHEE method.  

Upon determining the response table (Table 1) and 

revising the DEA method, the base of commencement of 

the DEA PROMETHEE method is to establish inputs and 

outputs. However, there are five alternatives: initial 

weight, final weight, length of composites, composite 

thickness, and time. Since the data obtained from the 

literature (Ajibade et al., 2019) is limited to these five 

parameters, it is essential to establish an output or outputs 

among these parameters. Thus a strategy of identifying 

and distinguishing between beneficial from non-

beneficial criteria is adopted. It is thought that the 

beneficial parameters could be the output while non-

Table 1. Taguchi SN ratios response table for water absorption of dual-filler composite (Ajibade et al., 2019) 

 Attribute/criterion A B C D E 
A

lt
er

n
at

iv
e 1 *-30.7422 -30.7418 -30.7096 -30.7455 *-30.2670 

2 -30.7435 -30.7468 -30.7707 -30.7443 -30.6012 

3 -30.7431 -30.7438 *-30.7071 -30.7419 -30.9083 

4 -30.7431 *-30.7397 -30.7847 *-30.7403 -31.1955 

Key: A – the initial weight of the composite before immersion in water, B - final weight of the composite after immersion in water, C – length 

of the composite after immersion in water, D – thickness of the composite after immersion in water, and E – time of the composite immersion 

in water, *optimal level 
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beneficial parameters may be classified as inputs. But 

then, what are beneficial criteria in the context of the hull 

of a ship's composite parameters, and what are non-

beneficial parameters?  

From the multi-criteria literature, a beneficial 

parameter is one whose increase in values will benefit the 

water-resistance goal of the hull of a ship's composite that 

undergoes water absorption test demonstrated in Ajibade 

et al. (2019). Thus, applying the knowledge and 

experience of the present authors, it is thought that by 

increasing time, which is a characteristic of the ship that 

spends substantial time in the water, is beneficial. Usually, 

when a ship is operational on the sea, it stays on the water. 

Also, when the ship is docked, it is still in the environment 

of water. So it is difficult to separate a ship's hull from 

having contact with water. Hence, time is a beneficial 

criterion and taken as the output for this study. By 

argument, the initial weight desired to be as low as 

possible is non-beneficial. The final weight is also 

expected to be relatively low, being a non-beneficial 

parameter. The length of the hull of a ship should be 

reasonable in size. So, extremely long lengths are 

undesirable and non-beneficial to the system. Likewise, 

the thickness of the ship's hull is not desired to be 

excessive and hence classified as non-beneficial. This, 

using the symbolic representation from Table 1, 

parameter E is the output while the parameters A, B, C, 

and D are inputs. Table 1 focuses on five parameters, 

namely, initial weight (g), A; final weight (g), B; length 

(mm), C; thickness (mm), D; and time (s), E. 

The initial weight of the composite for the hull of a ship 

is an important part that determines the success of the 

effort in overcoming resistance and attaining the desired 

powering of ships. It is a function of the type of 

composite, the properties of the material, and the fiber 

loading during the composite formulation. The composite 

fabrication for a ship's hull is subjected to depends on the 

temperature and atmospheric condition. The final weight 

is the measured value of the composite fabrication 

adopted, whether or not the composite is treated, and if 

treated, how long the treatment takes. Time refers to the 

extent to which the composite for a ship's hull is allowed 

to stay in the water and determines the amount of writer 

absorbed. This is to test the resilience of the composite in 

water. The length of the composite is to reflect the size of 

the ship, which may be small, medium, or large. It is 

considered an essential element to determine the 

optimization and selection process of water absorption 

process parameters used for composites for a ship's hull. 

The composite thickness is an important element in 

establishing the optimization and selection of the water 

absorption process parameters. Thicker composite strata 

are found to produce heavier composites. Thickness 

determines how ready it is to break the composite of a 

ship's hull. The object of the experiment by Ajibade et al. 

(2019), however, is to study how a real-life structure 

would respond to water absorption by way of examining 

the influence of initial weight, final weight, the thickness 

of composite, length of composite, and time of composites 

suspension in water. As this reflects the same scenario that 

the ship and hull of a ship undergo in water bodies, it is 

adopted to illustrate the DEA-PROMETHEE method in 

this study. 

Furthermore, the objective function is the Taguchi SN 

ratio response that originates from the choice among the 

smaller-the-better, larger-the-better, or the nominal-the-

best signal-to-noise criterion. It consists of the log 

function of the anticipated output of the optimization cum 

selection process in the present study. It supports the hull 

of a ship's data analysis and predicts the optimum results. 

Besides, as the hull of a ship remains a prominent 

structural entity in the ship, it is conceived that 

optimization in design cum selection of the best parameter 

is a better pursuit than selection alone. Thus, the Taguchi 

SN ratio oversees all aspects relevant to optimizing the 

parameters before being used as an input to evaluate the 

DEA-PROMETHEE method in developing the composite 

for the hull of a ship. 

A signal-to-noise ratio is a relationship between the 

signal power level and noise power, usually expressed as 

decibels (dB). In the Taguchi SN ratio response table, 

Table 1, -30.7422 dB, which is the value of the initial 

weight along the row for the first alternative is higher than 

any of the other three values of -30.7435, -30.7431, and -

30.7431dB for the initial weight of alternatives 2, 3 and 4. 

Higher dB values are generally preferred as they provide 

more useful information (i.e., signal) than undesired data 

(i.e., noise). This idea of signal-to-noise that originated 

outside the composite development area has been relevant 

to the water absorption parametric evaluation of a ship's 

hull in the present article. This idea is mentioned as it is 

known that even in the electrical engineering domain that 

the signal-to-noise originates, all components developed, 

including cables, exhibit a certain noise level in 

proportion to the signal power. Since the best electronics 

components are developed to maximize the SN ratio by 

holding the noise level to the lowest level, this idea is 

borrowed to the composite development of a ship's hull 

where the noise is made as low as possible. 

Having established the inputs and output to the DEA 

method within the DEA-PROMETHEE framework, the 

next step is normalizing the decision matrix. 

Table 2 is the normalized decision matrix for the 

problem under investigation. But then, normalization and 

Table 2. Normalized decision matrix of the composite 
A

lt
er

n
at

iv
e 

Attribute/ criterion A B C D E 

1 -0.5000 -0.4995 -0.4995 -0.5000 -0.4922 

2 -0.5000 -0.5005 -0.5005 -0.5000 -0.4977 

3 -0.5000 -0.4994 -0.4994 -0.5000 -0.5027 

4 -0.5000 -0.5007 -0.5007 -0.5000 -0.5073 

Key: A – the initial weight of the composite before immersion in water, B - final weight of the composite after immersion in water, C – length 
of the composite after immersion in water, D – thickness of the composite after immersion in water, and E – time of the composite immersion 

in water 
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decision matrix may be explained in the context of the 

present article. The decision matrix (Table 1), which is 

transformed to Table 2, is a list of alternatives, namely the 

initial and final weight of composites length of the 

composite, the thickness of the composite, and the time of 

immersion of the composite in water. The decision matrix 

contains the factors along with the columns. Each 

alternative is scored using the average signal-to-noise 

ratios to obtain the decision matrix (Table 1). The scores 

are weights through the comparative importance of the 

alternatives. The scores are added up to reveal the overall 

score of each alternative. For example, in the 

normalization of the decision matrix for the hull of a ship 

composite's alternatives, Equation (1) is applied. Here, the 

numerator is the alternative value along the row divided 

by the overall score along the column. Consider 

alternative 1 in intersection with A. The normalized value 

is obtained as -30.7422 divided by 61.486 to yield -0.5000. 

This is matched against alternatives 2, 3, and 4, calculated 

similarly as -0.5000, -0.5000, and -0.5000, respectively. 

The normalized values entail ranking the SN ratio scores 

in the range between 0 and 1 (minus inclusive). The 

normalized decision matrix comprises competitive 

options arranged row wisely, and the average signal-to-

noise ratios of the Taguchi method are taken as the rating 

of the alternatives. Table 2 is particularly useful as the 

comparative importance of each parameter (alternative) is 

to be determined; it allows the researcher to examine and 

evaluate the strength of association between the 

alternative parameters of the behavior of the composite in 

water for the hull of a ship. 

DEA is employed to determine the performance 

efficiency of a set of entities or alternatives commonly 

referred to as a decision-making unit (DMU). Table 1 

contains the Taguchi SN ratios response table for water 

absorption of dual filler composite drawn from Ajibade et 

al. (2019) and used to analyze the DEA-PROMETHEE 

method. Being motivated by the need to concurrently 

optimize the parameters of water absorption of 

composites and establish the best alternatives, the 

Taguchi SN ratio responses are used as the background. 

This response table reveals which parameter exhibits the 

greatest influence on the response with the corresponding 

level for the parameter associated with the lower or higher 

response characteristics values. 

Since the CCR model of the DEA method has decision-

making units (DMUs) as a framework, some explanation 

of DMUs regarding the hull of a ship composite may be 

necessary. The DMU originated from the novel discovery 

of Robinson et al. (1967) with a central notion of a buying 

center that assembles all participants in an organization 

related to the buying process of a service or product. 

While Charnes et al. (1978) developed the idea of DEA 

based on the DMUs, subsequently, DMUs have been 

replaced with alternatives in certain domains, such as the 

shipbuilding involving hull of a ship's composite. The 

idea of a DMU is that of an organization's buying decision 

where the principal players may be identified as the 

influencers, buyers, users, gatekeepers, and deciders. 

However, the benefits of using the DMU concept in this 

work involve that several prospective decisions have a 

high chance of being positive since they permit all the 

players in the DMU to contribute opinions arising from 

their knowledge and expertise. Besides, the DMU 

enhances an understanding of the decision-making 

process. Furthermore, the players of the DMU are 

committed to growth for the unit since they are willing to 

put their best input into the process. 

From the normalized results, the next step is to adopt 

the CCR model of the DEA method that has been 

discussed in the model formulation in the section on 

methodology. The attempt here is to apply the procedure 

to the data provided by Ajibade et al. (2019). Recall that 

the CCR model of the DEA method is a linear equation 

consisting of the objective function and the constraint 

equations, which any linear programming software may 

solve. However, the linprog function in the Matlab 

software is made. For proceeding, the linear programming 

equations are formulated for each decision-making unit 

(DMUs/alternatives 1, 2, 3, and 4). However, for the first 

DMU/alternative 1, the linear programming model is 

formulated as a minimization function since increasing 

the values of inputs, namely the initial weight, final 

weight, length of composite, and thickness, are not 

desirable. Usually, the objective function has decision 

variables coefficients that are added together. In this case, 

consider decision variables V1, V2, V3, and V4 to represent 

the initial weight, A, final weight, B, length of composite, 

C, and the thickness of composite, D, it is required to find 

the numbers V1, V2, V3 and V4 that minimizes the sum of -

0.5000V1, -0.5000V2, -0.4995V3 and –0.5000V4 subject to 

constraints shown hereafter.  

Notice that the coefficients of these numbers, V1, V2, V3, 

and V4, are the corresponding values for alternative one 

along the first row, showing alternative 1 as -0.5000 

attached to A, while -0.5000, -0.4995, - 0.5000 are 

attached to B, C, and D, respectively. But the constraint 

equations need to be formulated to be greater than 0. Here, 

the output and input are considered with the coefficients 

drawn from Table 2. To formulate the first constraint 

equation, consider V as the number representing the 

output whose coefficient may change depending on the 

alternative being considered. For example, in the 

forthcoming expressions of constraint equation, the first 

constraint equation is formulated with the coefficient of -

0.4922 for u1. In contrast, the coefficients of V1, V2, V3, 

and V4 are drawn from A, B, C, and D along the row of 

alternative 1. In sum, the objective of the first 

DMU/alternative 1 is: 
g1= min (-0.4999V1 - 0.4999V2 - 0.4995V3 – 0.5000V4  (16) 
subject to 

-0.4922u1 + (-0.5000V1 - 0.4999V2 - 0.4995V3 –  

0.5000V4) ≥ 0    (17) 

-0.4977u1 + (-0.5000V1 - 0.5005V2 - 0.5005V3 – 

0.5000V4) ≥ 0    (18) 

-0.5027u1 + (-0.5000V1 - 0.4994V2 - 0.4994V3 – 

0.5000V4) ≥ 0    (19) 

-0.5073u1 + (-0.5000V1 - 0.5007V2 - 0.5007V3 – 

0.5000V4) ≥ 0    (20) 

where u1, V1, V2, V3, V4 ≥ 0 

The equality constraint



1

1
r

rkr yu  is evaluated as, 

-0.4922u1= 1 

u1 ≥ 0 
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By following similar procedure, for the first 

DMU/alternative 2, the objective function and constraint 

equations are formulated as: 

g2 = min (-0.5000V 1 - 0.5005V 2 - 0.5005V 3 –  

0.5000V 4) (21) 

subject to 

-0.4922u 1 + (-0.5000V 1 - 0.4999V 2 - 0.4995V 3 – 

0.5000V 4) ≥ 0    (22) 

-0.4977u 1 + (-0.5000V 1 - 0.5005V 2 - 0.5005V 3 – 

0.5000V 4) ≥ 0    (23) 

-0.5027u 1 + (-0.5000V 1 - 0.4994V 2 - 0.4994V 3 – 

0.5000V 4) ≥ 0    (24) 

-0.5073u 1 + (-0.5000V 1 - 0.5007V 2 - 0.5007V 3 – 

0.5000V 4) ≥ 0    (25) 

The equality constraint



1

1
r

rkr yu  is evaluated as, 

-0.4977 u1 = 1 

u1 ≥ 0 

Also, for the first DMU/alternative 3, the objective and 

constraint equations are developed as follows:  

g3= min (-0.5000V 1 - 0.4994V 2 - 0.4994V 3 –  

0.5000V 4) (26) 

subject to 

-0.4922u1 + (-0.5000V 1 - 0.5000V 2 - 0.4995V 3 –  

0.5000V 4) ≥ 0 (27) 

-0.4977u1 + (-0.5000V 1 - 0.5005V 2 - 0.5005V 3 –  

0.5000V 4) ≥ 0 (28) 

-0.5027u1 + (-0.5000V 1 - 0.4994V 2 - 0.4994V 3 –  

0.5000V 4) ≥ 0 (29) 

-0.5073u1 + (-0.5000V 1 - 0.5007V 2 - 0.5007V 3 –  

0.5000V 4) ≥ 0 (30) 

The equality constraint 



1

1
r

rkr yu  is evaluated as, 

-0.5027 u1 = 1 

u 1 ≥ 0 

Likewise, for the first DMU/alternative 4, the objective 

function and constraint equations are show as:  

g4 = min (-0.5000V 1 - 0.5007V 2 - 0.5007V 3 –  

0.5000V 4) (31) 

subject to: 

-0.4922 u1 + (-0.5000V1 - 0.5000V 2 - 0.4995V 3 – 

0.5000V 4) ≥ 0 (32) 

-0.4977 u1 + (-0.5000V1 - 0.5005V 2 - 0.5005V 3 – 

0.5000V 4) ≥ 0 (33) 

-0.5027 u1 + (-0.5000V1 - 0.4994V 2 - 0.4994V 3 – 

0.5000V 4) ≥ 0 (34) 

-0.5073 u1 + (-0.5000V1 - 0.5007V 2 - 0.5007V 3 – 

0.5000V 4) ≥ 0 (35) 

The equality constraint 



1

1
r

rkr yu  is evaluated as, 

-0.5073 u1 = 1 

u1 ≥ 0 

However, the next phase of the evaluation is to 

determine the efficiency measure of the kth DMU. This is 

obtained by Equation (5): 

k

k
g

H
1

      

However, the problem, which may be solved using 

linear programming software, was solved using Matlab. 

Table 3. The normalised matrix 

Attribute A B C D E 

1 0 0.2960 0.0030 1 1 

2 1 1 0.8200 0.7690 0.6416 

3 0.6920 0.5770 0 0.3080 0.3123 

4 0.6920 0 1 0 0.0043 
Key: A – the initial weight of the composite before immersion in water, B - final weight of the composite after immersion 

in water, C – length of the composite after immersion in water, D – thickness of the composite after immersion in water, 

and E – time of the composite immersion in water 
 

Table 4. Computations of D (Ri - Rj) based on normalised matrix 

Attribute A B C D E 

1 0 0.2960 0.0030 1 1 

2 1 1 0.8200 0.7690 0.6416 

3 0.6920 0.5770 0 0.3080 0.3123 

4 0.6920 0 1 0 0.0043 

D(R1-R2) -1 -0.7040 -0.8170 0.2310 0.3584 

D(R1- R3) -0.6920 -0.2810 0.0030 0.6920 0.6877 

D(R1- R4) -0.6920 0.2960 -0.9970 1 0.9957 

D(R2- R1) 1 0.7040 0.8170 -0.2310 -0.3584 

D(R2- R3) 0.3080 0.4230 0.8200 0.4610 0.3293 

D(R2- R4) 0.3080 1 -0.1800 0.7690 0.6373 

D(R3- R1) 0.6920 0.2810 -0.0030 -0.6920 -0.6877 

D(R 3- R2) -0.3080 -0.4230 -0.8200 -0.4610 -0.3293 

D(R 3- R4) 0 0.5770 -1 0.3080 0.3080 

D(R 4- R1) 0.6920 -0.2960 0.9970 -1 -0.9957 

D(R 4- R2) -0.3080 -1 0.1800 -0.7690 -0.6373 

D(R 4- R3) 0 -0.5770 1 -0.3080 -0.3080 
Key: A – the initial weight of the composite before immersion in water, B - final weight of the composite after immersion in water, C – length 

of the composite after immersion in water, D – thickness of the composite after immersion in water, and E – time of the composite immersion 

in water 
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Thus, the values of gk, V1, V2, V3, V4, and u1 can be 

evaluated using the linprog function of the Matlab. The 

obtained values are V1= -9.8904, V2 = -3.9851, V3=3.5917, 

and V4 = 12.2844. But substituting the values of V1, V2, V3 

and V4 into the objective function for g1, g2, g3, and g4 

yields g1 = 0.9992, g2 = 1.0003, g3 = 1.0004, g4 =0.9994. 

Also, it substitutes the values of u1 in the respective DMU 

equations reformulated and takes the average produces of 

g5 value as 0.9998. Hence H1 = 1.0008, H2 = 0.9997, H3 = 

0.9997 and H4 = 1.0006 while H5 = 1.0006. However, let 

WA, WB, WC, WD, and WE represent the weights of H1, H2, 

H3, H4, and H5 (criteria A, B, C, D, and E), respectively. 

But,  

WA + WB + WC + WD + WE ≤ 1      

On substitution,  

1.0008 + 0.9997x + 0.9997x + 1.0006x +  

1.0006x ≤ 1 (36) 

Also, x ≤ 0.19994 (37) 

Hence, WA = WB = WC = WD = WE = 0.2 

This is the final answer for the DEA method, which is 

fed into the PROMETHEE method to complete the 

evaluation of the DEA-PROMETHEE method. But the 

data has to be processed by normalization before using the 

PROMETHEE method. The result is shown in Table 3. 

But normalization is done using Equation (7) for the non-

beneficial parameters A, B, C, and D, and Equation (8) is 

used for the beneficial parameter E, Table 3.   

For instance, take the initial weight A, the maximum 

value is -30.7422 while the minimum value is -30.7435 

and the range is 0.0013, the computed R11 becomes zero. 

Then, place it at the intersection of parameter A and 

attribute 1. Similarly, all other values in Table 3 are 

computed.  

Using the normalized matrix, the PROMETHEE 

procedure is applied. This commences with the 

differences evaluation of the ith alternative with respect to 

other alternatives (Table 4).  

 This is obtained by considering the expression D (Ri - 

Rj), whereas i is specified. It is not considered in the 

values listed for j and vice versa. Thus, when i = 1, then j 

= 2, 3, 4 and 5. Similarly, when i = 2, j = 1, 3, 4 and 5. 

Other combinations of i and j and so determined. The 

expression D(Ri-Rj) means that the difference between the 

normalized values of the ith and jth alternatives are 

Table 5. The preference function, Pj (a,b) 

Attribute A B C D E 

P(R1-R2) 0 0 0 0.2310 0.3584 

P(R1- R3) 0 0 0.0030 0.6920 0.6877 

P(R1- R4) 0 0.2960 0 1 0.9957 

P(R2- R1) 1 0.7040 0.8170 0 0 

P(R2- R3) 0.3080 0.4230 0.8200 0.4610 0.3293 

P(R2- R4) 0.0616 0.2000 -0.0360 0.1538 0.1275 

P(R3- R1) 0.6920 0.2810 0 0 0 

P(R 3- R2) 0 0 0 0 0 

P(R 3- R4) 0 0.5770 0 0.3080 0.3080 

P(R 4- R1) 0.6920 0 0.9970 0 0 

P(R 4- R2) 0 0 0.1800 0 0 

P(R 4- R3) 0 0 1 0 0 
Key: A – the initial weight of the composite before immersion in water, B - final weight of the composite after immersion in water, C – length 

of the composite after immersion in water, D – thickness of the composite after immersion in water, and E – time of the composite immersion 

in water 
 

Table 6. Aggregated preference function 

Attribute A B C D E 



n

i
jj baPw

1

),(  
 

),( ba  
Weights 

(from DEA 

method) 

0.2000 0.2000 0.2000 0.2000 0.2000   

wjP(R1-R2) 0 0 0 0.0462 0.0717 0.1179 0.1179 

wjP(R1-R3) 0 0 0.0006 0.1384 0.1375 0.2765 0.2765 

wjP(R1-R4) 0 0.0592 0 0.2000 0.1991 0.4583 0.4583 

wjP(R2-R1) 0.2000 0.1408 0.1634 0 0 0.5042 0.5042 

wjP(R2-R3) 0.0616 0.0846 0.1640 0.0922 0.0659 0.4683 0.4683 

wjP(R2-R4) 0.0123 0.0400 -0.0072 0.03076 0.0255 0.1014 0.1014 

wjP(R3-R1) 0.1384 0.0562 0 0 0 0.1946 0.1946 

wjP(R3-R2) 0 0 0 0 0 0 0 

wjP(R3-R4) 0 0.1154 0 0.0616 0.0616 0.2386 0.2386 

wjP(R4-R1) 0.1384 0 0.1994 0 0 0.3378 0.3378 

wjP(R4-R2) 0 0 0.0360 0 0 0.0360 0.0360 

wjP(R4-R3) 0 0 0.2000 0 0 0.2000 0.2000 
Key: A – the initial weight of the composite before immersion in water, B - final weight of the composite after immersion in water, C – length 
of the composite after immersion in water, D – thickness of the composite after immersion in water, and E – time of the composite immersion 

in water 
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calculated and placed in the table. Consider the row 

containing D(R1-R2). Two rows are involved in the 

computation: row 1 (written as R1) and row 2 (written as 

R2). Row 1 (i.e., R1) is the immediate row under attribute, 

with values of 0, 0.296, 0.003, 1, and 1. Row 2 (i.e. R2) is 

following, which starts with 1 (under A) and contains 

other values such as 1 (under B), 0.820 (under C), 0.769 

(under D) and 0.641609 (under E). For obtaining D(R1-

R2), each value in a column from row 2 is subtracted from 

the corresponding value in row 1. Consider column A, 

under row 2, 1 is found while 0 is observed under row 1. 

Thus, the difference between 0 and 1 as row 2 is 

subtracted from row 1 is -1. Thus value is placed on the 

row containing D(R1-R2) but under column A. Similarly, 

the whole Table 4 is completed with the differences 

between one row and the other. Notice that the attributes 

are only four, which are 1, 2, 3, and 4. Therefore the 

differences relate to R1, R2, R3, and R4 only, and only 

twelve observations are involved. The next step is to 

calculate the preference function. For attaining this goal, 

two rules are followed. The first rule is to observe the 

calculated entries for the D(Ri-Rj) (i.e., twelve sets of 

computations). There is a need to replace any value of 

D(Ri-Rj) negative with zero, Equation (9). Consider Table 

4 again to develop Table 5.  

Once the row containing D(R1-R2) is observed, the first 

value under "A" is -1, which will be replaced with zero 

according to the rule. Also, -0.7040, which is the value 

under B, is replaced with zero. -0.8170 is also replaced 

with zero (value under C). However, 0.2310, which is the 

value under D, is retained according to the second rule. 

Likewise, 0.3584 is retained according to the second rule, 

Equation (10). Thus, with the application of the two rules 

(Equations (9) and (10)), Table 5 is produced. The 

following computation phase develops the aggregated 

preference function by considering the criteria weights, 

Equation (11). However, Equation (12) needs to be 

applied.  

Also, note that the summation of weights, with the 

above information, Table 6 could be built up. Recall that 

Table 6 builds on Table 5. The second row of Table 6 is 

the weights of the alternatives extracted from the DEA 

method's output. The next row multiplies the weight of 

each alternative with what was previously computed in 

the corresponding cell in Table 5. Consider the 

intersection of wjP(R1-R2) and A; here, the intersection 

value of P (R1-R2) and A from Table 5 is 0. As zero is 

multiplied with 0.2000, it yields zero, placed at the 

intersection of wjP(R1-R2) and A.  

The rest of Table 6 for B to E is computed using a 

similar procedure. However, the next column to E sums 

up the obtained values under A to E. For the row 

containing wjP(R1-R2), the said column adds 0, 0, 0, 0, 

0.0462, and 0.0717 to yield 0.1179. Notwithstanding, the 

next column, which contains, ),( ba  is obtained using 

Equation (11). But since the sum of the weights is 1, the 

obtained value of 0.1179 is retained ),( ba . The 

following computation phase is the determination of 

leaving and entering outranking flows. The leaving 

(positive) flow for the ath alternative is given by Equation 

(13), while Equation (14) provides the entry with the 

(negative) flow for the ath alternative. Table 6 contains 

twelve values of wjP(Ri-Rj), summarized in Table 7, that 

eventually form the outranking flow table. Now consider 

Table 7. Outranking flow 

Aggregate 

preference 

function 

A B C D E   
Leaving 

flow 

A - 0.1179 0.2765 0.4583 - 0.2843 

B 0.5042 - 0.4683 0.1014 - 0.3579 

C 0.1946 0 - 0.2386 - 0.2166 

D 0.3378 0.0360 0.2 - - 0.1913 

E - - - - -  


Entering 

flow 

0.3455 0.0777 0.3149 0.2661   

Key: A – the initial weight of the composite before immersion in water, B - final weight of the composite after immersion in water, C – length 
of the composite after immersion in water, D – thickness of the composite after immersion in water, and E – time of the composite immersion 

in water, Ranking the most important criteria* 
Key: A – the initial weight of the composite before immersion in water, B - final weight of the composite after immersion in water, C – length 
of the composite after immersion in water, D – thickness of the composite after immersion in water, and E – time of the composite immersion 

in water, Ranking the most important criteria* 

 

Table 8. Net outranking 

Alternative )(a  )(a  
)(a  Rank 

A 0.2843 0.3455 -0.0612 2 

B 0.3579 0.0777 0.2802 1 

C 0.2166 0.3149 -0.0983 4 

D 0.1913 0.2661 -0.0748 3 

 
Key: A – the initial weight of composite after immersion in water, B – final weight of composite after immersion in water, C – length of the 

composite after immersion in water, D – thickness of the composite after immersion in water 



V.C. Maduekwe and S.A. Oke 

 

 

 

54 

the third row of Table 6, where the last column contains 

0.1179. This value is placed in Table 7 along the row 

containing A but under a B column since it describes 

wjP(R1-R2). The next row in Table 6 is wjP(R1-R2), where 

the corresponding value on the last column of the same 

table is 0.2765. Notice that in Table 7, this value is placed 

along with row A and column C. By following this 

procedure, all the twelve values corresponding to wjP(R1-

R2) to wjP(R4-R3) are filled in Table 7.     

When filling these values in Table 7, the next step is to 

determine the data's leaving flow (positive) and entering 

flow (negative) items. The leaving flow is the last column 

of Table 7, the average along the row. For instance, for A, 

the value for the leaving flow is the average of 0.1179, 

0.2765, and 0.4583, which yields 0.2843. This procedure 

is used to obtain the leaving flow belonging to B, C and 

D. However, E has no value, which means that it is not an 

essential element in the goal achievement for the problem 

studied. The entering flow (negative) is also computed 

similarly by finding the averages along the columns. For 

instance, only three entries are available for column A to 

calculate the entry flow (negative) values, which are 

0.5042, 0.1946, and 0.3378. The average is 0.3455. By 

following this approach, all the entering flow values 

(negative) under B, C, and D are obtained as 0.0777, 

0.3149, and 0.2661, respectively. The next phase in the 

computation is to obtain the net outranking flow is 

subtracts the entering flow (negative) from the positive 

flow (positive) (Table 8). For this computation, Equation 

(15) is relevant. 

)()()( aaa     

Here, the summation of weight,  

Σwj = 0.2 + 0.2 + 0.2 + 0.2 + 0.2 = 1 

Table 8 shows the net outranking values of the problem. 

Interestingly, PROMETHEE II is regarded as an 

outranking method, which is competent to determine 

whether or not an alternative has a higher rank than the 

other. This means that in the perspective of considering 

the signal-to-noise ratios, an alternative may be more 

important than the other. In the PROMETHEE method 

used, two components of the outranking flow are 

considered: the positive outranking flow and the negative 

outranking flow. The balance of the two outranking flows, 

i.e., positive and negative, makes up the net outranking 

flows. But an alternative with a higher net flow is superior 

to a lower net flow, Table 8. Table 8 contains )(a  the 

second column, which represents a positive outranking 

flow and reveals to what degree each of the alternatives B, 

C, and D outrank all others. For instance, alternative B 

outranks C and D are determined by this positive 

outranking symbol. It is known that higher )(a  is the 

superior option. The symbol )(a  represents a's power, 

which is its outranking character (Deshmukh, 2013).  

Furthermore, the negative outranking flow reveals to 

what degree others outrank the alternatives B, C, and D. 

(Deshmukh, 2013). For the symbol )(a , smaller values 

are preferred (Deshmukh, 2013). This situation )(a  

shows power, which means its outranked attribute 

(Deshmukh, 2013). Thus, the positive, negative, and net 

outranking values are shown in the second, third, and 

fourth columns of Table 8. The net outranking values 

shows the highest value of 0.2802 for alternative B, 

followed by -0.0612 for alternative A and then -0.0748 for 

alternative D and -0.0983 for alternative C. Therefore, 

they are ranked as 1st, 2nd, 3rd, and 4th accordingly. 

Therefore, the final weight parameter is the best, and the 

length parameter is the worst. This information is useful 

for decision-making.    

 

4.2. Validation of the results 

In this article, five parameters, namely the initial 

weight, final weight, length, thickness, and time were 

considered as the experimental data utilized by Ajibade et 

al. (2019) and used to test the DEA-PROMETHEE 

method for the hull of ship composite parametric analysis. 

However, the DEA-PROMETHEE method may be 

presented in a new case study on selecting acetylation 

parameters in a water absorption experiment for bamboo, 

which could serve as reinforcement for composites of a 

ship's hull. Thus, the results of the present article may be 

validated using this new case study that considers decision 

Table 9a. Analysis on net outranking – composite parameters 

Alternative )(a  )(a  
)(a  Average of 

)(a and 

)(a  

Deviation of 

average 

from net 

Rank Comment 

A (Initial weight) 0.2843 0.3455 -0.0612 0.3149 6.1454 2 High 

B (Final weight) 0.3579 0.0777 0.2802 0.2178 0.2227 1 Very low 

C (Length) 0.2166 0.3149 -0.0983 0.2658 3.7035 4 High 

D (Thickness) 0.1913 0.2661 -0.0748 0.2287 4.0575 3 High 

 

Table 9b. Analysis on net outranking – acetylation parameters 

Alternative )(a  )(a  
)(a  Average of 

)(a and 

)(a  

Deviation of 

average 

from net 

Rank Comment 

Q (Time soaked in 

acetic anhydride) 

0.4980 0.4996 -0.0016 0.4988 312.7500 1 Very high 

R (Difference in % 

water absorption) 

0 1.4946 -1.4946 0.7473 1.5000 2 High 
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criteria as M, N, P, Q, and R. The results of the comparison 

are shown in Tables 9a and 9b. The average of )(a  and 

)(a  was determined for each alternative. The deviation 

of this value from the net outranking value )(a  

evaluated.   

Accordingly, the deviation for the alternatives of 

composites reveals the least value of 0.0223 for the final 

weight alternative to the highest value of 6.1454 for the 

initial weight alternative. The observation is that the 

deviation was high for most of the alternatives and very 

low for only one alternative. For the acetylation 

alternatives, the least deviation was 1.5000, obtained for 

the different % water absorption, while the highest was 

for the time soaked in acetic anhydride, which yielded 

312.7500. This value is the most significant deviation in 

the results from the composite analysis and that of the 

acetylation alternatives. The results show that the analysis 

from the composites is the better option considering the 

deviation of the average of the entering flow and leaving 

flow from the net outranking flow. In addition, the net 

outranking values from both the composite experimental 

analysis and the acetylation experiment were subjected to 

a correlation test. The findings revealed a perfect negative 

correlation coefficient of -1, indicating a perfect negative 

relationship between the outcomes of the two datasets. 

This suggests that the two datasets work well with the 

DEA-PROMETHEE method used to analyze the 

workability of selecting factors from multiple alternatives. 

 

5. CONCLUSIONS 

 In this article, the efficiency of alternatives in 

composite parameters for a ship's hull was assessed and 

concurrently selected the best parameter. Consequently, 

an attempt to use the DEA method was made. However, 

its shortfall in poor discrimination power, which 

disallows a total ranking of the alternatives, prompts the 

adoption of the PROMETHEE method in a combined 

form to correct this weakness of the DEA method. Thus, 

the article established the efficiency of composite water 

absorption parameters for the ship's hull and instituted a 

total ranking of the alternatives. The institution of the hull 

of a ship case study using a DEA-PROMETHEE method 

on the Taguchi SN ratio response table platform is a novel 

study rarely discussed in the literature. Furthermore, the 

water absorption parameters will benefit the related 

practices, i.e., ship manufacturers or the shipping 

industry. Based on the research findings, the following 

conclusions are made: 

 The DEA-PROMETHEE method reveals that only the 

initial weight, final weight, length, and thickness are the 

essential parameters that should be considered during the 

design and development of the hull form for the ship. 

However, time is not an important parameter. 

 The proposed method ranks final weight as the 1st (net 

outranking value of 0.2802), initial weight as 2nd (net 

outranking value of -0.0612), thickness as 3rd (net 

outranking value of -0.0748), and length as 4th (net 

outranking value of -0.0983). 

 A DEA-PROMETHEE method is a valid approach to 

evaluating the efficiency of alternatives and ranking them 

for composite development in the hull of a ship's case. 

Evidence also abounds for the illustrative example on 

optimization and selection acetylation parameters.   

 In developing composites for a ship's hull, final weight 

should be given the utmost importance. Thus, the ship 

manufacturers can improve the hull's performance of a 

composite ship by considering composites with water 

resistance. 

In the light of advancements in decision-making in 

engineering, particularly on the development and 

improvement of composites for the hull of a shipbuilding 

practice, the DEA-PROMETHEE demonstrates the 

potential to optimize the parameters of the water 

absorption parameters effectively. While many existing 

algorithms need substantial information to properly 

function (i.e., linear programming), many engineering 

problems in shipbuilding may offer limited information. 

The DEA-PROMETHEE method will still function 

effectively despite this limitation of a paucity of data. In 

the future, the investment of efforts to integrate the Box 

Behnken Design into the framework, which will 

concurrently optimize and select parameters, could be 

beneficial to the ship manufacturer. 
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