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Abstract 

Recent development of technology has led to the invention of driver assistance 

systems that support driving and prevent accidents.  These systems employ 

Recognition-Primed Decision (RPD) model that use driver prior experience to make 

prime decision during emergencies. However, the existing RPD model does not 

include necessary training factors. Although, there is existing integrated RPD-SA 

model known as Integrated Decision-making Model (IDM) that includes training 

factors from Situation Awareness (SA) model, the training factors were not detailed 

(IDM has only six training factors). Hence, the model could not provide reasoning 

capability.  Therefore, this study enhanced the IDM by proposing Computational-

Rabi’s Driver Training (C-RDT) model that improves the RPD component with 18 

additional training factors obtained from cognitive theories. The designed model is 

realized by identifying factors for prime decision-making in driving domain, 

designing the conceptual model of the RDT and formalizing it using differential 

equation. The model is verified through simulation, mathematical and automated 

analyses and then validated by human experiment. Verification result shows positive 

equilibrium conditions of the model (stability) and confirms the structural and 

theoretical correctness of the model. Furthermore, the validation result shows that the 

inclusion of the 18 training factors in the RPD training component of the IDM can 

improve driver’s prime decision-making. This study demonstrated the ability of the 

enhanced C-RDT model to backtrack and provide reasoning on the undertaking 

decisions. Hence, the model can also serve as a guideline for software developers in 

developing driving assistance systems. 

 

 

Keywords: Computational model, Integrated Decision-making Model, Situation 
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Abstrak 

Kemajuan terkini dalam bidang teknologi telah mendorong penciptaan sistem 

bantuan pemanduan yang menyokong pemanduan pemandu serta mencegah 

berlakunya kemalangan.  Sistem ini mengguna pakai model Pengecaman Keputusan 

Utama (RPD) yang menggunakan pengalaman terdahulu pemandu semasa membuat 

keputusan penting dalam keadaan kecemasan. Model RPD sedia ada, walau 

bagaimanapun, tidak mempunyai faktor latihan yang diperlukan. Meskipun terdapat 

model RPD-SA yang dikenali sebagai Model Pembuat Keputusan Berintegrasi 

(IDM) yang merangkumi faktor latihan dari model Kesedaran Situasi (SA), namun 

faktor latihan tidak diperincikan. IDM hanya mempunyai enam faktor latihan. Oleh 

yang demikian, model tersebut tidak dapat memberikan keupayaan penaakulan. Oleh 

itu, kajian ini memperkukuh model IDM dengan mencadangkan model Pengiraan-

Latihan Pemandu Rabi (C-RDT) yang menambah baik komponen RPD dengan 

penambahan 18 faktor latihan yang diperoleh daripada teori kognitif.  Model yang 

direkabentuk direalisasikan dengan mengenal pasti faktor pembuatan keputusan 

utama ketika memandu, mereka bentuk model konsep model RDT dan 

memformalkan model ini dengan menggunakan persamaan perbezaan. Model ini 

kemudiannya ditentusahkan menerusi analisis simulasi, matematik dan automatik 

serta disahkan menerusi eksperiman manusia. Hasil penentusahan menunjukkan 

keadaan keseimbangan model (kestabilan) yang positif dan mengesahkan ketepatan 

struktur dan teori model. Tambahan pula, keputusan pengesahan model memaparkan 

bahawa kemasukan 18 faktor latihan dalam komponen latihan RPD yang terdapat 

dalam IDM boleh meningkatkan pembuatan keputusan utama pemandu. Kajian 

memperlihatkan keupayaan model C-RDT yang dipertingkatkan untuk jejak ke 

belakang dan membuat penaakulan kepada keputusan yang dibuat. Oleh itu, model 

ini boleh menjadi panduan kepada pembangun perisian dalam membangunkan sistem 

bantuan pemanduan. 

 

Kata kunci: Model Perkomputan, Model pembuatan keputusan bersepadu, Model 

kesedaran situasi, Pembuatan keputusan utama, Sistem bantuan pemanduan 
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CHAPTER ONE 

INTRODUCTION 

1.0 Background 

Globally, road accident is one of the causes of death of young persons (ages from 15 to 

29 years) and the 8th leading cause of death (World Health Organisation, 2017). For 

instance, in 2017, about 1.25 million lives were lost as a result of road accident. Ninety 

per cent of the accidents occurred in the middle-income countries (e.g., China, India, 

Mexico, Thailand and Russia) and in the low-income countries (e.g., Kenya and 

Bangladesh) and ten per cent in the high-income countries (e.g., U.S and Japan). Road 

accident has been predicted to become the seventh leading cause of death by 2030 if no 

appropriate measure has been taken (WHO, 2017).  

  

However, the recent development of technology has led to the invention of driver 

assistance systems to facilitate drivers in preventing the number of accidents on the 

road. For example, it provides warnings or interferes in the process of manoeuvring the 

vehicle (Vaa, Assum & Elvik, 2013). Gaining an insight into the development of 

drivers’ assistance system, driver behaviour models such as cognitive model of situation 

awareness (Endsley, 2000; Jeon, Walker & Gable, 2015;  Stanton, Salmon, Walker, 

Salas & Hancock, 2017) and naturalistic decision making model such as the 

Recognition-Primed Decision (RPD) model (Klein, 2008, 2015; Klein, Calderwood, & 

Clinton-Cirocco, 2010) are reviewed. Although the review of literature showed that 

there is existing Recognition-Primed Decision – Situation Awareness (RPD-SA) model 

called integrated decision making (IDM) model for pilot decision process (Donnelly, 

Noyes, & Johnson 1997; Noyes, 2012). The IDM model is divided into awareness and 

RPD training part. The awareness part of the IDM deals with the SA while the RPD part 
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of the IDM deals with the prime decision making process. However, in the RPD part of 

the IDM more training factors are needed which the current study deems to address by 

enhancing the RPD part of the IDM using the training factors relevant for prime 

decision making in driving domain gained from SA model and other literatures. This is 

because SA model has a learning mechanism (Endsley, 2017) to complement the 

underlying drawbacks. The importance of these missing training factors cannot be 

underemphasized as it is essential for any critical decision-making process. 

 

The RPD model (Klein, 2008, 2015; Klein et al., 2010; Salas, Rosen, & DiazGranados, 

2010) is an example of a decision model and was designed to explain how human 

specialists make decisions based on prior experiences. The RPD model is a conceptual 

model of intuitive pattern-recognition-based decision-making, which consists of three 

components, namely situation assessment, serial option evaluation and mental 

simulation of options. In situation assessment, the decision maker involves in looking 

for pattern and experiences; a serial option evaluation includes watching for important 

clues, recognising reasonable goals, providing expectancies and proposing appropriate 

types of reactions. The process by which actions are evaluated is called a mental 

simulation, and is a process to see if the chosen consequence will be workable or not 

before any action is taken. The RPD model has been used to study human performance 

in different domains such as in aviation (Winter, Fanjoy, Lu, Carney & Greenan, 2014; 

Donnelly et al., 1997; Noyes, 2012), business (Lu, Niu, & Zhang, 2013), training 

electric power systems operators (Greitzer, Robinson, Podmore & Ey, 2010), health 

care (Resnick, 2012) and firefighting (King, 2011; Klein et al., 2010; Resnick, 2001). 

Additionally, a poor situation awareness level causes accidents more than the over 

speeding and inappropriate driving techniques (Jeon, Walker & Gable, 2014).  
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The Endsley Model of Situation Awareness is the most widely used cognitive model to 

explain dynamic situation such as driving (Jeon et al., 2014; Jeon et al., 2015; Kaber, 

Jin, Zahabi, & Pankok, 2016). It describes causal factors that make driver embarks on 

specific activities. Thus, the analysis also allows researchers to understand how driver’s 

embarks on certain activities that are essential to comprehend human errors and to 

design a computational model which can be used in driving assistance systems to reduce 

the human errors (Oppenheim et al., 2010, 2012). 

 

As stated in RPD, a situation understanding or awareness capability is the primary 

substance in naturalistic decision making (Endsley, 2000; 2017). It is related to situation 

awareness concept, which is the perception of the environmental elements within a 

volume of time and space, the comprehension of their meaning, and the projection of 

their status within limited time (Endsley, 2000; Wickens, 2008). SA consists of three 

main components, based on the definition, namely perception, comprehension and 

projection-: 1) perception is to observe the elements of the environment, 2) 

comprehension is to understand the observed components of the environment and 3) 

projection is to make a decision based on the observation and understanding of the 

elements in the environment. The SA model has been used in different domains, which 

includes education (Liu, Mao & Zhan, 2008), facility management (Gheisari & Irizarry, 

2011), aviation (Helldin & Falkman, 2012), military (Ozyurt, Doring, & Flemisch, 

2014; Stanton, 2014) and driving (Salmon, Lenné, Walker, Stanton & Filtness, 2014; 

Jeon et al., 2014), sport (Macquet & Stanton, 2014; Neville & Salmon, 2016), 

healthcare (Bleakley, Allard & Hobbs, 2013; Schulz, Endsley, Kochs, Gelb & Wagner, 

2013) and  emergency services (Seppänen, Mäkelä, Luokkala, & Virrantaus, 2013) to 

mention a few. 
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Moreover, there are three approaches to decision making models, namely: normative, 

prescriptive and descriptive (Smith, 2016). Each of these approaches has its own 

functionalities. For example, in normative (analytical) approach, time is spent on option 

generation and each option generated is evaluated against each other before choosing 

the best. The prescriptive model is a behavioural based model that is not decision-

centrered. Rules are instead fixed and it does not focus on experienced and prior 

knowledge. Moreso, its emphasis is not on time sensitivity. Descriptive model is a 

decision-centered approach that describes decision-making processes in an uncertain 

dynamic environment. However, normative approach is suitable in circumstances when 

adequate time to deliberate and analyse the situation is the main criterion prior to any 

decision making process. For example, in the  command and control applications and 

other real-life situations, such as when a driver is making a decision during emergency 

situation where time constraint is considered critical, and uncertainty is high, the 

naturalistic decision making (descriptive) models are more appropriate (Azuma, Daily, 

& Furmanski, 2006; Resnick, 2012). 

 

Since driving combines cognitive and physical-abilities that result in skilled driving, the 

practised ability “while driving results in increased situation awareness, which in turn 

translates into conscious and unconscious decision making.”This practice-translates into 

the experience, and in turn, becomes-skilled in picking up complex signs in making a 

critical decision. The critical decision making process in driving should aim to achieve 

the goal of combining the ability to develop the cognitive decision-making process with 

the physical skills required. Moreover, it is essential to improve the necessary methods 

through experience, and to apply methods appropriately based on the environment and 

current situations. These goals can be achieved by intuitions.  



 

 

  5 

Intuition is the way experience is translated into action to allow easy recognition of 

what is going on and how to react by making decisions rapidly without conscious 

awareness or efforts. Intuition comes from enhanced senses that, in turn, lead to rapid 

decision making (Leland, 2009; Smith, 2016). 

 

As a demonstration of rapid (prime) decision making, drivers observe information and 

quickly make intuitive and unconscious decisions when something suddenly happens 

while driving. By taking-decisive actions, “while driving in unexpected situations, such 

as swerving to a safe part of the road, or stopping quickly to avoid any hazards from 

occurring,” a prime decision has been made. Another example of rapid (prime) decision 

making is sudden braking action during congested traffic. From this example, it can be 

concluded that prime decision is the reaction of the driver at that particular time to avoid 

unwanted consequences/experiences. These skills could be acquired through experience 

and training. The skill allows the driver to react reflexively in such an emergency 

situation. Similarly, the driver's situation awareness (SA) is also one of the crucial 

aspects of the decision-making process whereby driver must first be aware of the 

impending critical situation to avoid potential accident cases. 

 

Thus, the objective“for a critical decision making process is to provide the learner with 

experiences and instruction on cues, patterns, mental-models, and actions that 

efficiently establish a collection of well-learned concepts”that enable the decision maker 

to perform mainly at the skill-based level of processing while providing enough 

knowledge-based foundation to perform well”in new-situations. Critical decision 

making is an important component of computational-modeling (Vancouver & 

Weinhardt, 2012). 
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Computational-models are computer-programs that make use of simulation process to 

understand related phenomena. There are many studies in computational modelling, 

each study using different techniques. For example, a study by ChePa, Aziz, and Gratim 

(2017) designs a computational model for analyzing managers’ performance during 

stress. Tabatabaei and Treur (2017) design a computational model for the role of 

advertisement and expectation in lifestyle changes.  Abro and Treur (2017) design a 

computational cognitive model of self-monitoring and decision making for desire 

regulation. Formolo, Van Ments and Treur (2017) design a computational model to 

simulate development and recovery of traumatized patients. Ting, Zhou and Hu (2010) 

design a computational model of Situation Awareness for MOUT (Military Operation 

on Urban Terrain) simulations, and Ji et al. (2007) design a fuzzy logic-based 

computational recognition-primed decision model. 

 

Hence, computational modelling is a-useful tool in understanding systems by predicting 

possible behaviours through numerous dynamic variations of the variables. Also, a 

computational model ensure that a theory (1) is internally reliable, (2) accounts-for the 

phenomena-claimed, (3) is sufficiently specified, and (4) is exact and clear (Vancouver 

& Weinhardt, 2012, Adner, Polos, Ryall & Sorenson, 2009; Davis, Eisenhardt, & 

Bingham, 2007; Farrell & Lewandowsky, 2010; Lewandowsky & Farrell, 2011; 

Harrison., Lin, Carroll, & Carley, 2007). For example, computational models require 

theorists to reason well as the models are precise, clear, and easy to identify potential 

faults in them. 

 

Hence, the drawbacks of RPD part of the IDM model can be addressed by enhacing the 

RPD component of the IDM using 18 training factors such as Basic practice, Practice, 
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Basic skills, Acquired skill, Sensory ability, Driver abilities, Rehearsed experience, 

Attention, Priming, Habitual-direction acion, Goal-directed action. Other factors include  

Involuntary automaticity, Voluntary automaticity, Acquired automaticity, Experienced 

automaticity, Potential hazardous information, Perception about Task and Perception 

about Risk that are relevant for Prime Decision Making in driving domain.  

1.1 Motivation 

Road accident is one of the causes of death among the young people and is the 8th 

leading cause of death in the world (W.H.O., 2017). It is a fact that the accident rate 

globally is alarming and poor decision-making skills of drivers have been observed to be the 

major contributing factors of road accidents (Endsley & Connors, 2008; Mashadi & Majidi, 

2014; Rotbring, 2010). Therefore, this study is motivated by this phenomenon and attempts to 

design an enhanced computational integrated decision making model called Rabi’s-Driver 

Training model (C-RDT) for prime decision making in driving domain. 

1.2 Problem Statement 

Scientists in the field of computer science, psychometrics, ergonomics, military, and 

command and control, maintain a strong connection to the Naturalistic Decision-

Making research domain (Zsambok & Klein, 2014).  This research explains how people 

make important (prime) decisions under demanding situations with time constraint in 

real-world settings (Klein, 2008, 2015). 

  

However, in the case of transportation domain, poor decision-making skills of drivers 

(that is due to human errors) (Salmon, Stanton, & Jenkins, 2017) have been observed as 

major causative factors of road accidents (Endsley & Connors, 2008; Mashadi & 
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Majidi, 2014; Rotbring, 2010). Driving a car involves a constant process of perception, 

understanding, action choice, and action execution (Inagaki, 2011; Inagaki & Itoh, 

2013). An“error in situational recognition may occur while driving a car, and the error 

can sometimes result in an ‘erroneous’ behaviour of the” driver (Inagaki, 2011). These 

human errors are ranging from driver’s distraction (Antonin, Kimihiko & Rencheng, 

2014), lack of focus (Williams, Peters & Brazeal, 2013), over speeding due to driver’s 

fatigue (Liu et al., 2014), driver’s drowsiness (Ebrahim, Abdellaoui, Stolzmann & 

Yang, 2014),  lane changing (Faulk, Paine, Paine, & Irwin, 2010),  car following (Faulk 

et al., 2010), unnecessary overtaking (Vinel, Belyaev, Egiazarian & Koucheryavy, 

2012) to a vehicle control (Kim, Kim & Lee, 2014). 

 

Prior studies have provided some solution to reduce human errors in driving such as an 

affective intelligent driving agent (AIDA) (Williams et al.,2013, Yang, Jo, Kim & 

Kwon, 2013), a brain signal for driving assistance technologies  (Kim et al., 2014), a 

fuzzy prediction system for the forecasting and estimation of driving fatigue (Liu et al., 

2014), drowsiness warning systems (Ebrahim et al., 2014) and in-vehicle information 

systems (IVIS) (Antonin et al., 2014). Designing driver assistance systems (DAS) such 

as the aforementioned plays a vital role in implementing assistance tasks to improve and 

complement driver capabilities for perception and comprehension (Inagaki, 2011). 

Perception and comprehension are fundamental components of RPD model (Klein 

1993, 2008, 2015). 

 

However, in RPD, some essential training factors that are necessary and relevant in 

enhancing the effect of training on the experience of the drivers to make prime decision 

are inadequate (Klein 1993, 2008, 2015; Klein et al., 2010; Fadde, 2013; Javor, Pearce, 
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Thompson, & Moran, 2014; McDevitt, 2017). Some of the training factors lacking in 

RPD are presented in the SA model (Endsley, 2016). Without those training factors, the 

decision maker will find it difficult to recognize situation, to act based on the situation 

assessed in a driving environment, and to acquire the experience to conduct a mental 

simulation of options. 

 

Although, there exists an integrated RPD-SA model called Integrated Decision-making 

Model (IDM) for pilot by Donnelly et al. (1997) and Noyes (2012), the IDM offers less 

comprehensive training factors in it’s RPD component by offerring only six (6) training 

factors such as experience, knowledge/rules, goals, time pressure, intention and 

automaticity. Therefore, there is a need to enhance the model to improve on the RPD 

component. This can be achieved by expanding some of the IDM factors such as 

experience and automaticity, being composite constructs, that need to be broken down 

into various interrelated factors. Other factors are obtained from SA model and other 

literatures, and are added to the RPD component of the ID Model. However, if the 

constructs are not broken down, a comprehensive conceptual model that has training 

factors relevant to train drivers in order to enhance their experiences to make prime 

decision particularly during demading situations cannot be achieved. The model has 

been tested in aviation domain but yet to be tested in driving domain. Moreover, it is a 

conceptual model and yet to be computationalised. 

 

Hence, this study propounded an enhanced Integrated Decision-making Model for 

prime decision-making in driving called Rabi’s Driver Training (RDT) model, which 

improves on the RPD component of the IDM by adding eighteen (18) training factors 

relevant for prime decision making.  
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The model is then computationalised to have an enhanced Computational Integrated 

Decision-making Model called Computational-Rabi’s Driver Training (C-RDT) model. 

The computational model is important in handling reasoning ability that allows 

backtracking on why certain prime decision has been taken. Generally, the model is 

likely to enhance the experience of the driver (the automaticity level) in driving domain. 

1.3 Research Questions 

The research questions considered to achieve the objectives of the study are as follow:  

1. What are the training factors relevant for prime decision-making in driving 

domain? 

2. How can Integrated Decision-making Model be enhanced?  

3. How to computationalize the enhanced Integrated Decision-making Model 

model?  

4. How can the enhanced computational Integrated Decision-making Model be 

evaluated? 

1.4 Research Objectives 

The main aim of this study is to design an enhanced computational integrated decision-

making model for prime decision making in driving domain. 

In order to achieve the intended aim, four objectives have been formulated: 

1. To identify training factors relevant for prime decision-making in driving 

domain. 

2. To enhance the Integrated Decision-making Model by including relevant 

training factors to have a comprehensive conceptual model. 
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3. To computationalize the enhanced Integrated Decision-making Model in order 

to have a model with a reasoning ability to backtrack. 

4. To evaluate the enhanced computational Integrated Decision-making Model by 

verification and validation 

1.5 Research Scope 

This study covers only car (road) under land transportation that is categorized under the 

driving domain. It includes the prime decision-making attribution of drivers within the 

domain mentioned and identifies relevant training factors for prime decision-making 

based on cognitive and naturalistic decision making theories. All these scopes enable 

the study to develop an enhanced computational Integrated Decision-making Model for 

prime decision making in the driving domain. In addition, the study was validated by a 

human experiment using the driving game simulator (application) and a set of 

questionnaires were used to test the workability of the enhanced model for prime 

decision-making. The designed model is not compared to the current 

situation/technology in the automobile industries. 

1.6 The significance of the Study 

The study designs an enhanced computational model (called C-RDT) model that 

influences prime decision-making in driving that can later be used in driving assistance 

systems for a better decision. Precisely, the significance of this study could be viewed 

from two perceptions: theoretical and practical contributions. 
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1.6.1 Theoretical Contribution 

Theoretically, this study has four different contributions. Firstly, the identification of 

training factors relevant for prime decision-making in driving domain. Secondly, the 

study designed an enhanced Integrated Decision-making Model that is comprehensive 

with more training factors included such as Basic practice, Practice, Basic skills, 

Acquired skill, Sensory ability, Driver abilities, Rehearsed experience, Attention, 

Priming, Habitual-direction acion, Goal-directed action. Other factors include 

Involuntary automaticity, Voluntary automaticity, Acquired automaticity, Experienced 

automaticity, Potential hazardous information, Perception about task and Perception 

about risk that are relevant in achieving prime decision making. Thirdly, this study 

designed an instrument that is a questionnaire based on the enhanced RPD training 

component of the ID model, by integrating all external and temporal factors in order to 

validate the designed enhanced model. Lastly, the enhanced computational model 

designed by this study help in handling reasoning ability that allows backtracking in 

prime decision making process.  

 

1.6.2 Practical Contribution 

Practically, the driver assistance systems that would be designed based on the designed 

Computational-RDT model would be able to make better reasoning ability (Koo et al., 

2015) and alert the driver on when and what prime decision to make. Hence, it serve as 

a guideline for software developers on the development of driving assistance systems 

that has better reasoning ability in handling prime decision-making processes. In 

relation to problem domain perspective without the designed RDT model, subsequent 

research on RPD would not have an advantage of a comprehensive model with more 

training components integrated. 
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1.7 Summary of the Chapter 

This chapter introduced the background of the study with the main study problem and 

objectives. It further discussed the scope and significance of the study. The next chapter 

(Chapter Two) covers literature reviews within the domain of the study that provided a 

theoretical foundation for the study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter gives an overview of models of driver behaviour, and detail review of the 

related literature on decision-making theories and models. In particular, section 2.0  

focuses on introduction, modelling driving behaviour in section 2.1, and decision-

making in section 2.2. In addition, the chapter review literature on hybridization in 

section 2.3 and computational modelling in section 2.4, discussion of the chapter in 

section 2.5. Finally, section 2.6 gives the summary of the chapter. 

 

2.1 Modelling Driving Behaviour 

The history of modelling driver behaviour started in 1938 when Gibson and Crooks 

provided situational driver behaviours to road infrastructure elements in the field of 

human factors to comprehend the nature of driving, and later to enhance safety, driver 

education and training (Fastenmeier & Gstalter, 2007) for the drivers. The models of 

driver behaviour can be classified into two major categories (based on major distinctive 

features), namely the descriptive and functional models as shown in Figure 2.1.  

 

 

 

 

 

 

 Figure 2.1. Classifications of models of driver behaviour 
Adapted from (Oppenheim et al., 2012. P.35) 
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First, the descriptive models define the driving task in relations to what drivers do. 

These models try to explain the whole driving task or some elements of it, which are 

about what driver has to do. Significant characteristics of such models are that they are 

not predictive, but somewhat analytical (Carsten, 2007). The models have provided a 

strong motivation for driving safety research (Lee, 2008; Salvucci, 2006). 

 

Second, the functional models describe why driver behaves the way he/she does, and 

how to forecast driver’s performances in challenging and repetitive situations. These 

challenging situations are the highest performance abilities, and the repetitive situations 

are the regular (not necessarily the finest) behaviours (Shinar & Oppenheim, 2011). The 

functional models strongly focus on the driver’s cognitive state and have included 

important behavioural modification concepts such as motivation, or risk assessment. 

These models have the potential for implementation either by producing a simulation of 

the driver behaviour, by integrating them into some already existing traffic simulation 

tools or driver assistive devices, such as in collision warning systems or in the 

formulation and development of the system (Shinar & Oppenheim, 2011; Oppenheim et 

al., 2012). Therefore, the cognitive theory/model of situation awareness (Endsley, 2000; 

2017) and naturalistic decision-making theory (Hoffman, & Klein, 2017; Klein, 2008; 

Militello, Lipshitz & Schraagen, 2017) can be classified as one of the examples of a 

functional model. 

 

2.2 Decision-Making  

Decision-making is an essential cognitive process of human behaviour whereby an ideal 

alternative is chosen among options established on specific standards (Azuma et al., 

2006; Wang, 2007). With respect to decision-making, decision theories and decision 
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models are used interchangeably in the literature.  Decision-making can be categorized 

into three theoretical approaches, namely normative, prescriptive and descriptive 

approaches (Wang & Ruhe, 2007; Smith, 2016). Philosophically, there are two models 

toward decision-making namely, i) the rationalistic (classical) model, and ii) the 

naturalistic model (Azuma et al., 2006; Antonik, 2007; Pfaff et al., 2014). The primed 

decision-making process is one of the key elements in most naturalistic decision-making 

models. Hence, the normative and prescriptive approaches can be classified as the 

rationalistic (classical) theory/model while descriptive approach can be classified as the 

naturalistic theory/model. The classification of the decision making theories/models are 

shown in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Classifications of Decision Making theories/models 

 
 

2.2.1 Naturalistic Decision-Making  

Naturalistic Decision Making (NDM) field emerged in 1989 to comprehend how people 

make decisions in applied, natural settings as opposed to laboratory settings (Klein & 

Hoffman, 2008; Klein, 2008, 2015). It takes research out of the laboratory into the 

dynamic natural environment, from the inexperienced to the experienced decision 

Decision Making 

Theory/ Models 

Descriptive Models Prescriptive 

Naturalistic 

Decision Making 

 

Rationalistic 

(Classical)  

Normative 

RPD Model 



 

 

  17 

makers and from the decision events to the real processes. The Naturalistic Decision 

Making (NDM) reflects how experienced people make decisions. It is a method in 

which people use their experiences to recognize and assess their situations and make 

decisions in dynamic, fast-paced uncertain environments. In this method, decision 

makers are more concerned about sizing up the situation and refreshing their situation 

awareness through feedback than they are about developing multiple choices to 

compare. In this case, Situation Awareness (SA) is more critical than deliberating on 

various courses of action (Antonik, 2007). The naturalistic decision settings have some 

basic characteristics, which are described in Table 2.1. 

 

Table 2.1 

Characteristics of Naturalistic Decision Settings 

S/No Features Description 

1. Undefined changing environments The situations are not static, straightforward or 

unambiguous.  
2. Ill-structured problems, Shifting, 

ill-defined, or competing goals 

 

The problem may be unclearly defined. The situation is 

rarely dominated by a single, well-understood goal or 

value, outside the laboratory.    
3. Action/feedback loops 

 

A sequence of activities and decisions will alter 

succeeding actions and goals.  
4. Time stress  

 

The time pressure leads to decision making involving 

heuristics, biases and cognitive shortcuts. E.g., 

travelling by Aircraft to cover many kilometres in a 

few minutes, so time is critical.  
5. High stakes and risk 

 

Results of error are prominent, even to the point of 

life/death  
6. Multiple players and teams 

 

Many problems of interest to NDM investigators 

involve not a single decision maker, but many 

individuals who are actively engaged in one role or 

other.  
7. Organizational goals and norms 

 

Naturalistic decision making often takes place in 

organizational settings. The general mission statement 

or goals of organizations apply pressure that may 

conflict and bias the situation.  
8. Experienced decision makers As most professionals are experienced or intermediates 

novices are rarely studied in NDM. 

Source: Adapted from (Orasanu & Connolly, 1993; Deitch, 2001). 

Naturalistic decision-making provides an understanding of how a decision is made in 

applications where time is crucial. The model of NDM is concerned with discovering an 

action that is “workable,” “timely,” and “cost-effective.” (Klein, 2008). Good decision-
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making in an emergency environment follows same traits where experience can 

differentiate most vital cues to achieve a prime and accurate decision (Klein, 2008).  

 

The NDM is a pattern of change in decision-making theory from the classical, analytical 

and rational approach to a descriptive, intuitive and recognitional decision-making 

model (Klein, 2015). In the process of Classical Decision-Making (CDM) approach, 

human experiences are ignored. In the NDM, instead of evaluating every alternative 

available, situation assessment based on the operators’ experience is carried out, and a 

single workable alternative is selected. If the solution is not working, then the next 

choice will be generated. A faster selection of an alternative is possible, based on 

similar situation in the past using experience (Klein, 2015). 

  

Table 2.2 

Comparison of Classical Decision-Making and Naturalistic Decision-Making 

approaches 

CDM NDM 

▪ Input-output orientation- predict chosen 

alternative 

▪ Process orientation- describe cognitive 

process of expert decision maker  
▪ Choice – Concurrent available options ▪ Situation action matching – serial 

evaluation, single option  
▪ Comprehensiveness – deliberate and 

analytic 

▪ Situation assessment – recognition and 

automatic  
▪ Context-free formal modelling- 

quantitative and prescriptive model 

▪ Context-bound informal modelling- 

driven by experience and knowledge 

 

In a nutshell, it is a descriptive approach of arriving at a decision. The idea of the 

comparison between classical decision-making (CDM) approach and naturalistic 

decision-making (NDM) was gained from Norwawi (2004) and is summarised in Table 

2.2. 
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Gary Klein introduced naturalistic decision-making model named 'Recognition-primed 

decision' (RPD). The model describes the decision process in a naturalistic environment 

(Klein, 2008) and it has key features that are further summarized by Wong (2000) as 

follows: 

▪ Situation assessment is the central part of decision-making. 

▪ Situation assessment is based on feature matching and story building. 

▪ The situation is based on cues presented over a period. 

▪ A single generation of the option at a time. 

▪ Serial option evaluation is required not concurrent. 

Next is the discussion of the three different approaches. 

First, the normative approach assumes the individual is logical and rational and is 

concerned with how to make decisions and what to do (in theory) (Smith, 2016) while 

the prescriptive approach attempts to improve decisions and provide answer to question 

of what people should and can do  (Smith, 2016). Lasly the descriptive approach 

describes how individuals reach their decisions and are process-focused and should also 

respond to what people do, or have done (Smith, 2016). 

  

By comparing these three approaches, in the conventional normative or analytical 

method much time will be spent on generating options and evaluating each option 

against each other before the best option is selected (Polic, 2009). For a well-defined-

problem, the decision model is implemented in a precise and static environment under 

certainty.  

Table 2.3  

Features of Normative, Prescriptive and Descriptive Decision-Making Models 
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Approaches Features References 

Normative ▪ Based on Classical  Approach  

▪ Standard decision-making method 

▪ Decision problems are broken into 

components 

▪ Decisions under certainty 

▪ Alternatives are known 

▪ Outcomes are known 

▪ Ability to make the optimum choice 

▪ Based on rational choice and 

behaviour 

▪ Generate and compare options 

▪ Provide risk assessment to guide 

decision-making 

▪ Suitable for static environment and 

well-defined problem 

▪ Lead to loss of time competitiveness 

and inaction.  

Azuma et al. (2006); Wang and 

Ruhe (2007); Polic (2009); 

Towler (2010); Standing 

(2010); Smith (2016) 

Prescriptive ▪ Behavioural Approach 

▪ Heuristics(“easy and quick”) method 

▪ Rules of thumbs, shortcuts, adaptive, 

automatic 

▪ Options are generated based on skill 

and knowledge 

▪ Inform of production rules 

▪ Remembering the sequence of action 

as an example.  

Standing (2010); Smith (2016) 

Descriptive ▪ Behavioural and decision centred 

Approach 

▪ Describes how people make a decision 

in “real-life.” 

▪ Decisions under uncertainty and time 

sensitive environment 

▪ Recognising bounded-rationality 

▪ Intuitive and automatic processing 

▪ Decision varies among experience, 

knowledge and complexity of the 

decision. 

▪ It is based on pattern recognition, 

mental models and associative 

reasoning etc. 

▪ Gives accurate situation assessment 

▪ Influence of similarity in human 

perception and problem solving 

▪ Recalling of similar cases 

▪ Example based 

▪ The use of mental imagery 

Standing (2010); Smith (2016) 

 

However, the normative approach could lead to loss of time competitiveness and 

inaction. Similarly, the conventional model is not fit for crucial decision-making since 

considerable time will be taken for evaluating all options (Polic, 2009). Therefore, in an 
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emergency environment where rapid decisions are required, a faster decision-making 

model is needed. The features of the three approaches are summarised in Table 2.3. 

Based on the features of the three approaches listed in Table 2.3, descriptive approach is 

the best to explain the decision-making processes in a dynamic and uncertain 

environment like driving that require timely decision. Moreover, decision makers within 

the normative approach lack expertise and experience and they do compare options to 

choose the optimum solution. As a result, they require more resources (time and mental 

efforts) rendering the approach impracticable, if not impossible (Kallion, 2000; Resnick, 

2012; & Winter et al., 2014). 

 

Therefore, this study is built based on descriptive approach which describes how 

decisions are made based on individual experiences. In addition, such an approach is 

based on real life situations and environment such as a naturalistic decision-making 

process and this is related to the RPD concepts in explaining prime decision-making 

during emergencies. 

 

2.2.1.1 Recognition-Primed Decision Model 

According to Kallion, (2000) “the RPD model asserts that decision makers draw on 

their experience to identify a situation as representative of or similar to a particular class 

of problem. This recognition then leads to an appropriate course of action (COA), either 

directly when prior cases are sufficiently similar, or by adapting previous approaches. 

The decision maker then evaluates the COA through a process of mental simulation”.   

The RPD model was developed by Dr. Gary Klein after an interview with fire-ground 

commanders, to learn their strategies and account for their abilities in using experiences 

to handle extreme time pressure and other naturalistic decision making features. Klein’s 
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model is concerned with how expert decision makers try to be efficient under high stress 

and time pressure. In addition, they compared the decision-making processes of experts 

and novices (Klein, 1993; Salas et al., 2010). From this perspective, the recognition-

primed is defined as the fast, automatic generation of single decision option, rooted in 

extensive domain-specific knowledge and the recognition of patterns from prior 

experiences (Salas et al., 2010).  Thus, the process is what Klein refers to as 

recognition-primed decision-making and it is made up of three main stages-: 1) situation 

assessment, 2) serial option evaluation, and 3) mental simulation (Klein, 2008). 

 

For the Situation Assessment, the decision maker is involved in looking for pattern and 

experiences (Klein, 2008). Later, at the Serial Option Evaluation, it allows the decision 

maker to evaluate“action alternatives one at a time until a satisfactory one is found. 

Actions are selected from an action queue where they are arranged according to their 

typicality.” Thus, the first action evaluated is that rated as the most typical response to 

the particular situation (Klein, 2008). The process by which actions are evaluated is 

called a mental simulation. Next, at the Mental simulation, an action is assessed either it 

is satisfactory or not. The decision maker acts it out in his/her imagination by mentally 

simulating the consecutive stages to be executed (Klein, 2008). 

 

The potential results of these stages, the obstacles that are likely to be met, and how 

they can be resolved are being handled at this level. As a consequence“of the 

simulation, the decision maker implements the action as it is, modifies it, or rejects it 

altogether and turns to examine the next action in his or her action queue.” Another 

outcome of mental simulation is a reassessment of the situation (Klein, 2008). Figure 

2.3 shows the diagram of RPD model. 
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Figure 2.3. The Recognition-Primed Decision Model.  
Adopted from (Klein, 2008). 

 

Figure 2.3, focusing on relevant cues and identifying causal factors reduces the 

information overload and sense of confusion that hamper novice decision makers. The 

identification of causal factors also helps to establish accurate expectations, which 

together with plausible goals are essential in selecting an appropriate action. The main 

advantage of the second step in the model, (serial selection by typicality), is that a 

reasonably matching action can be implemented. The last step in the model, (mental 

simulation), guards against the mistakes that result from uncritical thinking (Klein, 

2008). 
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The“RPD model highlights the crucial role of domain-specific experience in expert 

decision-making. No stage in the model can be implemented efficiently without such 

knowledge.”Thus, the model has challenging implications as regards the nature of 

expertise. Hence, the RPD model explains how individuals can make right decisions 

without comparing alternatives (Evans, 2008). The goal of RPD is to explain the 

effective decision making that does not require a concurrent evaluation of option 

(wrestling with different possibilities to pick the best one). 

 

Decision making in natural settings has established that decision makers employ the 

RPD model in making rapid decisions. The model influences expertise and experience 

such that an expert must recognise the situation domain. Also, it is a decision maker 

centred model where the decision maker must have full control of the situation to 

achieve rapid response with minimum resources required (Kallion, 2000). This means 

that it reduces the time it takes the decision maker to go through different options to 

make a choice. The RPD can be considered as an intuitive model that requires little 

cognitive effort as the responses are coming from patterns already laid down in the mind 

of the decision maker; hence, it reduces the mental stress to think of the options (time 

and mental effort) (Kallion, 2000; Klein, 2008). The situation is perceived, the elements 

are recognized, and the experience for a particular response or procedure has been 

successful in the past to stimulate the decision “to act”. Klein (1993) summarizes the 

features that RPD model has that differentiate it from the analytical decision models as 

follows: 
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▪ The“first option chosen is usually reasonable and workable. It is not semi-

random generation and selective retention.”It demands the decision maker to 

generate many possibilities. 

▪ Focuses on serial generation/evaluation of options, not simultaneous 

deliberation. 

▪ Relies on satisficing not optimizing. 

▪ Affirms that experienced decision makers evaluate option by using mental 

simulation, not using classical approaches to compare and contrast strengths and 

weaknesses of different options. 

▪ Focuses on situation assessment, not decision events (judging one option better 

than others do). 

▪ Defines how people use their experience to bear on a decision. 

▪ Decision Maker is primed and bound to act without waiting for the whole 

analyses. 

The key features of RPD are in contrast with the analytical approach. Table 2.4 

shows the differences between the recognitional approach (RPD) and analytical 

approach in terms of their basic features, strengths and weaknesses. 
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Table 2.4 

Comparison of Analytical and Recognitional Approach 

 Analytical approach Recognitional approach 

Features ▪ Many options 

▪ Current Evaluation 

▪ Optimal 

▪ Rational 

▪ Prescriptive 

▪ Quantitative 

 

▪ Single Option 

▪ Serial evaluation 

▪ Satisficing 

▪ Intuitive 

▪ Descriptive 

▪ Mental simulation 

▪ Experience based 

▪ Situation Assessment 

centred 

▪ Pattern recognition  
Strengths ▪ Systematic procedures 

▪ In depth course of 

action assessment 

▪ Detailed comparison of 

options 

▪ Influences expertise and 

experience 

▪ Decision maker centred 

▪ Rapid response 

▪ Minimal resource 

required  
Weaknesses ▪ Limited effect of 

expertise and 

experience  

▪ Garbage in Garbage out 

▪ Dependent on accuracy 

of weight and scores ( 

decision-making in a 

laboratory set up) 

▪ Resource demanding 

▪ Limited  assessment of 

options 

▪ Low evaluation of 

outcomes 

▪ Limited amount of 

possibilities considered  

▪ Recognitional decision 

making is likely more 

only when the decision 

maker is experienced, 

when conditions are less 

stable and time pressure 

is higher  

Source: Adapted from Kallion (2000); Klein (1993, 2008)  

 

Although the analytical approach is a systematic procedure in which the in-depth course 

of action assessment with detail comparison of options is the key to this approach, it is 

not beneficial to decision-makers in assisting in real-world settings (naturalistic settings) 

(Nowroozi et al. 2012). As such, it is time and resource demanding. In this case, the 

recognitional approach is more advantageous in facilitating rapid response with 

minimum resources required.  

2.2.1.2 Recognition-Primed Decision Model Factors  

RPD is a descriptive model that is designed in form of a flowchart to explain the 

processes in decision making. The processes are experiencing the situation (situation 



 

 

  27 

assessment), analysing the situation (serial option evaluation) and implementing the 

situation (mental simulation of options).  The RPD model factors from Klein (2008) are 

classified into three; the external, the instantaneous and the temporal. Each of the 

classifications has one (1), five (5) and one (1) factors respectively. The total factors are 

seven (7) as represented in Table 2.5. 

 

Table 2.5  

External, instantaneous and the temporal factors of Recognition-Primed Decision 

model 

External Factors Instantaneous Factors Temporal Factors 

1. Situation 1. Goals 

2. Cues 

3. Expectancies 

4. Mental 

Representation(MR) 

5. Implement 

1. Action 

 

Moreover, just as SA model, the RPD model also has mental representation (MR) for 

effective decision making. These are: 1. Knowledge of what is happening (L1). 2. 

Knowledge of rules governing the situation (L2). 3. Knowledge of possible 

consequences or expectancies of the future (L3). However, based on the factors stated in 

Table 2.5, there is need for comprehensive RPD model that has detailed training factors 

such as Basic Practice, Practice, Basic Skills, Sensory Ability, Driver Abilities, 

Rehearsed Experience, Attention, Priming, Habitual-direction acion, Goal-directed 

action, Involuntary Automaticity, Voluntary Automaticity, Acquired Automaticity, 

Potential hazardous information, Perception about Task and Perception (Klein 1993, 

2008, 2015; Klein et al., 2010; Fadde, 2013; Javor, Pearce, Thompson, & Moran, 2014; 

McDevitt, 2017) to enhance the experience of decision maker (driver) to make effective 

prime decision. 
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2.2.1.3 Applications of Recognition-Primed Decision Model 

The RPD model has been used in various domains such as in aviation, business, power 

system, health care, and firefighting to mention a few. For example, in business domain, 

Resnick (2001) attempted to solve the problem related to e-commerce focused 

companies that went bankrupt due to poor customer service, varying fulfilment, concern 

for privacy, and poor business models.  The author compared the outcomes of several 

new studies that examined decision making in the e-commerce environment to what 

would have been forecasted by the model. Moreover, the study argued that future 

studies should use approaches that focused on testing the market trend forecasts based 

on the RPD model so that accurate conclusions can be drawn. 

 

Another example in business domain, Niu and Zhang (2008) proposed a solution with 

RPD model approach in solving that current business intelligent (BI) systems did not 

fully support business managers’ decision-making process due to the presence of large 

data size, inability to handle unstructured problems, and human intuition-based decision 

making. They employed the basic concepts of situation awareness (SA), naturalistic 

decision making (NDM) /recognition-primed decision (RPD) in designing a cognition-

driven decision process (CDDP) model for BI systems. The cognitive-driven decision 

process (CDDP) model designed is used to assist managers in making reasonable 

decisions as well as good performance. 

 

In electric power domain, Greitzer et al. (2010) solved a problem of blackouts in North 

America due to the growing complications and interconnectivity of the power grid that 

were unable to be handled by the available power systems operators. They proposed an 
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integrated NDM model by combining the concepts of situation awareness, 

metacognition, Skill-Rule-Knowledge (SRK), and Recognition Primed Decision-

making (RPD) and evaluated the model using a Cognitive Task Analysis (CTA) 

approach. The proposed integrated NDM model offered a possible framework for 

systematic training for power system operators and teams.  

 

In the field of fire fighting domain, King (2011) examined command decision-making 

models for the Sacramento Fire Department in California, U.S.A. The study was to 

determine and generate guiding principles for incident commanders to make incident 

related decisions within stated expectations. The researcher, however, discovered that 

the Sacramento fire department had no command principles that direct incident 

commanders to fruitful and foreseeable mitigation of emergency incidents. The result 

suggests suitable decision-making models that have to be developed specifically for fire 

ground commanders. It is also revealed that Sacramento fire department command 

officers have encouraged the use of RPD in making a fast and complex decision. 

 

Within the healthcare domain, a study by Resnick (2012) presents two main challenges. 

The first one is how emotions affect the decision making of medical professionals in the 

healthcare domain, particularly in intensive care units (ICUs), theatre, and emergency 

rooms. Second, the issues of competing objectives, value-based judgement and 

compromises among the clinicians, patients, and insurers are attributed to the 

inadequate communication between patients and doctors regarding values and 

commitments. This reflects real differences in motivations, benefits, and incentives in 

the healthcare system. 
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Lu et al. (2013) improves on the work by Niu and Zhang (2008) by extending it to solve 

the growing complication of today’s digital ecosystem environment as decisions within 

business systems are seem to be more unstructured, dynamic, and uncertain with high 

personal stakes and time pressure. As a result, managers are profoundly cognitively 

taxed. Therefore, the study emphases upon cognitive decision support in the business 

intelligence (BI) environment by developing a model of situation retrieval (SR). The SR 

model is a decision oriented process compared to the traditional problem-oriented 

information retrieval (IR) model. Their experimental findings demonstrated that the SR 

model played a significant role in assisting decision makers to design an improved SA 

and reuse their experience to make better decisions. 

 

In aviation domain Winter et al. (2014) examined participants’ experiences handling 

mid air an engine failure. The study made use of RPD model. The interest of the study 

was the decision-making process utilized by pilots operating an aircraft equipped with 

an airframe parachute system. The purpose was to complete a qualitative analysis of the 

decision-making process used by pilots to determine whether to deploy an airframe 

parachute system. Naturalistic decision-making theory was applied due to the dynamic 

and evolving environment related to aviation decision making. The script was examined 

and validated by an expert panel that determined the use of the airframe parachute 

importance in the study.  
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Table 2.6  

Summary of research that applied Recognition-Primed Decision model, Recognition-

Primed Decision /Situation Awareness model 

Author Domain Problem Solved Supporting 

theory/model 

Result/ Model 

Resnick (2001). 

 
Business E-commerce focused 

companies went 

bankrupt and 

competing goals issue. 

RPD RPD models 

explain e-

commerce 

behaviour. 

 
Niu and Zhang 

(2008) 
Business The business 

intelligence systems 

cannot support 

business managers’ 

decision-making 

process, handle 

unstructured problems 

and human intuition. 

RPD/SA 

 
A cognition-

driven decision 

process (CDDP) 

model for BI 

model was 

developed. 

Greitzer et al. 

(2010) 
Power system Power Blackouts SA, RPD, 

Metacognition, 

& SKR 

An integrated 

NDM model was 

developed. 

King (2011) 

 
Fire Fighting Lack of command 

principles to guide 

incident commanders 

 

RPD Appropriate 

decision-making 

models 

established for 

fire ground 

commanders. 
Resnick (2012). 

 
Health Care Effect of emotions on 

decision making of 

medical personnel and 

issues of competing 

objectives, values and 

compromises among 

the clinicians, patients, 

and insurers. 

RPD Awareness of 

how emotion 

affects decision 

making, help 

providers and 

administrators 

develop 

management best 

practices. 

 
Lu et al. (2013). 

 
Business Business intelligence 

systems cannot fully 

support executives’ 

management processes. 

SA, NDM 

/RPD. 

 

A model of 

situation retrieval 

(SR) was 

developed. 

Winter et 

al.(2014). 

 

Aviation Engine failure. 

 
NDM/RPD Use of the 

airframe 

parachute was 

determined. 
Donnelly et 

al.(1997); 

Noyes(2012) 

Aviation Human error- flight 

crew judgement and 

decision-making. 

RPD/SA 

 
Integrated 

Decision-making 

Model (IDM) for 

Pilot. 
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Similarly, the studies by Donnelly et al. (1997) and Noyes (2012) argued that the degree 

of automation in complex systems such as those found on the civil flight deck continues 

to give  problem by stating that ‘too much automation and the human operator is not in 

the loop’ when failures and faults occur. Making decisions hence becomes difficult, as 

the crews are not entirely aware of the situation. Table 2.6 presents the summary of the 

review. The study by Noyes also describes the way pilot makes decisions and errors, 

and highlights that the errors can be corrected by training. The study uses the SA and 

RPD models to develop an integrated decision making (IDM) model for the pilot 

decision process. Table 2.6 shows that the prior studies have a similar issue of time-

criticality that triggers the use of the RPD model in their study domains. Also, it shows 

that there is existing model that is designed based on RPD/SA models. 

 

However, this model negletcted some of the cognitive and naturalistic decision making 

factors necessary for training to make a primed decision. More so, the model cannot 

check if the behaviour of a system based on theories matches the real world situations; it 

cannot ensure reproducibility in scientific thinking; and cannot be simulated 

(Lewandowsky & Farrell, 2011).  

 

2.2.1.4 Computational Recognition-Primed Decision Model 

In RPD model, experience and situation recognition are the key features which 

translates these features into computing method, the computational model should have a 

mechanism to represent professional or experience knowledge and pattern recognition. 

Computational models are design based on several techniques, and have been used in 

the different domains. The use of RPD in decision support system (DSS) “combat 
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system of Aegis cruisers under the TADMUS project was said to be the first attempt to 

make a computational RPD model. 

 

The studies by Warwick, Stacey, Hutton and Patty (2001), and Stanard, Hutton, 

Warwick, McIlwaine and McDermott (2001) stored decision maker’s experience 

“within a long-term memory structure called multiple-trace memory” that was 

suggested by Hintzman (Nowroozi et al., 2012) and implemented in the driving domain. 

 

Similarly, Ji et al. (2007) develop a general-purpose computational fuzzy RPD model 

that uses fuzzy sets, fuzzy rules, and fuzzy reasoning to represent, interpret, and 

compute imprecise and subjective information in every part of the model. The fuzzy 

RPD model was implemented in medical domain where the extent of causality between 

a drug and some of its adverse effects for patients has been calculated. 

 

Mueller (2009) “implemented a Bayesian RPD model called Bayesian Recognitional 

Decision Model (BRDM) based on episodic recognition memory models.” Greitzer et 

al. (2010) “proposed an integrated NDM Model by integrating RPD, Recognition/Meta-

Recognition, and Situation Awareness” in a study of power systems domain. The model 

was analyzed using Cognitive “Task Analysis to develop a more comprehensive 

systematic approach to train electric power system operators.” 

 

Yin et al. (2011) “classified RPD as a behaviour decision model for data mining in a 

survey of data mining theory and techniques” in computer-generated forces (CGFs) 

behaviour modelling mainly applied in military training. A study by Norwawi, Ku-

Mahamud, and Safaai (2005) “presents a computational recognition decision-making 
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model that adopts the temporal data mining technique in making decisions. The study 

also presents a case study of reservoir water level and rainfall measurement to test the 

developed computational recognition-primed decision (RPD) model in predicting the 

amount of water to be dispatched, represented by the number of spillway gates.” 

Nowroozi et al. (2012) presented a computational RPD model named C-RPD. Unified 

Modelling Language was used to represent the C-RPD model that was implemented in 

firefighting domain using artificial intelligence technique. Table 27 shows the summary 

of related works in developing computational RPD models using different techniques. 

 

Table 2.7 

Summary of studies on computational Recognition-Primed Decision models 

Author(s) Model(s) Used Model Formed Domain Technique 

Warwick et al. 

(2001) 

RPD, Hintzman’s 

multiple-trace 

memory model 

Computational RPD Driving Decision-

specific 

Stanard et al. (2001) RPD, Hintzman’s 

multiple-trace 

memory model 

Computational 

model of driver 

decision-making 

Traffic 

control 

Agent-based 

Sokolowski (2002) RPD Computational RPD Military Composite agent 

Norwawi et al. 

(2005) 

RPD Computational RPD Reservoir  

Flood 

Control 

Temporal Data 

Mining  

Ji et al. (2007) RPD Fuzzy logic-based 

general-purpose 

computational fuzzy 

RPD 

Medical Fuzzy logic 

Muller (2009) RPD, Episodic 

Recognition Memory 

Bayesian 

Recognitional 

Decision Model 

(BRDM) 

Episodic 

and 

Semantic 

Memory 

Bayesian 

Greitzer et al.(2010) SA, RPD, 

Recognition/Meta-

Recognition 

Integrated 

Naturalistic 

Decision-Making 

Model 

(INDM) 

Power 

Systems 

Cognitive Task 

Analysis (CTA) 

Yin, Gong and Han 

(2011) 

RPD Computational RPD Military Data Mining 

Nowroozi et al. 

(2012) 

RPD General 

computational RPD 

(C-RPD) 

Fire-

fighting 

Artificial 

Intelligence 

Technologies 
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Thus, from the analysis of the computational RPD models in Table 2.6, it can be 

concluded that different computational models of RPD have been developed using 

different techniques and applied in different domains. However, the present study 

developed an Computational-RDT model for prime decision-making in driving using a 

set of first-order differential equation technique. 

 

2.2.2 Situation Awareness Model 

Cognitive modelling of human behaviour has appeared to be powerful method for 

exploring how users relate to complex systems and have been extensively employed to 

model human-computer interaction and human behaviour more generally. For example, 

driver behaviour modelling and cognitive tools are used for assessing driver situation 

awareness (Liu, Wang, Li, XU & Gui, 2009). 

 

Situation awareness is a theory/model that focuses on operators' environment and their 

mental model. A mental model is generated based on the operator’s experience on the 

current situation. The better one’s expertise with a situation, the more structures exist for 

assimilating the data into a meaningful pattern. These structures allow for the quick 

understanding and prediction of status for that situation. However, an individual without 

expertise will have fewer structures in long-term memory and will have to rely on 

analytical skills and working memory for understanding and prediction. For example, 

novices have to use the more analytical model to discover the meaning of the data, 

because they do not have the patterns. The use of the mental model is important for a 

clear understanding of the situation, development and maintenance of SA (Salmon, 

Stanton & Young, 2012). Therefore, a mental model is a kind of silent information, 

which can be produced from people’s minds using cognitive mapping. According to 
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Endsley (1995), “features of the environment are mapped to mental models in the 

operator’s mind, and the models facilitate the development of SA”. Mental models 

(formulated through experience and training) are utilized to enable the attainment of SA 

by guiding attention to crucial elements in the environment (level 1), combining the 

elements to aid in the understanding of their meaning (level 2) and creating probable 

future states and events (level 3). 

 

A mental model offers advantages such as a device for guiding attention to relevant 

aspects of the situation. That is, a way of combining information perceived to form an 

understanding of its meaning;  a tool for forecasting future states of the system based on 

its present state and comprehending of its dynamics (Endsley et al., 2003; Lu et al., 

2013).   

 

The requirement for performance in dynamic situations, such as piloting aircraft, 

driving vehicles, and operating nuclear power plants, is to examine and rapidly analyze 

the changing environment and make effective decisions. Information processing in these 

complex dynamic environments includes the perception of elements in the environment, 

comprehension of the perceived information in the environment, and projection of 

future status. The three aforementioned stages of processing are included in Endsley’s 

theory (1995) of situation awareness (SA). Environmental perception is the first stage 

where the driver should get thoroughly acquainted with the vehicle's information, the 

changes of environment, and traffic signal and traffic sign. Comprehensive 

understanding is the second stage. In this stage, the driver analyses the intentions of 

situation information according to the relevant goals, and then based on that makes 

projection. Projection is the third stage. At this stage, the driver makes predictions and 
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decisions according to one's knowledge on the bases of comprehensive understanding 

and refinement of current situation information. This is very analogous to Klein’s 

Mental Representation (MR) which he outlined in his Recognition-Primed Decision 

(RPD) model (Klein, 2008). This “MR consists of knowledge of what is happening 

(similar to level 1 SA), knowledge of the rules governing the situation (level 2 SA), and 

knowledge of possible consequences, or expectancies for the” future (level 3 SA). 

 

Situation awareness guarantees driver's finishing of the overall driving task. The driver 

maintains situation awareness and tries to keep/change the specific situation, perceive 

environment over his sense organs, and implement the interactions with the 

environment over manipulations. Therefore, monitoring and manipulations of the 

environment are essential parts of driver cognition behaviour. Figure 2.4 shows the 

main components of SA model and their relationships. It also shows how SA becomes 

an integral part of decision-making and how other factors contribute to decision-

making. 

 

Figure 2.4. SA Model in Dynamic Decision Making. 
Adapted from Endsley (2000).  
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2.2.1.1 Factors of Situation Awareness Model  

The Endsley model of Situation Awareness is a model of cognitive theory. The model 

has a total of eighteen (18) factors based on the diagram in Figure 2.4., ranging from 

environment to decision. The factors are classified into three, namely external, 

instantaneous and the temporal as shown in Table 2.8. 

 

Table 2.8 

External, instantaneous and the temporal factors of Situation Awareness model 

External Factors Instantaneous Factors Temporal Factors 

1. Environment 

2. Abilities 

3. Experience 

4. Training 

5. Goals 

6. Expectations 

7. System Capability 

8. Interface Design 

9. Stress  

10. Workload 

11. Complexity 

12. Automation 

1. Automaticity 

2. LTM 

3. Information Processing 

4. MR or SA 

▪ Perception 

▪ Comprehension  

▪ Projection 

5. Performance of Action 

1. Decision 

 

The model being cognitive, it has mental representation (MR) that is always been used 

for the awareness level as it is believed that good SA is the  key to effective decision-

making in various domains such as aviation, firefighting, health care, military e.t.c. 

 

The MR or SA as a factor is further classified into three basic components. The level 1 

SA: the perception. The level 2 SA: the comprehension, and the level 3 SA: the 

projection. The three (3) basic components are used for awareness purpose while the 

remaining seventeen (17) factors can be used for other purposes like training the 

decision maker depending on the context of the user (Endsley, 2000, 2016). Among the 

eighteen (18) factors of the SA model presentented in Table 2.8, eleven (11) factors 
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were used to enhance the IDM model while seven (7) were not used such as: System 

Capability, Interface Design, Stress, Workload, Automation, LTM, and Information 

processing because the factors are not relevant for prime decision-making. This study 

used only the training factors in SA model that were relevant for prime decision-making 

process to realise the design of the RDT Model.  

  

Moreover, the review for cognitive model of Situation Awareness (Hoogendoorn, Van 

Lambalgen, & Treur, 2011; Bosse, Merk, & Treur, 2012) is necessary and they form the 

basis for the development of conceptual and the formal model of SA in the present 

study.  

 

Figure 2.5. Cognitive model for situation awareness: overview  
Adopted from Hoogendoorn et al. (2011). 

 

Figure 2.5 shows the general structure of the cognitive model for situation awareness. 

The model presents the mental model of SA and it consists of four basic elements. 

Three elements were in line with the model of Endsley (2016) which includes the 

perception of cues (i.e. element 1), the comprehension and integration of information 
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(the combination of 2 and 3), and the projection of information for future events 

(element 4). Additionally, mental model represent the 5th element. 

 

Moreover, the cognitive model for situation awareness can be abbreviated as (CMSA), 

while the Endsley’s model for situation awareness can also be abbreviated as (EMSA). 

Hence the relationship between the two models can be represented in Table 2.9. 

Table 2.9 

Relationship between Elements of Cognitive Model for Situation Awareness, Endsley’s 

Model for Situation Awareness and their levels 

Elements of CMSA Elements of EMSA Levels 

Observation. Determined certainty of 

observations made and 

used it to obtain the 

activation values of the 

beliefs directly 

associated with the 

observation. 

Perception of cues L1 

Belief formation for current 

situation (Simple and complex 

beliefs). 

The updated activation 

values of beliefs on the 

present and past are 

achieved. 

Comprehension and 

Integration of 

information. 

L2 

Belief formation for future 

situation. 

The updated activation 

values of beliefs for the 

future are attained. 

Projection of information 

for future events. 

L3 

 

 

2.2.2.1 Application of Situation Awareness Model 

An effective SA is critical for many driving behaviours, including monitoring and 

updating the positions of other vehicles, navigating busy roadway, monitoring road 

conditions, and maintaining proper speed (Heenan, Herdman, Brown & Robert, 2014). 

Much of the research on SA originated from the aviation domain, but SA as a construct 

is widely studied, and it exists as a basis of performance across many different domains.  

The domain includes driving a vehicle, command and control operations, piloting an 

aircraft where information needs to be processed very quickly and where one of its 
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consequences can be of poor decision-making (Jones, Connors & Endsley, 2011). SA in 

these domains (health care, education, military, business, and driving) will be analysed. 

 

In education domain, Liu, Mao and Zhan (2008) designed an e-Learning system based 

on SA model. The result of the study revealed that learner’s learning ability had been 

improved dramatically by adapting the model. 

 

Gheisari and Irizarry (2011) study Facility Managers (FM) decision-making process and 

performance in complex and dynamic environments. The rationale for the study is to 

provide a conceptual model of SA method that can be applied to the facility 

management domain. The decision-making process and performance of the facility 

manager can be improved by enhancing the ambient awareness of the facility manager. 

Enhancing the ambient awareness of system-users who work in complex and dynamic 

environments can be achieved through the concept of Situation Awareness.  

 

Helldin and Falkman (2012) attempt to solve the problem of fighter pilot workloads and 

their situation awareness. Human-Centered Automation (HCA) has been introduced to 

aid the pilots to perform their tasks and to make decisions fast in an often rapidly 

changing environment with the aim of easing the pilots’ workloads and improving their 

situation awareness. HCA is an approach to create an environment in which humans and 

machines collaborate to reach stated objectives. Conclusions drawn from the study are 

that HCA concept was used to design automated support systems to reduce Pilots’ 

workloads and improve their SA. 
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Meanwhile, in the military domain, Ozyurt, Doring, and Flemisch (2014) study the 

Combat Information Centre (CIC) of German Navy ships equipped with highly 

advanced Command and Control (C2) systems. The Command and Control (C2) 

processes are characterized by high complexity due to different tasks that affect the 

operator’s workload, and as a result, the workflow encounters error rate. In addition, a 

COGnitive Assistant System (COGAS) was developed in a simulation study using 

situation awareness model to support air target identification on German Navy Ships. 

The COGAS was able to reduce the high complexity that affects the operator’s 

workload by reducing the workflow error rate. 

 

However, in the driving domain, the study by Walker and Gable (2014) documents that 

emotional (anger) state results in driving performance using situation awareness. An 

experiment was carried out using 30 undergraduates that drove in a simulator after 

generating either anger or neutral effect. The study compared variables, including 

driving performance, situation awareness, subjective judgment, and perceived workload 

in the generated angry state with those in the neutral state. The result showed that 

generated anger could worsen driving performance and driver situation awareness when 

compared to a neutral state. However, the angry state did not have a consequence on the 

participants’ subjective judgment or perceived workload, which implied that the 

consequences of anger happened below their level of conscious awareness. Table 2.10 

shows the summary of a literature review on the application of situation awareness 

model in different domains, the problem solved and results obtained in those studies. 
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Table 2.10 

Application of Situation Awareness model in different domains 

Author Domain Problem Solved Result 

Liu, Mao and 

Zhan (2008). 

Education Learning efficiency E-Learning system designed 

based on situation awareness 

model, and it has improved the 

learning ability of learners 

greatly.  
Gheisari and 

Irizarry (2011). 

Facility 

Management 

Decision-making 

process and its 

consequent performance. 

Improved by enhancing 

ambient awareness of the 

facility manager. 

 

Helldin and 

Falkman (2012). 

Aviation Pilots’ workloads and 

their situation 

awareness. 

 

HCA concept to design 

automated support systems to 

reduce Pilots’ workloads and 

improve their situation 

awareness.  
Ozyurt, Doring, 

and Flemisch 

(2014). 

Military High complexity A COGnitive Assistant System 

(COGAS) was developed to 

reduce the high complexity.  
Walker and Gable 

(2014) 

Driving Anger effects on driving 

performance. 

 

Compared to a neutral state, 

induced anger can worsen 

driving performance and 

driver’s situation awareness. 

 

 From the review of the literature, it can be concluded that the situation awareness 

model is fundamental and is used in almost all domains ranging from education to 

driving. Particularly, SA is used in those domains that deal with the complex and 

dynamic environment such as fighter aircraft, military, aviation and driving where 

situation recognition is paramount. 

 

2.2.2.2 Computational Models of Situation Awareness 

There are other studies on the computational model of situation awareness in dynamic 

environments. For example, Belief Desire Intention (BDI) models by Rao and Georgeff 

(1995) generally can be seen as models of situation awareness that were applied to air-

traffic management domain. The study explores BDI agent, a type of rational agent. It 

aimed at incorporating the theoretical foundations of the BDI agent from both 

quantitative decision-theoretic aspect and a symbolic reasoning aspect.  
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So and Sonenberg (2004) designed a computational model of situation awareness to 

define pro-activeness of behaviour. It is an agent-based model implemented using rule-

based knowledge and forward reasoning. Using Endsley model as their basis, the study 

integrated beliefs with certainty factors and applied the model in a meta-level control 

strategy that directs the agent’s attention to its situated environment during runtime. 

However, Hoogendoorn, Van Lambalgen, and Treur, (2011) criticise their model that it 

does not take care of beliefs activations as perceived in human reasoning.   

 

Hoogendoorn et al. (2011) designed a general computational model for situation 

awareness, which uses the mental model as input to generate a scenario of the current 

situation. The model has been applied in the domain of F-16 fighter pilot training. 

Bosse, Merk and Treur (2012) also present a computational model of situation 

awareness as an extension of Hoogendoorn et al.’s (2011) model. This model integrated 

qualitative time references, which offer the option to use temporal relations (Allen, 

1981), and an explicit representation of situation awareness model (Endsley, 2000). The 

model has been tested by simulating its behaviour in a simulation environment for F-16 

fighter pilots, and it has been verified formally. The study by Aydoğan, Sharpanskykh 

and Lo (2014) presents a computational, agent-based situation awareness model 

integrating trust to allow the building of more human-like decision-making tools. The 

model is based on the theoretical model of SA by Endsley and computational model of 

SA by Hoogendoorn et al. (2011).  

A simulation case study has been conducted in the airline operation control domain to 

show the example of the proposed model. The results of this study indicate that the 

trustworthiness of information sources had a significant effect on airline operation 
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controller’s situation awareness. Table 2.11 shows the summary of research on 

computational models of situation awareness. 

 

Table 2.11 

Summary of Studies on computational models of Situation Awareness 

Author Models used Model Formed Techniques Domain 

Rao and Georgeff  

(1995)  

__ Computational 

model 

BDI agent 

(rational) 

Air-traffic management 

So and Sonenberg 

(2004)  

SA Computational 

model 

Agent-based A meta-level control 

strategy 

Hoogendoorn et al. 

(2011) 

Cognitive 

model, SA 

Computational, 

general model 

for situation 

awareness 

Agent-based F-16 fighter pilot 

training 

Bosse et al. 

(2012) 

Cognitive 

model, SA.  

Computational 

model of SA 

Agent-based F-16 fighter pilot 

training 

Aydoğan et al. 

(2014) 

SA Computational, 

Trust-Based 

Situation 

Awareness 

Agent-based Airline operation 

control 

 

Therefore, based on the review of the related literature, the present study discovers that 

the previous studies designed computational, agent-based situation awareness models 

applied in various domains.  

2.3 Hybridization 

The term “hybrid” in computer science is a combination of two or more different 

techniques, methods, or models, which are separated from each other naturally. The 

reason is to generate something new, which can take advantage of different combination 

of techniques and methods or models (Alobaedy, 2015). 

 According to Alobaedy (2015), these techniques, methods or models are applied in 

three ways, namely sequential, parallel and mixed approach. In the sequential approach, 

the output of any model is passed to the input of the next model and so on. In the 

parallel method, two or more models are combined at the same time, and their outputs 
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are combined in a single output. The mixed method is the combination of both 

sequential and parallel methods 

  

Hybridization can be defined as a method of combining two or more complementary, 

single-stranded models to form a single, double-stranded model through base pairing. 

From the reviewed concept of models of hybrid soft computing architectures by 

Abraham (2003), hybrid intelligent architectures are classified into four categories: (1) 

Stand-alone (2) Transformational (3) Hierarchical hybrid and (4) Integrated. 

 

2.3.1 Types of Hybridization Methods 

Stand-alone Model 

The main concept of stand-alone models consists of independent software that does not 

interact in any way. Stand-alone models are designed to achieve several objectives 

depending on the purpose of the developer. Figure 2.6 shows the stand-alone models 

where a neural network and a fuzzy system are used separately. Stand-alone models 

have the benefits of ease and simplicity regarding its development.  

 

 

 

 

Figure 2.6. Stand-alone models 
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Transformational Hybrid Intelligent Models 

In the transformational hybrid model, the system starts as one type and finishes up as 

the other. Determining which method is used for development and which is used for 

delivery is depended on the desirable characteristics that the technique offers. Figure 2.7 

shows the interaction between a neural network and an expert system in a 

transformational hybrid model. In this case, either the expert system is incapable of 

sufficiently solving the problem, or the speed, adaptability or robustness of neural 

network is required. 

 

 

Figure 2.7. Transformational hybrid model 
 

 

Hierarchical Hybrid Intelligent Models 

This model is built hierarchically, with each layer having different functionality. The 

general function of the “model depends on the correct functioning of all the layers. 

Figure 2.8 shows a hierarchical hybrid architecture involving a neural network, an 

evolutionary algorithm and a fuzzy system. The neural network uses an evolutionary 

algorithm to optimize its performance, and the network outputs act as a pre-processor to 

a fuzzy system, which then produces the final output. 

” 

 

 

 

 

 

 

 

Figure 2.8. Hierarchical hybrid model 
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Integrated Model (Fused) 

Fused“architectures are the first real form of integrated intelligent models. They include 

systems, which combine different methods into one single computational model.” 

They“share data and knowledge representations.”Hybrid method otherwise known as 

the integrated method is said to achieve excellent performance in many fields compared 

with stand-alone methods (Kolodziej, 2012). Moreover, the four categories of the 

hybridization methods, their properties and advantages, based on (Abraham, 2003) are 

shown in Table 2.12. 

 

Table 2.12 

Hybridization methods, properties and advantages 

Hybridization Method Properties Advantages 

Stand-alone ▪ Provides direct means of 

comparing problem-

solving capabilities of 

different techniques. 

▪ Often“used to develop a 

quick initial prototype, 

while a more time-

consuming application is 

developed.” 

▪ The method is not 

transferable nor can it 

support the weakness of 

the other method. 

▪ Simple 

▪ Easy to develop 

Transformational ▪ The“system begins as 

one type and ends up as 

the other. Determining 

which technique used for 

development and 

delivery.” 

▪ Can be developed quickly. 

▪ Require maintenance on 

only one system 

▪ Offer operational benefits. 

 

Hierarchical ▪ Architecture is built 

hierarchically, with each 

layer having different 

functionality 

▪ The overall function of 

the model depends on the 

correct functioning of all 

the layers. 

▪ Poor performance in one 

of the layers directly 

affects the final output 

▪ Its structure is more 

flexible. 

▪ A better option for some 

complex systems that 

cannot be easily 

represented. 
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Table 2.12 Continued   

Hybridization Method Properties Advantages 

Integrated ▪ A first real“form of 

integrated intelligent 

systems. 

▪ They include systems 

that combine different 

techniques into one 

single computational 

model. 

▪ They share data and 

knowledge” 

representations. 

▪ Robustness 

▪ Improved“performance 

▪ Increased problem-solving 

capabilities. 

▪ Fully integrated models can 

provide a full range of 

capabilities such as 

adaptation, generalization, 

noise tolerance and 

justification.” 

 

From Table 2.12, the integrated method of hybridization has more advantages over the 

three counter parts methods. 

 

2.3.2 Integrated Decision-making Model 

 
 

Figure 2.9. Integrated Decision-making Model of Pilot Decision Process  
Adapted from Donnelly et al. (1997); Noyes (2012). 
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Figure 2.9 shows the existing RPD-SA model called Integrated Decision-making Model 

(IDM) of Pilot Decision Process by Donnelly et al. (1997) and Noyes (2012). However, 

the difference in the two studies is that, Donnelly et al. (1997) propounded the 

conceptual model without validation. Hence, Noyes (2012) validated the conceptual 

IDM model using experimental study. An experiment was conducted using 29 

participants (18 males and 11 females). The participants were divided into two groups, 

namely experimental (15 participants) and control (14 participants). This is to assess the 

action of decision makers under time pressure and automaticity. It was hypothesised in 

their study that “people making decisions do not consider the full consequences of their 

action when under time pressure and acting automatically and therefore will make more 

errors under these conditions”. The participants were put under time pressure in order to 

control the time given to respond to the event. Fixed time was given to the decision 

maker in order to respond to an event in a simulated time pressure. The participants in 

the control condition had five (5) seconds to respond, while the participants in the 

experimental condition had two (2) seconds only. Also, the type of event and frequency 

were controlled in order to have automatic response. By using two events that are 

similar, and have changing frequency of occurrence, the automaticity can also be 

simulated. As the event becomes routine, its response turns out to be automatic, whereas 

as the event is less frequent it comes to be non-routine. Therefore the ratio of the 

occurrence of the two events is a measure of automaticity. 

  

A questionnaire was administered and completed by the participants to give information 

on these conditions (time pressure and automaticity) and to provide information on their 

performance and motivation. The results showed that decisions of the participants under 

time pressure are faster. Though there was no variance in time taken to answer when the 
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number of activities was higher. This is because in the event handling used for the 

experiment, simple automaticy (yes/no decisions) criterion was used and decision 

chosen in the IDM to represent automaticity path was itself automatic. Therefore, 

consideration of consequences is not needed under any conditions. However, under time 

pressure and distraction conditions, simple automaticy can lead to slips or mistakes. 

This is contrary to when complex automaticity (decision require knowledge processing 

level in order to make correct decision) was used for the experiment. 

 

The Integrated Decision-making Model in Noyes (2012) described pilot behaviour and 

was applied in supporting their decisions process. It also showed areas in the decision 

process where flaws can be made and may be detected. It suggested the use of decision 

support as an intervention points to prevent the errors and assist to mend the errors. 

Aviation decision-making differs from decision-making in other fields. In aviation 

decision-making, the pilot starts with high SA which decreases over time as compared 

to others fields (such as fire fighters, military, driving e.t.c.). In this case, when the SA 

degrades, a potential for error occurs (i.e. when the pilot’s MR is different from the 

actual situation), contrary to when a situation is wrongly assessed. When assessing a 

situation, time factor is also involved which may not be important when the situation is 

familiar. The model utilized three theories that are important for decision making 

processes in the development of their model. These theories are Endsley theory of SA 

(Endsley, 1995, 2016),  the Naturalistic Decision Making theory (Klein, 2015) and the 

Rasmussen’s theory of information processing (Rasmussen, 1993).  

 

The pilot SA is very essential for effective decision-making. Endsley (1995, 2016) 

described SA as comprising of three components known as levels of SA. Level 1 SA is 
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perception of cues; level 2 SA is comprehension of the cues and level 3 SA is the 

Projection of future developments.  The Naturalistic Decision Making theory (Klein, 

2008, 2015) is equally important for decision-making process in order to maintain MR 

and to identify which procedure is appropriate. Experience is important in matching the 

information and cues to a known situation and this is where Klein’s model is most 

relevant. The Rasmussen’s Skill-Rule-Knowledge theory (Rasmussen, 1993) also serves 

as important theory in the pilot decision making process. The theory states that 

“different tasks require different levels of mental processing depending on the nature of 

the task”. 

 

Moreover, the IDM model shows the pilot’s MR and the difference between the pilot’s 

MR and the real situation plays a vital role in the decision process.The use of MR 

(Klein, 1993, 2008, 2015) is important for successful decision-making. Analogous to 

SA, the RPD MR consists of three components: 1. Knowledge of what is happening 

(Perception of cues, level 1 SA). 2. Knowledge of rules governing situation 

(Comprehension of cues, level 2 SA). 3. Knowledge of possible consequences, or 

expectancies for the future (Projection of future developments level 3 SA). The levels in 

SA/ RPD models also relates to Rasmussen’s theory of information processing which he 

called Skill-Rule-Knowledge theory (Ramaussen, 1993). Pilot has hierarchy of goals 

and sub-goals that are related to the process tasks in the IDM model which relates to 

Rasmussen’s levels of information processing that are presented in Table 2.13. 
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Table 2.13 

Rasmussen’s levels as related to Inegrated Decision-making Model Goals/Tasks 

Rasmussen’s Level Goals/Sub-goals Tasks Examples 

Skill Lower Automaticity Immediate flying tasks 

Rule Intermediate Actions following known 

procedures 

To know which 

procedure is relevant 

and when to switch 

levels 

Knowledge Higher Paths forming intention and 

considering consequences 

Maintaining safe flight 

 

 

The development of the IDM was as result of the reviewed of the decision-making 

theories mentioned. Based on Figure 2.9, there are three ways that the pilot may take in 

making a decision that are stated as follows:  

 

1. If there is not sufficient information, or the situation is complex, the individual may 

seek additional information to clarify their representation of the situation. 

2. If the pilot is satisfied with the representation, the pilot may form intentions to act. 

3. There will be effects and consequences of the pilot’s actions, or failure to act. 

Points in the decision-making process where errors are likely to occur were identified in 

the model. The suggested intervention points are shown in Figure 2.9 as A, B, C and D. 

 

A – The pilot’s mental representation/SA and the difference between this and the actual 

situation play a vital role in the decision process. 

Situation awareness reduces due to poor information or misinterpretation. This might 

lead to error in the situation assessment phase of the model. Intervention includes 

presenting information to the pilot in a better manner, or inferring what has been missed 

and re-presenting it in a different format. This is an error-prevention approach, which 

cannot guarantee the pilot to maintain or recover situation awareness. 
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B – The crew may not realise the consequences of a course of action, due to 

inexperience or misrepresentation. 

Intervention involves informing the pilot of the consequences of their actions, either 

when the actions are risky, or by inferring intentions. This is an error-tolerant approach. 

The system needs to wait for actions and then assess if they are risky or unintentional. 

This does include an important feedback element, which may allow the crew to restore 

situation awareness. 

C – The pilot may not put into consideration the consequences of a course of action, as a 

result of time pressure and/or automaticity. They might wrongly assume that a particular 

situation has been encountered before, and will therefore not seek to clearly consider the 

consequences of his/her actions. This direction might also be taken when there is no 

enough time to mentally simulate events. 

Intervention is the same as in B. Though the two are fundamentally different errors, the 

result is similar. 

D – Erroneous actions might go undetected due to distraction or lack of feedback. 

If the pilot fails to gain enough feedback following an action then their mental 

representations might not be protected, and further essential action may not be taken. 

Intervention includes providing feedback on actions as with B and C. Feedback may be 

given when actions are unsafe, or by inferring pilot intentions, when actions are 

unintentional. If the crew are distracted, they may not notice feedback information and 

so an effective “attention-getter” would be needed. This approach also accepts error, 

and situation awareness may be reinstated if information is presented in the correct 

manner. 

In the IDM model under time pressure, a short cut can be taken that bypasses the 

process of forming intentions and considering consequences. In that case, when the 
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situation is repetitive, the pilot might act or react automatically called automaticity and 

it is an important component for human decision-making and problem solving.  

 

Also, based on Figure 2.9, the IDM model has twelve (12) factors for the pilot decision 

process including four (4) external factors, seven (7) instantaneous factors and one (1) 

temporal factor as shown in Table 2.14. 

 

Table 2.14 

Integrated Decision-making Model Factors 

External Factors Instantaneous Factors Temporal Factors 

1. Actual Situation 

▪ Events 

▪ Trends 

1. Mental Representation (MR) or 

SA 

1. Action 

2. Knowledge/Rules 2.  Expectancies 

3. Experience  
4. Goals 3.  Cues 

4.  Complexity 

5. Intention 

6. Time Pressure 

7. Automaticity  

 

From Figure 2.9 and Table 2.14, the four (4) external factors of the IDM are as follows. 

Actual situation represented by Events or Trends, Experience, Knowledge/Rules and 

Goal while the seven (7) instantaneous factors are:  Mental Representation (MR) (or 

SA) which, by SA theory (Endsley, 2017) is represented as Perception, Comprehension 

and Projection. There are also other factors such as Cues, Complexitiy, Intention, Time 

pressure and Automaticity. The only temporal factor in the IDM is Action. 

 

 The IDM model is divided into two components namely, the SA and the RPD. Among 

the twelve factors presented in the IDM, five (5) factors such as Mental Representation 

(MR) or SA, Experience, Complexity, Time pressure and Automaticity are representing 

the SA component of the model. Then, seven (7) factors such as Actual situation; 
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Events or Trends, Goals, Expectancies, Cues, Knowledge/Rules, Intention (simulation 

intention) and Actions are representing the RPD component of the model. However, 

among the 12 factors mentioned, only six (6) factors such as experience, 

knowledge/rules, goals, complexity, intention and automaticity presented the training 

factors in the IDM. Therefore, the IDM has features that are highlighted in Table 2.15.  

 

Table 2.15 

Features of the existing Integrated Decision-making Model 

Models IDM of Pilot Decision Process 

Features ▪ Three paths of decisions; if not enough information 

or the situation is complicated, or when a situation is 

routine or if there is time pressure. 

▪ It is a general model. 

▪ It describes the way pilots make decisions and make 

errors. 

▪ It shows the continuity of the decision-making 

process. 

▪ Highlights that training is essential for the flight deck 

systems. 

▪ six (6) training factors presented 

 

Application Domain ▪ Aviation 

 

Weaknesses ▪ The flight deck needs improvement using vital 

training factors. 

▪ Conceptual model. 

  

2.3.3 Enhanced Integrated Decision-making Model Factors  

In enhancing the IDM, training factors that are relevant for prime decision- making 

were identified based on literatures on cognitive theories such as cognitive theory of SA 

(1995, 2012; Hoogendoorn et al., 2011), Task Capability Interface (TCI) (Fuller, 2005), 

Unified Model of Driver Behaviour (UMD) (Hjälmdahl et al., 2011; Shinar & 

Oppenheim, 2011; Oppenheim et al., 2012), Model of Process underlying driving 

behavior (Deey, 1999), Multifactorial Model (MM) for driving safety (Anstey, Wood, 

Lord, & Walker, 2005) and Naturalistic Decision Making (NDM) theory (Kein, 2008, 
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2015). Hence, the details on how the factors were identified and the causal relationship 

based on literatures are as follows. 

 

Environment is refered to as state of the environment in Endsley model (1995, 2016) 

where he stated that “an automobile driver needs to know where other vehicles and 

obstacles are, their dynamics, and the status and dynamics of one’s own vehicle.” Other 

models such as TCI model by Fuller (2005) and UMD behaviour of the ITERATE (IT 

for Error Remediation And Trapping Emergencies) project by Hjälmdahl et al. (2011), 

Shinar and Oppenheim (2011), Oppenheim et al. (2012), identified some environmental 

factors known as the environmental parameters (Traffic, Road, Visibility) that the driver 

needs to take care of. However, based on these studies, the present study comes up with 

six elements (Road, Traffic, Obstacles, Car condition and Visibility) a driver needs to 

perceive (observe) from the driving environment. 

 

Observation: SA model (Endsley, 2000, 2016) refes to it as perception of elements or 

cues in the current situation. The RPD model by Klein (2008) refers to it as knowledge 

of what is happening, while in Cognitive Model of Situation Awareness (CMSA) 

(Hoogendoorn et al., 2011) it is referred to as observation. Endsley (1995, 2016), Fuller 

(2005), Hjälmdahl et al. (2011) stated some elements to be observed in driving 

environment such as road, Traffic, Obstacles, Car condition, Visibility e.t.c. Belief 

Formation is referred to  as the comprehension and integration of information in SA 

model (Endsley, 2000, 2016), knowledge of rules governing the situation in RPD model 

(Klein, 2008) and belief formation for current situation (simple and complex belief) as 

in CMSA (Hoogendoorn et al., 2011; Bosse, Merk, & Treur, 2012). Belief Activation is 

referred to as the projection of information for future events in SA model (Endsley, 
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2000, 2016), knowledge of possible consequences or expectancies for the future in RPD 

model (Klein, 2008) and belief formation for future situation in CMSA (Hoogendoorn 

et al., 2011; Bosse et al., 2012 ). 

 

Expectations in Endsley model (2000, 2016) is known as expectations or preconceptions 

while in RPD model (Klein, 2008, 2015) and IDM l for Pilot by Noyes, et al. (2012) is 

known as Expectancies. According to (Endsley, 2000, 2016), expectation “is built based 

on mental models of perception, comprehension and observation, and also based on 

previous experiences”. It directs how attention is disseminated and how individual 

absorbs the information perceived. It serves as a shortcut in mental processing in 

information perceived and this gives advantage to working memory. That is, there is no 

information processing overflow.  

 

Moreover, the causal relationships among the factors are based on literature. Therefore 

these studies (Endsley, 2000; Endsley, 2016; Hoogendoorn et al., 2011) noted that there 

is a relationship between environment and observation (perception). The environment 

and attention also influenced the observation. Hence, the present study observes the six 

environmental elements mentioned in order to form the beliefs about them. Same 

studies indicated that there is a relationship between observation and belief formation. 

Based on that, the present study forms beliefs on those items observed by the driver 

from the environment in order to form belief activation about them. These studies 

(Hoogendoorn, et al., 2011; Bosse, et al., 2012) showed that there is also a relationship 

between beliefs formation and beliefs activation in the sense that when the driver as an 

agent forms beliefs about certain observations he then forms certainty of that 

observations made. That is translated into activation values in form of weight and it 
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triggers the belief activation of the driver. If the driver is stressed, he will not have full 

certainty on the observation he made (Aydoğan, Sharpanskykh & Lo, 2014). Endsley 

(2016) shows that expectation is related to observation by stating that, people normally 

have notions of what they expect to see, hear, or taste in a given situation. Meaning that, 

all their expectations in a given situation are to be observed (or perceived). 

 

Basic practice in Endsley model (1995, 2016) and TCI model (Fuller, 2005) is known 

as basic training. Basic Skill is denoted as competence in TCI (Fuller, 2005) and is said 

to be acquired through training and experience. It also refers to training ability in 

Endsley model, Endsley (1995, 2016). Sensory Ability denotes ability to have cognitive, 

physical and visual functions based on Multifactorial Model in the study by Anstey et 

al. (2005). Driver’s goal means the goals of the driver as in prior studies (Endsley 1995, 

2016; Klein, 2008; Fuller, 2005; Noyes, 2012). Potential hazardous information 

denotes potential hazard in these previous empirical studies (Borowsky, Shinar and 

Oron-Gilad, 2010; Horswill, 2016; Huestegge & Böckler, 2016; Takahashi, Ukishima, 

Kawamoto, and Hirota, 2007; Konishi, Kokubun, Higuchi, Kurahashi & Umemura, 

2004). Exposure on Task Complexity known as complexity in SA model by Endsley 

(1995, 2011) and in IDM model by Noyes (2012) while in TCI model by Fuller (2005) 

it is referred to as task difficulty. Intention is one the features of automaticity (Endsley, 

2000, 2016; Moskowitz, 2013; Panek, Bayer, Dal-Cin, & Campbell, 2015) and named 

as simulation intention IDM Model for Pilot (Noyes, 2012). It was defined by 

Moskowitz (2013) as mental state that translates goals into reality. 

 

Practice as in Endsley, (2000, 2016), Endsley and Garland (2000) refers to training 

while in Fuller (2005) is refers to training education. It is used interchangeably with 
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training in the literature. Acquired skills in TCI model (Fuller, 2005) denotes 

competence, which is acquired through training and experience. Driver ability in SA 

model Endsley (1995, 2016) and TCI model (Fuller, 2005) refers to ability and 

capability, respectively. 

 

Rehearsed experience: The idea of this factor is gain from the study by Gazzaniga, 

Heatherton, Halpern and Heine (2006). Rehearsal means repeated action in the 

aforementioned study. Therefore, rehearsed experience based on their study is a 

repeated or a re-occurrence experience. Driver’s experience is denoted as experience 

(Hjälmdahl, Shinar, Carsten & Peters, 2011; Shinar & Oppenheim 2011; Oppenheim et 

al., 2010, 2012) and experience was defined as the accumulation of the reoccurrence of 

knowledge or skills acquired that result from direct participation in the driving activity. 

It was also referred to as experience in SA model (Endsley, 2000, 2016), TCI model 

(Fuller, 2005), and IDM model by Noyes (2012). 

 

Perception about hazard (Hp) is otherwise called hazard perception (Borowsky, Shinar 

& Oron-Gilad, 2010; Crundall et al., 2012; Horswill, 2016). Borowsky et al. (2010) 

described “Hp” as the ability to identify hazardous situations while driving, which 

enables the driver to overcome complex cognitive demands that the traffic environment 

dictates. According to Horswill (2016) “Hp in driving refers to a driver’s ability to 

anticipate potentially dangerous situations on the road ahead” while Crundall et al. 

(2012) refers to it as a “process of detecting, evaluating and responding to dangerous 

events on the road that have a high likelihood of leading to a collision”. The concept 

“Hp” was in line with the model of processes underlying driving behavior in response to 

potential hazards (Deery, 1999). In this model “Hp” described as the ability to detect 
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hazard and considered it dangerous potential. Perception about task (Tp) is otherwise 

known as task perception in other studies. According to Fuller (2005), drivers perceive 

task as either relatively easy or very difficult. If very difficult, the driver fails at that 

tasks and loss of control occurs, and this leads to collision or the vehicle running off the 

roadway. Perception about risk (Rp) is a subjective experience of risk in potential traffic 

hazards (Rosenbloom, Shahar, Elharar & Danino, 2008; Brown & Groeger, 1999; 

Deery, 1999). 

 

Attention is one of the features of automaticity (Endsley, 2000, 2016; Moskowitz, 2013; 

Panek et al., 2015). Azuma et al. (2006) define attention as how brain consciously 

selects information for cognitive processing and Gazzaniga et al. (2006) define attention 

as a process of getting information from sensory memory to short term memory 

otherwise known as working memory. According to the author, “each time attention is 

paid to something, its activation is enhanced and by stop paying attention to it, it 

activation level decays and it becomes difficult to recall”. Priming is a concept used in 

automaticity and is defined by Wheatley and Wegner (2001) as a technique that triggers 

both unconscious and conscious processes. This definition is supported by the empirical 

literatures (Wasserman & Wasserman, 2016; Moskowitz, 2013; Noyes, 2012; Endsley, 

2000, 2016). Habitual-directed action is a form of automaticity and studies (Wasserman 

& Wasserman, 2016; Moskowitz, 2013) use the concept. According to Wasserman and 

Wasserman (2016), when action is repeated and is sufficiently practiced it becomes 

habitual. Goal-directed action is a form of automaticity that refers to goal-dependent 

automaticity and goal-directed in Moskowitz (2013) and Wasserman and Wasserman 

(2016) respectively. Involuntary is a form of automaticity and it is defined as 

unconscious and automatic behaviours experienced (Wheatley & Wegner, 2001) while 
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Voluntary is also a form of automaticity and it is defined as consciously willed and non-

automatic (consciously controlled) behaviours experienced (Wheatley & Wegner, 

2001).  

 

One of the theoretical concepts used in this study is automaticity. It is a process of 

overlearning of information or operations to the point they can be used or recalled with 

small mental effort. According to Panek et al. (2015), automaticity is a process that 

requires limited conscious attention, awareness, and control of one’s actions, intentions, 

or psychological processes.While Moskowitz (2013) describes it as a process that 

occurs without awareness or intent. Automaticity needs a learned or conditioned 

response to stimuli, while learning and conditioning, in turn, require rehearsal (Gardner, 

2014). It is developed due to experience and high level of learning (training). At that 

point, automatic processing tends to be fast, autonomous, effortless and unavailable to 

conscious awareness in that it can occur with no attention. Based on that, this study 

break down the construct into eight component factors such as attention, priming, 

habitual-directed action, goal-directed action, voluntary, involuntary, acquired 

automaticity and experienced automaticity in order to have comprehensive model. 

 

Therefore, acquired automaticity and experienced automaticity were used in this study 

to denote short-term and long-term automaticity. Driving Knowledge is found in IDM 

model (Noyes, 2012) as knowledge/rules. It is defined as skills acquired by the driver 

through experiences and training (Fuller, 2005; Stanton, Walker, Young, Kazi & 

Salmon, 2007). Decision making according to Azadeh, Zarrin and Hamid (2016) “is the 

selection of a procedure to weigh alternatives and find a solution for a problem”.   
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Smith (2016) also described it as the internal processes by which a course of action or 

inaction is selected from a set of alternatives. Studies (Klein, 2008; Noyes, 2012) refer 

to it as action. Experienced (rehearsed) and perception about risk influenced attention. 

Performance of action in SA model (Endsley, 2016) and RPD model (Klein, 2015) is 

known as performance of action and implement, respectively. 

 

More so, the causal relationships among the factors based on literature are explained as 

follows. Decision based on SA model (Endsley, 2000, 2016) is triggered by the SA of 

the environment that is either safe or risky and the automaticity.  Based on same model, 

decision triggered the performance of action. Driver’s practice and ability influenced 

rehearsed experience (Gazzaniga et al., 2006). That is, “with continuous practice, any 

knowledge or skill is retained in short term memory and later transfer to long term 

memory otherwise it will decay”. Sexton, Baughan, Elliott & Maycock (2004) that 

“learning how to drive initially requires continuous practice to master the skills. Once 

the skill has been mastered, experience has been accumulated, and one can drive 

successfully”. Based on those views, practice and driver’s ability is said to influence the 

rehearsed experience of a driver. The driver’s experience is influenced by rehearsed 

experience and driver’s knowledge (Endsley, 2000, 2016). Driver’s ability is influenced 

by the skills acquired and experiences of the driver in training (Fuller, 2005; Johnston & 

Cyr, 2012). Acquired skills are influenced by the basic skills and ability (Endsley, 2000, 

2016, Fuller, 2005). In accordance with the model of process (Deery, 1999) perception 

about hazard is influenced by potential hazard information together with the goals to be 

achieved (Crundall et al., 2012; Horswill, 2016). Also, the perception about risk is 

influenced by information on hazards perceived in traffic environment and ability of 

driver. 
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In a nutshell, there are thirty one (31) factors in the proposed Rabi’s Driver Training 

model. These thirty one (31) factors identified were categorized into three different 

groups, namely external, instantaneous and temporal factors. The external factors serves 

as inputs and independent factors to the model, while the instantaneous and the temporal 

factors are the dependents factors. The two are time bounded factors but for the 

instantaneous factors the process is instant contrary to the temporal factors were the 

process involved much delay. The causal relationships among the categories of the 

factors are represented symbolically in form of nodes and flow arrows to form a 

conceptual model. The conceptual model is divided in terms of awareness and training. 

The conceptual model is further formalized in form of equations to obtain 

computational models (Ajoge, Aziz, & Yusof, 2017a; Ajoge, Aziz, & Yusof, 2017b; 

Aziz, Ahmad, Yusof, Ahmad, & Yusof, 2016). Therefore, Chapter Four gives the 

details of the three classifications of factors and the computational models generated. 

Table 2.16 shows the comparison of IDM and the proposed enhanced IDM factors. 

 

Table 2.16 

Comparison of Factors in Integrated Decision-Making and the Proposed Enhanced 

Integrated Decision-Making 

IDM Model (Noyes, 2012) Proposed Enhanced IDM Model  

Actual Situation 

▪ Events 

▪ Trends 

Environment 

Mental Representation (MR) or SA 

 

Observation 

Belief formation for current situation 

Belief formation for future situation 

Goals Driver Goals 

Expectancies Expectations 

Action Decision 

 Performance of Action 
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Table 2.16 Continued 

 Basic Practice  

Practice 

 Basic Skills 

Acquired Skills 

Sensory Abilities 

Potential Hazardous Information 

Driver Abilities 

Experience Driver’s Experience 

Rehearsed Experience 

Complexity Exposure on Task Complexity 

Automaticity Experienced Automaticity 

Attention 

Priming 

Habitual-directed Action 

Goal-directed Action 

Involuntary Automaticity 

Voluntary Automaticity 

Acquired Automaticity 

Cues  

Simulation intention Intention 

 Perception about Risk 

Perception about Task 

Perception about Hazard 

Time Pressure  

Knowledge/Rules Driver’s Knowledge 

 

Table 2.16 shows the comparison between the IDM (Noyes, 2012) and the proposed 

enhanced IDM. The IDM offers less comprehensive training factors in it RPD 

component. It is a conceptual base model and hence need to be computational. Based on 

these drawbacks of the IDM for pilot decision making process, the present study 

proposed an enhanced IDM (RDT) model by improving on the RPD model component 

of the IDM. This is to be achieved by expanding some of the IDM training factors and 

adding some training factors obtained from SA model and other literatures. Although, 

two factors in the IDM cues and time pressure will not be utilised in the proposed 

enhanced IDM. Based on that, eighteen (18) training factors such as Basic practice, 

Practice, Basic skills, Acquired skills, Sensory ability, Driver abilities, Rehearsed 

experience, Attention, Priming, Habitual-direction acion, Goal-directed action, 

Involuntary automaticity, Voluntary automaticity, and Acquired automaticity.  
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Others include experienced automaticity, Potential hazardous information, Perception 

about task and Perception about risk are realised in order to have a comprehensive 

conceptual model that has 24 relevant training factors to train the decision makers 

(drivers) to enhance their experiences to make prime decision particularly during 

demanding situations. 

More so, computational model is generated in this study based on the designed 

enhanced conceptual IDM and it is important to have a computational model because 

the model is precise and unambiguous, and errors can be detected more easily 

(Vancouver & Weinhardt, 2012).  The model can also help in checking if the behaviour 

of a system based on theories really matches the real world situations that can ensure 

reproducibility in scientific thinking, and they can be simulated (Farrell & 

Lewandowsky, 2010; Lewandowsky & Farrell, 2011). 

 

Training the drivers to be more skilful and knowledgeable is the first priority for 

increasing safety. To take more risk, high levels of skill and knowledge are often used. 

The objective of training for critical decision-making is to provide the learner with 

experiences, and instruction on cues, patterns, mental models, and actions that could 

efficiently establish a collection of well-learned concepts. This enables the drivers to 

perform mainly at the skill-based level of processing, while providing adequate 

knowledge-based foundation to perform well in new situations (Greitzer et al., 2010). 

Therefore, studies indicate that it's most significant for the learner to get sufficient 

practice in a variety of conditions once the basic skills has been mastered (Liu, Wang, 

Li, Xu, & Gui, 2009). Thus, in this study, training is needed for recognizing situations, 

in communicating situation assessment, and in acquiring the experience to conduct 

mental simulation of options through the act of human cognitive 
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unconscious/subconscious (or automatic) decision-making, (Klein et al.,1993; Klein, 

2008). Having analysed this ability, it will provide a good perspective towards driving 

assisting systems. 

2.4 Computational Modelling  

 Computational modelling is a method of developing, comprehending and 

communicating theories. The main goal of computational modelling is to check what is 

stated in theories can be obtainable in real life environment. In revealing the “real” 

behaviour of a system, the formal model can discover insights that informal reasoning 

process may not identify (Farrell & Lewandowsky, 2010; Lewandowsky & Farrell, 

2011). It also maximizes communication among the actual behaviour of a postulated 

system, and its behaviour acquired through reasoning and raises the reliability of 

communicating the theories to others (Farrell & Lewandowsky, 2010). Formal models 

are more advantageous over non-formal due to their preciseness, transparent, and they 

have a consistent internal approach to theories (Adner et al., 2009). The reasoning is one 

of the advantages of computational models, and it can be described as the process of 

thinking about something logical to form a conclusion or judgement. One of the 

methods is analogical reasoning (deducing new solutions through similarity to known 

solutions/methods). From the computational point of view, reasoning is vital in finding 

errors more easily and also eases decision making in the model (Vancouver & 

Weinhardt, 2012). 

 

There are many techniques used in modelling such as Differential Equations (DE), First 

Order Logic (FOL), Case Base Reasoning, Fuzzy Logic and Agent-based system. This 

present study makes use of differential equation for its modelling. DE involves one or 
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more derivatives of some unknown function or functions. Systems of DEs have been 

applied in many fields such as physics, electronic engineering and population dynamics. 

It is a powerful tool for analyzing the relationship between various dynamic systems. 

DE contains functions of one independent variable and its derivatives with a general 

form: 

 

                F(x (t))    ………………………………………..... (1) 

 

 

Assume variable x is a position of a car on the road and the position of the car changes 

as the time changes. Then, x is dependent on time (t). That is 𝑥 =  𝑓(𝑡). Differentiation 

gives a function  
𝑑𝑥

𝑑𝑡
 , which represents the car's speed. It is the rate of change of its 

position with respect to time as presented in equation (1). 

 

Table 2.17 shows computational models in different studies that applied different 

techniques such as agent-based, case-based reasoning, fuzzy logic, and differential 

equation. This study also used the differential equation technique in modelling the 

decision-making of drivers. The use of this technique is essential based on this reason: it 

is most suitable and widely used for describing dynamic systems where time criticality 

is of essence (Süli, 2014; Treur, 2016a, 2016b, 2016c; Aziz, Ahmad, Yusof, Ahmad & 

Yusof, 2016; Abro and Treur, 2017; ChePa et al., 2017; Tabatabaei and Treur, 2017). It 

enables reasoning in which faults can easily be detected. The executable numerical 

representation can be used for simulation to compare the behaviour of a system 

simulated with the real-life settings. The numerical representations can be analysed 

mathematically to check the stability (equilibrium) of the system (Aziz, Klein, & Treur, 

2009; Treur, 2016c).  
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Table 2.17 

Summary of Computational models and Techniques 

References Techniques Scenario 

ChePa et al. (2017) DE 

 

Performance during stress 

Tabatabaei and Treur, (2017) DE 

 

Lifestyle Changes. 

 

Abro and Treur  (2017) DE Desire Regulation 

Formolo et al. (2017) DE Traumatized patients 

Aziz, Ahmad, Yusof, Ahmad and 

Yusof, (2016) 

DE 

 

Virtual patients 

 

Treur (2014) DE Social Response Patterns 

Bouhoute, Oucheikh, Berrada 

and Omari (2014) 

FOL Driving  

Thilakarathne and Treur (2013) DE Intentional inhibition of actions 

Faghihi, McCall and Franklin 

(2012) 

DE Attentional Learning in a Cognitive Agent 

Ting, Zhou  and  Hu (2010) CBR 

 

Situation Awareness for MOUT (Military 

Operation on Urban Terrain) Simulations 

Hanratty et al. (2009) Agent Knowledge Visualization  

Ji et al. (2007) Fl Recognition based on experience 

Salvucci (2006) KB cognitive architecture Driving  

NOTE: DE: Differential Equation; FOL: First Order Logic; CBR: Case-Based Reasoning; FL: Fuzzy 

logic; KB: Knowledge-based  

 

However, computational RPD models and computational SA models are presented in 

subsections 2.2.1.3 and 2.2.2.2 of this chapter, respectively. So far in the literature, 

computational integrated RPD-SA model for prime decision making in driving domain 

has not been presented. Hence, the present study enhanced the IDM using training 

factors relevant for prime decision making in driving domain and then 

computationalized the model. 

2.5 Discussion 

This chapter discusses in detailed modelling driving behaviour where functional and 

descriptive models were discussed. The concept of decision-making as a basis for this 

study is highlighted. Decision-making approaches such as normative, descriptive, and 

prescriptive is also described in this chapter. Additionaly, Naturalistic Decision Making 

theory and model by Gary Klein described Recognition-Primed Decision model as a 
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model for prime decision in natural settings. Cognitive models such as Endsley model 

of Situation Awareness, Cognitive Model of Situation Awareness by Hoogendoorn et al. 

(2011) were also discussed in this chapter and they serve as a basis for this study. 

 More so, Integrated Decision-making Model (IDM) and its factors were highlighted 

comprehensively. Based on the discussion on the IDM, The IDM is divided into two 

components namely, the SA and the RPD as discussed in section 2.3.2. The model is 

presented with twelve factors, among which, five (5) factors such as, Mental 

Representation or SA, Experience, Complexity, Time pressure and Automaticity are 

representing the SA component of the model. Then, seven (7) factors such as Actual 

situation; Events or Trends, Goals, Expectancies, Cues, Knowledge/Rules, Intention 

(simulation intention) and Actions represents the RPD component of the model. 

However, among the 12 factors mentioned, only six (6) factors such as experience, 

knowledge/rules, goals, complexity, intention and automaticity presented the training in 

the IDM model.  

Some drawbacks of IDM were identified such as, the model offers less comprehensive 

training factors in it RPD component. It is also a conceptual base model and hence need 

to be computationalised.  Therefore, this study deems to address these drawbacks by 

improving on the RPD component. This is achieved by expanding some of the IDM 

training factors and inluding some training factors obtained from SA model and other 

literatures. The present study therefore enhanced the IDM  by using eighteen (18) 

training factors to enhanced the IDM model by Noyes (2012). The enhanced model 

presented by the present study is known as Rabi’s Driver Ttraining (RDT) model for 

prime decision making in driving domain which is a conceptual base and it has been 
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computationalised to have an enhanced computational IDM known as Computational 

Rabi’s Driver Training model (C-RDT). 

2.6 Summary of the Chapter 

This chapter explains in detail the underlying decision theories used to describe the 

concept of decision-making models in which the use of recognition-primed decision 

(RPD) model are extremely explored. Also, major concepts within the cognitive model 

of situation awareness have also been explained. The ideas of computational modelling 

and its applications are also examined. Therefore, this chapter provides a theoretical 

underpinning and understanding of the basic concepts of this study. The next chapter of 

this study explains in detail the methodology used to answer the research questions of 

the study. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This chapter describes the study methodology that is employed in achieving the 

proposed objectives as stated in Chapter one. Section 3.1 presented the study framework 

as a reference for this study, while Section 3.2, 3.3, 3.4, 3.5 and 3.6 described the 

overall processes to achieve the intended objectives. Section 3.7 discussed pre-testing 

and pilot study. Lastly, section 3.8 concluded the chapter. 

3.1 Research Framework 

In this section, a framework underlying design structure of the study and its conclusion 

is given. The framework implemented is based on the framework of Drogoul, 

Vanbergue, & Meurisse (2003). It is an agent-based simulation methodology framework 

as shown in Figure 3.1.  

As a result of complex and dynamic nature of driver behaviour, this decentralized 

methodology is applicable for formal specification and representation. The research 

methodology framework serves as a guide to develop and evaluate the computational 

model that is grouped into five stages, namely domain, design, operational, simulation 

and evaluation stages. In developing a computational model, the first three stages 

(domain, design and operational) were used as a basis for the model construction 

whereas the remaining two stages involved simulation and the model evaluation.  
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Figure 3.1. Agent Modelling Methodology Framework 
Adapted from Drogoul et al. (2003) 

 

 

Target system in this study methodology refers to the software (City Car Driving 

simulator) utilized to test the model validity whereas the agents are known as the virtual 

drivers that operate the simulator. The computational system refers to the simulation 

environment where the computational model developed is being tested. The 

implementation and expected outcomes of these stages were illustrated in Figure 3.2. 
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 Figure 3.2. Methodology Framework  
Adapted from Drogoul et al. (2003) 

 

Research Methodology 



 

 

  75 

This methodology has been used in agent-based modelling research for various domains 

such as in economics (Luna & Stefansson, 2012), social behaviour (Conte & Paolucci, 

2014), environment (Serrano, Moncada, Garijo & Iglesias, 2014), medicine (Wang, 

Butner, Kerketta, Cristini & Deisboeck 2015) and energy consumption (Rai & 

Robinson, 2015). 

3.2 Domain Model Stage 

In this stage, the factors in Situation Awareness and Recognition-Primed Decision 

models that are relevant for prime decision making during emergencies are identified.  

For the identification of those factors, this study has utilized internet and library 

resources to review relevant literatures from experts in the respective domains, such as 

experts in the domains of cognitive and computational sciences.  

 
 

 

Figure 3.3. Domain Model Stage Activities 

 

The outcome of this stage is the identified factors for the RDT model that were 

discussed and presented in Chapter Four Section 4.1. Figure 3.3 shows the steps taken 

to obtain the domain model stage. The result of this stage fulfills the first research 

objective. 

Library  

Definition of study objectives 

Review of related literatures 

to identify factors 

Identification of key Factors 

Internet  
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3.3 Design Model Stage 

In this stage,  the eighteen (18) training factors including  Basic Practice, Practice, Basic 

Skills, Acquired skills, Sensory Ability, Driver Abilities, Rehearsed Experience, 

Attention, Priming, Habitual-direction acion, Goal-directed action, Involuntary 

automaticity, Voluntary automaticity, Acquired automaticity, Experienced automaticity, 

Potential hazardous information, Perception about task and Perception about Risk 

obtained by expanding some of the IDM factors and identifying other factors  from SA 

model and other related literatures are combined to enhance the RPD component of the 

IDM model. A node is use to represent each of the factors and the causal relationship 

between the factors in the model was represented using a set of flow arrows. For each 

factor, the direct and indirect relationships were considered based on underpinning 

theories of each concept. This is done to obtain an enhanced conceptual IDM model. 

The factors in the model were categorized into external, instantaneous and temporal 

factors. The external factors were set of input factors to the model while the 

instantaneous factors were those factors whose processes occur instantly. The temporal 

factors were time-bounded factors whose processes occur with many delays in time. 

The result of this research stage fulfills the second research objective. The results from 

this stage were presented in Chapter Four Section 4.2. The activities in the design model 

are shown in Figure 3.4 and it followed the process used by Bosse, Hoogendoorn, 

Klein, Treur and van der Wal (2011). 
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Figure 3.4. Design and Operational Model Stage Activities  
Adapted from Klein, Treur and van der Wal (2011). 

 

 

As an example of the design model, a toy problem was given for instance to 

demonstrate the stage, if P, Q, R, X and Z are factors identified from the domain model 

stage, then, the design model can be presented in Figure 3.5. This shows that the design 

model represents the relationship between these five factors (P, Q, R, X and Z) using a 

set of flow arrows. The relationship was obtained based on theories where the factors 

were identified.  
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Figure 3.5. Example of Design Model. 

 

 

From Figure 3.5, the relationship among the factors shows that P, Q, R are input factors, 

X is an instantaneous factor while Z is the temporal factor determined by the 

combination of the input and instantaneous factors. 

3.4 Operational Model Stage 

At this stage, the conceptual model obtained from the design model is formalized. The 

result of this research stage fulfils the third research objective. For example, from 

Figure 3.5 (section 3.3) the mutual interactions of the four identified factors (P, Q, R 

and X) determine Z. Assumptions can be made that the causal interactions of these 

factors are based on cognitive and naturalistic theories such as Endsley and Naturalistic 

Decision Making. For this purpose, it can be assumed that if equations 3.1 and 3.2 are 

non-zero or not equal to one, then the concepts conditions stated in Table 3.1, can be 

formalized to gain equations 3.3 and 3.4. Assuming Z is the combination of factors as 

can be seen in Figure 3.5, hence, 
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Table 3.1 

Example of Different Condition of X 

Conditions Values of Factors Value of Z Description 

Condition 1 P = High 

Q = High 

R = High 

X = High 

 

Z = High 

 

Z will be high if P, Q, R 

and X are high or any of 

the three are high and 

vice versa. 

 

Condition 2 P = Low 

Q = High 

R = Low 

X = High 

 

Z = Moderate 

 

Condition 3 P =  Low 

Q = Low 

R = Low 

X =Low 

 

Z = Low 

 

 

Z = f [P, Q, R, X]        (3.1) 

Where 0 ≤ P ≤ 1, 0 ≤ Q ≤ 1, 0 ≤ R ≤ 1, 0 ≤ X ≤ 1 and 0 ≤ Z ≤ 1  (3.2)  

X(t) = 𝜔𝑥1.P(t) + 𝜔𝑥2.Q(t) + 𝜔𝑥3.R(t) + 𝜔𝑥4.Z(t)               (3.3)  

∑  𝜔𝑥𝑗 = 14
𝑖=1         

where  𝜔𝑥1, 𝜔𝑥2, 𝜔𝑥3 and 𝜔𝑥4 are weight parameters of the equation. 

𝑍(𝑡 + Δ𝑡) = 𝑍(𝑡) + γ𝑧 . (𝑋(𝑡) − 𝑍(𝑡)). 𝑍(𝑡). (1 − 𝑍(𝑡)). Δ𝑡     (3.4) 

 

From equation 3.4, it can be depicted that Z will be high if at least three variables from 

this equation are high and Table 3.1 describes the implemented concepts in a simulation 

environment. The procedure for the simulation is explained in Section 3.5. 
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3.5 Simulation Stage 

The simulation is implemented in a numerical simulation environment and then verified 

by selected testing procedures. Figure 3.6 shows the activities to be taken to achieve the 

simulation traces as a simulation result. 

 

Figure 3.6. Simulation Stage Activities. 

  

Moreover, the simulation result is essential in verifying if the mathematical equations 

obtained from the model are corresponding to the theories and models used in the study 

to prove the correctness of the model. 

To achieve the simulation result, various activities are performed as shown in Figure 

3.6. The executable model is the first activity in the simulation stage. This is translating 

the computational model into sets of codes using the numerical simulation environment 

(MATLAB). In the numerical simulation environment, the executable model is 

simulated by assigning selected cases or conditions to generate simulation traces. The 

simulation traces are the result of the simulation that depicts the behaviour of the 

computational model. The details of the computational model simulation are discussed 

in Chapter Five. For example, the simulation traces for equations 3.3 and 3.4 using the 

combinations of factors values as shown in Table 3.2 (also depicted in Figure 3.7 to 

3.9). In this simulation, the following settings are utilized: (0≤ t ≤500) with tmax = 500 

(to represent a set of training activities of the driver up to eight months).  
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The range (i.e., each time step) denotes the training hours where one (1) time step 

represents 5 hours of training. The level axis, which denotes the range values of X and Z 

in terms of high (1) and low (0) are determined. 

 

Table 3.2 

Examples of Values for Different Conditions of X 

Factors High Moderate Low 

P 0.9 0.5 0.1 

Q 0.8 0.5 0.1 

R 0.8 0.5 0.1 

 

 

Figure 3.7. Simulation Traces showing a High Condition for X and Z. 

 

  

From Figure 3.7 it can be seen that the combinations of P, Q, R and Z provide a 

simulation traces that stabilize as shown in Table 3.2.  
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Figure 3.8. Simulation Traces showing Moderate Condition for X and Z.  

 

 

In addition, the combinations of P, Q, R and Z provide a simulation traces as shown in 

Figure 3.8. This scenario stabilizes within moderate values. It explains the simulation 

traces of X and Z as presented in Table 3.2. 

 

Figure 3.9. Simulation Traces for Low Condition in X and Z.  

 

 

The low condition of X and Z is depicted in Figure 3.9 that shows the simulation traces 

as a result of combinations of low values of P, Q, and R (as presented in Table 3.2). 
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3.6 Evaluation Stage 

This stage aims to ensure that the computational model is the actual representative of 

the phenomenon under investigation. The stage is divided into two sub-stages, namely 

verification and validation as shown in Figure 3.10. This stage addresses the fourth 

research objective in the study.  

 

 

 

 

 

Figure 3.10. Evaluation Stage Activities  

 
 

3.6.1 Verification Stage 

Verification in this study is classified into two; mathematical analysis and automated 

analysis. The mathematical analysis is achieved using ordinary differential equations 

(Treur, 2016a, 2016b, 2016c) while automated verification is conducted using Temporal 

Trace Language (TTL) modal logic (Bosse, Merk & Treur, 2012). The two verification 

processes are further explained in Chapter Five. 

3.6.1.1 Mathematical Analysis 

This analysis ensures that all syntax and semantic representations utilized in 

computational models are reliable. They also ensure the correctness of the formalization 

of the computational models. According to Balakrishnan (2012), mathematical analysis 
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can be numerical analysis, categorized into the functional analysis, real analysis, 

complex analysis, measurable analysis and differential equation analysis. Conversely, 

this study utilized numerical stability analysis (equilibria analysis) to check the stability 

of finite specifications in the computational hybrid model proposed. The analysis 

addresses problems of dynamic nature of the model under any small perturbations 

conditions, and it can identify flaws in any model even with a little disturbance (Treur, 

2016b, 2016c). Moreover, adoption of this analysis in this study is because the analyses 

are used in many dynamic systems in relation to human systems as in prior studies such 

as (Treur, 2016a, 2016b). 

 

For example, the analysis is implemented by setting the model derivative (or all 

derivatives) to zero which is stated in equations 3.5 and 3.6. 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑦)         (3.5) 

The constant (or equilibria) solutions of this differential equation are the roots of the 

equation. 

𝑓(𝑦) = 0        (3.6) 

Equillibria analysis is used to describe situations within the models where the values 

(continuous) approach a limit under certain conditions and stabilize. That is, if the 

dynamic of a model is defined by a differential equation, then the equilibria can be 

estimated by setting a derivative (or all derivatives) to zero. 

 

3.6.1.2 Automated Verification  

To verify whether the proposed model indeed generates results that adhere to related 

literature, a set of properties have been identified from related literatures. So, these 

properties show whether the model produces results that are coherent with the literature. 
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Also, by executing a large number of simulations and verifying these properties against 

the resulting traces, potential logical errors can easily be identified. 

 

To allow the verification process to take place, these properties have been specified in a 

language called Temporal Trace Language (TTL). TTL is built on atoms referring to 

states of the world, time points, and traces. This relationship can be presented as a state 

(, t, output(R))|=p, which means that state property p is true at the output of role R in 

the state of the trace , at time point t. Where |= is a predicate symbol in the language 

which is used as infix notation. It is also comparable to the Holds-predicate in the 

situation calculus. Based on that concept, dynamic properties can be formulated using a 

hybrid sorted predicate logic approach over time, traces and states properties by using 

first-order logical connectives and quantifiers such as , , , , , and  (Bosse et al., 

2012). 

 

For example in describing dynamic properties of complex processes such as SA 

creation, time and traces are considered by assuming a linearly ordered fixed time frame 

T. Using the simple example of dynamic properties of agent observation: For all traces 

, there is a time point t such that at time t agent A observes world state W. This 

informally stated dynamic property is formally expressed as follows:  

,:TRACES t:TIME state(, t) |== observation(A, W). Moreover, the dynamic properties 

can be the form that relates a state at one point in time to a state at another point in time. 

 

3.6.2 Validation Stage 

At this stage, a real experiment is conducted by using a driving game simulator. The 

game simulator is a commercial software application to be incorporated in the desktop 
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computers for the participants to play to ascertain if the computational model is 

proportional to the real behaviour of the driver in terms of rapid decision making in 

emergencies. 

3.6.3 Validation Protocol 

The validation process is conducted using validation protocols based on User-Centered 

Design (UCD) approach. The UCD approach is a process in which the needs, wants, 

and limitations of the end user of a product are given large attention at each stage of the 

design process. The protocol follows the approach in Figure 3.11 

 
 

Figure 3.11. Validation Protocols for the Study 



 

 

  87 

This study makes use of the validation protocols in Figure 3.11 to carry out the human 

experiment. The protocols are highlighted as follows: 

To select the participants, questionnaires are administered at the College of Arts and 

Sciences (CAS) Universiti Utara Malaysia to the selected participants who fall under the 

criteria of the researcher that suit the study. After the participants are selected based on 

the criteria, then consent form are distributed to the selected participants. Later, a 

suitable date and time for the experiment are fixed to carry out the experiment and it is 

communicated to the selected participants. All the selected participants are brought to 

Human-Centered Computing Research Lab (HCC-RL) for the experiment. The 

participants are grouped into two, namely the experimental and control groups. The 

experimental group is trained using city-driving test while the control group is not 

trained. Given that the experimental group is trained, it is likely that the experimental 

group participants will perform better than the control group participants. Thus, this 

study states the following hypotheses with respect to the outcomes of training: 

H0: Training improves driver’s prime decision making.  

H1: Training does not improves driver’s prime decision making. 

After the grouping, the participants (drivers) interact with the game simulator depending 

on their group. The game simulator which simulates series of conditions in driving, 

experiences and scenarios is installed into six different computers. Each computer has a 

scenario installed based on the SA model external factors that are mapped to the game 

simulator. These Scenarios are labelled as A, B, and C.  After the two groups of 

participants have interacted with the three different scenarios set up in the city driving 

game simulator, a questionnaire based on the external and temporal factors of the 

Automaticity RPD training model is distributed to the participants. The questionnaire is 
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divided into two parts: Part A deals with the demographic information of the 

participants and Part B consists of items on Driver Behaviour (DB) based on the 

training model. This is to evaluate the importance of the proposed model factors 

effectiveness to determine its effect on the automaticity of the driver to make effective 

decision especially during emergencies and to see if the simulation scenarios based on 

the model factors match the behaviour of the driver in terms of prime decision making 

in real life. Later, the participants answer the questionnaire based on their experiences 

and interactions with the game simulator. Thereafter, the questionnaire is analysed using 

statistical package for social sciences (SPSS). 

3.7 Pre-testing and Pilot Study 

An initial draft of the questionnaire was pretested before conducting the pilot study. The 

questionnaire was given to three experts to validate its items to determine if it possesses 

content and face validity (Creswell, 2014). The three experts were senior staff of 

Institute Memandu Mustika Muhibah Sdn. Bhd. Sintok, Malaysia. Sample of photos 

with one of the experts is shown in Appendix A. The questionnaire was also given to an 

English expert at the Language Centre, Universiti Utara Malaysia for grammatical 

checking process. All of the experts provided valuable inputs and corrections with 

regard to ambiguities, format, wording, simplicity and clarity of the items in the 

questionnaires that may cause confusion for the participants (Yaghmale, 2009). The 

experts’ evaluation, corrections and suggestions were then reflected in the study 

questionnaire before administering it to the participants for the pilot study. This was 

done in order to ensure content validity and reliability of the questionnaire. The sample 

of the experts’ evaluation questionnaire is shown in Appendix B. 
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Moreover, the researcher made some important observations before the pilot study and 

the observations were as follows: some of the participants did not answer the 

questionnaire based on their experience and interactions with the game simulator. 

Instead, they answered it based on their general driving experience. Therefore, the 

researcher instructed the participants that they should answer it strictly based on their 

experiences and interactions with the game simulator rather than using their general 

driving experiences. 

Moreover, no protocol guideline was provided to guide the participants on how to 

perform the experiment during the pilot study. This affected the participants not to play 

the game up to a certain level where the system would give them an assignment that 

would form the basis of generated data. However, some participants played the game, 

but their data was not generated by the system. This suggests that protocol guide should 

be provided for the participants to guide them on how to perform the experiment. 

Later, to verify the validity and reliability of the research instruments, a pilot test was 

carried out. This is because the scales adapted in this study were developed in different 

settings. 

The pilot test was conducted before the main data collection. The main goal of the pilot 

test is to test how each item measuring the factors is reliable and consistent with the 

operational definition of the factors based on the participants’ feedbacks (Zikmund-

Fisher et al., 2010). Additionally, the benefit of the pilot study is to improve the 

questionnaire and strengthen the study when it comes to the analysis (Neuman, 2011, 

2012). The pilot test follows the validation protocol approach in Figure 3.8 where the 

questionnaire used to select the participants was distributed and the potential 
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participants were selected based on criteria. Six participants (drivers) including five 

males and one female both with experience and without experience were selected 

randomly. All the six participants had a valid driving licence and knowledge of 

computer usage and video gaming. 

Subsequently, the responses from the participants were keyed in SPSS software to 

assess the reliability of the items adapted for measuring the understudied external and 

temporal factors of the proposed training model. Cronbach’s alpha is used to assess the 

reliability and validity of the items employed in this study.  

 

Table 3.3 

Summary of Reliability Test 

Items No of Items Cronbach Alpha 

Basic Skills 8 0.874 

Basic Practice 9 0.754 

Sensory Ability 12 0.911 

Driving Goals 3 0.996 

Driving Intention 3 0.996 

Potential Hazardous Information 4 0.869 

Exposure on Task Complexity 8 0.937 

Risk Perception 11 0.860 

Driving Knowledge 4 0.950 

Involuntary 4 0.797 

Voluntary 4 0.797 

 

The results of the Cronbach’s alpha are presented in Table 3.3. According to Hair, 

Ringle and Sarstedt (2013), the threshold for acceptable Cronbach’s alpha value is 0.70. 

According to the result presented in Table 3.3, the least Cronbach’s Alpha value is 

0.754 for basic practice which is above the suggested threshold. Therefore, these results 

indicate that the measures employed for measuring external and temporal factors in this 
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study are reliable and valid, suggesting that the questionnaire is suitable for the main 

experiment. 

In conclusion, Table 3.4 summarises the research methodology stages which includes 

the method utilized at each stage, the desire outcomes of the stages reflecting the four 

study objectives. 

Table 3.4 

Summary of the Research Stages 

Stages of Research 

Methodology 
Methods Outcomes Research Objectives 

Domain model 
Literature Review 

 

Identified factors 

 
1 

Design model 

 

Representation of factors 

relationship 

 

Conceptual model 

 
2 

Operational model 

Formal 

Representation of Factors 

 

Computational Model 3 

Simulation 
Simulation Environment 

 
Simulation Results                    -- 

Evaluation 

Verification using  

Mathematical Analysis 

and Automated Analysis 

(TTL); Validation using 

Human Experiment. 

Evaluated model  4 

3.8 Summary of the Chapter 

This chapter discussed the study methodology employed to answer the four research 

questions as stated in chapter one. The present study adapted the approach by Drogoul et 

al. (2003) as the main study methodology. The main stages that made up the research 

methodology with their corresponding sub-stages assisted to achieve the four research 

objectives. The next chapter covered the development of the Computational-RDT model 

for prime decision making in driving. 
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CHAPTER FOUR 

ENHANCEMENT AND COMPUTATIONALIZATION OF 

INTEGRATED DECISION-MAKING MODEL  

4.0 Introduction 

This chapter gives the detailed explanation on the enhancement and 

computationalization of IDM model for prime decision-making in driving domain.  

4.1 Identification of Enhanced Integrated Decision-making Model Factors 

In this study, thirty one (31) factors in an enhanced Integrated Decision-making Model 

(RDT) model were identified based on the literature review and empirical studies as 

stated in Chapter 2 and methodology in Chapter 3. Out of the thirty one (31) factors 

identified in this model, seven (7) factors are from the awareness component and 

twenty-four (24) are from the RPD training component of the model. These factors were 

further categorised into three different groups, namely external, instantaneous and 

temporal factors. The external (exogenous) factors are independent factors that 

contribute to other factors, while instantaneous factors are dependent factors that are 

time-bounded with no delay. In contrary, the temporal factors are time-bounded with 

delay. The categories of these factors are further elaborated in detailed in subsections 

4.1.1, 4.1.2 and 4.1.3. 

 

4.1.1 External Factors of the Enhanced Integrated Decision-making Model 

There were nine (9) external factors identified in the enhanced IDM. Two (2) of the 

factors were classified under the awareness component of the enhanced IDM, namely 

Environment and Expectations. While seven (7) of the factors were classified under the 
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RPD training component of the enhanced IDM , namely Basic practice, Basic skills, 

Sensory ability, Driver’s goal, Potential hazardous information, Exposure on task 

complexity and Intention. They determined the outcome of the relationship between the 

external and instantaneous process. See Table 4.4 for the two classifications. 

 

In this study, environment refers to the surrounding in which car and driver operate. It is 

denoted as alpha (α). This definition is adapted from Hjälmdahl, Shinar, Carsten, & 

Peters (2011) and Shinar and Oppenheim (2011). The expectation is defined as 

knowledge of possible consequences or expectancies of the future (Klein, 2008). The 

Basic practice is the capacity of the driver to operate and control the vehicle (Freydier, 

Berthelon, & Bastien-Toniazzo, 2016). It follows by a set of Basic Skills to determine 

the operational competence of the driver (Imhoff, Lavallière, Germain-Robitaille, 

Teasdale, & Fait, 2017). Sensory Ability denotes the ability of driver to have cognitive, 

physical and visual functions to manipulate the vehicle (Anstey, Wood, Lord, & 

Walker, 2005). Driver’s goal in this study refers to multiple driving aims that driver 

wants to achieve during the driving task (Dogan, Steg & Delhomme, 2011). Potential 

Hazardous Information refers to information concerning the potential hazards in the 

traffic (Borowsky et al., 2010; Crundall et al., 2012; Horswill, 2016; Huestegge & 

Böckler, 2016; Takahashi et al., 2007; Konishi et al., 2004). Exposure on Task 

Complexity refers to the complexity driver exposes to at the course of the interaction 

with the vehicle and environment (Grill, Osswald & Tscheligi, 2012). Lastly, the 

intention in the present study refers to a driver’s mental state that translates his/her goals 

into reality (Moskowitz, 2013). The summary of the external factors of the RDT model 

is shown in Table 4.1. 
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Table 4.1 

Summary of External factors of the Enhanced Integrated Decision-makingModel 

Factors Notation Description 
Related 

Theory/Models 
References 

Environment En The surrounding 

in which car and 

driver operate. 

SA, TCI, UMD. Endsley (1995, 

2016); 

Fuller (2005); 

Hjälmdahl et al. 

(2011); Shinar 

and Oppenheim 

(2011). 

Expectations Ep Knowledge of 

possible 

consequences or 

expectancies of 

the future. 

SA, RPD, IDM Endsley (1995, 

2016); Klein 

(2008); Noyes 

(2012) 

Basic Practice 

 

Bp The capacity to 

operate and 

control the 

vehicle 

SA, TCI Fuller (2005); 

Endsley (1995, 

2016); Freydier et 

al. (2016) 

Basic Skills Bs The operational 

competence of 

driver  

 

SA, TCI Imhoff et al. 

(2017) 

Sensory Ability Sa The ability of 

driver to have 

cognitive, 

physical and 

visual functions 

to manipulate the 

vehicle 

MM Anstey et al. 

(2005) 

Driving Goal Dg Multiple driving 

aims that driver 

wants to achieve 

during the driving 

task. 

SA, RPD,TCI, 

IDM 

Dogan et al. 

(2011) 

Potential 

Hazardous 

Information 

Hi Information 

acquired regarding 

potential threads 

that might need 

urgent respond in 

the traffic 

environment 

during driving. 

MP Borowsky et al. 

(2010); Crundall 

et al. (2012); 

Horswill (2016); 

Huestegge and 

Böckler (2016) 

Exposure on Task 

Complexity 

Tc The complexity 

driver exposes to 

at the course of 

the interaction 

with the vehicle 

and environment. 

SA, TCI, RPD, 

IDM 

Grill et al. (2012) 

Intention In Driver’s mental 

state that 

translates his 

goals into reality 

SA, IDM  

Moskowitz 

(2013). 

Note: SA – Situation Awareness model, CMSA – Cognitive Model of Situation Awareness, RPD – 

Recognition-Primed Decision model, IDM – Integrated Decision-making Model for Pilot, TCI – Task-

Capability Interface model, UMD - Unified Model of Driver Behaviour. 
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4.1.2 Instantaneous Factors of the Enhanced Integrated Decision-Making Model  

Sixteen (16) instantaneous factors were identified in the enhanced IDM. Four (4) of the 

factors were classified under the awareness component of the enhanced IDM, namely 

Observation, Belief formation, Belief activation, and Performance of action. Twelve 

(12) of the factors were classified under the RPD training component of the enhanced 

IDM model, namely Practice, Acquired skill, Rehearsed experience, Driver ability, 

Driver’s experience, Perception about hazard, Perception about task, Attention, 

Priming, Habitual-directed action, Goal-directed action and Acquired automaticity as 

shown in Table 4.4. The definition of each factor as a concept is given as follows. 

 

Observation refers to the ability of the driver to perceive elements in a driving 

environment such as road, traffic, obstacle, car condition and visibility (weather and 

light). The various elements to be observed by driver in a driving environment include 

Road, the road type, and its nature (dry, wet) where car is driven. Traffic refers to the 

density regarding cars per mile or km and the congestion in traffic may be observed 

while driving car on the road. Obstacles are the different complications that may be 

found along the road, such as stationary vehicles and other objects. Car condition 

represents the status of car, for example the engine may be faulty/good. Visibility that 

consists of the weather condition (clear/cloudy, rainy) may be observed on the road and 

the light condition (day/ night-time) where driving takes place. Belief formation is the 

ability of driver to form certainty of the observation made. Then, belief activation refers 

to the ability of driver to translate the certainty of observations into activation values of 

beliefs. Performance of action can be determined by the positive (safe) and negative 

(risky) confidence level of driver to decide. If the decision is safe, then the performance 

of action is yes (1), otherwise it is no (0). Practice is defined in this study as a method 
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of developing the drivers’ skills and knowledge that relates to specific useful 

competencies of the driving task. An acquired skill is a form of long-term skill while 

basic skills refer to short-term skill. Acquired skill denotes accumulated exposure of the 

basic skill over time which is acquired through experience and training to drive 

competently. Rehearsed experience is the accumulation of the experiences acquired 

from direct participation in the driving activity that is transferred into working memory 

(WM) and long-term memory (LTM). Driver’s ability denotes the capability driver 

possesses in order to manipulate /operate car. Driver’s experience means driver’s 

accumulation of the reoccurrence of knowledge or skills acquired from direct 

participation in the driving activity. 

 

Perception about hazard otherwise called hazard perception in other studies refers to a 

driver’s ability to anticipate potentially dangerous situations on the road ahead 

(Horswill, 2016). Perception about task otherwise called task perception is defined as 

the way driver experiences task in potential traffic environment. Attention operationally 

refers to the ability of driver to perceive multiple items in parallel. Priming is a concept 

used in automaticity and is defined as a stimulus that makes the driver initiate response 

(unconscious and conscious responses) sequence during automatic processes. A 

habitual-directed action is a form of automaticity. In this study, it is referred to as 

action initiated by driver as an act of unconsciousness, and when action is repeated and 

sufficiently practiced, it becomes habitual action. A goal-directed action is a form of 

automaticity that is referred to as goal-dependent action. It relates to an action initiated 

by the driver as an act of conscious will. Acquired automaticity refers to process that 

occurs instantly within the limited time frame; hence, it is a short-term automaticity. 

Table 4.2 depicts the summary of the instantaneous factors of the RDT model. 
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Table 4.2 

Summary of Instantaneous Factors of the Enhanced Integrated Decision-making Model 

Factors Notation Description 
Related 

Theory/Models 
References 

Observation On Ability to 

perceive elements 

in a driving 

environment. 

SA,CMSA Endsley (1995, 

2016); 

Hoogendoorn et 

al. (2011) 

Belief Formation Bf Ability to form 

certainty of the 

observation made. 

CMSA  Hoogendoorn et 

al.(2011) 

Belief Activation Ba Ability to 

translate the 

certainty of the 

observations into 

activation values 

of beliefs, which 

can be safe or 

risky. 

CMSA Hoogendoorn et 

al.(2011) 

Performance of 

Action 

Pa Implementation 

of the decision 

taken by the 

driver. 

SA, RPD and 

IDM 

Endsley 

(1995,2016) 

Practice 

 

Pc Method of 

developing the 

drivers’ skills and 

knowledge that 

relates to specific 

useful 

competencies of 

the driving task. 

SA, TCI Fuller (2005) 

Acquired Skills As Accumulated 

exposure of the 

basic skills. 

TCI Fuller (2005) 

Rehearsed 

Experience 

Re Experiences 

acquired due to 

continuous 

driving routine 

that might decay 

overtime. 

SA Gazzaniga et al. 

(2012) 

Driver Ability 

 

Da Capability driver 

possesses to 

manipulate 

/operate car. 

SA, TCI Endsley (1995, 

2016); 

Fuller (2005). 

 

Note: SA – Situation Awareness model, RPD – Recognition-Primed Decision model, RPDT- 

Recognition-Primed Decision Training Model, IDM – Integrated Decision-making Model for Pilot, TCI – 

Task-Capability Interface model, MM - Multifactorial Model and MP - Model of Processes, UMD - 

Unified Model of driver behaviour, WM- Working Memory, LTM- Long-Term Memory. 
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Table 4.2 Continued 

Factors Notation Description 
Related 

Theory/Models 
References 

Driver’s 

Experience 

De Driver’s 

accumulation of 

the reoccurrence 

of knowledge or 

skill acquired that 

result from direct 

participation in 

the driving 

activity. 

SA, TCI, RPD, 

UMD, IDM. 

Shinar and 

Oppenheim 

(2011); 

Oppenheim et 

al.(2010, 2012) 

Perception about 

Hazard 

Hp Driver’s ability to 

anticipate 

potentially 

dangerous 

situations on the 

road ahead. 

MP Horswill (2016) 

Perception 

aboutTask 

 

Tp The way driver 

sees or 

experiences task 

in the potential 

traffic 

environment. 

TCI Fuller (2005) 

Attention An The ability of 

driver to perceive 

multiple items in 

parallel 

accurately.  

SA Moskowitz (2013) 

 

Priming Pg The stimulus that 

makes driver 

initiates response 

sequence in 

driving. 

SA, IDM Wheatley and 

Wegner (2001) 

Habitual-directed 

action 

Hd Action initiated 

by driver  as an 

act of 

unconsciousness 

while  driving  

SA, IDM Moskowitz (2013) 

Wasserman and 

Wasserman 

(2016). 

Goal-directed 

action 

Gd Action initiated 

by driver as an act 

of conscious 

willing while 

driving. 

SA, IDM Moskowitz 

(2013); 

Wasserman and 

Wasserman 

(2016). 

Acquired 

Automaticity 

Aa Short-Term 

Automaticity. 

SA, IDM Panek et al. 

(2015) 

 

 

4.1.3 Temporal Factors of the Enhanced Integrated Decision-making Model  

Six (6) temporal factors were identified in the enhanced IDM based on the literature. 

One (1) factor called decision was classified in the awareness component of the 

enhanced IDM. The other five factors such as Perception about risk, Driving 
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knowledge, Involuntary automaticity, Voluntary automaticity and Experienced 

automaticity, were classified under the RPD training component of the enhanced IDM 

model and the six determine the automaticity of the driver to perform effective decision-

making. See Table 4.4 for the two classifications. The definition of each factor as a 

concept is given as follows. 

 

Perception about Risk refers to the subjective experience of risk in potential traffic 

hazards (Rosenbloom et al., 2008), while driving knowledge is the ability of driver in 

knowing the traffic rules and regulations of the road. It is acquired mainly through 

practice and experience. Involuntary automaticity is operationally defined as behaviours 

that are unconsciously experienced (automatic behaviours) by driver during driving, 

whereas voluntary automaticity refers to behaviours that are consciously experienced 

(non-automatic behaviours) by driver while driving. Experienced automaticity refers to 

the long-term automaticity, as its process occurs for a long period. It denotes 

accumulated experience (exposure) of driver to make a prime decision. Decision is used 

to measure the confidence level of the driver, and it determines the performance of an 

action of driver. It is defined as the internal processes by which a course of action or 

inaction is selected from a set of alternatives. The summary of the temporal factors is 

shown in Tables 4.3. 
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Table 4.3 

Summary of Temporal Factors of the Enhanced Integrated Decision-makingModel 

Factors Notation Description 
Related 

Theory/Models 
References 

Perception of 

Risk 

Rp Subjective 

experience of risk 

in potential traffic 

hazards. 

TCI, MP Rosenbloom et al. 

(2008) 

Driving 

Knowledge 

Dk Knowledge of 

traffic rules and 

regulations of the 

road.  

TCI, IDM Stanton et al. 

(2007) 

Involuntary 

automaticity 

Iv Unconscious and 

automatic 

behaviours 

experienced by 

driver. 

SA, IDM Wheatley and 

Wegner (2001); 

Wasserman and 

Wasserman 

(2016). 

Voluntary 

automaticity  

Vy Conscious and 

non-automatic 

behaviours 

experienced by 

driver 

SA, IDM Wheatley and 

Wegner (2001); 

Wasserman and 

Wasserman 

(2016). 

Experienced 

Automaticity 

Ea Long-term 

automaticity that 

denotes 

accumulated 

exposure of the 

acquired 

automaticity of 

driver. 

SA, IDM Wheatley and 

Wegner (2001); 

Wasserman and 

Wasserman 

(2016). 

Decision Dc The internal 

processes 

by which the 

driver selects a 

course of action 

or inaction from a 

set of 

alternatives 

SA Smith (2016) 

Note: SA – Situation Awareness model, RPD – Recognition-Primed Decision model, RPDT- 

Recognition-Primed Decision Training Model, IDM – Integrated Decision-making Model for Pilot, TCI – 

Task-Capability Interface model, MM - Multifactorial Model and MP - Model of Processes, UMD - 

Unified Model of driver behaviour, WM- Working Memory, LTM- Long-Term Memory. 

 

From Table 4.1, 4.2, and 4.3 the factors identified based on cognitive and naturalistic 

decision making theories such as Endsley’s, Naturalistic Decision Making theories and 

other related literatures are mostly the contribution of this study to the body of 

knowledge. 
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Table 4.4 

Classification of the Enhanced Integrated Decision-making Model and its Factors  

Classification of 

Factors 

Awareness 

Component  

RPD Component Enhanced IDM 

Factors 

External 1. Environment  

2. Expectations 

1. Basic practice 

2. Basic skills,  

3. Sensory ability,  

4. Driver’s goal,  

5. Potential hazardous 

information, 

 6.Exposure on task 

complexity and 

 7.Intention 

1. Environment  

2. Expectations 

3.Basic practice 

4. Basic skills,  

5. Sensory ability,  

6. Driver’s goal,  

7.Potential hazardous 

information,  

8.Exposure on task 

complexity and 

9.Intention 

Instantaneous 1.Observation 

2.Belief formation 

3.Belief activation 

4.Performance of 

action 

1. Practice,  

2. Acquired skill,  

3. Rehearsed experience,  

4. Driver ability,  

5. Driver’s experience, 

 6. Perception about hazard,  

7. Perception about task,  

8. Attention, 

9. Priming,  

10. Habitual-directed action,  

11. Goal-directed action and  

12. Acquired automaticity 

1.Observation,  

2.Belief formation, 

3.Belief activation, 

4.Performance of action 

5. Practice,  

6. Acquired skill, 

7. Rehearsed 

experience,  

8. Driver ability,  

9. Driver’s experience,  

10. Perception about 

hazard,  

11. Perception about 

task,  

12. Attention,  

13. Priming,  

14. Habitual-directed 

action,  

15. Goal-directed action 

and  

16. Acquired 

automaticity 

Temporal 1. Decision 1. Perception about risk 

2. Driving knowledge 

3. Involuntary automaticity,  

4. Voluntary automaticity 

and  

5. Experienced automaticity, 

1. Perception about risk,  

2. Driving knowledge, 

3. Involuntary 

automaticity,  

4. Voluntary 

automaticity  

5.Experienced 

automaticity, and 

6. Decision. 

Total Factors Seven (7) Twenty four (24) Thirty-one (31) 

 

Table 4.4 shows the summary of the classifications of the enhanced IDM  (awareness 

and RPD training components) and its factors (external, instantaneous and temporal 

factors). 
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4.2 Enhancing the Conceptual Integrated Decision-making Model  

In enhancing the conceptual IDM, training factors that are relevant for prime decision 

making were identified from the SA model and other related literatures. The 

enhancement was done on the RPD training component of the IDM  using those training 

factors identified. The original IDM had six (6) training factors including experience, 

knowledge/rules, goals, complexity, intention and automaticity. In the enhanced IDM , 

the RPD component of the model had twenty four (24) training factors represented 

symbolically using nodes and flow arrows. The nodes represented the states and the 

flow arrow denoted the causal relationship between the states. The nodes and flow 

arrows formed the conceptual model. This conceptual model explicitly indicates 

interactions between factors and relationship involved based on cognitive theories e.g., 

Endsley theory of SA, Naturalistic Decision Making. 

 

The causal relationships produced an enhanced conceptual IDM called Rabi’s Driver 

Training (RDT) model as summarized in Figure 4.1 and Figure 4.2. The conceptual 

model is subdivided into generic and specific models for driving. In the generic model, 

the factors as constructs were expanded in this study in order to have a comprehensive 

model with training factors relevant for prime decision making particularly during 

demanding situations as shown in Figure 4.3. Some of the factors were connected with 

the exernal factors and were not grouped to avoid confusion. Therefore, the factors were 

expanded as follows:  1. Practice was elaborated to include Basic practice (Bs) and 

Practice (Pc); 2. Ability was extended to have Basic Skills (Bs), Acquired Skills (As) 

and Driver ability (Da); 3. Experience was expanded to include Rehearsed experience 

(Re) and Driver’s experience (De); 4. Perception of risk was elaborated to include 

Potential hazardous information (Hi), Perception about task (Tp), Perception about 
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hazard (Hp) and Perception about risk (Rp); 5. Automaticity was elaborated to have 

Intention (In), Attention (An), priming (Pg), habitual-directed action (Hd), goal-

directed action (Gd), Acquired automaticity (Aa) and Experienced automaticity (Ea). 

 
 

Figure 4.1. The Generic Conceptual RDT Model  

 

In the specific conceptual RDT Model for driving the factors are not grouped as shown in 

Figure 4.2.  
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Figure 4.2. Conceptual RDT Model in Driving 
 

 

Moreover, Figure 4.3 and Figure 4.4 presented the conceptual RDT model called Rabi’s 

Driver Training (RDT) model that included training factors relevant for prime decision 

making. The conceptual RDT model is presented in two formats just as in the 

conceptual RDT model namely the generic model and the specific model for the driving 

domain as depicted in Figures 4.3 and 4.4, respectively. 

 



 

 

  105 

 

Figure 4.3. Generic RDT model for Prime Decision-Making 
 

 
 

Figure 4.4. RDT model for Prime Decision-Making in Driving 
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From the Endsley theory of SA, three basic components including perception, 

comprehension and projection are further elaborated by the cognitive model of SA 

(Hoogendoorn et al., 2011). In their study, perception construct refers to an observation. 

Hence, this study makes use of observation to observe elements named x from the 

driving environment. The named elements x denoted road, traffic, obstacle, car 

condition and visibility. The next construct, comprehension is represented as belief 

formation for the current situation. Belief formation for the current situation is 

represented in this study by forming a belief on the elements x observed from the 

driving environment. Finally, projection is denoted as belief formation for a future 

situation. Then the belief formation for the current and future situation is translated into 

activation values of those beliefs and it is depicted in this study by forming a belief 

activation regarding the situation of the observed elements x. That is, after forming a 

belief regarding the observed elements, the driver then makes a judgement by forming 

belief activation and then decides. After making the decision, the driver implements the 

decision by acting (Performance of Action). 

 

The factors, attention (An) and environment (En) causally influence observation (On). 

This is achieved by the aggregation of varying values of attention of the driver and the 

constant value assigned to the environment. However, belief formation is formulated by 

the positive contributions of observation and the values of expectation. The various 

beliefs for the elements are aggregated to form the belief activation (Bax). The belief 

activation can be either safe or risky situation. The two beliefs combined with 

automaticity to define the temporal value of decision, which determines the 

performance of action (Pa) of the driver. The performance of action gives feedback to 

the driving environment.  
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The difference between the generic and the specific models in Figure 4.5 and Figure 4.6 

is in the awareness part of the models. In the specific model, the driver observes 

elements x mentioned and then, forms belief about the elements. Based on the belief 

formation, the driver then makes a judgement by forming belief activation whether the 

situation is safe or risky. Having made the judgement, driver acts by taking a decision. 

The decision of driver then determines his performance of action. 

4.3 Formal Representation of the Conceptual Models 

This section gives detail explanation of the concepts on the design of the RDT model 

formalization. The fundamental aim of this section is to obtain an executable 

computational model that is executed in a simulation environment for further 

interpretation of the model. Differential equation technique is used to represent the 

identified factors and its relationships. The formal models are simulated using a set of 

parameter values that range from 0 to 1. The set of parameters is used to regulate the 

computational models as explained in Section 4.3.1 and 4.3.2. The formalization of the 

conceptual awareness part and that of the RPD Training part of the RDT model is 

covered in this section. 

 

4.3.1 Formal Representation of Awareness Component of the Enhanced Integrated 

Decision-making Model  

 The conceptual awareness component of the enhanced IDM is formulated into a set of 

formal equations that is implemented using simulation. This is explained in detail in 

chapter five of the study. The formalization of the model is done based on the studies by 

Bosse et al. (2009) and Treur (2016a, 2016b & 2016c). The formalization of the model 
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factors is obtained with respect to time (t). The details on the formalization of the 

factors are given as follows.  

 

a) Observation  

Observation goes with paying attention to the environmental elements. Therefore, 

environment (En) and attention (An) contribute positively to observation (On). The 

more attention paid to the elements to be observed in the environment, the more its 

activation is enhanced into the memory. Otherwise, activation level decays and becomes 

difficult to recall. In this case, driver observes x elements, where x denotes road (r), 

traffic (f), obstacle (b), car condition (c) and visibility (v). These elements are observed 

through the environment, and the process of getting the information received from the 

environment into memory in the form of belief system to make a correct judgement is 

through attention. The judgement falls into two parts either the situation is safe or not 

safe (risky situation). Safe condition implies that all the five aforementioned elements 

are good (representing 1), and risky situation denotes that all the aforementioned 

elements are bad (representing 0), except obstacle in which the reverse is the case. Risk 

has three levels, namely low risk, moderate risk and high risk depending on the 

condition at each time frame. The detail explanation of risk levels is given in Chapter 5, 

section 5.3. The relationship of the three concepts: environment, attention and 

observation is shown in Figure 4.5 

 

Figure 4.5. Causal Relationship of On with En and An 

Anx 

Enx 

Onx 
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From Figure 4.5, Enx stands for the driving environment in which the elements (such as 

road, traffic, obstacles, car condition and the visibility) are observed. Anx stands for 

attention for the aforementioned elements, which differs in value. Onx stands for 

observation of the aforementioned elements in the driving environment. The 

formalization for computing the driver’s observation of the various elements in the 

driving environment with respect to time (t) and alpha (α), where α (0≤α≤1) is a 

constant parameter which represents the environment in which driver observes the 

aforementioned elements. These representations are shown in equations 4.1 to 4.5. 

𝑂𝑛𝑟 (t) = 𝛼𝑂𝑛𝑟 
. 𝐴𝑛𝑟 (t)      (4.1) 

𝑂𝑛𝑓 (t) = 𝛼𝑂𝑛𝑓  . 𝐴𝑛𝑓 (t)      (4.2) 

𝑂𝑛𝑏 (t) = 𝛼𝑂𝑛𝑏  . 𝐴𝑛𝑏 (t)      (4.3) 

𝑂𝑛𝑐 (t) = 𝛼𝑂𝑛𝑐  . 𝐴𝑛𝑐 (t)      (4.4) 

𝑂𝑛𝑣 (t) = 𝛼𝑂𝑛𝑣  . 𝐴𝑛𝑣 (t)      (4.5) 

Equations 4.1 to 4.5 present a perception in which the concept of observation is defined 

by the proportional contributions of what driver observes from the driving environment 

such as road, traffic, obstacles, car condition and visibility, and the level of attention 

given to those observed elements. The contributory mutual causal relationships between 

these two concepts (elements observed in the driving environment and the level of 

attention given to those same elements) determine the level of observation of the driver 

in the driving environment. 

 

b) Belief Formation  

For a driver to form certainty about observation, he/she should have an expectation and 

understand the significance of the current element or situation in line with driving goals. 

This enables the driver to make correct interpretation and judgement of a situation. 



 

 

  110 

Hence, observation (On) and expectation (Ep) contribute positively to the driver’s belief 

formation in this study. In this case, driver observes x elements as mentioned earlier. 

Figure 4.6 shows the relationship between the three concepts. 

 

Figure 4.6. Causal Relationship of Bf with On and Ep 

 
 

Accordingly, from Figure 4.6, Onx , Epx and Bfx are observation, expectation and belief 

formation with respect to elements x, where 𝑥 = 𝑓(𝑥𝑖 … … . . 𝑥𝑛 ), where 𝑥𝑖 … … . . 𝑥𝑛  

are number of elements to be observed. The causal relationships that represent the 

driver’s beliefs formation of those elements x observed are formalized and presented as 

follows:  

𝐵𝑓𝑟 (t) = 𝑂𝑛𝑟 (t). 𝐸𝑝𝑟 (t)      (4.6) 

𝐵𝑓𝑓 (t) = 𝑂𝑛𝑓 (t). 𝐸𝑝𝑓 (t)      (4.7) 

𝐵𝑓𝑏 (𝑡) = 𝑂𝑛𝑏 (t). 𝐸𝑝𝑏(t)      (4.8) 

𝐵𝑓𝑐 (t) = 𝑂𝑛𝑐 (t). 𝐸𝑝𝑐 (t)      (4.9) 

𝐵𝑓𝑣 (t) = 𝑂𝑛𝑣 (t). 𝐸𝑝𝑣 (t)      (4.10) 

Equations 4.6 to 4.10  present a situation in which the concept of belief formation was 

defined by the mutual contributions of what the driver observed from the driving 

environment such as elements x and the level of expectancies (high/low) from those 

elements observed on the road. The value 1 indicates “high” while 0 indicates “low” 

level of those elements. The contributory mutual causal relationships between these two 

concepts (observation and expectation) determine the belief formation of the driver 

(safety or risky situation) in the driving environment. 

Epx 

Onx 

Bfx 
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c) Belief Activation  

The certainty of the observation (belief formation) is classified into two, namely safe 

and risky situations depending on the input conditions for the observation. A mental 

model is essential in making such predictions. Hence, the belief activation is determined 

by the degree of certainty of the observation by the driver. The relationship is depicted 

in Figure 4.7 as follows. 

 

 

Figure 4.7. Causal Relationship of Ba with Bf 

 

The relationship between the belief activation and belief formation is formalized using 

the logistic sigmoid function, which determines the gradual increment in speed (the 

changes in y-axis with respect to the x-axis) regarding the safe and risky driving 

conditions as follows: 

Bas(t)=
1

1+𝑒−β(𝑃)                                                       (4.11)                                   

where, 

𝑃 = ∑ βf𝑖 ∗ ω𝑖
𝑖
𝑖=1  

𝑃 = ∑ βf𝑝 ∗ ω𝑝
𝑖
𝑖=1  

𝑃 = (𝐵𝑓𝑟 (t). ω1 + 𝐵𝑓𝑓 (t). ω2 + 𝐵𝑓𝑏 (t). ω3 + 𝐵𝑓𝑐 (t). ω4 + 𝐵𝑓𝑣 (t). ω5) 

∑ ω𝑝 = 1

𝑃

𝑖=1

 

Equation 4.11 denotes the formalization for computing the belief activation for a safe 

situation, where  
1

1+𝑒−β(𝑃)  denotes logistic sigmoid function for belief activation for safe 

Bfx Bax 
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situation.  The parameter β is the proportionality constant that represents update speed 

parameter and is assigned a value 1. 

Bar (t) = 
1

𝑒−β(1−(𝑄))
                                     (4.12)                                                      

where, 

𝑄 = (𝐵𝑓𝑟 (t). ω6 + 𝐵𝑓𝑓 (t). ω7 + 𝐵𝑓𝑏 (t). ω8+𝐵𝑓𝑐 (t). ω9 + 𝐵𝑓𝑣 (t). ω10) ∑ ω𝑄 = 1𝑄
𝑖=1  

Formalization of belief activation for the risky situation is shown in equation 4.12. In 

the sigmoid function  
1

𝑒−β(1−(𝑄))
 for belief activation for the risky situation,  β is allocated 

a constant value 1 and it signifies update speed parameter. 

 

In equations 4.11 and 4.12, different weights is assigned to each element observed in the 

driving environment based on priority. Priorities are given to certain factors based on 

the importance attached to them. The weights are formed as a result of the certainty of 

the driver’s observation himself.  Although there could be situations in which an 

observer (driver) does not trust his/her observations fully (e.g. when the driver is 

stressed) and the weights may be assigned according to the extent to which the driver is 

inclined to trust those information sources (Aydoğan et al., 2014). In this study, in terms 

of belief activation for the risky situation, priority is given to an obstacle, followed by 

car condition and visibility, the road and traffic while in terms of belief activation for 

safety situation, priority is given to car condition and visibility, then obstacle, followed 

by road and traffic. In equations 4.11 and 4.12 that represent belief activation for safety 

situation and belief activation for the risky situation, respectively, ten (10) weights ω1 

to ω10 were assigned to each element observed in the driving environment. That is,  ω1 

to ω5 represent weights of the road, traffic, obstacle, car condition and visibility, 

respectively (they constitute belief activation for safe situations) while ω6 to ω10 
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represent weights of elements that constitute belief activation for risky situations.  That 

is, ω6 to ω10 represent weights of the road, traffic, obstacle, car condition and visibility, 

respectively. Based on the SA simulation execution using Matlab, the obstacles 

concerning belief activation for the safe situation are assigned a weight value equal to 

0.2 while obstacles concerning belief activation for the risky situation are assigned a 

weight value equal to 0.4. Road and traffic are assigned 0.1 each for belief activation for 

safe and risky situations. Car condition and visibility are assigned weight values of 0.3 

and 0.2 for belief activation for safe and risky situations, respectively. Those weights 

values assigned are to show the priority given to those elements. Hence, the weights 

indicating the priority of each element regarding belief activation for risky and safety 

situations are displayed in Table 4.5.  

 

 

Table 4.5 

Weight of Elements regarding Belief Activation for safe and risky situations 

Elements Weight For Belief Activation 

for safe situation 

(𝛚bas) 

Weight For Belief Activation 

for risky situation  

(𝛚bar) 

Road (r) 0.1 0.1 

Traffic (f) 0.1 0.1 

Obstacle (o) 0.2 0.4 

Car Condition (c) 0.3 0.2 

Visibility (v) 0.3 0.2 

 

Equations 4.1 to 4.12 are the instantaneous equations that give the resultant process that 

leads to the development of the temporal equations. However, in awareness part of the 

IDM model, decision is the only temporal factor identified. Hence, its formalization 

process is presented as follows. 
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d) Decision  

Decision (Dc) is triggered by the belief activation (Bax) of the aforementioned elements 

x that determines either safe or risky driving conditions in the driving environment. The 

causal relationship is depicted in Figure 4.8, and the formalization for this temporal 

factor is illustrated in equation 4.13. 

𝐷𝑐(𝑡 + Δ𝑡) = 𝐷𝑐(𝑡) + γ𝑑𝑐 . (∑ 𝐵𝑎𝑥 (t) − 𝐷𝑐(𝑡)). 𝐷𝑐(𝑡). (1 − 𝐷𝑐(𝑡)). Δ𝑡                       (4.13)   

 

where γ𝑑𝑐 is a proportional parameter, represented as automaticity in the model. This 

change process is measured between t and t + Δt, where t is the time frame and Δt 

represents change interval in time (t). 

  

 

Figure 4.8. Causal Relationship of Dc with Bax   

 

Equation 4.13 shows a relationship between belief activation of the driver either (safety 

or risk) and the confidence to make a decision. Based on this equation, belief activation 

for safety is inversely proportional to belief activation for risk, meaning that as the 

safety condition increases the risky condition decreases and vice versa. This determines 

the driver’s confidence to make a decision. If the level of the safe condition is high, so 

also the driver’s confidence to make a decision will be high. If it is low, the level of 

risky condition would be high, the confidence to make a decision will be low and vice 

Ba2 

Ba1 

Dc 

Bax 
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versa. This implies that the driver’s confidence to make a decision is determined by the 

activation of either safe or risky condition. 

 

In the present study, the temporal factor decision can be used to measure the confidence 

level of the driver (Norman & Price, 2015). The study classified the confidence level of 

the driver within the range of 0 to 1 to decide, and Table 4.6 shows the summary of the 

confidence level classification. 

 

Table 4.6 

Summary of confidence level classification  

Confidence 

Level 

Situation Decision References 

0 - 0.4 Risk Low (Chen, Zhou, Xiao, Deng, & 

Mahadevan, 2017; Vallin, 

Polyzoi, Marrone, Rosales-Klintz, 

Wisell, & Lundborg, 2016, 

Norman & Price, 2015). 

0.5 Caution Average 

0.6 – 1 Safe High 

 

The classification is explained based on the situation of the environment that ranges 

from risk to safety. If the confidence level is 0 - 0.4, it means the situation is perceived 

as risky. Thus the driver has the low confidence to decide to perform an overtaking. 

Contrarily, if the confidence level is 0.6 – 1.0 it means the situation is perceived as safe, 

and the driver has high confidence to decide to perform an overtaking behaviour.  The 

confidence level, 0.5 is perceived as a caution. Therefore, it is advisable for the driver to 

overtake cautiously.  

 

4.3.2 Formal Representation of Recognition-Primed Decision Component of the 

Enhanced Integrated Decision-making Model 

The conceptual RPD training component of the IDM is formalized into a set of 

equations. The formalisation nodes were designed using a set of parameters. The set of 
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parameters were used to regulate or control the computational model. The details of the 

formalization of the model are given below. 

 

a) Practice  

Basic practice (Bp) and driving knowledge (Dk) contribute positively to the driver's 

practice. The two factors define the concept practice in this study, and the causal 

relationship of the three factors is depicted in Figure 4.9. Equation 4.14 shows the 

formalized causal relationships of the factors where γ𝑝𝑐   is a proportional parameter. 

 

𝑃𝑐(𝑡) = γ𝑝𝑐. 𝐵𝑝(𝑡) + (1 − γ𝑝𝑐). 𝐷𝑘(𝑡)    (4.14) 

  

Figure 4.9. Causal Relationship of the Factors Contributing to Practice  
 

 

 

b) Acquired Skills  

Basic skills (Bs) and driver’s goal (Dg) contribute positively to the driver’s acquired 

skills (As), and the relationship is regulated by the driver’s knowledge (Dk). The 

relationship of the three factors is depicted in Figure 4.10. The relationship is 

formalized in equation 4.15 where ω𝑎𝑠1 and  ω𝑎𝑠2  are weight parameters.  

 

𝐴𝑠(𝑡) =  β𝑎𝑠. ( ω𝑎𝑠1. 𝐵𝑠(𝑡) + ω𝑎𝑠2. 𝑆𝑎(𝑡)). (1 − β𝑎𝑠)                (4.15) 

 

Dk 

Bp 

Pc 
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Figure 4.10. Causal Relationship of As with Bs, Sa and As 
 

 

c) Perception about Hazard  

Perception about hazard (Hp) is determined by three factors, namely driving ability 

(Da), potential hazardous information (Hi) and perception of the task (Tp). The driving 

ability and perception of task contribute positively to hazard perception, and potential 

hazardous information regulates the relationship. The relationship of the four factors is 

depicted in Figure 4.11. Equation 4.16 shows the formalization of the causal 

relationships of the factors where ωℎ𝑝1 and ωℎ𝑝2are weight parameters. 

 

𝐻𝑝(𝑡) = [ωℎ𝑝1. 𝐷𝑔(𝑡) + ωℎ𝑝2. 𝑇𝑝(𝑡)]. 𝐻𝑖(𝑡)  (4.16) 

 

 

Figure 4.11. Causal Relationship of the Factors Contributing to Hazard Perception 

 

d) Perception of Task  

Driver ability (Da) and exposure to task complexity (Tc) influence perception about the 

task. The causal relationship of the three factors is shown in Figure 4.12. This is 

formalized in equation 4.17 where η𝑟𝑝 denoted proportional parameter. 

Sa 

Bs 

As 

Hi 

Tp 

Dg 

Hp 
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𝑇𝑝(𝑡) = [η𝑟𝑝. 𝐷𝑎(𝑡) + (1 − η𝑟𝑝). 𝑇𝑐(𝑡)]                               (4.17)   

 

 

 

Figure 4.12. Causal Relationship of Tp with Da and Tc 

 

 

e) Rehearsed Experience  

Practice (Pc) and driving ability (Da) is said to influence the rehearsed experience of a 

driver positively. The causal relationship of the three factors is depicted in Figure 4.13, 

and it is formalized in equation 4.18 where γ𝑟𝑒 is a proportional parameter. 

 

𝑅𝑒(𝑡) = [γ𝑟𝑒. 𝑃𝑐(𝑡) + (1 − γ𝑟𝑒). 𝐷𝑎(𝑡)]                             (4.18) 

 

Figure 4.13. Causal Relationship of Re with Pc and Da 

 

 

f) Driver’s Ability  

The driver’s ability (Da) is positively influenced by the skills acquired (As) and 

experiences of the driver (De) in training. Figure 4.14.shows the relationship of the 

three factors. Equation 4.19 presents the formalization of the causal relationships of the 

three factors where ωda1 and ωda2 are weight factors. 

 

Tc 

Da 

Tp 

Da 

Pc 

Re 
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𝐷𝑎(𝑡) = ω𝑑𝑎1. 𝐷𝑒(𝑡) + ω𝑑𝑎2. 𝐴𝑠(𝑡)                                              (4.19) 

 

  

Figure 4.14. Causal Relationship of Da with As and De 
 

 

g) Driver’s Experience  

The driver’s experience (De) is positively influenced by rehearsed experience (Re) and 

driving knowledge (Dk). These causal relationships of the factors are denoted in Figure 

4.15 and formalized in equation 4.20 where λ𝑑𝑒 represents decay parameter. 

𝐷𝑒(𝑡) = [λ𝑑𝑒 . 𝑅𝑒(𝑡) + (1 − λ𝑑𝑒). 𝐷𝑘(𝑡)]                                   (4.20) 

  

 

Figure 4.15. Causal Relationship of De with Re and Dk 

 

 

h) Driving Knowledge  

Rehearsed experience (Re) and driver experience (De) influence Driving knowledge 

positively. The relationship of the three factors is represented in Figure 4.16 and 

formalized in equation 4.21 where, γ𝑑𝑘 is denoted as speed factor, ω𝑑𝑘1 and ω𝑑𝑘2 are 

the weight parameters and 𝜆𝑑𝑘 is a decay parameter. 
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𝐷𝑘(𝑡 + Δ𝑡) = 𝐷𝑘(𝑡) + γ𝑑𝑘 . [(𝑃𝑜𝑠 ((ω𝑑𝑘1. 𝑅𝑒(𝑡) + ω𝑑𝑘2. 𝐷𝑒(𝑡)) − 𝐷𝑘(𝑡)) . (1 − 𝐷𝑘(𝑡))) −

𝑃𝑜𝑠(−(ω𝑑𝑘1. 𝑅𝑒(𝑡) + ω𝑑𝑘2. 𝐷𝑒(𝑡)) −  𝜆𝑑𝑘). 𝐷𝑘(𝑡)] . 𝛥𝑡  (4.21) 

 

Figure 4.16. Causal Relationship of Dk with Re and Da 

 

i) Perception of Risk  

The two main factors that contribute positively to the perception of risk are the 

perception about hazard (Hp) and driver’s ability (Da). Figure 4.17 shows the causal 

relationship of the three factors. These causal relationships are formalized in equation 

4.22 where γ𝑟𝑝 is a proportional parameter.  ω𝑟𝑝1 and ω𝑟𝑝2 are the weight parameters 

and 𝜆𝑟𝑝is a decay parameter. 

 

𝑅𝑝(𝑡 + Δ𝑡) =  𝑅𝑝(𝑡) + γ𝑟𝑝. [(𝑃𝑜𝑠 ((ω𝑟𝑝1. 𝐻𝑝(𝑡) + ω𝑟𝑝2. 𝐷𝑎(𝑡)) − 𝑅𝑝(𝑡)) . (1 − 𝑅𝑝(𝑡))) −

𝑃𝑜𝑠 (− (ω𝑟𝑝1. 𝐻𝑝(𝑡) + ω𝑟𝑝2. 𝐷𝑎(𝑡)) − 𝑅𝑝(𝑡)) − 𝜆𝑟𝑝) . 𝑅𝑝(𝑡)] . Δ𝑡        (4.22) 

 

 

Figure 4.17. Causal Relationship of Rp with Hp and Da 
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j) Attention  

Rehearsed experience (Re), and perception about the risk (Rp) contribute positively to 

the attention (An) of driver. The causal relationship of the three factors is depicted in 

Figure 4.18 and formalized in equation 4.23, where 𝜉𝑎𝑛 denotes proportional parameter. 

𝐴𝑛(𝑡) = [𝜉𝑎𝑛. 𝑅𝑝(𝑡) + (1 − 𝜉𝑎𝑛). 𝑅𝑒(𝑡)]                             (4.23) 

  

 

Figure 4.18. Causal Relationship of An with Re and Rp  

 

k) Priming  

Priming is influenced by three main factors, namely Driver’s experience (De), Driver’s 

ability (Da) and intention (In). Driver’s experience and Driver’s ability positively 

contribute to priming and the relationship is regulated by the intention of driver. Figure 

4.19 shows the causal relationship of the three factors and is formalized in equation 4.24 

where 𝜉𝑝𝑔 indicates proportional parameter. 

 

𝑃𝑔(𝑡) = [𝜉𝑝𝑔. 𝐷𝑎(𝑡) + (1 − 𝜉𝑝𝑔). 𝐷𝑒(𝑡)]. 𝐼𝑛(𝑡)                                           (4.24) 

 

Figure 4.19. Causal Relationship of Pg with De, Da and In 
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 l) Habitual-directed action  

Habitual-directed action (𝐻𝑑) is positively influenced by driving knowledge (Dk) and 

priming (Pg). The causal relationship of the three factors is represented in Figure 4.20 

and is formalized in equation 4.25 where ωℎ𝑑1 and ωℎ𝑑2 are the weight parameters. 

 

𝐻𝑑(𝑡) = ωℎ𝑑1. 𝑃𝑔(𝑡) + ωℎ𝑑2. 𝐷𝑘(𝑡)                                        (4.25)    

 

Figure 4.20. Causal Relationship of Hd with Dk and Pg 

 

 

m) Goal-directed action  

Priming (Pg) and attention (An) contribute positively to goal-directed action (𝐺𝑑). In 

Figure 4.21 the relationship of the three factors is shown and the formalization is 

depicted in equation 4.26 where, ω𝑔𝑑1, and ω𝑔𝑑2 are the weight parameters. 

𝐺𝑑(𝑡) = ω𝑔𝑑1. 𝐴𝑛(𝑡) + ω𝑔𝑑2. 𝑃𝑔(𝑡)                                  (4.26) 

 

Figure 4.21. Causal Relationship of Gd with Pg and An. 
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n) Involuntary Automaticity  

Involuntary automaticity (𝐼𝑣) is positively influenced by habitual-directed action (Hd) 

only. The casual relationship between the two factors is depicted in Figure 4.22 and it is 

formalized in equation 4.27 where β𝑖𝑣 is a proportional parameter. 

 

𝐼𝑣(𝑡 + Δ𝑡) = 𝐼𝑣(𝑡) + β𝑖𝑣 . [(𝑃𝑜𝑠 ((𝐻𝑑(𝑡) − 𝐼𝑣(𝑡))) . (1 − 𝐼𝑣(𝑡))) − 𝑃𝑜𝑠 (−(𝐻𝑑(𝑡) − 𝐼𝑣(𝑡))) . 𝐼𝑣(𝑡)]   

      (4.27) 

 

Figure 4.22. Causal Relationship of Iv with Hd. 

 

 

o) Voluntary Automaticity 

Voluntary automaticity (𝑉𝑦) is positively influenced by goal-directed action (Gd). 

Figure 4.23 shows the causal relationship between the two factors and it is formalized in 

equation 4.28 where β𝑣𝑦 denotes proportional parameter. 

𝑉𝑦(𝑡 + Δ𝑡) = 𝑉𝑦(𝑡) + β𝑣𝑦 . [(𝑃𝑜𝑠 ((𝐺𝑑(𝑡) − 𝑉𝑦(𝑡))) . (1 − 𝑉𝑦(𝑡))) − 𝑃𝑜𝑠 (−(𝐺𝑑(𝑡) −

𝑉𝑦(𝑡))) . 𝑉𝑦(𝑡)] . Δ𝑡     (4.28) 

  

 

 

Figure 4.23. Causal Relationship of Vy with Gd 

 

 

p) Acquired Automaticity  

Involuntary (𝐼𝑣) and voluntary (𝑉𝑦) automaticity contribute positively to acquired 

automaticity (Aa). The relationship of the three factors is shown in Figure 4.24 and, it is 

formalized in equation 4.29 where ω𝑎𝑎1 and ω𝑎𝑎2are the weight parameters. 

 

𝐴𝑎 = ω𝑎𝑎1. 𝐼𝑣(𝑡) + ω𝑎𝑎2. 𝑉𝑦(𝑡)                (4.29) 
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Figure 4.24. Causal Relationship of Aa with Iv, and Vy  

 

 

q) Experienced Automaticity  

Experienced automaticity (Ea) is positively influenced by the acquired automaticity. 

The causal relationship of the three factors is depicted in Figure 4.25. The formalization 

is shown in equation 4.30 where β𝑒𝑎 indicates proportional parameter. 

 

𝐸𝑎 (𝑡 + Δ𝑡) = 𝐸𝑎(𝑡) + β𝑒𝑎. (𝐴𝑎(𝑡) − 𝐸𝑎(𝑡)). 𝐸𝑎(𝑡). (1 − 𝐸𝑎(𝑡))         (4.30) 

 

Figure 4.25. Causal Relationship of Ea with Ae 

 

r) Decision  

Decision (Dc) is explained in subsection 4.3.1 as a temporal factor in awareness part of 

the RDT model. The decision was triggered by differences between safe and risky 

driving conditions and by the automaticity (experienced automaticity) of the driver. The 

causal relationship is depicted in Figure 4.26 and the formalization for the temporal 

factor is shown in equation 4.31 where γ𝑑𝑐 used as proportional parameter. It was 

represented as experienced automaticity (𝐸𝑎) in the simulation.  

𝐷𝑐(𝑡 + Δ𝑡) = 𝐷𝑐(𝑡) + γ𝑑𝑐 . ((Bas (t)–  Bar (t)) − 𝐷𝑐(𝑡)) . 𝐷𝑐(𝑡). (1 − 𝐷𝑐(𝑡)). Δ𝑡     (4.31) 
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Figure 4.26. Causal Relationship of Dc with Bas, Bar, and Ea 

4.4 Summary of the Chapter 

This chapter presents the enhancement and computationalization of the IDM for primed 

decision-making in driving domain. The enhancement and computationalization of the 

IDM model is achieved in three stages. First is the identification of 31 factors of the 

RDT model. This was followed by the enhancement of conceptual IDM. Lastly, the 

formal representation of the conceptual RDT model was also achieved. These three 

stages were achieved in sections 4.1, 4.2 and 4.3 of this chapter. The next chapter 

presents the verification of the RDT model. 
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CHAPTER FIVE 

VERIFICATION OF AN ENHANCED COMPUTATIONAL 

INTEGRATED DECISION-MAKING MODEL  

5.0 Introduction 

The fourth objective of this study is to evaluate the enhanced computational IDM 

(computational-RDT model). The evaluation of the computational-RDT model was 

conducted in two different stages. The first stage was the verification of the 

computational-RDT model by using simulation, mathematical and automated analysis 

methods. The second stage was the validation of the enhanced computational IDM (that 

was achieved in chapter 6). It was conducted by using human experiment to ensure the 

logical correctness of the enhanced computational model. In this chapter, the first stage 

(verification of the enhanced computational IDM) is part of the objective four and it is 

achieved in sections 5.1, 5.2 and 5.3. 

 

Verification refers to the processes and techniques used to ensure that the models’ 

specifications, assumptions, and the simulation results are correct. The aim is to ensure 

that the model is built right to achieve its designed and implementation objective. 

Therefore, to build the model right, mathematical and automated analyses were 

employed. The automated analysis was achieved by using Temporal Trace Language 

(TTL). The simulation technique was used in implementing the model by performing 

experiments in MATLAB simulation environment.  
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5.1 Simulation  

Simulation provides insight into the robustness nature of a model, which depicts the 

eventual real effects of alternative conditions and concept variation in the enhanced 

model. Model should be robust if there are consistencies between the enhanced model 

simulation traces and the underpinning theories (Grimm et al., 2005). The simulation 

traces were obtained through the implementation of different driving situations for some 

selected cases out of the various instances. The simulation was conducted with respect 

to time t to provide insight into the sequential changes that occur to driver in specific 

case conditions. However, each of the cases developed had conditions based on 

scenarios that were implemented in the simulation environment. 

 

5.1.1 Simulation Environment 

The simulation environment was used to demonstrate the robustness of the model by 

visualizing the model execution with respect to underpinning cognitive and naturalistic 

decision making theories such as Endsley, Naturalistic Decision-Making and other 

related theories used in this study. The process was conducted by translating the 

equations generated from the RDT model into simulation traces. To explore patterns 

and traces that described the behaviour of driver, simulators was developed using 

equations generated from the enhanced model. The equations consist of regulating 

parameters that are explained in the next section. 

 

5.1.2 Simulation Parameters  

To perform simulation using MATLAB, several parameter values (setttings) of the RDT 

model factors were used to obtain real-life situation conditions of the selected case 

studies. This shows the simulated behaviours of the model for better insight into the 
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functionalities of the model at different selected conditions. This study experimental 

parameters were obtained systematically to obtain the various estimations by following 

the guidelines in studies, such as Vidotto and Vicentini (2007), Vidotto, Massidda and 

Noventa (2010) and Vidotto (2013). An experiment was conducted to select and explore 

the best convergence based on the existing studies (Ding, 2014; Chen et al., 2012; Aster, 

Borchers & Thurber, 2011; Treur & Umair, 2011; Treur, 2016c; Vidotto et al., 2010) 

which suggested the use of 0.1 to 0.3 as low values, 0.4 to 0.6 as average values, and 0.7 

to 1.0 as high values. 

 

Moreover, the experimental parameter regulators used in this study were categorized 

into two different classes, namely the weight proportionality parameter and the 

proportional parameter (Speed Factor). The weight parameter is represented by (ω). For 

example, Vidotto and Vicentini (2007) suggested the weight value of 0.33 in the case of 

three concepts causal contributory factors. Another example of this parameter values 

was suggested by previous studies (Vidotto et al., 2010; Vidotto, 2013) to be 0.5 values 

for two simultaneous concepts. However, in the simulation example in (Treur, 2016b), 

all connection weights are 1, except that of ω𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 = 0.5 and ω𝑎𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔 = 0.5 

and they used the value 0.8 for the speed factors for all states.  Weights are used to set 

priority and it is used when the factors have equal contribution while proportional factor 

parameter is used when the factors have different contributions in the causal 

relationship, they are all regulating parameter constants. Hence, this study adapted the 

parameter values (settings) used in Klein (2016b, Pg.24) through out the simulation 

experiment. 
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5.1.2.1 Simulation Parameter for the Awareness Component  

The parameters used for the awareness part of the Computational-RDT model were 

functional parameters, known as speed factors and weight parameters. The functional 

parameters used for that part of the model are presented in Table 5.1 while the weight 

parameters are discussed in Chapter 4, Table 4.3. 

Table 5.1 

Simulation Regulating Parameters for the Awareness part 

Symbol Initialization Values Type 

 𝛼𝑂𝑛𝑟 
 0.8 Speed Factor 

𝛼𝑂𝑛𝑓
 0.8 Speed Factor 

𝛼𝑂𝑛𝑏 
 0.8 Speed Factor 

𝛼𝑂𝑛𝑐
 0.8 Speed Factor 

𝛼𝑂𝑛𝑣 
 0.8 Speed Factor 

𝛽𝐵𝑎𝑠  0.8 Speed Factor 

𝛽𝐵𝑎𝑟 0.8 Speed Factor 

𝛾𝑑𝑐 0.8 Speed Factor 

  𝛥𝑡 0.3 Change Rate 

 

5.1.2.2 Simulation Parameter for Recognition-Primed Decision Component  

There are several functional and weight parameters used in the RPD component of the 

Computational-RDT model. The functional parameter shows how fast a state is changing 

upon causal impact while the weight parameter indicates the strength of the connection, 

often between 0 and 1, but sometimes also below 0 (negative effect). For example, the 

parameters were used for both the instantaneous and temporal relationships in that part 

of the model. Moreover, the temporal factors were derived based on the concept of 

differential equation used in Treur (2016b, 2016c). The temporal and instantaneous 

factors are time-bounded factors and evolve with respect to changes in time. The 

temporal factors have 0.1 as the initial value in the simulation environment, which is the 

starting point of the trajectory, to see the effect of changes that may occur. The change 

process in the temporal equations was measured in a time interval, i.e., the time step 

between t and 𝑡 + Δ𝑡 where Δt is the small change or increase in time 𝑡.  
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The rate of change for all temporal specifications was determined by it flexibility rates. 

These parameters are presented in Table 5.2. 

 

Table 5.2 

Simulation Regulating Parameters for the Recognition-Primed Decision training 

component  

Symbol Initialization Values Type 

𝛼𝑟𝑒 0.8 Speed Factor 

𝛼𝑟𝑒  0.8 Speed Factor 

β𝑏𝑝 0.8 Speed Factor 

β𝑏𝑠 0.8 Speed Factor 

β𝑡𝑐 0.8 Speed Factor 

β𝑖𝑣  0.8 Speed Factor 

β𝑣𝑦 0.8 Speed Factor 

β𝑒𝑎 0.8 Speed Factor 

γ𝑝𝑐 0.8 Speed Factor 

γ𝑟𝑒 0.8 Speed Factor 

γ𝑑𝑘 0.8 Speed Factor 

γ𝑟𝑝 0.8 Speed Factor 

ξ𝑝𝑔 0.8 Speed Factor 

ξ𝑎𝑛 0.8 Speed Factor 

η𝑡𝑝 0.8 Speed Factor 

λ𝑑𝑒  0.01 Decay 

λ𝑑𝑘 0.01 Decay 

λ𝑟𝑝 0.01 Decay 

𝛥𝑡 0.3 Change Rate 

 

In addition, Table 5.3 presents weight parameters used in the simulation experiments for 

the RPD training part of the Computational-RDT model. Examples of weight 

parameters used for the factors are  ω𝑑𝑎1, ω𝑑𝑎2, ωℎ𝑝1, ωℎ𝑝2, etc. with ∑ω = 1. 

Table 5.3 

Weight Regulating Parameters used in RPD training component  

Factors Weight Parameter One 

(𝛚1) 

Weight Parameter Two 

 (𝛚2) 

Acquire Skill (As) ω𝑎𝑠1 ω𝑎𝑠2 

Driver’s Ability (Da) ω𝑑𝑎1 ω𝑑𝑎2 

Potential Hazardous Information (Hp) ωℎ𝑝1 ωℎ𝑝2 

Driver’s Knowledge (Dk) ω𝑑𝑘1 ω𝑑𝑘2 

Perception about Hazard (Rp) ω𝑟𝑝1 ω𝑟𝑝2 

Goal-directed action (Gd) ω𝑔𝑑1 ω𝑔𝑑2 

Acquired Automaticity (Aa) ω𝑎𝑎1 ω𝑎𝑎2 
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The regulating functions in the equation are (1 − β𝑏𝑝), (1 − β𝑏𝑝), (1- γ𝑝𝑐), (1- γ𝑟𝑒), (1- 

λ𝑑𝑒), (1 − β𝑎𝑠), (1 − ξ𝑝𝑔), (1 − ξ𝑎𝑛), (1 − η𝑡𝑝) & (1 − β𝑡𝑐). They were used to 

regulate the equations not to exceed the boundary limit that is one. Generally, this study 

made use of low values as ≤ 0.3, average values as 0.4 – 0.6, and high value as 0.7 – 1.0 

for the simulation parameters. The differences in the simulation traces showed the 

unique differences in each driver’s attribution (i.e., behaviour, personality, attitude and 

knowledge) with respect to time. The detailed description of the developed simulators 

for awareness part of the model, RPD training part of the model and the RDT model are 

presented in sections 5.3, 5.4 and 5.5, respectively. Appendix C shows the full simulator 

script code written in MATLAB. 

 

5.1.3 Models Simulation Scenarios 

The simulation of the model was divided into three, namely the simulation of the 

awareness component, simulation of the RPD component, and the simulation of the 

enhanced computational ID model. 

 

5.1.3.1 Scenarios for the Awareness Component  

In simulating the awareness component of the enhanced computational IDM, 

simulations conditions were used based on the five inputs factors (road, traffic, 

obstacles, car condition, and visibility) of the awareness component of the enhanced 

computational IDM model. In all the three awareness scenario simulations, time frame 

denoted as “f” was used to indicate the interval in time steps.  With tmax = 500, where 

tmax represents maximum time frame of 500, and the 500 represents driving duration 

from the beginning to the end. Therefore, each time frame represents approximately 5 

seconds. The time frame (500) is segmented into four time frames; f1, the first time 
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frame (0≤t≤125); f2, the second time frame (0≤t≤250); f3, the third time frame 

(0≤t≤375); and f4, the fourth time frame (0≤t≤500). The simulation settings for the time 

frame are presented in Table 5.4. 

 

Table 5.4 

Situation Awareness Model Simulation Settings 

Time Frame Interval Values 

f1 0-125 

f2 126-250 

f3 251-375 

f4 376-500 

 

Scenario conditions were also presented in the form of 0’s and 1’s in each time frame.  

One (1) means good and (0) means bad/poor for all the factors except obstacle in which 

the reverse is the case. This means that in case of obstacle, 1 means there is obstacle and 

0 means no obstacle. This is shown in Table 5.5.  

 

 

Table 5.5 

Elements of Situation Awareness Model Scenario Conditions 

Elements Values Description 

Road (r) 1 Good 

0 Bad 

Traffic (f) 1 Good 

0 Bad 

Obstacle (o) 1 Bad (Obstacle present) 

0 Good (No obstacle present) 

Car Condition (c) 1 Good 

0 Bad 

Visibility (v) 1 Good 

0 Bad 

 

In addition, when simulating the scenarios, values were generated for each time frame 

based on the combinational logic of 2n
, where n denoted the number of factors. Thus, in 

the awareness component of the IDM model, 25 was used where 5 represented the five 

factors that were used in all the three scenarios. Graphs were also generated based on 
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each scenario conditions. Each scenario condition had three graphs (a), (b) and (c) that 

showed the safe/risky confidence level to decide, and performance of action of the car 

driver. The performance of action of the car driver is presented as low or high, where 

low indicates no [0] and high indicates yes [1]. 

 

Scenario One: The Low Risk Conditions 

From Table 5.6, in the first and second time frames, all the driving conditions were 

good, and visibility was poor, respectively. The third and fourth time frames indicated 

that obstacle was on the road, and the road was bad, respectively. As a result of these 

conditions in all the time frames, it can be said that the scenario was good and hence, it 

can be described as a low-risk scenario. 

 

Table 5.6 

Low-Risk Conditions 

Scenarios Factors Time Frame Steps 

#1  f1 f2 f3 f4 

Road 1 1 1 0 

Traffic 1 1 1 1 

Obstacles 0 0 1 1 

Car condition 1 1 1 1 

Visibility 1 0 1 1 

Note: Each of these factors (Road, Traffic, Obstacles, Car condition and Visibility) takes the value 1or 0 

to represent good or bad/poor, respectively except obstacle in which the reverse is the case. 

 

At first time frame, all the driving conditions were good and as such, the safety level 

increased while the level of risk decreased as shown in Figure (5.1a). Driver had a high 

confidence level to decide as depicted in Figure (5.1b) due to an increase in the safety 

level and based on that, the driver’s performance was high [indicated by yes (1)] as 

shown in Figure (5.1c). 
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In the second time frame, the risk level increased from the base-line (zero level) while 

the safety level decreased compared to the first time frame due to poor visibility as 

presented in Figure (5.1a). Therefore, driver’s confidence level declined a bit as a result 

of an increase in the risk level as denoted in Figure (5.1b). Consequently, the driver’s 

performance was high [indicated by yes (1)] due to higher safety level as compared to 

the risk level as depicted in Figure (5.1c). 

 

The risk level was higher than the safe level in the third time frame due to the presence 

of an obstacle on the road as shown in Figure (5.1a). The higher level of risk caused a 

decline in the driver’s confidence level to decide. The driver’s confidence remains 

stable at certain level and then drastically decreased to the baseline as demonstrated in 

Figure (5.1b). As such, the driver’s performance was low [indicated by no (0)] as shown 

in Figure (5.1c). 

 

At the fourth time frame, Figure (5.1a) shows that safety and risk maintained the same 

level as in the third time frame due to bad road and the presence of obstacle. As such, 

driver had no confidence to decide; the confidence level remained at the baseline as 

demonstrated in Figure (5.1b).  Based on this, the driver’s performance was low 

[indicated by no (0)] as shown in Figure (5.1c). 
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Figure 5.1. Simulation Result for Low-Risk Conditions  

 

Scenario Two: The Moderate Risk Conditions 

From Table 5.7, in the first time frame, the road was bad; there was traffic congestion, 

presence of obstacle and poor visibility. In the second and third time frames, the road 

was also bad, and traffic was congested, respectively. In the fourth time frame, all the 

driving conditions were bad. Based on these conditions in all the time frames, it can be 

concluded that the scenario was good and had a moderate risk. 

 

Table 5.7 

Moderate Risk Conditions 

Scenarios Factors Time Frame Steps 

        #2  f1 f2 f3 f4 

Road 0 0 1 0 

Traffic 0 1 0 0 

Obstacles 1 0 0 1 

Car condition 1 1 1 0 

Visibility 0 1 1 0 

Note: Each of these factors (Road, Traffic, Obstacles, Car condition and Visibility) takes the value 1or 0 

to represent good or bad/poor, respectively except obstacle in which the reverse is the case. 

 

(a) (b) 

(c) 
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At the first time frame as shown in Figure (5.2a), the level of risk was more than the 

safety level due to the poor road, traffic congestion, presence of obstacle and poor 

visibility. As depicted in Figure (5.3b), driver had low confidence level to decide as a 

result of poor road, heavy traffic, presence of obstacle and poor visibility. Based on 

these, the driver’s performance became low [indicated by no (0)] as shown in Figure 

(5.3c). 

 

In the second and third time frame, the risk level decreased to the base-line (zero level) 

in proportion to the decrease in the level of safety due to poor road and heavy traffic, 

respectively. These conditions had less effect on the simulated driving behaviour of 

driver as compared to obstacle, car condition and visibility as presented in Figure (5.2a). 

Therefore, driver’s confidence level increased in both time frames as shown in Figure 

(5.2b) because the road and traffic factors had less weight effect. Based on this, the 

driver’s performance was said to be high [indicated by yes (1)] as shown in Figure 

(5.2c). 

 

At the fourth time frame, the level of risk was higher than the level of safety because all 

the driving conditions were bad, as indicated in Figure (5.2a). As such, driver’s 

confidence level decreased as demonstrated in Figure (5.2b). Hence, the driver’s 

performance became low [indicated by no (0)] as shown in Figure (5.2c). 
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Figure 5.2. Simulation Result for Moderate Risk Conditions  

 
 

Scenario Three: The High Risk Conditions 

From Table 5.8, in the first time frame, all the driving conditions are bad except road 

condition while in the second time frame, the road is bad, and traffic is congested. The 

third time frame indicates that the car condition is bad and the visibility is poor while 

the fourth time frame shows that all the driving conditions are bad except that there is 

no traffic congestion. Therefore, the scenario is considered to be bad and highly risky.  

 

Table 5.8  

High-Risk Conditions 

Scenarios Factors Time Frame Steps 

#3  f1 f2 f3 f4 

Road 1 0 1 0 

Traffic 0 0 1 1 

Obstacles 1 0 0 1 

Car condition 0 1 0 0 

Visibility 0 1 0 0 

 Note: Each of these factors (Road, Traffic, Obstacles, Car condition and Visibility) takes the value 1or 0 

to represent good or bad/poor, respectively except obstacle in which the reverse is the case. 

(a) 

(c) 

(b) 
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The scenario can also be understood from Figure (5.3).  From Figure (5.3a), the first 

time frame depicts that all the driving conditions were bad and the level of risk was 

higher than the level of safety. This suggests that driver had low confidence level to 

decide due to the high level of risk as shown in Figure (5.3b).  Based on this situation, 

the driver’s performance can be described to be low [indicated by no (0)] as in Figure 

(5.3c). 

 

The second time frame depicts that the risky level decreased almost to the base-line 

(zero) while the safe level increased due to poor road and congested traffic as in Figure 

(5.3a). As a result, the driver’s confidence level increased as shown in Figure (5.3b) and 

the performance is high as indicated by yes (1). The driver’s performance increased due 

to increase in the confidence level as shown in Figure (5.3c). 

  

In the third and fourth time frame, Figure (5.3a), the level of risk increased more than 

the level of safety due to poor car condition and visibility in the former, and bad driving 

condition in the latter. As a result of the conditions as in Figure (5.3a), the driver’s 

confidence level to decide declined to the base line as in Figure (5.3b). Hence, the 

driver’s performance became low as indicated by no (0) for both time frames in figure 

(5.3c).  

 



 

 

  139 

 

Figure 5.3. Simulation Result for High-Risk Conditions  

 

 

5.1.3.2 Scenarios for the Recognition-Primed Decision Component  

A simulator was developed using all defined formulas for experiment purposes, 

precisely to explore interesting patterns and traces that explained the behaviour of driver 

in the RPD training component of the enhanced IDM. Simulations conditions based on 

the input values of the seven factors of the training component of the model (basic 

practice, basic skills, sensory ability, driver’s goal, potential hazardous information, 

exposure on task complexity and intention) are used. Each of the factors is assigned 

value of either zero (0) or one (1) where zero (0) means low, and one (1) means high for 

those inputs. In this simulation, the following settings are used: (0≤ t ≤500) with tmax = 

500 (to represent a set of training activities of the driver up to eight months). Each time 

step (i.e., range) denotes the training hours where one (1) time step represents 5 hours of 

training.  

 

 

 

(a) (b) 

(c) 
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Scenario One: Skilful-Cautious Driver 

The condition for Skilful-Cautious driver determined by the seven factors of the training 

model, namely basic practice, basic skills, sensory ability, driver’s goal, potential 

hazardous information, exposure on task complexity and intention is (1111111). This 

implies that the driver’s high training positively affects each of the factors. In this case, 

the driver was said to be skilful because of the positive impact of training on his basic 

practice, basic skill, and sensory ability. 

  

Table 5.9 

Condition for Skilful-Cautious Driver 

Scenario Condition Description References 

#1 1111111 A skilful driver who has been trained and 

exposed to driving task complexity has 

potential hazard information. 

(Baughan et al., 2004; 

Endsley,2016; 

Moskowitz, 2013; 

Wheatley &Wegner, 

2001). 

Note: The seven input factors of the training model (basic practice, basic skills, sensory ability, driver’s 

goal, potential hazardous information, exposure to task complexity and intention) are used. Each of the 

factors is assigned a value of either 0 or 1, where 0 means low/poor and 1 means high/good for those 

inputs. 

 

 

In addition, driver is described to be Skilful-Cautious because a positive impact on the 

other mentioned factors makes driver to be cautious. The condition for Skilful-Cautious 

Driver is as in Table 5.9. In this scenario as shown in Figure (5.4a) that the driver’s 

level of experience increased as the level of practice increased. The result is in line with 

Baughan et al. (2004) and Endsley (2016), and Figure (5.4b) indicates that the increase 

in the driver’s knowledge increased the driver’s perception of risk.  
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Figure 5.4. Simulation Result for Skilful-Cautious Driver 

 

In Figure (5.4c), involuntary automaticity level decreased with increase in the voluntary 

automaticity level, due to the influence of attention on the voluntary automaticity. 

Lastly, Figure (5.4d) shows that the experience automaticity level of the driver 

increased due to increase in the level of practice and experience. The statements made 

in Figures (5.4c) and (5.4d) are in accordance with the prior studies (Moskowitz, 2013; 

Wheatley & Wegner, 2001) and (Endsley, 2016) respectively. 

 

 

Scenario Two: Skilful-Risk Taking Driver 

The condition for Skilful-Risk taking driver determined by the seven factors of the 

training model, specifically basic practice, basic skills, sensory ability, driver’s goal, 

potential hazardous information, exposure on task complexity and intention is (1110000). 

This suggested that high training of driver influenced his basic practice, basic skills and 

sensory ability and therefore, the driver was described to be skilful. However, the driver 

had low goal, low information on the potential hazard, low exposure to the driving task 

complexity and low intention, which implies risk-taking. Thus, the driver was said to be 

a skilful-risk taker. Table 5.10 shows the condition for Skilful-Risk Taking Driver. 
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Table 5.10 

Condition for Skilful-Risk Taking Driver 

Scenario Condition Description References 

#2 1110000 A skilful driver who has been trained has 

low potential hazard information, and 

exposure to driving task complexity. 

(Deery, 1999; Brown 

& Groeger 1988; 

Wasserman & 

Wasserman, 2016) 

Note: The seven input factors of the training model (basic practice, basic skills, sensory ability, driver’s 

goal, potential hazardous information, exposure on task complexity and intention) are used.  Each of the 

factors is assigned a value of either 0 or 1, where 0 means low/poor and 1 means high/good for those 

inputs. 

 

 

In this scenario, Figure (5.5a) shows that the driver’s level of experience increased with 

increase in the level of practice while Figure (5.5b) indicates that the driver’s level of 

perception about risk decreased with a decrease in knowledge. In Figure (5.5c), 

involuntary automaticity level increased with a decreased in the voluntary level due to 

the influence of the driver’s knowledge on the involuntary automaticity. Also, in Figure 

(5.5d), the experience automaticity level of the driver decreased (a bit lower) as a result 

of decreased in practice and experience levels. The statements made in Figures (5.5a, 

5.5b, 5.5c  & 5.5d)  are in line with the previous studies (Baughan et al., 2004; Endsley, 

2016),  (Deery, 1999; Brown & Groeger, 1988), (Wasserman & Wasserman, 2016; 

Wheatley & Wegner, 2001)  and (Endsley, 2016).  

 
 

Figure 5.5. Simulation Result for Skilful- Risk Taking Driver 
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Scenario Three: Unskilful-Cautious Driver 

The condition for Unskilful-Cautious driver based on the seven factors under 

consideration is (0011111). This denotes that low training level of the driver affected 

the driver’s basic practice and basic skills. Hence, the driver is unskilful. However, the 

driver had good sensory ability and high goal, high information on the potential hazard, 

high exposure to the driving task complexity and high intention, suggesting that the 

driver was cautious. Therefore, the driver can be described as an Unskilful-Cautious 

driver. Table 5.11 presents the condition for Unskilful-Cautious Driver. 

 

 

Table 5.11 

Condition for Unskilful-Cautious Driver 

Scenario Conditions Description References 

#3 0011111 The unskilful driver has not been trained, 

but acquired potential hazard 

information and has exposure to driving 

task complexity. 

(Moskowitz, 2013; 

Endsley, 2016). 

Note: The seven input factors of the training model (basic practice, basic skills, sensory ability, driver’s 

goal, potential hazardous information, exposure on task complexity and intention) are used. Each of the 

factors assigned value of either 0 or 1, where 0 means low/poor and 1 means high/good for those inputs. 

 

In this scenario, Figure (5.6a) shows that the driver’s level of experience decreased with 

a decrease in the level of practice while Figure (5.6b) depicts that the driver’s 

knowledge decreased with a decrease in the level of perception about risk. In Figure 

(5.6c), voluntary level decreased with a decrease in the attention level and the 

involuntary automaticity also decreased due to a decrease in the level of knowledge of 

the driver. Finally, Figure (5.6d) shows that the experience automaticity level of the 

driver decreased drastically due to a decrease in practice and experience levels. The 

statements in Figures (5.6a, 5.6b, 5.6c  & 5.6d)  are in accordance with the previous 

studies (Baughan et al., 2004; Endsley, 2016),  (Deery, 1999; Brown & Groeger, 1988), 

(Moskowitz, 2013; Wheatley & Wegner, 2001)  and (Endsley, 2016). 
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Figure 5.6. Simulation Result for Unskillful-Cautious Driver 

 

 

5.1.3.3 Scenarios for the Enhanced Model  

The scenarios and conditions for the enhanced computational IDM are presented in 

Table 5.12. Each scenario was presented with training and awareness conditions and 

were named long-term, medium-term and short-term training, respectively. Based on 

the conditions for each scenario, graphs were generated as shown in Figure 5.7, 5.8 and 

5.9.  

Scenario One: The Long-Term Training Exposure 

In Scenario 1, Figure (5.7a) depicts that the driver’s level of perception about risk 

increased with increment in driver’s knowledge. However, the driver’s level of 

perception about risk decreased to a certain level due to the effect of driver’s low-level 

perception about potential hazardous information. The level eventually increased again 

due to good driving condition and skill of the driver. Figure (5.7b) indicates an insight 

into driver’s experienced automaticity level through exposure to long-term training, 
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which led to a high confidence level for decision. Figure (5.7c) relates that long-term 

training led to high performance of action by the driver. 

 Table 5.12 

The Enhanced Integrated Decision-Making Conditions 

Scenarios Training conditions Awareness conditions Description 

#1 1110111 1111011 1111111 11011   The driver receives 

more training compare 

to awareness. 

 

#2 1110011 1110110  01011 10011  The driver receives 

equal proportion of 

training and 

awareness. 

 

#3 1110101   00011 11111 11001 The driver receives 

less training compared 

to awareness. 

Note: For training model, 7 input factors (basic practice, basic skills, sensory ability, driver’s goal, 

potential hazardous information, exposure on task complexity and intention) are used. Each of the factors 

is assigned value either 0 or 1, where 0 means low/poor training and 1 means high/good training. For the 

awareness model, 5 input factors (Road, Traffic, Obstacles, Car condition and Visibility) are used where 

1or 0 represent good or bad/poor, respectively with the exception of obstacle in which the reverse is the 

case. 

 

  

Figure 5.7. Simulation Conditions Results (for Scenario 1) 
 

 

Scenario Two: The Medium-Term Training Exposure 

In Scenario 2, Figure (5.8a) visualizes that the driver’s level of perception about risk 

increased with proportional increase in driver’s knowledge but the driver’s level of 

(a) (b) 

(c) 
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perception about risk decreased a bit to a certain level due to the effect of driver’s low 

level of potential hazardous information in the traffic environment. The driver’s level of 

perception about risk eventually increased and became stable due to the skilfulness of 

the driver and other good driving conditions. Another result showed that experience 

automaticity of the driver decreased due to a short period of training. This led to low 

confidence level of the driver to make decision as it has been visualized in Figure 

(5.8b). Lastly, Figure (5.8c) provides a visual representation of driver’s low 

performance due to a short period of training. 

 
Figure 5.8. Simulation Conditions Results (for Scenario 2) 
 

 

Scenario Three: The Short-Term Training Exposure 

 

In Scenario 3, Figure (5.9a) indicates that the driver’s level of perception about risk 

increased with proportional increase in driver’s knowledge to a certain level and 

eventually decreased drastically due to a very short period of training. Result in Figure 

(5.9b) indicates that driver’s experienced automaticity level decreased with a very short 

period of training, which led to a very low confidence level to make a decision. Result 

in Figure (5.9c) indicates that very short period of training led to lower performance of 

action by the driver. 

(a) (b) 

(c) 
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Figure 5.9. Simulation Conditions Results (for Scenario 3) 

5.2 Mathematical Analysis 

The mathematical analysis was conducted to verify the structural and theoretical 

correctness of the model. This study performed equilibrium analysis that described 

situations in which a stable situation had been reached. That is, if the dynamics of a 

system were described by a differential equation, then equilibrium levels can be 

estimated by setting a derivative (or all derivatives) to zero. One important thing to note 

is that an equilibrium condition is considered stable if the system always returns to it 

state after small disturbances. These equilibrium conditions indicate the correctness of 

the enhanced model that was pivoted on the model concept. 

 

Mathematical analysis can be used to analyse the dynamic properties of dynamic 

models in order to understand the structural and correctness of the model through 

theoretical construct. Examples of such properties are as follows: 

 

i. Values of the variables for which no change occurs (stationary points or 

equilibria); 

(a) (b) 

(c) 
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ii. Certain variables in the model converge to some limit value (equilibria) 

iii. Certain variables will show monotonically increasing or decreasing values over 

time (monotonicity) 

iv. Situations occur in which no convergence occurs, but in the end a particular 

sequence of values is repeated all the time (limit cycle).  

 

These equilibrium conditions are interesting to be explored, as it is possible to explain 

them using the knowledge from the theory or problem that is modelled. As such, the 

existence of reasonable equilibria is a sign of the correctness of the model. Moreover, 

the concept of mathematical analysis used in this study was derived from the concepts 

of the differential equation based on Treur (2016a, 2016b, 2016c). To obtain possible 

equilibrium values for the temporal factors, the study first described the temporal 

equations 4.21, 4.22, 4.27, 4.28, 4.30 and 4.31 previously presented in Section 4.3 

Chapter Four. These are presented using differential equations 5.1, 5.2, 5.3, 5.4, 5.5 and 

5.6. These six differential equations 5.1 to 5.6 provide the differential values for 

Driver’s Knowledge (Dk), Perception about Risk (Rp), Involuntary Automaticity (Iv), 

Voluntary Automaticity (Vy), Experience Automaticity (Ea) and Decision (Dc), 

respectively. 

𝑑𝐷𝑘

𝑑𝑡
= γ𝑑𝑘. ((ω𝑑𝑘1. 𝑅𝑒 + ω𝑑𝑘2. 𝐷𝑒) − 𝐷𝑘). 𝐷𝑘. (1 − 𝐷𝑘)       (5.1)        

𝑑𝑅𝑝

𝑑𝑡
= γ𝑟𝑝. ((ω𝑟𝑝1. 𝐻𝑝 + ω𝑟𝑝2. 𝐷𝑎) − 𝑅𝑝) . 𝑅𝑝. (1 − 𝑅𝑝)  (5.2)       

𝑑𝐼𝑣

𝑑𝑡
 = β𝑖𝑣. (𝐻𝑑(𝑡) − 𝐼𝑣). 𝐼𝑣. (1 − 𝐼𝑣)       (5.3)        

𝑑𝑉𝑦

𝑑𝑡
 = β𝑣𝑦. (𝐺𝑑 − 𝑉𝑦). 𝑉𝑦. (1 − 𝑉𝑦)       (5.4)          

𝑑𝐸𝑎

𝑑𝑡
 = β𝑒𝑎. (𝐴𝑎 − 𝐸𝑎). 𝐸𝑎. (1 − 𝐸𝑎)       (5.5)         



 

 

  149 

𝑑𝐷𝑐

𝑑𝑡
 =  γ𝑑𝑐. ((𝐵𝑎𝑠 − 𝐵𝑎𝑟) − 𝐷𝑐). 𝐷𝑐. (1 − 𝐷𝑐)                (5.6) 

The symbols  γ𝑑𝑘, γ𝑟𝑝, β𝑖𝑣, β𝑣𝑦, β𝑒𝑎,  γ𝑑𝑐 are proportional parameters (speed factors) 

while ω𝑑𝑘1, ω𝑑𝑘2, ω𝑟𝑝1, ω𝑟𝑝2 are weight parameters, and both parameters are nonzero. 

 

From equation 5.1 to 5.6, for any possible simulation results, the following cases can be 

distinguished: 

(𝑅𝑒 + 𝐷𝑒) − 𝐷𝑘). (1 − 𝐷𝑘). 𝐷𝑘 = 0 

(𝐻𝑝 + 𝐷𝑎) − 𝑅𝑝). (1 − 𝑅𝑝). 𝑅𝑝 = 0 

(𝐻𝑑 − 𝐼𝑣). (1 − 𝐼𝑣). 𝐼𝑣 = 0 

(𝐺𝑑 − 𝑉𝑦). (1 − 𝑉𝑦). 𝑉𝑦 = 0 

(𝐴𝑎 − 𝐸𝑎). (1 − 𝐸𝑎). 𝐸𝑎 = 0 

(𝐵𝑎𝑠 − 𝐵𝑎𝑟) − 𝐷𝑐). (1 − 𝐷𝑐). 𝐷𝑐 = 0 

These cases can further be distinguished into the following: 

(𝑅𝑒 + 𝐷𝑒 = 𝐷𝑘) ∨ (𝐷𝑘 = 1)  ∨ (𝐷𝑘 = 0)   

(𝐻𝑝 + 𝐷𝑎 = 𝑅𝑝) ∨ (𝑅𝑝 = 1)  ∨ (𝑅𝑝 = 0)   

(𝐻𝑑 = 𝐼𝑣) ∨ (𝐼𝑣 = 1)  ∨ (𝐼𝑣 = 0)   

(𝐺𝑑 = 𝑉𝑦) ∨ (𝑉𝑦 = 1)  ∨ (𝑉𝑦 = 0)   

(𝐴𝑎 = 𝐸𝑎) ∨ (𝐸𝑎 = 1)  ∨ (𝐸𝑎 = 0)   

(𝐵𝑎𝑠 − 𝐵𝑎𝑟 = 𝐷𝑐) ∨ (𝐷𝑐 = 1)  ∨ (𝐷𝑐 = 0)   

Thus, it can be concluded that these are the points where the equilibrium can occur. 

That is, when 𝑅𝑒 +  𝐷𝑒 =  𝐷𝑘, or 𝑘 = 1 ,or 𝐷𝑘 = 0. By combining these three 

conditions, it can be re-written as a set of relationship in a form  (A ∧ D) ∨  (A ∧ G) : 
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((𝑅𝑒 + 𝐷𝑒 = 𝐷𝑘) ∨ (𝐷𝑘 = 1)  ∨ (𝐷𝑘 = 0)) ∧ 

((𝐻𝑝 + 𝐷𝑎 = 𝑅𝑝) ∨ (𝑅𝑝 = 1)  ∨ (𝑅𝑝 = 0)) ∧ 

((𝐻𝑑 = 𝐼𝑣) ∨ (𝐼𝑣 = 1)  ∨ (𝐼𝑣 = 0))  ∧ 

((𝐺𝑑 = 𝑉𝑦) ∨ (𝑉𝑦 = 1)  ∨ (𝑉𝑦 = 0))  ∧ 

((𝐴𝑎 = 𝐸𝑎) ∨ (𝐸𝑎 = 1)  ∨ (𝐸𝑎 = 0))  ∧ 

((𝐵𝑎𝑠 − 𝐵𝑎𝑟 = 𝐷𝑐) ∨ (𝐷𝑐 = 1)  ∨ (𝐷𝑐 = 0)) 

These expressions can be elaborated using distributive law as (A ∧ D) ∨  (A ∧  G) ∨

(A ∧ J) ∧ (A ∧ M), … ,∨  (C ∧ R).  

(𝑅𝑒 + 𝐷𝑒 = 𝐷𝑘 ∧ 𝑅𝑒 + 𝐷𝑒 = 𝐷𝑘 ∧ 𝐻𝑑 = 𝐼𝑣 ∧ 𝐺𝑑 = 𝑉𝑦 ∧ 𝐴𝑎 = 𝐸𝑎 ∧ 𝐵𝑎𝑠 −

𝐵𝑎𝑟 = 𝐷𝑐) ∨ (𝐷𝑘 = 1 ∧ 𝑅𝑝 = 1 ∧  𝐼𝑣 = 1 ∧ 𝑉𝑦 = 1 ∧ 𝐸𝑎 = 1 ∧ 𝐷𝑐 = 1) ∨…∨  

(𝐷𝑘 = 0 ∧ 𝑅𝑝 = 0 ∧ 𝐼𝑣 = 0 ∧ 𝑉𝑦 = 0 ∧ 𝐸𝑎 = 0 ∧ 𝐷𝑐 = 0).  

 

The temporal factors were used to determine the possible combinations which resulted 

in value up to 36 (729) possible equillibrium points. Due to the large number of possible 

combinations, it made it difficult to provide a complete classification of equillibria. 

Typical cases were further analysed as follows: 

 

Case 1: (𝑯𝒑 + 𝑫𝒂 = 𝑹𝒑)    

𝐻𝑝 = 𝑅𝑝 − 𝐷𝑎 or 

𝐷𝑎 = 𝑅𝑝 − 𝐻𝑝 

First is to consider the factors that receive 𝑅𝑝 as an input. For example, 𝐴𝑛 receives 𝑅𝑝 

as an input. Therefore, by substituting (𝐻𝑝 + 𝐷𝑎 = 𝑅𝑝) in equation (4.23), 𝐴𝑛 = 𝜉𝑎𝑛 ∗

𝑅𝑝 + (1 − 𝜉𝑎𝑛) ∗ 𝑅𝑒   (4.23) 
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The result is as follows: 

         = 𝐻𝑝 + 𝐷𝑎 + (1 − 1) ∗ 𝑅𝑒, assuming 𝜉𝑎𝑛 = 1  

   𝐴𝑛 = 𝐻𝑝 + 𝐷𝑎 

  𝐴𝑛 = 𝑅𝑒 

Assuming 𝜉𝑎𝑛 = 0.5 

  𝐴𝑛 = 0.5 ∗ 𝑅𝑝 + (1 − 0.5) ∗ 𝑅𝑒, 

  𝐴𝑛 = 0.5 ∗ 𝑅𝑝 + 0.5 ∗ 𝑅𝑒, 

  𝐴𝑛 = 0.5 ∗ (𝑅𝑝 + 𝑅𝑒), 

  𝐴𝑛 =
1

2
∗ (𝐻𝑝 + 𝐷𝑎 + 𝑅𝑒), 

Assuming 𝜉𝑎𝑛 = 0, 

  𝐴𝑛 = 𝑅𝑒 

 

Table 5.13 provides the summary of Rp Case one tested with variation of Xi of An 

Table 5.13 

Summary of Rp case one tested with variation of Xi of An 

𝝃𝒂𝒏 = 𝟏 𝝃𝒂𝒏 = 𝟎. 𝟓 𝝃𝒂𝒏 = 𝟎 

    𝐴𝑛 = 𝐻𝑝 + 𝐷𝑎                 𝐴𝑛 =
1

2
∗ (𝐻𝑝 + 𝐷𝑎 + 𝑅𝑒)        𝐴𝑛 = 𝑅𝑒 

 

Case one depictes that perception about risk is influenced by the combination of driver‘s 

perception about hazard on the road and driver’s ability. From Table 5.13, when the 

case is tested with the parameter   𝜉𝑎𝑛 = 1, (i.e., when 𝜉𝑎𝑛 is high) the result indicated 

that driver’s level of attention was influenced by the driver’s perception about hazard 

combined with the driver’s ability. This implies that the level of attention of the driver 

depended on the perception level about task and driver’s ability and vice versa. When 

the case was tested with 𝜉𝑎𝑛 = 0.5 parameter, (i.e., when 𝜉𝑎𝑛 is moderate). The result 
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showed that double the attention level of the driver on the road depended on the driver‘s 

perception about hazard on the road combined with the driver’s ability and rehearsed 

experience. Similarly, when tested with parameter 𝜉𝑎𝑛 = 0, (i.e., when 𝜉𝑎𝑛 is low). The 

result indicated that driver’s level of attention on the road depended on the driver’s 

rehearsed experience.  

Case 2: (𝑹𝒑 = 𝟎)  

 

Case 2 can be analysed by substituting (𝑅𝑝 = 0) in equation (4.23),   

 

𝐴𝑛 = 𝜉𝑎𝑛 ∗ 𝑅𝑝 + (1 − 𝜉𝑎𝑛) ∗ 𝑅𝑒   (4.23) 

This gives the following results: 

       = 1 ∗ 0 + (1 − 1) ∗ 𝑅𝑒, assuming 𝜉𝑎𝑛 = 1   

𝐴𝑛 = 0    

𝐴𝑛 = 𝜉𝑎𝑛 ∗ 𝑅𝑝 + (1 − 𝜉𝑎𝑛) ∗ 𝑅𝑒,  

       = 0.5 ∗ 0 + (1 − 0.5) ∗ 𝑅𝑒, assuming 𝜉𝑎𝑛 = 0.5    

  An = 0.5𝑅𝑒 

𝐴𝑛 = 𝜉𝑎𝑛 ∗ 𝑅𝑝 + (1 − 𝜉𝑎𝑛) ∗ 𝑅𝑒,  

       = 0 ∗ 0 + (1 − 0) ∗ 𝑅𝑒, assuming 𝜉𝑎𝑛 = 0    

  An = 𝑅𝑒 

 

The summary of Rp Case two tested with variation of Xi of An is provided in Table 

5.14. 

 

Table 5.14 

Summary of Rp case two tested with variation of Xi of An 

𝝃𝒂𝒏 = 𝟏(High) 𝝃𝒂𝒏 = 𝟎. 𝟓 (Moderate) 𝝃𝒂𝒏 = 𝟎  (Low) 

    𝐴𝑛 = 0                            𝐴𝑛 =
1

2
∗ 𝑅𝑒                                             𝐴𝑛 = 𝑅𝑒 
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Case two depicts that perception about risk of the driver is low.  From Table 5.14, when 

the case was tested with 𝜉𝑎𝑛 = 1 parameter, the result suggested that attention level of 

the driver also became low and when tested with 𝜉𝑎𝑛 = 0.5, the result indicated that 

doubled the driver’s level of attention on the road depended on the driver’s rehearsed 

experience. Likewise, when tested with 𝜉𝑎𝑛 = 0, the result showed that driver’s level of 

attention on the road was determined by the driver’s rehearsed experience. 

 

Case 3: (𝑹𝒑 = 𝟏) 

The study analyses Case 3 by substituting 𝑅𝑝 = 1 in equation (4.23),  

𝐴𝑛 = 𝜉𝑎𝑛 ∗ 𝑅𝑝 + (1 − 𝜉𝑎𝑛) ∗ 𝑅𝑒   (4.23)  

And the following result is obtained: 

        = 1 ∗ 1 + (1 − 1) ∗ 𝑅𝑒, assuming 𝜉𝑎𝑛 = 1    

 An = 1 

𝐴𝑛 = 𝜉𝑎𝑛 ∗ 𝑅𝑝 + (1 − 𝜉𝑎𝑛) ∗ 𝑅𝑒,  

       = 0.5 ∗ 1 + (1 − 0.5) ∗ 𝑅𝑒, assuming 𝜉𝑎𝑛 = 0.5    

  An =
1

2
(1 + 𝑅𝑒) 

𝐴𝑛 = 𝜉𝑎𝑛 ∗ 𝑅𝑝 + (1 − 𝜉𝑎𝑛) ∗ 𝑅𝑒,  

       = 0 ∗ 1 + (1 − 0) ∗ 𝑅𝑒, assuming 𝜉𝑎𝑛 = 0  

  An = 𝑅𝑒 

The summary of Rp Case three tested with variation of Xi of An is presented in Table 

5.15. 

Table 5.15 

Summary of Rp case three tested with variation of Xi of An 

𝝃𝒂𝒏 = 𝟏 (High) 𝝃𝒂𝒏 = 𝟎. 𝟓 (Moderate) 𝝃𝒂𝒏 = 𝟎 (Low) 

    𝐴𝑛 = 1   𝐴𝑛 =
1

2
(1 + 𝑅𝑒)   𝐴𝑛 = 𝑅𝑒 
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This case shows that perception about risk is high.  Thus, from Table 5.15, when the 

case is tested with 𝜉𝑎𝑛 = 1 parameter, the result indicated that attention of the driver on 

the road was also high and when tested with 𝜉𝑎𝑛 = 0.5, the result showed that doubled 

the driver’s level of attention on the road  was determined by the high level of driver’s 

rehearsed experience. Likewise, when tested with 𝜉𝑎𝑛 = 0, the result suggested that 

driver’s level of attention on road was determined by driver’s rehearsed experience. 

 

From the analyses of Case One, Two, and Three, when tested with different parameter 

values (1, 0.5 and 0), results suggested that risk perception of driver on the road was 

influenced by the increase in his level of attention. More so, when the risk perception of 

the driver was low, it indicated that his attention level was also low and vice versa. 

These findings were in line with the previous studies (Deery, 999; Rosenbloom et al., 

2008). 

 

 

Case 4: (𝑯𝒅 = 𝑰𝒗) 

First, consider the factors that receive 𝐼𝑣 as an input. It can be seen that 𝐴𝑎 receives  𝐼𝑣 

as an input. Therefore, by substituting  𝐻𝑑 = 𝐼𝑣 in equation (4.29),  

    𝐴𝑎 = ω𝑎𝑎1 ∗ 𝐼𝑣 + ω𝑎𝑎2 ∗ 𝑉𝑦    (4.29) 

where, ∑ ω = 1, it gives the following: 

    𝐴𝑎 = (𝐼𝑣 + 𝑉𝑦) 

    𝐴𝑎 = (𝐻𝑑 + 𝑉𝑦) 

    𝐴𝑎 = 𝐻𝑑 + 𝑉𝑦   

 

Case 5: (𝑰𝒗 = 𝟏) 

The study analyses Case 5 by substituting (𝐼𝑣 = 1) in equation (4.29), 
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    𝐴𝑎 = ω𝑎𝑎1 ∗ 𝐼𝑣 + ω𝑎𝑎2 ∗ 𝑉𝑦,    (4.29) 

where, ∑ ω = 1, the following is obtained: 

    𝐴𝑎 = (𝐼𝑣 + 𝑉𝑦) 

    𝐴𝑎 = 1 + 𝑉𝑦. 

Case 6: (𝑰𝒗 = 𝟎) 

Similarly, Case 6 can be analysed by substituting (𝐼𝑣 = 0) in equation (4.29),  

  𝐴𝑎 = ω𝑎𝑎1 ∗ 𝐼𝑣 + ω𝑎𝑎2 ∗ 𝑉𝑦   (4.29) 

where, ∑ ω = 1, the result is as follows: 

    𝐴𝑎 = (𝐼𝑣 + 𝑉𝑦) 

    𝐴𝑎 = 𝑉𝑦 

The summary of involuntary automaticity in Case Four, Five and Six is presented in 

Table 5.16. 

 

Table 5.16 

Summary of Involuntary automaticity, case four, five and six 

𝑯𝒅 = 𝑰𝒗 𝑰𝒗 = 𝟏 (High) 𝑰𝒗 = 𝟎 (Low) 

             𝐴𝑎 = 𝐻𝑑 + 𝑉𝑦                         𝐴𝑎 = 1 + 𝑉𝑦              𝐴𝑎 = 𝑉𝑦. 

 

Case Four shows that the driver’s habitual-directed action was determined by the 

involuntary automaticity level of the driver when the driver was trained. In this case, the 

driver’s acquired automaticity level was influenced by the combination of driver’s 

habitual-directed action and the voluntary automaticity level. In case five, when the 

involuntary automaticity level of the driver was high, the resultant case was the high 

level of driver’s acquired automaticity that increased by the voluntary automaticity 

level. Similarly, when the involuntary automaticity level of the driver was low, the 

driver’s acquired automaticity level was determined by the voluntary automaticity level. 
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These three cases (4, 5 and 6) are in support of the results of the previous studies 

(Moskowitz, 2013; Wasserman & Wasserman, 2016; Wheatley & Wegner, 2001).  

5.3 Automated Logical Analysis 

This section deals with the verification of relevant dynamic properties of the cases 

considered in the enhanced model. For the automated verification, Temporal Trace 

Language (TTL) verification tool was used. TTL allows researchers to verify both 

qualitatively and quantitatively the model under analysis. TTL also has the ability to 

reason about time. The Temporal Trace Language (TTL) was used to perform 

automated verification of specified properties and states against generated traces. Many 

dynamic properties were formulated using a sorted predicate logic approach, based on 

the concept discussed in Chapter Three. The automated analysis further explained the 

awareness part of the IDM, and RPD Training part of the IDM  in subsections 5.3.1 and 

5.3.2, respectively. 

 

5.3.1 Automated Analysis for the Awareness Component  

Four cases were established based on the awareness component of the enhanced 

computational IDM model in the verified properties (VP1 to VP4). These properties 

were presented in semiformal and formal representations showing the application as 

regards to the cases presented: 

 

VP1: Poor Visibility Leads to Lower Confident Level to Accelerate Car 

:TRACE, t1, t2:TIME, v1,v2,v3,v4, d:REAL, X:AGENT 

[ state(, t1)  |= visibility(X, v1) & 

  state(, t1)  |= confident(X, v2) & 

  state(, t2)  |= visibility(X, v3) & 

  state(, t2)  |= confident(X, v4) & 

  t1 < t2 + d & v1 > v3]  v2 > v4 
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The first property case condition inferred that poor visibility as a result of poor/bad 

weather (rain) (Hess, Norton, Park & Street 2016; Hamdar, Qin, & Talebpour, 2016) 

and light (night) conditions (Charlton et al., 2006) lower the driver’s confidence 

decision level to accelerate the car. The level of risk increases while the level of safety 

decreases because of poor visibility. Hence, the driver has low confidence level to 

decide and therefore, his action performed is low [indicated by no (0)] for the first and 

third time frames. This property is a significant attribute reflected in the case condition 

presented in Table 5.7 showing moderate risk condition and it is illustrated in Figure 

5.2. 

VP2: Belief about Safety Improves Confidence to Accelerate Car  

:TRACE, t1, t2:TIME, R1,R2,R3,R4, d:REAL, X:AGENT 

[ state(, t1)  |= belief_safety(X, R1) & 

  state(, t1)  |= confident(X, R2) & 

  state(, t2)  |= belief_safety(X, R3) & 

  state(, t2)  |= confident(X, R4) & 

  t1 < t2 + d & R1 < R3]  R2 R4 
 

The second property case condition shows that the driver’s belief about safety increases 

his confidence level to decide to accelerate the car. This case condition is in accordance 

with the arguments of Hoogendoorn et al. (2011) and Aydoğan et al. (2014). 

 

VP3: Monotonous Decreases of Confidence Level during Risky Conditions 

 
:TRACE, t1, t2:TIME, V1,V2,V3,V4, d:REAL, X:AGENT 

[ state(, t1)  |= belief_risky(X, V1) & 

  state(, t2)  |= belief_risky(X, V2) & 

  state(, t2)  |= confident(X, V3) & 

  t1 < t2 + d & V2 > V1]  V3 0.2 
 

The third property case condition shows that the level of risk monotonously decreases 

the drivers’ confidence level to decide. This is explained using Table 5.7 and Figure 5.2. 

All the conditions presented in the first time frame were bad driving conditions with the 

exception of car condition that was presented as good condition. In this condition, the 

level of risk is higher than safety.   
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VP4: Variable v Between Boundaries 

 
For all time points t between tb and te in trace  if at t the value of v is x, then minimum value<x 
< maximum value. 

VP2≡: TRACE, t, tb, te:TIME, v:VAR, max, min:REAL [state(,t)|= has_value(v,x) & tb ≤ 

t ≤te  min < x < max. 

This formal specification can be used to check whether a variable stays between certain 

observed boundaries. For example, attention and belief activation should never be lower 

than 0 or higher than 1. 

 

5.3.2 Automated Analysis for the Recognition-Primed Decision Component  

The Automated verification for RPD component of the enhanced computational IDM  is 

discussed in this section, as related to cases in subsection 5.1.3.2. Three cases are 

established based on the RPD training model in the verified properties (VP1 to VP3).  

VP1: The Automaticity Level of the Driver Decreases with Decrease in Practice 

and Experience 

 
VP1  : TRACE, t1, t2:TIME, R1,R2,P1, P2, D1,D2:REAL 

 [state(,t1)|= has_value(practice_level, R1) & 

  state(,t2)|= has_value(practice_level, R2) & 

  state(,t1)|= has_value(experience_level, P1) & 

  state(,t2)|= has_value(experience_level, P2) & 

  state(,t1)|= has_value(automaticity, D1) & 

  state(,t2)|= has_value(automaticity, D2) & 

  t1 < t2 & R2 > R1 & P2 > P1]  D1 ≥ D2  

 

The first case condition suggested that if the driver had low practice time and 

experience, the automaticity level of the driver to make prime decision reduced as 

illustrated in Figure 5.6. This argument is in line with the studies of Panek et al. (2015) 

and Endsley (2016).  

VP2: Monotonic Increase of Variable, v for Experience Improves Automaticity  

 
For all time points t1 and t2 between tb and te in trace  if at t1 the value of v is x1 and at t2 the 
value of v is x2 and t1 < t2, then x2 ≥ x1 

VP4  : TRACE, t1, t2:TIME, X1,X2:REAL  

[state(,t1)|= has_value(v, X1) &  state(,t2)|= has_value(v, X2) & tb ≤ t1 ≤ te &  tb ≤ t2 ≤ te &  

  x2 ≥ x1 
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Similar with Panek et al. (2015) and Endsley et al. (2016) studies, the second case 

condition as shown in the formal specifications and illustrated in Figure 5.4 indicated 

that the automaticity level of the driver increased with increase in experience level.   

VP3:  Higher Attention Increases Voluntary Action 

Individual’s attention improves voluntary action (Gardner, 2012, 2015; Panek et al., 

2015). 

VP2  : TRACE, t1, t2:TIME, F1,F2,H1,H2, d:REAL  

[state(,t1)|= attention(F1) &   

 state(,t1)|= voluntary(H1) & 

 state(,t2)|= attention(F2) &  

 state(,t2)|= voluntary(H2) & 

 t2 ≥t1 +d & F1 > 0.6 & F1< F2]  H2 > H1 

 

In line with Moskowitz (2013), and Wheatley and Wegner (2001), the third case 

condition showed that the voluntary automaticity level of driver increased with increase 

in the level of his attention. 

5.4 Summary of the Chapter 

This chapter explained in detail the verification of an enhanced computational ID  

(Computational-RDT) model that was categorized into simulation, mathematical and 

automated analysis. The simulation was used for the implementation of the model in 

which the simulation traces showed the behaviour of driver in a particular condition in 

adherence to literature. The mathematical analysis was based on stability points by 

checking the values of the stability points of dynamic factors observed in the simulation 

experiments. The automated analysis was achieved based on Temporal Trace Language 

(TTL). Therefore, the verification of the Computational-RDT model was achieved in 

section 5.1, 5.2 and 5.3.   
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CHAPTER SIX 

VALIDATION OF AN ENHANCED COMPUTATIONAL 

INTEGRATED DECISION-MAKING MODEL 

6.0 Introduction 

The fourth objective of this study is to evaluate the enhanced computational IDM 

(Computational-RDT model). The evaluation of the Computational-RDT model is 

conducted in two different stages. The first stage is verification of the Computational-

RDT model (which is achieved in Chapter 5) by using simulation, mathematical and 

automated analysis methods. The second stage, which is validation of the computational 

RDT model, is achieved in sections 6.1 and 6.2 of this chapter. This is conducted by 

using human experiment where an adapted application (City Car Driving simulator) 

features were mapped with the external factors of the awareness component of the ID 

model to perform the experiment, and a questionnaire was also designed based on the 

external and temporal factors of the RPD training component of the IDM to validate the 

Computational-RDT model. This is to ensure the logical correctness of the enhanced 

model. Evaluation is an important process that helps to ensure that models and 

simulations are correct and reliable. It also ensures that the model produces results that 

actually represent the phenomenon under investigation.  

6.1 Validation of an Enhanced Computational Integrated Decision-making Model 

To validate the enhanced computional IDM (Computational-RDT) achieved in this 

study, an experimental design was conducted. Previous studies have demonstrated the 

appropriateness of experimental design for validating computational-RDT model, such 

as the RPD and SA models (Liu et al, 2009). The experimental design in this study 
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involves only a post-test experiment. The purpose of the post-test is to examine the 

effectiveness of model factors in order to see if the simulation scenarios based on the 

model factors match the behaviour of the driver in real life domain. The experiment 

determines how these factors affect drivers’ prime decision-making during emergencies.  

That is, it determines the influence of the training the driver had with the game 

simulator on the automaticity of the driver to make effective prime decision particularly 

during emergencies, which eventually enhances the drivers’ performance of action. The 

following sections present the instrument used, procedures, and the data analysis for this 

experiment. 

 

6.1.1 Instrument 

In order to validate the participants’ automaticity for effective prime decision making 

during emergencies, a questionnaire was designed as the instrument. The instruments 

were adapted from the validated items derived from previous studies. The questionnaire 

consisted of eleven (11) factors having sixty-six (66) items. A cover letter in front of the 

questionnaire explains the purpose of the research; it introduces the researcher and 

informs the participants that all information given by them shall be treated 

confidentially. The questionnaire is divided into two different sections. Section A deals 

with the demographic information of the participants such as age, gender, marital status, 

level of education, years of driving experience, and years holding a valid driving 

license. Section B consists of items on Driver Behaviour (DB) based on the external and 

temporal factors of the training model. Both sections contained instructions on how to 

fill up the questionnaire. 
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There are eleven (11) factors in section B, namely basic skills, basic practice, sensory 

ability, driving goal, driving intention, potential hazardous information, exposure to task 

complexity, perception about risk, driving knowledge, involuntary automaticity, and 

voluntary automaticity with each factor having items that measure them. For example, 

basic skill is measured by eight (8) items (Cox, Reeve, Cox, & Cox,2012; Lajunen & 

Summala, 1995; Lin et al., 2014; Patrick, 2016), basic practice is measured by nine (9) 

items (Tajvar et al., 2015), sensory ability is measured by twelve (12) items related to 

Vision and Night Driving Questionnaire (VND-Q) (Kimlin, 2016; Feng, Marulanda,& 

Donmez, 2014). In addition, literaure has measured driving goal by three (3) items 

(Chen, Gully, Whiteman, & Kilcullen, 2000; Dogan et al., 2011), driving intention by 

three (3) items (Moskowitz, 2013), potential hazardous information by four (4) items 

(Crundall et al., 2012; Huestegge, 2017; Konishi et al., 2004; Takahashi et al., 2007). 

Other factors such as exposure to task complexity is measured by eight (8) items (see 

Grill et al., 2012), perception about risk is measured by eleven (11) items (Rosenbloom 

et al., 2008), driving knowledge is measured by four (4) items (Okafor, Odeyemi & 

Dolapo, 2013; Phanindra & Chaitanya, 2016). Also, involuntary automaticity is 

measured by four (4) items (Verplanken & Orbell, 2003; Panek et al., 2015) and finally, 

voluntary automaticity is measured by four (4) items (see Verplanken & Orbell, 2003; 

Panek et al., 2015). 

 

Moreover, the Cronbach Alpha of each factor was presented in Table 3.3, Chapter 

Three. The importance of each item measuring each factor is to validate the 

effectiveness of the designed model factors to determine the effect of training on the 

automaticity of the driver for make prime decision-making, especially during 

emergencies. In addition, it is to see if the simulation scenarios based on the model 
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factors match the behaviour of the driver in terms of prime decision making in real life 

domain.  

 

The participants rated the importance of each of these factors after interacting with the 

game simulator using an eleven-point-scale. The rating scale is from (0-10), with (0-5) 

indicating Low and (6-10) indicating High (Son, Choe, Kim, Hong, & Kim, 2016; 

Karstoft, Nielsen, & Nielsen, 2017; Sung et al., 2017). In each case, low means 

poor/bad decision while high means good/correct decision.  

 

6.1.2 Experimental Procedures 

The validation process was done using validation protocols based on user-centred 

design (UCD) approach and explained using Figure 6.1. 
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Figure 6.1. Validation Process Flowchart 

 

6.1.2.1 Selection of Participants 

Representativeness is an important factor in selecting participants in an experimental 

study (Babbie, 2010). Hence, in experimental research, researchers focus more on the 

representativeness of their participants ahead of other randomization techniques. Babbie 

(2010) added that in experimental research design, representativeness of participants is 

more crucial than the sample size. Therefore, to ensure representativeness of the 

participants in this study, the participants were selected using the criteria, namely valid 

driving licence, driving experience of more than 5 years for experienced drivers, and 

less than 1 year for inexperienced drivers, and minimum driving covering 5,000 Km 
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mileage per year. In addition, the participants were middle-age drivers (23 to 53 years 

old), having knowledge of computer, video gaming, driving game simulator, and having 

willingness to play the game simulator.  These criteria are in line with prior studies 

(Bellet et al., 2011; Hjälmdahl et al., 2011). For this purpose, fifty (50) questionnaires 

were distributed at the College of Arts and Sciences (CAS), Universiti Utara Malaysia 

to select participants who fulfilled the aforementioned criteria. Hence, the sample of the 

questionnaire for selecting participants is written in English and Bahasa Malaysia as 

shown in Appendix D.  

 

Out of the fifty distributed questionnaires, thirty-seven were returned to the researcher. 

Among those returned, thirty (about 81%) participants were males and seven (about 19 

%) participants were females as shown in the pie chat in Figure 6.2.  

 

 

 

Figure 6.2. Percentage of Participant’s Gender 

 

Concerning the participants’ age group, they were middle age drivers (23-53) years. 

According to the questionnaire’s report, nineteen (about 51%) participants were less 

than thirty years, fourteen (about 38%) participants were between thirty to thirty-nine 
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years, while four (about 11%) participants were between forty to forty-nine years. 

Hence, the three ranges of the age group fall within the middle ages of the participants 

as presented in Table 6.1 and the percentage scores are presented in a pie chart form in 

Figure 6.3. 

 

Table 6.1 

Summary of Participants’ Age Group  

Age Group Frequency Per cent Valid Per cent Cumulative Per cent 

 <30 19 51.4 51.4 51.4 

30-39 14 37.8 37.8 89.2 

40-49 4 10.8 10.8 100.0 

 
Total 37 100.0 100.0  

 

 

 
 

Figure 6.3. Percentage of Participants’ Age Group 

 

In terms of the driving experience, twelve (about 32%) participants had less than 1 

years’ experience, five (about 14%) participants had 1 to 5 years’ experience, while 

twenty (about 54%) participants had greater than or equal to 6 years’ experience. Table 

6.2 and Figure 6.4 show the participants’ years of driving experience and the percentage 

scores in a pie chart, respectively. 
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Table 6.2 

Summary of Participants’ years of Driving Experience  

Driving Experience Frequency Per cent Valid Per cent Cumulative Per 

cent 

 <1 Year 12 32.4 32.4 32.4 

1-5 Years 5 13.5 13.5 45.9 

>=6 Years 20 54.1 81.1 100.0 

 
Total 37 100.0 100.0  

 

 

 

 
 

Figure 6.4. Percentage of Participants’ Years of Driving Experiences 

 

With respect to the participants’ records on Mileage per year, seventeen (about 46%) 

participants covered less than five thousand kilometres per year while twenty (about 

54%) participants covered greater or equal to five thousand kilometres per year. Table 

6.3 shows the participants’ annual mileage, and Figure 6.5 indicates the percentage 

scores in a pie chart form. 
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Table 6.3 

Summary of Participants’ Annual Mileage 

Annual Mileage Frequency Per cent Valid Per cent Cumulative Per 

cent 

 <5,000 km 17 45.9 45.9 45.9 

>=5,000 km 20 54.1 54.1 100.0 

 Total 37 100.0 100.0  

 

 

 

 
 

Figure 6.5. Percentage of Participants’ Mileage per year 

 

Concerning the participants that had valid driving licences, it was shown that twenty-

one (about 57%) participants had valid driving licences, and sixteen (about 42%) 

participants had none. Table 6.4 indicates the participants that had valid driving licences 

and those that had none. Their percentage scores are shown in Figure 6.6 in a pie chart 

form. 
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Table 6.4 

Summary of Participants with Valid Driving Licences 

 Frequency Per cent Valid Per cent Cumulative Per cent 

 Yes 21 56.8 56.8 56.8 

No 16 42.3 42.3 100.0 

 Total 37 100.0 100.0  

 

 

 

Figure 6.6. Percentage of Participants having Valid Driving Licences 

 

Concerning the participants having knowledge of desktop driving simulator, it was 

found that twenty-four (about 65%) participants had previously used desktop driving 

simulator while thirteen (about 35%) had not used it before. Table 6.5 displays the 

statistics of the participants having knowledge of desktop driving simulator, while 

Figure 6.7 shows their percentage scores in a pie chart format. 
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Table 6.5 

Summary of Participants having Knowledge of Desktop Driving Simulator  

Desktop Driving 

Simulator 

Frequency Per cent Valid Per cent Cumulative Per cent 

 Yes 24 64.9 64.9 64.9 

No 13 35.1 35.1 100.0 

 Total 37 100.0 100.0  

 

 

 

 
 

Figure 6.7. Participants that had knowledge of Desktop Driving Simulator 
 

 

In terms of participants that had knowledge of video game, it was indicated that thirty 

(about 81%) participants had previously played a video game while seven (about 19%) 

had not played any video game previously as shown in Table 6.6. Correspondingly, the 

percentage scores of those participants are presented in a pie chart in Figure 6.8.  
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Table 6.6 

Summary of Participants that had Knowledge of Video Game  

Play Video Game Frequency Per cent Valid Per cent Cumulative Per cent 

 Yes 30 81.1 81.1 81.1 

No 7 18.9 18.9 100.0 

 Total 37 100.0 100.0  

 

 

 
 

Figure 6.8. Percentage of Participants that Previously Played Video Game 
 

 

With respect to the percentage of participants using computer weekly, it was found that 

almost all participants had been using computer weekly with the exception of only one 

(about 3%) participant had not used a computer on a weekly basis. This signified that 

almost all the participants were computer literates as presented in a pie chart in Figure 

6.9. The analysis of the data collected for the selected participant as presented in Tables 

6.2 - 6.6 enables the study to focus on the selection criteria. The analysis indicates that 

all the participants recruited for this experimental study have the same characteristics, 

which satisfy the criteria for the experiment.  
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Figure 6.9. Percentage of Participants using Computer Weekly 
 

 

6.1.2.2 Consent Form 

After the participants were selected based on the criteria, then the consent form was 

administered to the selected participants.  The consent form has the following details: 1. 

Purpose of the research study experiment. 2. What you will be asked to do in the study 

experiment. 3. Required time for the experimental group and control group participants. 

4. Date & time for the experiment.  This was left open until decided by the researcher. 

5. Venue. 6. Risks. 7. Benefits/ compensation. 8. Confidentiality. 9. Voluntary 

participation. 10. Right to withdraw from the study. 11. Permission to snap and use 

photos. 12. Whom to contact if you have questions about the study experiment and 

participant’s name, signature and date. This is to ensure that the participants have full 

knowledge of the experimental study; they agree to the conditions and willing to 

participate. The sample of the consent forms in both English language and Bahasa 

Malay translated version is shown in Appendix E. 
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6.1.2.3 Date and Time  

A suitable date and time for the experiment was fixed to carry out the experiment and 

was communicated to the selected participants via their contacts information. 

 

6.1.2.4 Participants 

Twenty participants were selected in this experiment in line with the previous studies 

(e.g., Bellet et al., 2011; Kaber, Zhang, Jin, Mosaly, Garner, 2012; Liu et al., 2009) that 

had discussed driver behaviour. Among the participants selected, eighteen were males, 

and two were females of middle age (23 to 53 years old). In addition, all the twenty 

participants were experienced drivers (i.e., driving experience >5yrs) had valid driving 

licences, and covered a minimum of 5,000 km mileage per year in driving. The 

demographic information of the participants is shown in Appendix F.  

 

6.1.2.5 Venue of the Experiment 

All selected participants were brought to Human-Centered Computing Research Lab 

(HCCRL) for the experiment. The experiment room was very quiet, conducive and 

convenient for the participants for the smooth interaction with the game application. 

  

6.1.2.6 Grouping of Participants 

The participants selected for the experiment were grouped into two using simple 

randomization technique (Suresh, 2011). For example, the researcher used a shuffled 

deck of cards method by writing 1 to 20 in small pieces of paper. One (1) to ten (10) 

represented experimental group participants while eleven (11) to twenty (20) 

represented the control group participants. The small pieces of paper were then moulded 

and put into small container. Each participant then picked one of the moulded papers. 
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The use of a shuffled deck of cards method is in line with the previous studies (Daddis 

& Brunell, 2015; Maxfield, Patil & Cunningham, 2016). The experimental group 

participants were trained using city-driving test during the experiment while the control 

group were not trained; they played the free driving test in the game simulator. 

 

6.1.2.7 Participants Interaction with the Simulator  

At this stage, the participants (drivers) interacted with the game simulator. The game 

simulator has two main stages, career driving and free driving. The game simulator 

simulates series of fictitious driving, experiences and scenarios (good, average and bad 

driving conditions). These driving conditions (scenarios) are based on the simulation 

scenarios used in MATLAB as explained in Chapter 5. Each of these scenarios was 

labelled A, B, and C and configured into six different PCs that the participants used, 

with each PC having a scenario configured based on the model external factors mapped 

inside the game simulator. Thereafter, all the participants (experimental and control 

groups) created their profiles in the simulator to store their individual information. 

However, before the participants interacted with the simulator, protocol (user) guide 

was provided for the two groups of participants (experimental and control groups) on 

how to perform the experiment. The details of the protocol guide are shown in 

Appendix G. 

 

The experimental group played both of the two stages (career driving and free driving), 

while the control group played only the free driving stage. In the free driving stage, the 

three different scenarios consisting of different conditions in driving environment are 

set up. These include road, traffic, obstacles, car condition and visibility.  The photos 

of participants who interacted with the game simulator were taken, and permissions 
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were given by the participants to the researcher to use these pictures as evidence of 

participation. Appendix H displays this evidence.  

 

After the two groups of participants had interacted and played with the three different 

scenarios in the city driving game simulator, questionnaire based on the external and 

temporal factors of the designed model were administered to the participants to fill. The 

participants filled the questionnaire based on their experiences and interactions with the 

game simulator. See Appendix I for the sample of the post-test questionnaire both in 

English and in Bahasa Malaysian translated version. Thereafter, the questionnaire was 

analysed using statistical package for social sciences (SPSS). 

 

6.1.3 Data Analysis 

In this subsection, the study discusses the results of simulator and questionnaire. The 

results are based on descriptive analysis. Scenarios of prime decision-making and 

summary of the subsection are also discussed. 

 

6.1.3.1 Simulator Results Discussion 

The simulator results were obtained for the twenty (20) participants involved in the 

experiment, ten (10) participants each for both control and experimental group. The 

experiment record consists of distances the driver covered without committing any 

traffic violation. These traffic violations are classified into “no violations (NV)”, “no 

major violations (NMV)”, and “no accident (NA)” while driving the game simulator.  
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Table 6.7 

Summary of scenarios settings in simulator 

Scenarios Traffic Density Measurement (%) 

A 0 - 20 (Low Traffic) 

B 41 - 60 (Average Traffic) 

C 81 - 100 (High Traffic) 

These violations were recorded for one session because the participants played the game 

only once. Hence, the setting of the scenarios in the simulator was based on their traffic 

density measurements as shown in Table 6.7.  

Table 6.8 

Participants’ Simulator Traffic Records for Scenario A 

SCENARIO A (EXPERIMENTAL GROUP) 

PARTICIPANTS 
NV 

(miles) 

NMV 

(miles) 

NA 

(miles) 

1 0.50 0.51 0.84 

2 0.50 0.51 0.72 

3 0.61 0.90 1.22 

4 0.35 0.49 0.54 

5 0.17 0.39 1.44 

6 0.49 2.54 8.16 

7 0.32 0.44 0.81 

8 0.06 0.07 0.13 

9 0.05 0.06 0.06 

10 0.53 0.81 0.84 

Mean score 0.358  0.672 1.476 

SCENARIO A (CONTROL GROUP) 

PARTICIPANTS 
NV 

(miles) 

NMV 

(miles) 

NA 

(miles) 

1 0.28 0.58 0.67 

2 0.24 1.11 0.77 

3 0.36 0.36 0.86 

4 0.21 0.34 1.05 

5 0.55 1.44 0.83 

6 0.30 0.46 0.60 

7 0.20 0.35 0.81 

8 0.46 0.87 0.87 

9 0.33 0.33 0.86 

10 0.54 0.54 0.86 

Mean scores 0.347  0.638 0.818 

Note: The participants are categorised into experimental and control groups 
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The data for the ten participants, each from both experimental (EXP) and control 

(CTRL) groups in scenarios A, B and C is presented in Table 6.8, 6.9, and 6.10, 

respectively. 

 

Table 6.9 

Participants’ Simulator Traffic Records for Scenario B 

SCENARIO B (EXPERIMENTAL GROUP) 

PARTICIPANTS 
             NV 

(miles) 

NMV 

(miles) 

NA 

(miles) 

1 0.60 0.60 0.60 

2 0.30 0.50 0.55 

3 0.53 0.98 1.89 

4 0.39 1.14 0.74 

5 0.27 0.35 2.11 

6 0.17 0.41 0.75 

7 0.50 0.50 0.57 

8 0.20 0.34 0.40 

9 0.19 0.55 0.78 

10 0.27 0.91 0.91 

Mean scores            0.342              0.628   0.930 

SCENARIO B (CONTROL GROUP) 

PARTICIPANTS 
             NV 

          (miles) 

 NMV 

 (miles) 

NA 

(miles) 

1 0.01          0.01             0.01 

2 0.33          1.62             1.62 

3 0.26          0.45             0.56 

4 0.21          0.44             0.48 

5 0.35          0.86             0.86 

6 0.51         1.26             2.71 

7 0.39         1.14             0.74 

8 0.12         0.38             0.74 

9 0.32         0.32             0.52 

10 0.25         0.52             0.52 

Mean scores            0.275               0.70                0.876 

Note: The participants are categorised into experimental and control groups 
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Table 6.10 

Participants’ Simulator Traffic Records for Scenario C 

SCENARIO C (EXPERIMENTAL GROUP) 

PARTICIPANTS 
NV 

(miles) 

NMV 

(miles) 

NA 

(miles) 

1 0.69 0.62 0.82 

2 0.56 0.46 0.81 

3 0.59 0.61 0.82 

4 0.50 0.50 0.65 

5 0.73 0.72 3.01 

6 0.69 0.78 1.52 

7 0.58 0.61 0.71 

8 0.65 0.55 0.76 

9 0.51 0.47 0.62 

10 0.63 0.61 0.78 

Mean scores 0.613  0.593 1.05 

SCENARIO C (CONTROL GROUP) 

PARTICIPANTS 
NV 

(miles) 

NMV 

(miles) 

NA 

(miles) 

1 0.11 0.14 0.14 

2 0.17 0.22 0.22 

3 0.21 0.21 0.27 

4 0.20 0.39 0.53 

5 0.39 0.45 0.67 

6 0.12 0.19 0.29 

7 0.40 0.76 1.06 

8 0.41 0.77 0.83 

9 0.16 0.25 0.25 

 10 0.41 0.46 0.60 

Mean scores 0.258  0.384 0.486 

Note: The participants are categorised into experimental and control groups 

 

The data was analysed using Statistical Tools for Social Sciences (SPSS). The result 

was presented using bar chart as shown in Figure 6.10. It showed the violations 

recorded against the distance covered in miles, comparing control and experimental 

groups in scenarios A, B and C. Moreover, No Violation (NV), No Major Violation 

(NMV), and No Accident (NA) were represented in light blue colour, dark red colour, 

and green colour, respectively.  
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Figure 6.10. The violations recorded by groups’ participants in all scenarios 

 

The experimental group participants have the distance mean scores of 0.358, 0.342 and 

0.613 for committing “no violation” in traffic under scenarios A, B, and C, respectively. 

The mean scores of the experimental group participants under all the scenarios are 

greater than the mean scores of the control group participants, which are 0.347, 0.275 

and 0.258 for scenarios A, B, and C, respectively.  Based on these scores, it can be 

concluded that the experimental groups performed better than the control group 

participants in terms of longer distance covered without violation of traffic. 

 

With respect to the measurement of “no major violation” in traffic, the experimental 

group participants have the distance mean scores of  0.672, 0.628 and 0.593 for 

scenarios A, B, and C respectively while those of the control group participants are 

0.638, 0.700 and 0.384 for scenarios A, B, and C respectively.  Based on the distance 

mean scores of the two groups, the experimental group participants covered longer 
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distance with “no major violation” committed compared to the control group 

participants under scenarios A and C. However, the distance mean scores covered with 

“no major violation” for control group participants under scenario B is longer than that 

of the experimental group participant. This result is not surprising in the sense that 

scenario B is a normal situation with conditions such as daytime, normal traffic flow 

and good visibility. Therefore, any of the participants from the two groups has the 

tendency to perform better under this scenario.  

 

Regarding the measurement of “no accident” in traffic, the experimental group 

participants have the mean scores of 1.476, 0.930 and 1.050 under scenarios A, B, and 

C, respectively while the control group participants have the mean scores of 0.818, 

0.876 and 0.486 under scenarios A, B, and C, respectively.  Based on these scores, it 

can be concluded that experimental group covered longer distance with “no accident” 

committed compared to the control group participants under scenarios A, B and C. On 

the whole, it can be concluded that the experimental group participants performed better 

than the control group participants in terms of longer distances covered without 

committing major violations of traffic, or having accident in traffic. 

  

To test the significant level of the difference between experimental and control groups, 

this study employs independent-sample t-test. Table 6.11 presents the results of the 

independent sample t-test together with the Levene’s test for equality of variance. The 

Levene’s test of equality of variance suggests that if the test is significant at the 5% 

level, it means that the assumption of equal variance is violated and the “equal variance 

not assumed” is used. Conversely, if the significant value of Levene's Test for Equality of 

Variances is not significant at the 5% level, one can conclude that the assumption of equal 
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variances is not violated and for this reason, “equal variances assumed” are used (Coakes, 

2013; Field, 2009; Pallant, 2010). The independent t-test of equality is used to 

determine the significant difference between the experimental and control groups in 

relation to ‘No Violation’, ‘No Major Violation’ and ‘No Accident’ for the three 

scenarios A, B and C.  

 

The results presented in Table 6.11 for scenario A and B suggested that the values of 

Levene's Test for Equality of Variances are not significant for ‘No Violation’, ‘No 

Major Violation’ and ‘No Accident’.  Since the values were greater than 5% it can be 

concluded that the assumption of equal variances is not violated and therefore, equal 

variances assumed are used. The corresponding results of t-test using the P-value for 

‘No Violation’, ‘No Major Violation’ and ‘No Accident’ are lesser than 2.0 or P > 0.05 

and thus, they are not significant at 5%. Hence, this implied that there was no significant 

difference in each of ‘No Violation’, ‘No Major Violation’ and ‘No Accident’ between 

the experimental and control groups for scenarios A and B.  

 

The results in Table 6.11 for scenario C suggested that the significant value of Levene's 

Test for Equality of Variances indicated the P- value 0.009 for ‘No Violation’.  Since 

this value is less than 5% it can be concluded that the assumption of equal variances is 

violated and for this reason, equal variances not assumed are used. The corresponding 

result of t-test = 7.479 with the significant value = 0.000. Since the significant value is 

lesser than 5%, it is concluded that there is significant difference in ‘No Violation 

between the experimental and control groups. Also for scenario C in Table 6.11, 

Levene's Test for Equality of Variances is significant at 5% level (p-value 0.031) for 

‘No Major Violation’. This suggests that the assumption of equal variances is violated 



 

 

  182 

and therefore, equal variances not assumed are used. The result of t-test value is 2.629 

with the significant value of 0.017. The significant value, lesser than 5%, suggests that 

there is significant difference in ‘No Major Violation between the experimental and 

control groups.  

 

Table 6.11 shows that for scenario C, Levene's Test for Equality of Variances is 

insignificant at 5% with p value equals to 0.191 for ‘No Accident’. This means that 

there is no violation of the assumption of equal variances and hence equal variances 

assumed are used. The t-test result is equal to 2.247 with p-value equals to 0.037 

indicating that there is a significant (at the 5% level) difference in ‘No Accident’ 

between the experimental and control groups.  

  

Furthermore, in scenario C Table 6.11, for experimental groups, the mean scores 

(0.613), (0.593) and (1.050) for ‘no violation’, ‘no major violation’ and ‘no accident’, 

respectively are higher than the mean values (0.258), (0.384), and (0.486) of control 

groups for ‘no violation’, ‘no major violation’, and ‘no accident’, respectively. This 

result shows that scenario C is a high-risk scenario having bad driving conditions such 

as pedestrian and traffic density of 100%, and many obstacles. In addition, the 

participants under this scenario drove at night and when it was raining thereby facing 

visibility problems due to bad weather condition. 
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Table 6.11 

Participants’ Simulator Results for Test of Mean Difference 

Violations Group Partic

ipants 

Mean Levene's Test for 

Equality of 

Variances 

t-stat p-

value 

F Sig. 

No Violation (A) Experimental 10 0.457 2.793 0.112 1.849 0.081 
 

Control 10 0.347     

No Major 

Violation (A)  

Experimental  

Control 

10 

10 

0.672 

   0.638  
0.653 0.430 0.134 0.895 

No Accident  (A) Experimental 10 1.476 4.220 0.055 0.871 0.395 
 

Control  10 0.818   

  

No Violation (B) Experimental 10 0.342 0.517 0.481 1.014 0.324 
 

Control  10 0.275   

  

No Major 

Violation (B) 

Experimental 

 

Control 

10 

 

10 

0.628 

    

0.700 

4.352 0.051 -0.396 0.697 

    

  

  

No Accident (B) Experimental 10 0.930 0.182 0.675 0.178 0.861 
 

Control  10 0.876 
  

  

No Violation (C) Experimental 10 0.613 8.571 0.009 7.479 0.000 
 

Control  10 0.258   

  

No Major 

Violation  (C)  

Experimental 

Control 

10 

10 

0.593 

0.384 

5.484 0.031 2.629 0.017 

    

  

  

No Accident (C) Experimental 10 1.050 1.843 0.191 2.247 0.037 

  Control 10 0.486   

  

Note: The tests are performed for Scenarios, A, B and C 

 

However, scenario A and B are associated with good driving conditions such as 

pedestrian and traffic density of 0-50%, and less obstacles. Under these scenarios, there 

was no visibility problem and the participants drove during the day time when the 

weather condition was clear. The results indicate that in scenario C, there are significant 

differences between the experimental and control groups in terms of ‘no violation’, ‘no 

major violation’ and ‘no accident’. This suggests that scenario C being the high-risk 

scenario requires the expertise of the participants.  
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In this case, the influence of training is paramount because of the complexity of 

scenario C.  In addition, the results indicated that in scenario C, the mean scores for ‘no 

violation’, ‘no major violation’ and ‘no accident’ were greater for experimental groups 

than for the control groups. This implies that training plays an important role in making 

better decision by drivers in experimental group as compared to those in control group. 

These results support the earlier stated null hypothesis (H0 in Chapter 3), which states 

that training improves driver’s prime decision making. 

 

6.1.3.2 Validation of the Enhanced Computational Integrated Decision-making 

Model 

This section discusses the analysis of participants’ responses obtained through 

questionnaire designed based on the RPD training part of the IDM external and 

temporal factors to validate the the Enhanced Computational IDM (Computational-

RDT) model. The responses of the participants from the two groups are analysed using 

Statistical Tools for Social Sciences (SPSS), and the results are presented in Tables 6.12 

and 6.13. The two tables contain the external and the temporal factors discussed in 

Chapter Four, subsections 4.2.1 and 4.2.2. 
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Table 6.12 

Mean Scores for the Experimental Group 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Mean 

Basic Skills 6.63 7.50 7.50 7.25 7.13 7.88 7.38 7.25 8.50 5.88 7.29 

Basic Practice 6.33 6.44 6.78 7.22 6.44 6.22 6.56 6.78 6.89 6.00 6.57 

Sensory Ability 4.50 5.00 6.00 4.58 5.08 5.58 4.33 5.42 5.33 4.92 5.08 

Driving Goal 9.00 7.00 8.00 9.00 8.00 9.00 9.00 9.00 9.00 9.00 8.60 

Driving Intention 9.00 7.00 8.00 9.00 8.00 9.00 9.00 8.00 9.00 9.00 8.50 

Potential 

Hazardous 

Information 

8.00 7.50 8.00 9.25 7.50 8.25 7.75 8.75 9.00 6.75 8.08 

Exposure on 

Task Complexity 
8.25 8.25 8.25 8.00 7.50 7.75 8.25 8.75 9.25 6.75 8.10 

Risk Perception 7.73 7.73 7.45 7.91 8.00 7.27 8.18 7.73 8.27 6.91 7.72 

Driving 

Knowledge 
9.25 9.00 9.25 9.00 8.50 9.50 9.50 9.00 9.50 9.00 9.15 

Involuntary 7.50 7.50 8.00 7.00 8.50 7.75 7.50 7.50 7.00 7.25 7.55 

Voluntary 2.50 2.50 2.00 3.00 1.50 2.25 2.50 2.50 3.00 2.75 2.45 

Mean 7.15 6.86 7.20 7.38 6.92 7.31 7.27 7.33 7.70 7.65  

 

Table 6.12 and Table 6.13 show the mean scores of individual participants in 

experimental group and the control group, respectively for each of the eleven (11) 

factors based on the items used to measure them. According to the results presented in 

both tables, there were clear indications that the mean scores values for all the factors in 

Table 6.12 are higher than values presented in Table 6.13. This suggested that training 

given to the experimental group participants reflected in their responses to the 

questionnaire. For instance, in the case of driving knowledge, the mean score (9.15) of 

the experimental group participants is higher (6.58) than that of the control group. In 

addition, the driving knowledge as a factor had the highest mean score among all the 

factors in the experimental group. The higher mean value obtained from the driving 

knowledge indicated that the experimental group participants had a clear understanding 

of traffic rules, traffic signs and signals, that minimized the risk of accident. This 

evidence was consistent with the argument of Zaidi, Paul, Mishra and Srivastav (2016) 
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that abiding by traffic rules could lead to less or no accident. Therefore, training of 

drivers is important for prime decision making, in particular, during emergencies.  

 

Table 6.13 

Mean Scores for the Control Group 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Mean 

Basic Skills 5.38 6.00 4.13 6.13 6.00 6.50 5.88 6.25 6.38 6.25 5.89 

Basic Practice 6.11 4.78 4.22 5.00 5.33 5.56 4.78 5.00 5.33 5.67 5.18 

Sensory Ability 5.00 3.83 3.92 4.00 3.75 4.00 2.67 2.92 3.17 3.17 5.12 

Driving Goals 7.00 7.00 6.00 6.00 6.00 6.00 6.00 7.00 7.00 6.67 6.47 

Driving Intention 7.00 7.00 6.00 6.00 6.00 6.00 6.00 7.00 7.00 6.67 6.47 

Potential 

Hazardous 

Information 

6.75 6.75 5.50 7.50 7.25 6.50 6.25 6.00 6.25 6.50 6.53 

Exposure on 

Task Complexity 
6.38 5.25 5.38 6.38 6.25 6.00 6.38 6.38 6.38 6.75 6.15 

Risk Perception 6.27 5.64 6.00 6.45 7.00 6.09 5.45 5.82 5.64 6.73 6.11 

Driving 

Knowledge 
6.75 6.75 6.50 6.75 7.00 6.50 6.5 6.25 6.50 6.25 6.58 

Involuntary 6.50 6.25 5.50 6.50 7.50 6.00 6.25 6.50 6.50 6.50 6.40 

Voluntary 3.50 3.75 4.50 3.50 2.50 4.00 3.75 3.50 3.50 3.50 3.60 

Mean 6.06 5.73 5.24 5.84 5.87 5.74 5.45 5.69 5.79 5.88  

  

 

Similarly, the risk perception mean score of the experimental group participants is 

higher than that of the control group participants. This indicates that the experimental 

group participants have a higher tendency to avoid, recognize, and handle risk 

(Rosenbloom et al., 2008). However, the results for the voluntary automaticity factor, 

that captured the conscious automaticity of the participants, revealed that the 

experimental group had lower mean score compared to the control group participants. 

The reason being that for any prime decision making, the participant needed to operate 

independent of conscious control. Hence, training enhances the automatic actions of the 

participants (E.g., matching of clutch and changing of gear) during driving. 
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Furthermore, the mean score for the driving goal of the experimental group participants 

is higher than that of the control group participants. This is because the experimental 

participants can manage multiple goals (e.g., safety and time saving) while driving. This 

result is in line with Dogan et al.’s (2011) assertion that drivers’ behaviours are 

regulated with their goals of which safety has the highest priority.  

 

The factor related to participants’ exposure to task complexity for the experimental 

group participants has higher mean score than the control group. This revealed that the 

participant in the experimental group could handle complex tasks such as accelerating, 

activating a direction indicator, braking, changing gear, checking surrounding for unsafe 

situations, maintaining lane and steering (Grill et al., 2012). In fact, the ability of the 

experimental group to handle task complexity enables drivers to attain multiple goals. 

Further analysis on the mean scores of all the participants in each of the factors with 

regard to the items that measure them for both the experimental and control groups are 

presented in Figures 6.11 using bar chart. 

 

 

Figure 6.11. Mean scores of factors for the experimental and control group 

0
2
4
6
8

10

S
ca

le

Factors

Comparison of Experimental and Control Group 

Individual Participant's Mean Scores

Experimental Control



 

 

  188 

Table 6.14 presents the independent sample t-test for the comparison between the 

experimental and control group participants in relation to the following factors: Basic 

Skills, Basic Practice, Sensory Ability, Driving Goals, Driving Intention, Potential 

Hazardous Information, Exposure to Task Complexity, Risk Perception, Driving 

Knowledge, Involuntary automaticity, and Voluntary automaticity. 

 

The results in Table 6.14 indicates that the values of Levene's Test for Equality of 

Variances are not significant at 5% for all the factors, suggesting that there is no 

violation of assumption of equal variances. Hence, equal variances assumed are 

employed. The corresponding values of t-test for almost all the factors are greater than 

5.0, indicating that they are significant at the 1% level. This suggests that there is 

significant difference in each of the factors between the experimental and the control 

groups. 

 

Furthermore, for basic skills, basic practice, sensory ability, driving goals, driving 

intention, potential hazardous information, exposure to task complexity, risk perception, 

driving knowledge, involuntary automaticity factor and voluntary automaticity factor, 

the mean scores for the experimental group were higher than those for the control 

group. Therefore, the findings from the analysis of participants’ responses based on 

questionnaire indicated the influence of training on the experimental group participants 

that made them have better decision-making skill as compared to control group. 
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Table 6.14 

Results of Independent Sample Test  

Factors Group 

Parti

cipan

ts 

Mean 

Levene's Test for 

Equality of 

Variances 

t-test for 

Equality of 

Means 

    

 

  F Sig. t-stat p-value 

Basic Skills Experimental 10 7.29 0.001 0.982 4.50 0.000  
Control 10 5.89  

    

Basic Practice Experimental 10 6.57 1.546 0.23 6.81 0.000  
Control 10 5.18  

    

Sensory Ability Experimental 10 5.08 0.626 0.439 5.29 0.000  
Control 10 3.64  

    

Driving Goals Experimental 10 8.60 0.58 0.456 7.84 0.000  
Control 10 6.47  

    

Driving Intention Experimental 

Control 

10 

10 

8.50 

6.47 

 

1.618 

 

 

0.22 

 

 

7.42 

 

 

0.000 

 

 

Potential 

Hazardous 

Information 

Experimental 10 8.08 0.773 0.391 5.10 0.000 

Control 10 6.53  
    

Exposure on Task 

Complexity 

Experimental 10 8.10 0.463 0.505 7.43 0.000 

Control 10 6.15  
    

Risk Perception Experimental 

Control 

10 

10 

7.72 

6.11  

0.69 

  

0.417 

  

7.77 

  

0.000 

  
Driving 

Knowledge 

Experimental 10 9.15 0.771 0.391 20.6 0.000 

Control 10 6.58     

Involuntary Experimental 10 7.55 0.000 1.000 5.37 0.000  
Control 10 6.40     

Voluntary Experimental 10 2.45 0.000 1.000 -5.37 0.000 

  Control 10 3.60     

Note: Independent sample test comparing experimental and control group participants 

The findings obtained by this study is consistent with the proposition made earlier in 

Chapter 3, as indicated by H0, which states that training improves driver’s prime 

decision making.  

 

6.1.3.3 Scenarios of Prime Decision-Making 

The two critical decisions in prime decisions making are panic stop and sudden swerve 

to another direction (Leland, 2008). This is obtainable in the game simulator used in this 

experimental study where the participants take these decisions at a point in time when 
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playing the game simulator. These prime decisions are as a result of two obstacles (car 

and pedestrian). These obstacles make the situation become an emergency. The 

flowchart diagrams in Figures 6.12 and 6.13 explain the two obstacles. Figure 6.12 

illustrates pedestrian as an obstacle, while Figure 6.13 illustrates car swerving as an 

obstacle. 

 

    
 

 
 

Based on the flowchart in Figure 6.12, the pedestrian supposes to cross the road at the 

crosswalk (pedestrian crossing). However, in an instance whereby the pedestrian crosses 

the road at a wrong place (at the traffic light junction or the roundabout etc.), this is 

considered as an obstacle. It causes the participant to make human logical decision to 

make a panic stop. In this case, the participant supposes to stop before the crosswalk for 

the pedestrians to cross the road successfully, to avoid an accident. However, if the 

Figure 6.12. Flowchart diagram of pedestrian as an obstacle 
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participant stops at the crosswalk, this leads to accident (pedestrian accident) by hitting 

the pedestrians crossing the road. 

 

 

 
 

In Figure 6.13, the participant swerves for good human logical reasoning to avoid 

accident. For example, when the participant is driving, another car suddenly crosses 

over and overtakes the participant car with lesser speed. In that situation, the participant 

cannot apply brake due to the nature of the traffic where other cars were behind the 

participant's cars. As such, the participant has to decide to make sudden swerve to 

another direction. However, if the participant makes sudden swerve to another direction, 

he/she can continue driving. Otherwise, if dangerous swerving is made, he/she is likely 

Figure 6.13. Flowchart diagram of car overtaking as an obstacle 



 

 

  192 

to be involved in an accident by hitting another car, or with another car that pulls out 

from any direction in the traffic during the swerving process. Based on the 

aforementioned two logical decisions, the designed model in this study is further 

explained using computational reasoning approach. This enables the researcher to see 

how the designed model can reason out. The computational reasoning is viewed from 

two perspectives. On the one hand, it is the computational reasoning with situation 

awareness part of the IDM, and on the other hand, it is the computational reasoning with 

RPD training part of the model. 

 

The conceptual SA part of the IDM external factors is mapped with the game simulator 

features based on driving conditions. The driving conditions are categorized into three 

scenarios (A, B, and C). To explain the reasoning process, the results obtained from the 

game simulator in scenario C are used. This is because all the conditions mapped with 

the simulator in scenario C were bad/risky driving conditions except the car condition 

that was good for the three scenarios used in the simulator settings. 

 

As earlier shown in Table 6.10, the participants’ records of the experimental and control 

group in scenario C contain the distances the participants covered while driving the 

game simulator without committing violations (NV), major violations (NMV) and 

accident (NA). In this scenaro, the fourth participant from the experimental group has 

the lowest distance covered while the fifth participant has the highest. From the control 

group, the first participant and the seventh participant have the lowest (0.39) and highest 

(2.22) distances covered, respectively. This implies that the lower the distance covered 

by the participant, the poorer the decision made and the higher the distance covered by 

the participant, the better the decision made by the participant. For example using 
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scenario C from Table 6.10, the fifth participant from the experimental group make two 

good human logical decisions based on the participant distance scores, 0.73, 0.72 and 

3.01 for no violations (NV), no major violations (NMV) committed and no accident 

(NA), respectively using the simulator. The two good human logical decisions of the 

participant are: 1) the participant carefully performed sudden swerve to another 

direction successfully and continued driving rather than making dangerous swerving 

that might lead to accident. 2) The participant made a panic stop, and successfully 

stopped before the crosswalk for the pedestrians to cross the road successfully rather 

than hitting the pedestrian (i.e., the participant avoided hitting the pedestrian). These 

logical decisions of the participant are triggered by the factors involved in the 

conceptual RDT model. From the SA part of the IDM , the decisions of the participant 

are triggered using backward engineering process. The participant decisions are as a 

result of the belief activation for safety that is higher than the belief activation for risk. 

The believe activation for safety is as a result of the belief formation of elements 

observed from the driving environment such as road, traffic, obstacle and visibility. The 

belief formation is done based on the elements observed from the driving environment 

and the expectation of the same elements. The observation of the elements is triggered 

by the environment and the attention of the driver on these same elements.  

 

In addition, from the RPD training part of the IDM for the experimental group presented 

in Table 6.12 subsections (6.2.3.2), the same participant five from the experimental 

group makes good decisions based on the mean scores that measure the model factors 

using questionnaire. The participant good decisions are facilitated by these factors. For 

example, experienced automaticity (that is, long-term automaticity) is prompted by 

acquired (short-term automaticity) automaticity that is triggered by voluntary (1.50) and 
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involuntary (8.50) automaticity. In addition, the involuntary automaticity is triggered by 

a habitual-direction action that is also a form of unconscious automaticity, while 

voluntary automaticity is stimulated by a goal-directed action that is a form of conscious 

automaticity. The habitual-direction action is prompted by driving knowledge (8.50) 

and priming factor. The goal-directed action is activated by priming and attention of the 

driver on the elements in the environment. The driver’s knowledge is prompted by 

rehearsed experience and driver’s experience while priming is stimulated by driver’s 

experience, driver ability and intention (8.00). The attention of the driver is stimulated 

by rehearsed experience and risk perception (8.00) while his/her experience is triggered 

by knowledge (8.50), and rehearsed experience. Risk perception is prompted by driver 

ability and perception about hazard while his/her ability is stimulated by his/her 

experience and acquired skills. In addition, rehearsed experience is prompted by 

driver’s ability and practice while practice is triggered by driving knowledge (8.50) and 

basic practice (6.44).  More so, acquired skill is prompted by basic skill (7.13) and 

sensory ability (5.08) while perception about hazard is stimulated by driving goal 

(8.00), potential hazardous information (7.50) and perception about task. Perception 

about task is triggered by exposure to task complexity (7.50) and driver’s ability while 

exposure to task complexity is facilitated by driving knowledge (8.50). In general, based 

on the integration of the two models and the participant scores, the participant from 

experimental group performed good logical decisions to swerve suddenly to another 

direction successfully, and to avoid hitting the pedestrian.  

However, concerning the control group under the same scenario C, the first participant 

from this group make two poor/incorrect and illogical decisions based on the enhanced 

IDM (called RDT model).  The simulator distance scores results are presented in Table 

6.10 and the RPD training part of the IDM factors mean scores for the control group are 
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presented in Table 6.13.  From Table 6.10, the first participant from control group has 

distance scores of 0.11, 0.14 and 0.14 for no violations (NV), no major violations 

(NMV) committed and no accident (NA) in traffic, respectively. From the RPD training 

part of the ID model using backward engineering reasoning process, the decisions of the 

participant one (1) from this control group are also triggered by the similar factors as 

those of experimental group, although with different scores as shown in Table 6.13. 

 

Based on the distance scores gained by the participant, it can be said that, one, the 

participant made dangerous swerving to another direction thereby causing an accident 

(i.e. crashed into another car), and two, the participant did not stop before the crosswalk, 

thereby hitting the pedestrian that was crossing the road (i.e., caused pedestrian 

accident). The two aforementioned decisions made by the participants are illustrated in 

Appendix J. 

 

Conclusively, in the SA part of the IDM, training reflects on the decision making of 

drivers (participants). The training given to the drivers of experimental group influenced 

him/her to make correct/good decision, particularly in scenario C as compared to the 

control group participants. Similarly, in the RPD training part of the IDM, training also 

reflects on the decision making of drivers (participants) in the questionnaire results. The 

training of the drivers influenced the correct/good decision making of experimental 

group as compared with the control group participants. Hence, the integration of the two 

models influences the decision making of drivers (participants). 
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6.2 City Car Driving Simulator 

The City Car Driving Simulator Home Edition (City Car Driving, 2017), which is a car 

simulator game called 3D instructor, is adapted in this study to validate the proposed 

model. It is a Russian game developed by Havok.com Inc. The simulator is designed to 

assist users to feel the car driving in a big city or country under different conditions. 

 

The game simulator uses advanced car physics to achieve a realistic car feeling and a 

high-quality render engine for graphical realism. Pedestrians, cars, and roads are created 

to make the players feel they are driving a real car in a real city. Several studies (Craye 

& Karray, 2015; Craye, Rashwan, Kamel & Karray, 2016; Dicke, Jakus, Tomazic & 

Sodnik, 2012; Yang, Liang & Chang, 2016; Yang, Liang, Chang & Lin, 2015) have 

used the City Car Driving Simulator to compare and identify individual driving 

behaviour. The justification for choosing the City Car Driving Simulator is that it has 

several strengths or advantages over other shelf simulators such as The Open Racing 

Car Simulator TORCS (Wymann, Espié, Guionneau, Dimitrakakis, Coulom & Sumner, 

2000) and Systems Technonology Inc. interactive driving simulator (STISIM) (Allen, 

Stein, Aponso, Rosenthal & Hogue, 1990).  As a 3D game simulator, it is used to 

synthesize almost realistic 3-D road scenes with dynamic traffic streams where a virtual 

driver drives a car in the simulation system. This system embodies the driver behaviour 

of quality, meeting the criteria for comparing and identifying the driver’s driving 

behaviour; the system modifies car physics so that one can have a very customizable 

and expandable simulator (Yang, Liang, & Chang, 2016; Yang, Liang, Chang & Lin, 

2015). 
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The City Car Driving simulator must importantly supported the integration of the 

external factors of the SA components of the ID model that has been used in the 

experiment to train the experimental group participants. This show that the simulator 

provides basic driving skills training (City Car Driving, 2017) that serves as advantage 

to the experimental group participants compared to the control group participants. 

 

The simulator supports the simulation of multiple driving environments, such as 

different regions of a city centre, a motorway or a highway. It also enables a variety of 

different driving routes and traffic intensity conditions to assist and form basic driving 

skills (Dicke, Jakus, Tomazic, & Sodnik, 2012). In addition, it enables driver to be 

accustomed to car controls by learning how to operate correctly with the wheel and 

pedals, how to confidently switch to the appropriate gear, and how to properly employ 

steering techniques (Dicke et al., 2012). 

 

More so, the car simulator makes it possible to train basic physical car driving skills, 

remember road signs and traffic lane markings, learn how to drive through signalled and 

unsupervised crossings, drive on several types of road under various outdoor conditions 

such as weather, light, and traffic conditions (Craye, Rashwan, Kamel & Karray, 2016). 

Furthermore, the car simulator allows the training of various types of parking, and other 

manoeuvres. The quality of the graphics along with the wide view displayed offers the 

driver a realistic driving experience (Craye et al., 2016). 

 

The City Car Driving Simulator is appropriate for simulating driving scenarios and 

experiences because of the possibility of manipulating all the important factors that 

influence prime decision-making process in driving by the computational RDT model. 
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For instance, in the simulator, the environmental factors such as the road, traffic, 

obstacles and weather/light conditions are adjusted to be in line with the experiment 

requirement. In addition, the adapted simulator supports many real driving features and 

conditions that are explained in detailed as shown in a table in Appendix K. And the 

system requirement to run the application is shown in Appendix L. 

   

6.2.1 Mapping Driving Scenarios with Situation Awareness model Factors and 

Application Features 

The game simulator features are mapped to the external factors of the SA components 

of the enhanced ID model.  There are three driving scenarios set up based on the 

external factors that are in line with the three simulated scenarios in a simulation 

environment using MATLAB as in Chapter 5, subsection 5.3. The three driving 

scenarios set up are good driving conditions (low risk), average driving conditions 

(moderate risk) and bad driving conditions (high risk). The three different driving 

scenarios consist of different conditions in driving environment that includes road, 

traffic, obstacles, car condition and visibility. The mapping of the three driving 

scenarios with the game driving simulator is shown in Table 6.15. 
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Table 6.15  

Mapping Driving Scenarios with the SA model Factors and Application Features 

Scenarios Factors Main Application 

Features 

Sub-Application features 

L
o

w
 R

is
k

 

Good 

Driving 

Conditions  

Environment 

 

Area 

(New City) 

▪ New district 

Road 

 

Route Generation 

 

Assignment Type 

▪ Free routes                           

▪ Violation are 

inadmissible 

▪ Minor Violation are 

admissible 

▪ Limitation with points. 

Parameters 

▪ Frequency of assignment 

(Very rare) 

▪ Maximum length 

(2.5Km) 

▪ Minimum length (2Km) 

▪ Point limit (10). 

Traffic 

 

Traffic 

 

▪ Vehicular traffic density 

(0%) 

▪ Traffic behaviour 

(Cautious traffic).  

▪ Pedestrian traffic density 

(0%) 

Obstacle Emergency 

situations on the 

road. 

 

▪ Dangerous change of 

traffic (Rare). 

▪ Emergency braking of 

the car ahead (Rare). 

▪ Dangerous entrance of 

the vehicle to the 

oncoming lane (Rare). 

▪ Pedestrian crossing the 

road in a wrong place 

(Rare). 

▪ Appearance of traffic 

controller at the 

crossroads (Rare). 

▪ Breaking of traffic light 

(Rare). 

Car  

 

Transport 

 

▪ Standard 

▪ Vehicle 

▪ Colour 

▪ Gear System 

 

Visibility Season/Weather/ 

Time of the day 

Summer/Clear/Day 

Note: The driving scenarios are mapped to the external factors of the SA components of the IDM model 

and the application features 
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Table 6.15 Continued 

Scenarios Factors Main 

Application 

Features 

Sub-Application 

features 

Scenarios 

M
o

d
er

at
e 

R
is

k
 

Average 

Driving 

Conditions 

Environment 

 

Area 

(New City) 

 

▪ New district 

Road 

 

Route Generation 

 

Assignment Type 

▪ Free routes                           

▪ Violation are 

inadmissible 

▪ Minor Violation are 

admissible 

▪ Limitation with points 

Parameters 

▪ Frequency of 

assignment (Very rare) 

▪ Maximum length 

(2.5Km) 

▪ Minimum length (2Km) 

▪ Point limit (10) 

Traffic 

 

Traffic 

 

▪ Vehicular traffic density 

(50%) 

▪ Traffic behaviour 

(Usual traffic).  

▪ Pedestrian traffic 

density (50%) 

 

Obstacle 

 

Emergency 

situations on the 

road. 

 

▪ Dangerous change of 

traffic (Often). 

▪ Emergency braking of 

the car ahead (Often). 

▪ Dangerous entrance of 

the vehicle to the 

oncoming lane (Often). 

▪ Pedestrian crossing the 

road in a wrong place 

(Often). 

▪ Appearance of traffic 

controller at the 

crossroads (Often). 

▪ Breaking of traffic light 

(Often). 

 

Car  

 

Transport 

 

▪ Standard 

▪ Vehicle 

▪ Colour 

▪ Gear System 

 

Visibility Season/Weather/ 

Time of the day 

Summer/Clear/Day 
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Table 6.15 Continued 

Scenarios Factors Main 

Application 

Features 

Sub-Application 

features 

Scenarios 

H
ig

h
 R

is
k

 

Bad Driving 

Conditions 

Environment 

 

Area 

(New City) 

 

▪ New district 

Road 

 

Route Generation 

 

Assignment Type 

▪ Free routes 

▪ Violation are 

inadmissible 

▪ Minor Violation are 

admissible 

▪ Limitation with points 

Parameters 

▪ Frequency of assignment 

(Very Often) 

▪ Maximum length 

(2.5Km) 

▪ Minimum length (2Km) 

▪ Point limit (10) 

Traffic 

 

Traffic 

 

▪ Vehicular traffic density 

(100%) 

▪ Traffic behaviour 

(Aggressive Traffic).  

▪ Pedestrian traffic density 

(100%) 

Obstacle 

 

Emergency 

situations on the 

road. 

 

▪ Dangerous change of 

traffic (Very Often). 

▪ Emergency braking of 

the car ahead Very 

Often). 

▪ Dangerous entrance of 

the vehicle to the 

oncoming lane (Very 

Often). 

▪ Pedestrian crossing the 

road in a wrong place 

(Very Often). 

▪ Appearance of traffic 

controller at the 

crossroads (Very Often). 

▪ Breaking of traffic light 

(Very Often). 

Car  

 

Transport 

 

▪ Standard 

▪ Vehicle 

▪ Colour 

▪ Gear System 

 

Visibility Season/Weather/ 

Time of the day 

Autumn/Rainy/Night 
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6.2.2 Simulator Stages  

The City Car Driving Simulator Home Edition has two main stages: The career driving 

stage (where drivers are trained) and free driving stage (where drivers drive under 

various conditions without training).  

6.2.2.1 The Career Driving stage 

In the career driving stage, the drivers are assumed to be receiving training lessons in a 

virtual driving school. In the simulator, there are tasks to be achieved, such as car 

starting and shifting of gear (training), slalom (zigzag), U-turn, garage, turns, hills, track 

test and city driving test. However, for this study, city driving test is chosen and used to 

train the experimental group participants. It is one of the training tasks used in city car 

driving simulator. A driver is trained in the virtual city.  The virtual instructor gives the 

trainee the driving directions to follow; when the trainee completes the task and parks 

the car at the finished point without violating the driving rules and regulations and 

without exceeding the permissible violation score, then, the driver is said to be 

successful. This gives the trainee (driver) the achievement “city driving test”. Moreover, 

for the trainee to receive the achievement “fastest of all” he should complete the task 

without violations and in less than 24 minutes. 

6.2.2.2 The Free Driving stage 

In the free driving stage, the driver drives in a virtual city based on the scenario set up to 

achieve the study objective. The driving scenarios are set up based on the model 

external factors particularly the awareness model external factors. The free driving is 

used for both experimental and control group in this study. 
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6.3 Summary of the Chapter 

This chapter gave detail explanation on the validation of an enhanced computational 

IDM (Computational-RDT)  using human experiment. This was accomplished by using 

an adapted application (game driving simulator). The game driving simulator features 

were mapped with the external factors of the awareness component of the IDM to 

evaluate the Computational-RDT model validity. In addition, a questionnaire was 

designed based on the external and temporal factors of the RPD training component of 

the IDM model to validate the Computational-RDT model.   

.  
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CHAPTER SEVEN 

CONCLUSION 

7.0 Introduction 

This chapter presents a general overview of the study’s focus and objectives that have 

been achieved. It also presents the contributions of the study and provides suggestions 

on area of focus for future studies’s investigation. In particular, Section 7.1 of this 

chapter summarizes the conclusions drawn from the previous chapters in line with the 

stated objectives of this study while Section 7.2 presents the implications of the study’s 

results. In Section 7.3 the limitations of the study are discussed while Section 7.4 

provides, as a suggestion, the future work direction. 

7.1 Revisiting Research Objectives 

This study presents an enhanced computational IDM (Computational-RDT) in driving 

domain that assists driver in making prime decision. There are four objectives of this 

research as presented in Chapter 1, namely; 1) to identify the training factors relevant 

for Prime Decision-Making in driving domain, 2) to enhance the IDM by including 

relevant training factors to have a comprehensive conceptual model, 3) to 

computationalise the enhanced ID model in order to have a model with a reasoning 

ability to backtrack, and 4) to evaluate the enhanced computational IDM by verification 

and validation analyses. These objectives have been achieved and the details were 

explained in Chapter Four, Five and Six. 
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Research Objective #1:  

The first research objective is to identify training factors relevant for Prime Decision-

Making in driving domain. Therefore, this study presented a total of thirty-one (31) 

factors, seven (7) factors from the awareness component and twenty-four (24) from the 

RPD training component of the RDT model.  These factors were summarized in Tables 

4.1, 4.2 and 4.3 in Chapter 4 Section 4.1. The factors were obtained based on related 

theories of SA and other related literatures as explained in Chapter Four. In addition, 

previous related studies were reviewed to guide in obtaining these appropriate factors. 

This becomes imperative due to challenging and complex nature of the prime decision 

making within the driving domain. Chapter 4 (Section 4.1) described the detailed 

pertinent to this objective.  

 

Research Objective #2: 

The second objective is to enhance the Integrated Decision-making Model (IDM) by 

including relevant training factors to have a comprehensive conceptual model. To 

accomplish this objective, the obtained training factors relevant for prime decision 

making from the SA model and other related literatures were used to enhance the RPD 

training component of the IDM where the relationships of the factors based on theories 

of SA, NDM and other theories were used to form a conceptual RDT model. The 

enhancement of this model was explained in detailed in Chapter Four (Section 4.2). 

 

Research Objective #3: 

The third objective is to computationalise the enhanced IDM in order to have a model 

with a reasoning ability to backtrack. To realise this objective, the obtained factors 

related to their corresponding theories (derived from a conceptual model) were 
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expressed in formal specifications, which were later translated into a computational 

model. The informal specification follows the concepts of factors interactions as 

depicted in related corresponding theories and previous empirical studies, while the 

formal specification expression is based on first order differential equations. In 

particular, the study employed thirty-one (31) factors in the design of the enhanced 

computational model as presented in Chapter Four (Section 4.3). 

 

Research Objective #4:  

The fourth objective is to evaluate the enhanced computational IDM by verification and 

validation analyses. The verification analysis was achieved by using simulation, 

mathematical analysis and automated analysis methods.  For mathematical analysis, 

four selected cases from equilibrium points were used to prove the convergence 

(stability) of the enhanced model as in Section 5.2.1. The advantage of implementing 

this approach is to show how the model stabilizes under certain conditions despite the 

presence of a small disturbance in the model. Six different empirical cases showing the 

effects of driving conditions were demonstrated in line with the literature, where four 

(4) cases were based on awareness component of the RDT model and two (2) cases 

were from the RPD training component of the RDT model. Each of these cases was 

formalized and analysed using Temporal Trace Language (TTL) as a basis for 

performing automated analysis.  This evaluation confirmed the logical verification of 

the Computational-RDT model. These stages were achieved in Chapter Five (Sections 

5.1, 5.2 & 5.3).  
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The second evaluation stage (validation) was achieved by external validation using 

human experiment that ensured the logical correctness of the RDT model by using 

twenty participants as presented in Chapter Six (Sections 6.1 & 6.2). 

7.2 Implications of the Study 

The implication of this study can be understood from three points of view, namely the 

theoretical, practical and domain perspectives. As it has been previously discussed, IDM 

has not been computationalised.  Hence, the present study closes this gap by 

computationalising the enhanced ID (RDT) model. The Computational-RDT model that 

is simulated for its temporal dynamics is one of the theoretical contributions of the 

study. The Computational-RDT model is a complete theory on its own and can also 

serve as a tool for future theories in the driving domain. The Computational-RDT model 

helps to explain better in a logical manner the fundamental theories utilised to enhance 

the conceptual model (domain model) as stated in Sun (2008). The simulated results of 

the Computational-RDT model give support to known theories and concepts in 

naturalistic decision making literatures that will be of great interest to the researchers in 

the driving domain.  

 

From the practical perspective (application wise), the Computational-RDT model 

realised in this study can serve as a guideline for software developers on the 

development of driving assistance systems for prime decision-making process. Also, the 

Computational-RDT model when combined with the support components can serve as 

the intelligent artefacts for the driver’s assistance systems. Moreover, the 

Computational-RDT model realised in this study has reasoning ability; hence, it can 

backtrack why certain decision had been made. The implication is that using the 
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Computational-RDT model realised in this study can enable software developers to 

design a good system (artefact) that can enhance and provide robust driver’s assistance 

systems that has good reasoning ability to backtrack, and alert the driver on why certain 

prime decisions had been taken. Hence, this serves as an important contribution of this 

study in the field of computing, otherwise known as computer science domain. 

 

In relation to problem domain perspective, the RDT model affords the training factors 

missing in RPD part of the IDM. This is a known problem in previous research of RPD. 

Hence, future research on RPD that uses the RDT model obtained in this study will have 

an advantage of a comprehensive model integrated with more training factors that are 

relevant for prime decision-making.  

7.3 Limitations of the Study 

The study covers only the relevant factors necessary for prime decision-making process. 

Since the study was conducted in the driving domain, only a good car condition was 

considered in the configuration of the game simulator integration. Also, the use of off-

the-shelf software (simulator) is one of the limitations of this study. Hence, the 

configuration of the model features in the simulator is constrained only to the available 

features to validate the model. However, within the simulated scenarios, both good and 

faulty cars conditions were explained and tested. 

 

This study employed a method of varying parameters to observe the behaviour of the 

systems for exploring the predictions in the simulation environment in order to see 

changes that occured as shown in the simulation scenarios demonstrated in Chapter 

Five. Thus, there is a need to employ other techniques such as response analysis and 
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response surface modelling for a precise and refined result for a generic model. The 

present study does not have support model that can be integrated with the RDT model. 

Concisely, the RDT model achieved in this study is generic and tested in a driving 

domain.  

7.4 Suggestions for Future Work 

In this section, the study make some suggestions for the potential future work based on 

the limitations of the study. In particular, this study suggests that a support model 

should be developed and integrated with the RDT model. This will endow the model 

with the ability to provide necessary assistance to user to take the best prime decision at 

the right time. The combination of the enhanced and support models can serve as a basic 

intelligent engine or as a tool to be used in cognitive/intelligent artefacts (driving 

assistance systems) that can render support to the driver when the driver fails to make 

prime decision in the demanding situations. 

 

A proprietary software application (driving simulator) could be developed rather than 

off-the-shelf software that restricts the personalized mapping of all the factors. This 

allows seamless factors integration and adaptation to future enhancement of the model. 

Other evaluation methods (e.g., evaluating models against each other) should be 

explored for a better understanding of systems with dynamic variables and in facilitating 

the prediction regarding the behaviour of the systems. Furthermore, instead of theory 

driven approach, data can be collected to build a model (data driven approach) where 

genetic algorithm and other techniques can be used to optimise the selected factors to be 

used in building the model. 
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Appendix B 

Experts’ Evaluation Questionnaire in English and Malay 

INSTRUCTION 

The questionnaire is divided into two parts: Part A deals with the demographic questions of the Experts 

and part B consists of Items on Driver Behavior (DB) based on the training model factors.  

SECTION A: Demographic characteristics of Experts  

 
Please tick         at the appropriate box. 

 

1. Age Group  

<20□ 20-29□ 30-39□ 40-49□ 50-59□ ≥60□ 

2. Gender  

Male□  Female□ 

3. Educational Level 

Undergraduate□    Master□        PhD□     Others□ 
4. Driving experience 

<2 year□  2-5 years□      6-10 years□  >10 years□ 

5. Do you have a valid driving licence? Yes□   No□ 

6. Years of Service:__________________________________________________________ 
7. Officer’s Rank:____________________________________________________________ 

 

Kindly indicate the importance of each of these items provided in training drivers. The rating scale is 

from 1-3, with 1 indicating Not Important, 2 indicating Important and 3 indicating Very Important.  

Please tick      as appropriate. 

 
S/N Basic Skills Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

1. Maintaining lane positioning      

2. Turning     

3. Speed control     

4. Braking     

5. Use of turn signals     

6. Use of mirrors     

7. Controlling the steering wheel     

8. Gear selection in operating manual /automatic car     

 

 

SECTION B: Items on Driver Behavior (DB) based on the training model  

√ 

✓  
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S/N Basic Practice Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

9. Holding the steering wheel while driving?     

10. Looking into the side mirrors while overtaking another car?     

11. Driving between the lines?     

12. Using the signal lights while turning?     

13. Driving a car in reverse?     

14. Turning in prohibited areas (e.g, no U-Turn)?     

15. Stopping in prohibited areas (e.g. Roundabout, four-way 

intersection or crossroad)? 

    

16. The use of seat belt while driving?     

17. Driving within the speed limit?     

      

S/N Sensory Ability Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

18. Seeing dark coloured cars when driving at night?      

19. Seeing pedestrians on the road side when driving at night?     

20. Seeing pedestrians on the road side when driving in a day time?     

21. Reading street signs when driving at night?      

22. Reading street signs when driving in a day time?     

23. Seeing the road due to oncoming headlights when driving at 

night?  

    

24. Seeing the road due to oncoming headlights when driving in a 

day time? 

    

25. Seeing the road in rain when driving at night?     

26. Seeing the road in rain when driving in a day time?     

 How often do you distracted by:  

27. Eating/drinking while driving?     

28. Read roadside advertisements?     

29. Daydream?     

 

 
S/N Driver’s Goal Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

30. Safety goal (i.e. Making sure of your safety and safety of 

others). 

    

31. Time goal (i.e. Making sure you reach your destination on 

time).  

    

32. Avoiding traffic violation.     

 

 
S/N Intention Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3  

33. Safety goal.     

34. Time goal.     

35. Avoiding traffic violation.     
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S/N Potential Hazardous Information Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

36. Car stopping at the Pedestrian Crossing?     

37. Curves (or bend) on the road?     

38. Other cars driving in front of you?     

39. Pedestrian crossing the road in a wrong place?     

 

S/N Exposure on Task Complexity Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

40. Accelerating when approaching a flickering green light?     

41. Activating a direction indicator when negotiating a bend?     

42. Braking by slowing down before negotiating roundabout     

43. Emergency braking when another car pull into driver’s path     

44. Changing gear when reducing the car speed.     

45. Check surrounding for unsafe situations.     

46. Maintain lane in traffic.     

47. Controlling the steering wheel.     

 

S/N Risk Perception Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

48. Driving at night?     

49. Bypassing slow car through the left hand side instead of the 

right hand side? 

    

50. Pulling over the road way (getting on and off lower road 

shoulder)? 

    

51. Driving in a city at a speed above the speed limit?     

52. Bypassing when you are hidden by a truck and have no good 

vision of the car coming in front of you? 

    

53. Losing control over the car while driving on a wet and slippery 

road? 

    

54. Losing control over the car while driving on a dry road?     

55. Backward driving (reverse) when there are blind sights?     

56. Backward driving (reverse) when there are no blind sights?     

57. Sudden braking?     

58. Challenged-driving aimed at testing your driving abilities?     

 

S/N Driving Knowledge 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

59. Road signs?     

60. Use of maximum speed limits driving in a city?     

61. Traffic rules and regulations?     

62. Road markings?     
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S/N Involuntary/Voluntary Items 

 

EXPERT VALIDATION 

SCALE REMARKS 

1 2 3 

63. Sudden swerve to another direction without thinking (e.g. 

when another car swerved in front of my car while driving.)? 

    

64. Begin panic stop before I realize I’m doing it (e.g. when 

pedestrian crossing the road in a wrong place in front of my 

car while driving.)? 

    

65. Do change lane without meaning to do it?     

66. Find it hard to stop myself from doing dangerous overtaking?     
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Tinjauan Soal Selidik 

            

UNIVERSITI UTARA MALAYSIA 

KOLEJ SASTERA DAN SAINS 

06010                                                   

DARUL AMAN, KEDAH 

 

 
Peserta yang saya hormati,  

 

Saya pelajar siswazah yang sedang mengendalikan kajian berhubung tingkah laku pemandu yang 

menggunakan simulator permainan pemanduan. Kajian ini menguji model faktor keberkesanan untuk 

melihat sekiranya senario simulasi yang dihasilkan berasaskan model faktor berpadanan dengan tingkah 

laku pemandu dalam domain situasi sebenar.  Kajian juga bermatlamat untuk melihat sama ada latihan 

memandu memberikan kesan terhadap keupayaan pemandu dalam membuat keputusan penting dengan 

pantas.  

 

Maklum balas yang anda berikan tidak akan digunakan untuk tujuan lain, melainkan untuk tujuan 

akademik.  

 

Kami amat menghargai maklum balas yang anda berikan. Sekiranya anda memerlukan maklumat 

tambahan tentang kajian ini, anda boleh menghubung individu berikut:  

 

Penyelidik: 

Rabi Mustapha,  

Pusat Pengajian Pengkomputeran,  

Kolej Sastera dan Sains,  

Universiti Utara Malaysia, 

Sintok, Kedah, Malaysia. 

Email: rabichubu@yahoo.com 

 

Penyelia Utama: 

Prof. Madya Dr.Yuhanis Yusof 

Pusat Pengajian Pengkomputeran, 

UUM, Sintok, Kedah, Malaysia. 

 

Penyelia Bersama: 

Dr. Azizi Ab Aziz 

Pusat Pengajian Pengkomputeran, 

UUM, Sintok, Kedah, Malaysia. 
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ARAHAN 

 
Soal selidik ini terbahagi kepada dua bahagian. Bahagian A merangkumi aspek demografi dan bahagian B 

mengandungi item berkenaan Tingkah laku Pemandu (DB) berdasarkan faktor model latihan.  

 

BAHAGIAN A: Ciri-ciri demografi Pakar  

 

Sila tanda          at pada kotak yang bersesuaian. 

 
8. Kelompok Umur  

<20□tahun    20-29□tahun     30-39□tahun             40-49□tahun 50-59□tahun

 ≥60□tahun 

 
9. Jantina  

Lelaki□  Perempuan□ 

 
10. Tahap Pendidikan 

Ijazah Sarjana muda□    Ijazah Sarjana□        Ijazah PhD□     Lain-lain□ 

 
11. Pengalaman memandu 

<2 tahun□  2-5 tahun□      6-10 tahun□  >10 tahun□ 

12. Adakah anda memiliki lesen memandu yang sah? Ya□   Tidak□ 

13. Jumlah tahun dalam Perkhidmatan: 

_________________________________________________________________ 
14. Jawatan Pegawai: 

________________________________________________________________ 

 

 

 

 

 

  

✓  
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Sila nyatakan kepentingan setiap item yang diberikan semasa anda melatih  pemandu. Skala penilaian 

adalah antara 1-3, dengan 1 memperlihatkan Tidak Penting, 2 menunjukkan Penting, manakala 3 

menunjukkan Sangat Penting.  Sila tanda        pada ruang yang bersesuaian. 

 
N/S Item Berhubung Kemahiran Asas 

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3 

1. Mengekalkan kedudukan laluan     

2. Pusingan     

3. Kawalan kelajuan     

4. Membrek     

5. Menggunakan isyarat pusingan     

6. Menggunakan cermin     

7. Mengawal stereng     

8. Menentukan gear semasa mengendalikan kereta manual /kereta 

automatik 

    

 

 
N/S Item Berhubung Kemahiran Asas 

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3 

9. Memegang stereng ketika memandu?     

10. Melihat cermin sisi ketika memotong kenderaan lain?     

11. Memandu antara garisan?     

12. Menggunakan lampu isyarat ketika membuat pusingan?     

13. Mengundurkan kenderaan?     

14. Membuat pusingan di kawasan terlarang (cth. Dilarang berpusing 

balik)? 

    

15. Berhenti di kawasan terlarang (cth. Bulatan, persimpangan empat 

laluan atau lintasan)? 

    

16. Menggunakan tali pinggang keledar ketika memandu?     

17. Memandu di bawah had kelajuan?     

 
N/S Item Berhubung Keupayaan Deria 

 

PENGESAHAN PAKAR 

SKALA REMARKS 

1 2 3 

18. Melihat kenderaan berwarna gelap ketika memandu pada waktu 

malam?  

    

19. Melihat pejalan kaki di tepi jalan ketika memandu pada waktu 

malam? 

    

20. Melihat pejalan kaki di tepi jalan ketika memandu pada waktu 

siang? 

    

21. Membaca papan tanda ketika memandu pada waktu malam?      

22. Membaca papan tanda ketika memandu pada waktu siang?     

23. Melihat jalan apabila disuluh lampu kenderaan dari arah hadapan 

ketika memandu pada waktu malam? 

    

24. Melihat jalan apabila disuluh lampu kenderaan dari arah hadapan 

ketika memandu pada waktu siang? 

    

25. Melihat jalan ketika hujan apabila memandu pada waktu malam?     

26. Melihat jalan ketika hujan apabila memandu pada waktu siang?     

 Berapa kerapkah anda dialih perhatian oleh perbuatan:  

27. Makan/minum ketika memandu?     

28. Membaca iklan-iklan di tepi jalan?     

29. Berkhayal?     

BAHAGIAN B: Item berhubung Tingkah laku Pemandu (DB) berdasarkan model latihan 

√ 
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N/S Item Berhubung Matlamat Pemandu 

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3 

30. Matlamat keselamatan (cth. Memastikan keselamatan anda dan 

keselamatan orang lain). 

    

31. Matlamat masa (cth. Memastikan anda tiba ke destinasi anda 

tepat pada waktunya).  

    

32. Mengelak daripada melanggar peraturan lalu lintas.     

 

 
N/S Item Berhubung Hasrat 

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3  

33. Matlamat keselamatan.     

34. Matlamat masa.     

35. Mengelak daripada melanggar peraturan lalu lintas.     

 

 
N/

S 

Item Berhubung Maklumat Potensi Berbahaya 

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3 

36. Kenderaan berhenti di Lintasan Pejalan kaki?     

37. Lengkung (atau liku) di atas jalan?     

38. Kenderaan lain yang dipandu di hadapan anda?     

39. Pejalan kaki melintas jalan di tempat yang salah?     

 

 
N/S Item Berhubung Pendedahan Terhadap Kesukaran Tugas  

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3 

40. Memecut ketika mendekati lampu hijau yang berkelip-kelip?     

41. Menyalakan isyarat laluan apabila berhadapan dengan selekoh 

jalan? 

    

42. Membrek secara perlahan sebelum memasuki bulatan     

43. Membrek secara mengejut apabila kenderaan lain memasuki 

laluan anda 

    

44. Mengubah gear apabila ingin memperlahankan kenderaan.     

45. Memeriksa sekeliling apabila berada dalam keadaan yang tidak 

selamat. 

    

46. Mengekalkan laluan di jalan raya.     

47. Mengawal stereng.     

 
N/S Item Berhubung Persepsi Risiko 

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3 

48. Memintas kenderaan yang perlahan di sebelah kiri dan 

bukannya di sebelah kanan? 

    

49. Berhenti di bahu jalan (menuruni dan menaiki bahu jalan yang 

rendah)? 

    

50. Memandu dalam bandar melepasi had kelajuan?     

51. Memintas dari belakang trak yang menghalang pandangan 

anda dengan tidak melihat kenderaan yang datang dari arah 

hadapan anda? 

    

52. Hilang kawalan ke atas kenderaan ketika memandu di atas 

jalan yang basah dan licin? 

    

53. Hilang kawalan ke atas kenderaan ketika memandu di atas     
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jalan yang kering? 

54. Mengundurkan kenderaan apabila terdapat penglihatan tak 

peka? 

    

55. Mengundurkan kenderaan apabila tiada penglihatan tak peka?     

56. Membrek secara mengejut?     

57. Cabaran memandu bertujuan menguji kemampuan memandu 

anda? 

    

58. Memintas kenderaan yang perlahan di sebelah kiri dan 

bukannya di sebelah kanan? 

    

 

 
N/S Pengetahuan Pemanduan 

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3 

59. Papan tanda?     

60. Memandu melepasi had laju dalam bandar?     

61. Peraturan dan kawalan lalu lintas?     

62. Tanda jalan?     

  
N/S Item Berhubung Tindakan Secara Tidak Sedar/ Tindakan 

Secara Sedar 

 

PENGESAHAN PAKAR 

SKALA CATATAN 

1 2 3 

63. Membelok secara mendadak ke arah lain tanpa berfikir (cth. 

Apabila kenderaan lain membelok di hadapan anda ketika 

memandu.)? 

    

64. Panik sebelum menyedari anda melakukannya (cth. Apabila 

pejalan kaki melintas jalan di tempat yang salah di hadapan 

kenderaan anda ketika anda sedang memandu.)? 

    

65. Mengubah laluan tanpa berniat untuk berbuat demikian?     

66. Sukar mengawal diri daripada memintas kenderaan lain secara 

berbahaya? 

    

Komen Umum: 

___________________________________________________________________ 

______________________________________________________________________

__________________________________________________________________ 

 
Nama Pengawai                                        Tandatangan             Tarikh 
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Appendix C  

Hybrid Model Matlab Simulation Codes 

clc 
     %Intializing all parameters to normalise the equations 
     maxLimY = 1; 
     minLimX = 0; 
     numStep = 500; 
     X = 0; 
     Bp=zeros(1,numStep);% Basic Practice 
     Bpbasic=zeros(1,numStep);% Basic Practice Basic 
     Bs=zeros(1,numStep);% basic Skills 
     Sa=zeros(1,numStep);% Sensory Ability 
     Dg=zeros(1,numStep);% Driver's Goal 
     Hi=zeros(1,numStep);% Potential Hazardous Information 
     Tc=zeros(1,numStep);% Exposure on Task Complexity 
     Tcbasic=zeros(1,numStep);% Exposure on Task Complexity Basic 
     Pc=zeros(1,numStep);% Practice 
     Re=zeros(1,numStep);% Rehearsed Experience 
     De=zeros(1,numStep);% Driver's Experience 
     As=zeros(1,numStep);% Acquired Skills 
     Da=zeros(1,numStep);% Driving ability 
     Pg=zeros(1,numStep);% Priming 
     Hp=zeros(1,numStep);% Perception about Hazard  
     Rp=zeros(1,numStep);% Perception about Risk  
     An=zeros(1,numStep);% Attention 
     Hd=zeros(1,numStep);% Habitual-Directed Action 
     Gd=zeros(1,numStep);% Goal-Directed Action 
     Vy=zeros(1,numStep);% Voluntary 
     Iv=zeros(1,numStep);% Involuntary  
     Dk=zeros(1,numStep);% Driving Knowledge 
     Tp=zeros(1,numStep);% Task Perception 
     In=zeros(1,numStep);% Intention 
     Onr=zeros(1,numStep);% Observation for Road 
     Onf=zeros(1,numStep);% Observation for Traffic 
     Onb=zeros(1,numStep);% Observation for Obstacles 
     Onc=zeros(1,numStep);% Observation for Car Condition 
     Onv=zeros(1,numStep);% Observation for Visibility 
     Bfr=zeros(1,numStep);% Belief Formation for Road 
     Bff=zeros(1,numStep);% Belief Formation for Traffic 
     Bfb=zeros(1,numStep);% Belief Formation for Obstacles 
     Bfc=zeros(1,numStep);% Belief Formation for Car Condition 
     Bfv=zeros(1,numStep);% Belief Formation for Visibility 
     Bas=zeros(1,numStep);% Belief Activation for Safe 
     Bar=zeros(1,numStep);% Belief Activation for Risky 
     Ea=zeros(1,numStep);% Experienced Automaticity 
     Dc=zeros(1,numStep);% Decision 
     Aa=zeros(1,numStep);% Acquired Automaticity 
     Anr=zeros(1,numStep);% Attention for Road 
     Anf=zeros(1,numStep);% Attention for Traffic 
     Anb=zeros(1,numStep);% Attention for Obstacles 
     Anc=zeros(1,numStep);% Attention for Car Condition 
     Anv=zeros(1,numStep);% Attention for Visibility 
     Pa=zeros(1,numStep);% Performance of Action 
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     AlphaRe=0.8; 
     AlphaPm=0.8; 
     AlphaVy=0.8; 
     AlphaIn=0.8; 
     AlphaOnr=zeros(1,numStep); 
     AlphaOnf=zeros(1,numStep); 
     AlphaOnb=zeros(1,numStep); 
     AlphaOnc=zeros(1,numStep); 
     AlphaOnv=zeros(1,numStep); 
     GammaDc=zeros(1,numStep); 
     Beta=1; 
     BetaAs=0.8; 
     BetaIv=0.8; 
     BetaVy=0.8; 
     BetaEa=0.8; 
     BetaBp=0.8; 
     BetaBs=0.8; 
     BetaTc=0.8; 
     BetaPa=0.8; 
     GammaRe=0.8; 
     GammaDk=0.8; 
     GammaRp=0.8; 
     PhiRe=0.8; 
     XiAn=0.8; 
     XiPg=0.8; 
     OmegaPc=0.8; 
     Delta_t=0.3; 
     EtaTp=0.8; 
     LambdaDe=0.01; 
     LambdaDk=0.01; 
     LambdaRp=0.01; 
     lambdaDc=0.001; 
     wAs1=0.5; %Weight of Acquired Skills one 
     wAs2=0.5; %Weight of Acquired Skills two 
     wDa1=0.5; %Weight of Driving ability one 
     wDa2=0.5; %Weight of Driving ability two 
     wHd1=0.5; %Weight of Habitual-Directed Action one 
     wHd2=0.5; %Weight of Habitual-Directed Action two 
     wGd1=0.5; %Weight of Goal-Directed Action one 
     wGd2=0.5; %Weight of Goal-Directed Action two 
     wHp1=0.5; %Weight of Hazard Perception one 
     wHp2=0.5; %Weight of Hazard Perception two 
     wRp1=0.5; %Weight of Risk Perception one 
     wRp2=0.5; %Weight of Risk Perception two 
     wAa1=0.5; %Weight of Acquired Automaticity one 
     wAa2=0.5; %Weight of Acquired Automaticity two 
     wDk1=0.5; %Weight of Driving Knowledge one 
     wDk2=0.5; %Weight of Driving Knowledge two 
     wBasr=1; %Weight of the Road with respect to Belief Activation 

for Safe 
     wBasf=1; %Weight of the Traffic with respect to Belief 

Activation for Safe 
     wBasb=0.5;%Weight of the Obstacles with respect to Belief 

Activation for Safe 
     wBasc=1; %Weight of the Car Condition with respect to Belief 

Activation for Safe 
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     wBasv=1; %Weight of the Visibility with respect to Belief 

Activation for Safe 
     wBarr=1; %Weight of the Road with respect to Belief Activation 

for Risky 
     wBarb=5; %Weight of the Obstacles with respect to Belief 

Activation for Risky 
     wBarc=1; %Weight of the Car Condition with respect to Belief 

Activation for Risky 
     wBarf=1; %Weight of the Traffic with respect to Belief 

Activation for Risky 
     wBarv=1; %Weight of the Visibility with respect to Belief 

Activation for Risky 
     Epr=1;% Expectations for Road 
     Epf=1;% Expections for Traffic 
     Epb=1;% Expections for Obstacles 
     Epc=1;% Expections for Car Condition 
     Epv=1;% Expections for Visibility 
     decision_threshold=0.5; 
     z=numStep/4; 
  % initializing external factors 

  
  % Scenario 1 = "1"  
  % Scenario 2 = "2" 
  % Scenario 3 = "3" 

   
  Scenario = 1; 
 for t=1:numStep 
   switch (Scenario) 
    case 1  
          % Initializing training inputs 
     if (t<z)  
         Bpbasic(t)=1;  
         Bs(t)=1; 
         Sa(t)=1; 
         Dg(t)=0; 
         Hi(t)=1; 
         Tcbasic(t)=1; 
         In(t)=1; 
     elseif (t<2*z) 
         Bpbasic(t)=1; 
         Bs(t)=1; 
         Sa(t)=1; 
         Dg(t)=1; 
         Hi(t)=0; 
         Tcbasic(t)=1; 
         In(t)=1; 
     else 
         Bpbasic(t)=1; 
         Bs(t)=1; 
         Sa(t)=1; 
         Dg(t)=1; 
         Hi(t)=1; 
         Tcbasic(t)=1; 
         In(t)=1; 
     end  % end if of case 1 
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    case 2 
     if (t<z)  
         Bpbasic(t)=1;  
         Bs(t)=1; 
         Sa(t)=1; 
         Dg(t)=0; 
         Hi(t)=0; 
         Tcbasic(t)=1; 
         In(t)=1; 
     else 
         Bpbasic(t)=1; 
         Bs(t)=1; 
         Sa(t)=1; 
         Dg(t)=0; 
         Hi(t)=1; 
         Tcbasic(t)=1; 
         In(t)=0;       
     end  %end if of case 2 
    case 3 
     if (t<z)  
         Bpbasic(t)=1;  
         Bs(t)=1; 
         Sa(t)=1; 
         Dg(t)=0; 
         Hi(t)=1; 
         Tcbasic(t)=0; 
         In(t)=1;       
     end % end if of case 3 
   end   %end switch 
 end  %end for 
 

% Initializing temporal Factors 
 Dk(1)=0.1;  
 Rp(1)=0.1; 
 Iv(1)=0.1; 
 Vy(1)=0.1; 
 Ea(1)=0.1; 

  
 % Initializing Awareness inputs    
 for t=numStop+1:numStep 
    switch (Scenario) 
    case 1  
          % Initializing training inputs 
        AlphaOnr(t)=1; 
        AlphaOnf(t)=1; 
        AlphaOnb(t)=0; 
        AlphaOnc(t)=1; 
        AlphaOnv(t)=1; 
     case 2 
     if (t<z*3)  
        AlphaOnr(t)=0; 
        AlphaOnf(t)=1; 
        AlphaOnb(t)=0; 
        AlphaOnc(t)=1; 
        AlphaOnv(t)=1; 
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     else 
        AlphaOnr(t)=1; 
        AlphaOnf(t)=0; 
        AlphaOnb(t)=0; 
        AlphaOnc(t)=1; 
        AlphaOnv(t)=1; 
     end % endif of case 2 
   case 3 
     if (t<z*2)  
        AlphaOnr(t)=0; 
        AlphaOnf(t)=0; 
        AlphaOnb(t)=0; 
        AlphaOnc(t)=1; 
        AlphaOnv(t)=1; 
     elseif (t<z*3) 
        AlphaOnr(t)=1; 
        AlphaOnf(t)=1; 
        AlphaOnb(t)=1; 
        AlphaOnc(t)=1; 
        AlphaOnv(t)=1;  
     else  
        AlphaOnr(t)=1; 
        AlphaOnf(t)=1; 
        AlphaOnb(t)=0; 
        AlphaOnc(t)=0; 
        AlphaOnv(t)=1;       
     end % end if of case 3 
   end   %end switch   

  

 end % end for 

 
 % Initializing temporal Factors 
Dc(numStop+1)=0.1; 

 
 % initialize Internal Factors at time, t=376 

  
     t=numStop+1; 
     Onr(t)=AlphaOnr(t) * constAn; 
     Onf(t)=AlphaOnf(t) * constAn; 
     Onb(t)=AlphaOnb(t) * constAn; 
     Onc(t)=AlphaOnc(t) * constAn; 
     Onv(t)=AlphaOnv(t) * constAn; 
     Bfr(t)=Onr(t) * Epr; 
     Bff(t)=Onf(t) * Epf; 
     Bfb(t)=Onb(t) * Epb; 
     Bfc(t)=Onc(t) * Epc; 
     Bfv(t)=Onv(t) * Epv; 
     Bas(t)=1 /( 1 + exp ( -Beta*((wBasr*Bfr(t)  + wBasf*Bff(t)+ 

wBasv*Bfv(t))* (1-wBasc*(1-Bfc(t)))* (1-wBasb*Bfb(t))) )); 
     Bar(t)=1 /( 1 + exp (-Beta*(1-((wBarr*Bfr(t)+wBarf*Bff(t)+ 

wBarv*Bfv(t))*(1-wBarc*(1-Bfc(t)))*(1-wBarb*Bfb(t)))))); 
     GammaDc(t) = X; 
for t=numStop+2:numStep 
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            % Instantaneous Factors  
     GammaDc(t) = Ea(t-1); 
     % Observation of Road                     
     Onr(t)=AlphaOnr(t) * constAn; 

 
     % Observation of Traffic 
     Onf(t)=AlphaOnf(t) * constAn; 
     % Observation of Obstacles 
     Onb(t)=AlphaOnb(t) * constAn; 
     % Observation of Car Condition 
     Onc(t)=AlphaOnc(t) * constAn; 
     % Observation of Visibility 
     Onv(t)=AlphaOnv(t) * constAn; 
     % Belief Formation for Road 
     Bfr(t)=Onr(t) * Epr; 
     % Belief Formation for Traffic 
     Bff(t)=Onf(t) * Epf; 
     % Belief Formation for Obstacles 
     Bfb(t)=Onb(t) * Epb; 
     % Belief Formation for Car Condition 
     Bfc(t)=Onc(t) * Epc; 
     % Belief Formation for Visibility 
     Bfv(t)= Onv(t) * Epv; 
     % Belief Activation for Safe 
     Bas(t)=1 /( 1 + exp ( -Beta*((wBasr*Bfr(t)  + wBasf*Bff(t)+ 

wBasv*Bfv(t))* (1-wBasc*(1-Bfc(t)))* (1-wBasb*Bfb(t))))); 
     % Belief Activation for Risky 
     Bar(t)=1 /( 1 + exp (-Beta*(1-((wBarr*Bfr(t)+wBarf*Bff(t)+ 

wBarv*Bfv(t))*(1-wBarc*(1-Bfc(t)))*(1-wBarb*Bfb(t)))))); 

      
                     %Temporal Factors 
     % Decision 

      
     if((Bas(t)-Bar(t))>=0) 
       Dc(t)= Dc(t-1)+GammaDc(t)*(((Bas(t)-Bar(t))-(Dc(t-1)))*(1-

Dc(t-1)))*(Delta_t); 
     else 
      Dc(t)= Dc(t-1)+ GammaDc(t)*(((Bas(t)-Bar(t))-(Dc(t-1)))*(Dc(t-

1)))*(Delta_t); 
     end   
     GammaDc(t) = GammaDc(t) - lambdaDc; 
     Ea(t)=GammaDc(t); 
     if (Dc(t)>=decision_threshold) 
       Pa(t)=1; 
     else 
       Pa(t)=0; 
     end 
end 
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%/////////////////////////////////////////////////////////////////// 
% Excute the model at t=1 to numStep  
hold on 
t=1:numStep; 
subplot(2,2,1); 
y = plot(t, Dk,'b:',t, Rp,'r--' ); 
xlabel('time steps');ylabel('levels'); 
xlim([0 numStep]);ylim([minLimX maxLimY]); 
hold off; 
legend(y,'Driv.Know.','Risk Perceptn') ;  

 

%/////////////////////////////////////////////////////////////////// 
subplot(2,2,2); 
y = plot(t, Ea,'k--',t, Dc,'r--'); 
xlabel('time steps');ylabel('levels'); 
xlim([0 numStep]);ylim([minLimX maxLimY]); 
hold off; 
legend(y,'Exp. Automaticity','Conf.to Decide'); 
%/////////////////////////////////////////////////////////////////// 
 

subplot(2,1,2); 
y = plot(t, Pa,'r-'); 
xlabel('time steps');ylabel('levels'); 
xlim([0 numStep]);ylim([minLimX maxLimY]); 
hold off; 
legend(y,'Perf. of Action') ; 
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Appendix D 

Sample of Participants’ Selection Questionnaire in English & Malay  

Participants Selection  Questionnaire 

 

 

INSTRUCTION: 

 

Please tick         at the appropriate box. 

 

1. Age Group  

<30□  30-39□  40-49□  ≥50□ 

 

2. Gender  

Male□  Female□ 

 

3. Educational Level 

Undergraduate□  Master□  PhD□   Others□ 

 

4. Driving experience 

 

Inexperience Driver  Average Driver  Experience Driver 

          <1 year□     1-5 years□  ≥6 years□  

  
5. Annual Mileage 
      <5,000km per year□  ≥5,000km per year□  
6. Do you have a valid driving licence?  

Yes□   No□ 

7. Have you ever used a desktop driving simulator?  

Yes□   No□ 

 

8. Do you play any type of video games?  

Yes□   No□ If Yes, answer # 9 and # 10. If No, skip to 11.  

 

9) If Yes, how often? For example, one hour a month or a week? ________________________  

10) At what age did you start playing video games? __________________________________  

11) If you do use a computer, how many hours per week?______________________________ 

 

 

 

 

✓  
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ARAHAN: 

 

Sila tandakan              pada kotak yang bersesuaian. 

 

1. Kelompok Umur  

<30□  30-39□  40-49□  ≥50□ 

 

2. Gender  

Lelaki□  Perempuan□ 

 

3. Tahap Pendidikan 

Ijazah Sarjana Muda□ Ijazah Sarjana□  Ijazah PhD□  Lain-

lain□ 

 

4. Pengalaman memandu 

 

Pemandu Kurang Berpengalaman Pemandu Sederhana Pemandu Berpengalaman 

          <1 tahun□     1-5 tahun□  ≥6 tahun□  

  
5. Perbatuan Tahunan 
      <5,000km setahun□  ≥5,000km setahun □  
6. Adakah anda memiliki lessen memandu yang sah?  

Ya□   Tidak□ 

7. Pernahkah anda menggunakan simulasi pemanduan atas meja (DTP)?  

Ya□   Tidak□ 

8. Adakah anda bermain sebarang jenis permainan video?  

Ya□   Tidak□ Jika jawapan anda Ya, sila jawab soalan 9 dan soalan 10.  

Sekiranya jawapan anda Tidak, sila jawab soalan 11 sahaja.  

9. Jika jawapan anda Ya, berapa kerapkah anda bermain permainan video? Contohnya, satu jam 

sebulan atau satu jam seminggu? 

_________________________________________________________________________________ 

 

10. Pada usia berapakah anda mula bermain permainan video? 

_____________________________________________________________________________ 

11.Sekiranya anda menggunakan komputer, berapa jamkah anda luangkan untuk menggunakan 

komputer 

setiapminggu?______________________________________________________________________ 

✓  
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Appendix E 

Sample of Participant Consent Form English Vs Malay  

Please read this consent document carefully before you decide to participate in this study experiment. 

Purpose of the research study experiment: The purpose of this study is to validate the proposed 

model by investigating if the model factors are effective in terms of making prime decision, to see if 

the simulation scenarios based on the model factors matches the behaviour of the driver in real life 

domain.  

What you will be asked to do in the study experiment: A protocol guide will be provided to the 

participants on how to use the game simulator. Then, a training session for the experimental group 

will commence using city driving test. Thereafter, both groups will play the free driving test for the 

three scenarios. Finally, both group fill up a questionnaire for each scenarios played.  

Required time for the experimental Group: 45 minutes. 

Date & Time for the experiment:  ______________________________________________ 

Venue: Human Centred Computing Research Lab, School of Computing, Universiti Utara Malaysia. 

Risks: No risk is associated with this experiment. 

Benefits / Compensation: There is a free meal to compensate the participants but no other direct 

benefit to you for participation.  

Confidentiality: Your identity will be kept confidential to the extent provided by law. The 

participants’ profiles will be created for playing the game simulator. When the study is completed and 

the data have been analysed, the profile lists of the participants will be destroyed. Your profile name 

will not be used in any report.  

Voluntary participation: Your participation in this study is voluntary. There is no penalty for not 

participating.  

Right to withdraw from the study: You have the right to withdraw from the study at any time 

without consequence. 

Permission to snap and use Photos: The researcher will take photos of the participants while 

engaged during the experiment. Do you permit the researcher to snap and put your photo in her 

thesis? 

Yes□   No□ 

Whom to contact if you have questions about the study experiment: Rabi Mustapha (School of 

Computing, UUM) telephone (0169810644), and email (rabichubu@yahoo.com); Supervisor: Assoc. 

Prof. Dr.Yuhanis binti Yusof (School of Computing, UUM) telephone (013-392-1224) and email 

(yuhanis@uum.edu.my). 

 

__________________________________________________________________ 

Participant                                                          Signature             Date 

I have read the procedure described above. 

I voluntarily agree to participate in the experiment. 

mailto:rabichubu@yahoo.com
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Borang Persetujuan Peserta 

 

Sila baca dokumen persetujuan ini dengan teliti sebelum anda membuat sebarang keputusan 

untuk mengambil bahagian dalam eksperimen kajian ini. 

Tujuan eksperimen kajian penyelidikan: Kajian ini bermatlamat untuk mengesahkan model yang 

diusulkan dengan meneliti sama ada faktor model berkesan dari segi membuat keputusan penting, dan 

untuk melihat sama ada senario simulasi yang dihasilkan berdasarkan model faktor berpadanan 

dengan tingkah laku pemandu dalam domain situasi sebenar.   

Apakah tugas anda dalam eskperimen kajian ini? Satu panduan protokol yang membimbing para 

peserta untuk menggunakan simulator permainan akan disediakan. Sesi latihan untuk kumpulan 

eksperimen kemudiannya akan dimulakan dengan menggunakan ujian pemanduan di bandar. Selepas 

itu, kedua-dua kumpulan akan bermain dengan ujian pemanduan yang percuma untuk ketiga-tiga 

senario. Akhir sekali, kedua-dua kumpulan akan melengkapkan soal selidik untuk setiap senario yang 

telah dimainkan.  

 

Masa yang diperlukan untuk kumpulan eksperimen: 45 minit. 

Tarik & Masa eksperimen:  ______________________________________________ 

 

Tempat: Makmal Penyelidikan Pengkomputeran Berpusatkan Manusia, Pusat Pengajian 

Pengkomputeran, Universiti Utara Malaysia. 

Risiko: Tiada sebarang risiko dikaitkan dengan eksperimen ini.  

Faedah / Ganjaran: Makanan percuma disediakan kepada para peserta tetapi tiada sebarang ganjaran 

lain yang diberikan atas penyertaan anda.   

Kerahsiaan: Identiti anda dirahsiakan seperti yang termaktub dalam undang-undang. Profil peserta 

akan dicipta untuk membolehkan peserta menggunakan simulator permainan. Apabila kajian sudah 

disempurnakan dan data dianalisis, senarai profil peserta akan dimusnahkan. Nama profil anda tidak 

akan digunakan dalam sebarang laporan.  

Penyertaan secara Sukarela: Penyertaan anda dalam kajian ini secara suka rela. Tiada sebarang 

penalti dikenakan sekiranya anda tidak mengambil bahagian.   

Hak untuk menarik diri daripada kajian: Anda berhak untuk menarik diri daripada kajian ini bila-

bila yang anda mahu tanpa sebarang akibat. 

Keizinan untuk mengambil gambar dan menggunakan gambar: Penyelidik akan mengambil 

gambar peserta yang sedang menjalani eksperimen. Adakah anda mengizinkan penyelidik untuk 

mengambil gambar dan memuatkan gambar anda dalam tesis penyelidik?  

Ya□   Tidak □ 
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Individu yang boleh anda hubungi sekiranya anda mempunyai sebarang pertanyaan 

berhubung eksperimen kajian: Rabi Mustapha (Pusat Pengajian Pengkomputeran, UUM) no telefon 

(0169810644), dan e-mel (rabichubu@yahoo.com); Penyelia: Prof. Mady Dr.Yuhanis binti Yusof 

(Pusat Pengajian Pengkomputeran, UUM) no telefon (013-392-1224) dan e-mel 

(yuhanis@uum.edu.my). 

 

 

__________________________________________________________________ 

Peserta                                                    Tandatangan            Tarikh 

Saya telah membaca prosedur yang dijelaskan di atas. Saya secara suka rela bersetuju untuk 

mengambil bahagian dalam eksperimen tersebut. 

 

 

 

 

 

 

 

 

 

 

 

mailto:rabichubu@yahoo.com
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Appendix F 

Paricipants Demogarphic Information 

 

Table Showing Participants’ Age Ranges 

Age Range 
Frequency Percent Valid Percent 

Cumulative 

Percent 

 20-29 6 30.0 30.0 30.0 

30-39 12 60.0 60.0 90.0 

40-49 2 10.0 10.0 100.0 

Total 20 100.0 100.0  
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Table Showing Participants’ Gender 

Gender 
Frequency Percent Valid Percent Cumulative Percent 

 Male 18 90.0 90.0 90.0 

Female 2 10.0 10.0 100.0 

Total 20 100.0 100.0  
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Table Showing Participants’ Educational Level 

 

Frequency Percent Valid Percent 

Cumulative 

Percent 

 Under Graduate 3 15.0 15.0 15.0 

Master 15 75.0 75.0 90.0 

PhD 2 10.0 10.0 100.0 

Total 20 100.0 100.0  
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Table Showing Participants’ Years of Driving Experience 

Years of Driving 

Experience 
Frequency Percent Valid Percent 

Cumulative 

Percent 

 6-10 Years 13 65.0 65.0 65.0 

>10 Years 7 35.0 35.0 100.0 

Total 20 100.0 100.0  
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Table Showing Participants’ with Valid Licence 

Valid Licence 
Frequency Percent Valid Percent Cumulative Percent 

 Yes 20 100.0 100.0 100.0 
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Appendix G 

Participants’ Experiment User Guide 

EXPERIMENTAL GROUP USER GUIDE 

1. CREATE A PROFILE 

Step 1: Click on “Profile” 

Step 2: Click on “Create” 

Step 3: Enter a name for your Profile 

Step 4: Click on “New” 

Step 5: Click on “SELECT” 

2. START THE TRAINING 

Step 1: Click on “Career” 

Step 2: Click on right arrow to select “City test”. 

Step 3: Click on “Start” to play. Wait for the simulator to complete loading. Thereafter,  the 

game is ready for play. 

Step 4: Press “B” on the keyboard to put on the “seat belt”. 

Step 5: Press “E” on the keyboard to on/off the “car engine”. 

Step 6: Press “Spacebar” on the keyboard to remove the car from parking gear. 

Step 7: Press and hold down the “Down Arrow” and Pressing “W” on the keyboard to 

move to the next gear.  

 Note: Still hold down the “Down Arrow” and press W again for selecting gear 2, 

3, 4 and 5. Also, you can press “S” to move to the previous gear. 

Step 8: Press “Up-arrow” on the keyboard to start moving “Accelerating”. 

 Note: You can use left and right arrow to turn the car left or right respectively, 

 you can also use “Down-arrow” to break or stop. 

Step 9: Press “>”on the keyboard to turn right signal, or Press “<”on the keyboard to turn 

left signal. 

Step 10: Once you violated 5 traffic rules, a prompt will appear with instruction that you 

 may try again or quit. 

Step 11: Click on “Start again” to repeat the training. 

Step 12: Continue the training for at least 30 minutes. 

 Note: While driving, an instruction will be given to you at the right hand side of the 

screen for action to be taken, warning and violation of traffic rules information. 

Step 13: press “Esc” to go to the Menu or Exit 
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3. START FREE DRIVING 

Step 1: Click on “Free Driving” 

Step 2: Wait for scenario settings 

Step 3: Click on “Start” to play. Wait for the simulator to complete loading. Thereafter,  the 

game is ready for play. 

Step 4: Press “B” on the keyboard to put on the “seat belt”. 

Step 5: Press “E” on the keyboard to start the “car engine”. 

Step 6: Press “Spacebar” on the keyboard to remove the car free from parking gear. 

Step 7: Press and hold down the “Down Arrow” and Pressing “W” on the keyboard to 

move to the next gear.  

 Note: Still hold down the “Down Arrow” and press W again for selecting gear 2, 

3, 4 and 5. Also, you can press “S” to move to the previous gear. 

Step 8: Press “Up-arrow” on the keyboard to start moving “Accelerating”. 

 Note: You can use left and right arrow to turn the car left or right respectively, you 

can also use “Down-arrow” to break or stop. 

Step 9: Press “>”on the keyboard to turn right signal, or Press “<”on the keyboard to turn 

left signal. 

Step 10: Press “K” to turn on the High Beam light, “L” for Parking/Lower Beam/Head 

light, “G” for Hazard light. 

Step 11: press “Esc” to go to the Menu or Exit. 

Note: Press “1” on the keyboard for neutral gear. “0” for Reverse, “X” to Reduce the car 

gear.  

CONTROL GROUP USER GUIDE 

1. CREATE A PROFILE 

Step 1: Click on “Profile” 

Step 2: Click on “Create” 

Step 3: Enter a name for your Profile 

Step 4: Click on “New” 

Step 5: Click on “SELECT” 

2. START FREE DRIVING  

Step 1: Click on “Free Driving” 

Step 2: Wait for scenario settings 

Step 3: Click on “Start” to start playing the game. Wait for the simulator to complete 

loading. Thereafter, the game is ready for play. 

Step 4: Press “B” on the keyboard to put on the seat belt. 

Step 5: Press “E” on the keyboard to start the car engine. 
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Step 6: Press “Spacebar” on the keyboard to set the car free from parking gear. 

Step 7: Press “W” on the keyboard to set for gear 1.  

 Note: You can press “W” again for gear 2, 3, 4 and 5. Also, you can press “S” to 

reduce the gear backward from 5 to 1. 

Step 8: Pres “Up-arrow” on the keyboard to start moving 

 Note: You can use left and right arrow to turn the car left or right respectively, 

 you can also use down-arrow to stop. 

Step 9: Press “>”on the keyboard to turn right signal, or Press “<”on the keyboard to turn 

left signal 

Step 10: Press “K” to on the High Beam light, “L” for Parking/Lower Beam/Head 

 light, “G” for Hazard light. 

Step 11: press “Esc” to go to the Menu or Exit 

Note: Press “1” on the keyboard for neutral gear. “0” for Reverse gear, “X” to Reduce the 

car gear.  
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Appendix H 

Sample Photos of some participants during the experiments 

Experimental Group Participants 
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Control Group Participants 
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Appendix I 

Sample of Post-test Experiment Questionnaire in English Vs Malay  

                                          Questionnaire                      
            

UNIVERSITI UTARA MALAYSIA 

COLLEGE OF ARTS AND SCIENCES 

06010                                                   

DARUL AMAN, KEDAH 

MALAYSIA 

 
Dear participants,  

I am a post graduate student conducting a study on driver’s behaviour using a driving game simulator. 

The study is to test the model factors effectiveness to see if the simulation scenarios based on the 

model factors matches the behaviour of the driver in real life domain. To also see if training have 

effect on the automaticity of the driver to make prime decision. 

Please be assured that your response will not be used for any other purposes other than academic.  

 

Thank you so much in anticipation of your responses. If you require additional information about this 

study, kindly contact any of the following: 

 

Researcher: 

Rabi Mustapha,  

School of Computing,  

College of Arts and Sciences,  

Universiti Utara Malaysia, 

Sintok, Kedah, Malaysia. 

Email: rabichubu@yahoo.com 

 

Main Supervisor: 

Assoc.Prof. Dr.Yuhanis Yusof 

School of Computing, 

UUM, Sintok, Kedah, Malaysia. 

 

Co-Supervisor: 

Dr. Azizi Ab Aziz 

School of Computing, 

UUM, Sintok, Kedah, Malaysia. 
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INSTRUCTION 

 

The questionnaire is divided into two sections: Section A deals with the demographic questions and 

Section B consists of Items on Driver Behavior (DB) based on the training model.  

 

SECTION A: Demographic characteristics of the study participants 

 

Please tick         at the appropriate box. 

 

Age Group  

<20□ 20-29□ 30-39□ 40-49□ 50-59□ ≥60□ 

 

Gender  

Male□  Female□ 

 

Educational Level 

Undergraduate□    Master□        PhD□     Others□ 

 

Driving experience 

<2 year□  2-5 years□      6-10 years□  >10 years□ 
Do you have a valid driving licence? Yes□   No□ 

 

The respondents are expected to answer the questions in this section using their driving experience 

with the game simulator. Kindly indicate your rating level when training with the game simulator in 

each of the items. The rating scale is from 0-10, with (0-5) indicating Low and (6-10) indicating 

High.  Please tick          as appropriate. 
 

S/N How do you rate yourself in the ability to do 

these: 

SCALE 

Low                                                   High          

1. Maintaining lane positioning  0 1 2 3 4 5 6 7 8 9 10 

2. Turning the car 0 1 2 3 4 5 6 7 8 9 10 

3. Speed control 0 1 2 3 4 5 6 7 8 9 10 

4. Braking 0 1 2 3 4 5 6 7 8 9 10 

5. Use of turn signals 0 1 2 3 4 5 6 7 8 9 10 

6. Use of mirrors 0 1 2 3 4 5 6 7 8 9 10 

7. Controlling the steering wheel 0 1 2 3 4 5 6 7 8 9 10 

8. Gear selection in operating manual /automatic car 0 1 2 3 4 5 6 7 8 9 10 

 

 

 

 

  

SECTION B: Items on Driver Behavior (DB) based on the training model  

✓  

√ 
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S/N How do you rate yourself on the following: SCALE 

Low                                                   High          

9. Holding the steering wheel while driving? 0 1 2 3 4 5 6 7 8 9 10 

10. Looking into the side mirrors while overtaking 

another car? 

0 1 2 3 4 5 6 7 8 9 10 

11. Driving between the lines? 0 1 2 3 4 5 6 7 8 9 10 
12. Using the signal lights while turning? 0 1 2 3 4 5 6 7 8 9 10 
13. Driving a car in reverse? 0 1 2 3 4 5 6 7 8 9 10 
14. Turning in prohibited areas (e.g, no U-Turn)? 0 1 2 3 4 5 6 7 8 9 10 
15. Stopping in prohibited areas (e.g. Roundabout, 

four-way intersection or crossroad)? 

0 1 2 3 4 5 6 7 8 9 10 

16. The use of seat belt while driving? 0 1 2 3 4 5 6 7 8 9 10 
17. Driving within the speed limit? 0 1 2 3 4 5 6 7 8 9 10 

 

 
S/N How do you rate your vision: SCALE 

Low                                                   High     

18. Seeing dark coloured cars when driving at night?  0 1 2 3 4 5 6 7 8 9 10 

19. Seeing pedestrians on the road side when driving 

at night? 

0 1 2 3 4 5 6 7 8 9 10 

20. Seeing pedestrians on the road side when driving 

in a day time? 

0 1 2 3 4 5 6 7 8 9 10 

21. Reading street signs when driving at night?  0 1 2 3 4 5 6 7 8 9 10 

22. Reading street signs when driving in a day time? 0 1 2 3 4 5 6 7 8 9 10 

23. Seeing the road due to oncoming headlights when 

driving at night?  

0 1 2 3 4 5 6 7 8 9 10 

24. Seeing the road due to oncoming headlights when 

driving in a day time? 

0 1 2 3 4 5 6 7 8 9 10 

25. Seeing the road in rain when driving at night? 0 1 2 3 4 5 6 7 8 9 10 

26. Seeing the road in rain when driving in a day 

time? 

0 1 2 3 4 5 6 7 8 9 10 

 How often do you distracted by:  

27. Eating/drinking while driving? 0 1 2 3 4 5 6 7 8 9 10 

28. Read roadside advertisements? 0 1 2 3 4 5 6 7 8 9 10 

29. Daydream? 0 1 2 3 4 5 6 7 8 9 10 

 

 
S/N Prioritize your goals based on the following 

items and rate accordingly: 

SCALE 

Low                                                 High 

30. Safety goal (i.e. Making sure of your safety and 

safety of others). 

0 1 2 3 4 5 6 7 8 9 10 

31. Time goal (i.e. Making sure you reach your 

destination on time).  

0 1 2 3 4 5 6 7 8 9 10 

32. Avoiding traffic violation. 0 1 2 3 4 5 6 7 8 9 10 
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S/N Rate your intention to achieving these goals: SCALE 

Low                                                   High         

33. Safety goal. 0 1 2 3 4 5 6 7 8 9 10 

34. Time goal. 0 1 2 3 4 5 6 7 8 9 10 

35. Avoiding traffic violation. 0 1 2 3 4 5 6 7 8 9 10 

S/N How do you rate your information level on the 

following items: 

SCALE 

Low                                                   High        

36. Car stopping at the Pedestrian Crossing? 0 1 2 3 4 5 6 7 8 9 10 

37. Curves (or bend) on the road? 0 1 2 3 4 5 6 7 8 9 10 

38. Other cars  driving in front of you? 0 1 2 3 4 5 6 7 8 9 10 

39. Pedestrian  crossing the road in a wrong place? 0 1 2 3 4 5 6 7 8 9 10 

 

 
S/N How do you rate your exposure on the 

following complex tasks: 

SCALE 

Low                                                  High       

40. Accelerating when approaching a flickering green 

light? 

0 1 2 3 4 5 6 7 8 9 10 

41. Activating a direction indicator when negotiating a 

bend? 

0 1 2 3 4 5 6 7 8 9 10 

42. Braking by slowing down before negotiating 

roundabout 

0 1 2 3 4 5 6 7 8 9 10 

43. Emergency braking when another car pull into 

driver’s path 

0 1 2 3 4 5 6 7 8 9 10 

44. Changing gear when reducing the car speed. 0 1 2 3 4 5 6 7 8 9 10 

45. Check surrounding for unsafe situations. 0 1 2 3 4 5 6 7 8 9 10 

46. Maintain lane in traffic. 0 1 2 3 4 5 6 7 8 9 10 

47. Controlling the steering wheel. 0 1 2 3 4 5 6 7 8 9 10 

 

 
S/N How do you rate your degree of risk associated 

with: 

SCALE 

Low                                                   High                

48. Driving at night? 0 1 2 3 4 5 6 7 8 9 10 

49. Bypassing slow car through the left hand side 

instead of the right hand side? 

0 1 2 3 4 5 6 7 8 9 10 

50. Pulling over the road way (getting on and off 

lower road shoulder)? 

0 1 2 3 4 5 6 7 8 9 10 

51. Driving in a city at a speed above the speed limit? 0 1 2 3 4 5 6 7 8 9 10 

52. Bypassing when you are hidden by a truck and 

have no good vision of the car coming in front of 

you? 

0 1 2 3 4 5 6 7 8 9 10 

53. Losing control over the car while driving on a wet 

and slippery road? 

0 1 2 3 4 5 6 7 8 9 10 

54. Losing control over the car while driving on a dry 

road? 

0 1 2 3 4 5 6 7 8 9 10 

55. Backward driving (reverse) when there are blind 

sights? 

0 1 2 3 4 5 6 7 8 9 10 

56. Backward driving (reverse) when there are no 

blind sights? 

0 1 2 3 4 5 6 7 8 9 10 

57. Sudden braking by another car in front of you? 0 1 2 3 4 5 6 7 8 9 10 

58. Challenged-driving aimed at testing your driving 

abilities? 

0 1 2 3 4 5 6 7 8 9 10 
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S/N How do you rate your level of understanding of 

the following items: 

SCALE 

Low            High        

59. Road signs? 0 1 2 3 4 5 6 7 8 9 10 

60. Use of maximum speed limits driving in a city? 0 1 2 3 4 5 6 7 8 9 10 

61. Traffic rules and regulations? 0 1 2 3 4 5 6 7 8 9 10 

62. Road markings? 0 1 2 3 4 5 6 7 8 9 10 

  
 

S/N How can you rate yourself performing these 

actions Involuntarily(I.e. unconsciously): 

SCALE 

Low                                                   High             

63. Sudden swerve to another direction without 

thinking (e.g. when another car swerved in front of 

my car while driving.)? 

0 1 2 3 4 5 6 7 8 9 10 

64. Begin panic stop before I realize I’m doing it (e.g. 

when pedestrian crossing the road in a wrong 

place in front of my car while driving.)? 

0 1 2 3 4 5 6 7 8 9 10 

65. Do change lane without meaning to do it? 0 1 2 3 4 5 6 7 8 9 10 

66. Find it hard to stop myself from doing dangerous 

overtaking? 

0 1 2 3 4 5 6 7 8 9 10 
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ARAHAN 

 

Soal selidik ini terbahagi kepada dua bahagian. Bahagian A merangkumi aspek demografi dan 

bahagian B mengandungi item berkenaan Tingkah laku Pemandu (DB) berdasarkan model latihan.  

 

BAHAGIAN: Ciri-ciri demografi peserta kajian. 

 

Sila tanda       at pada kotak yang bersesuaian. 

 

1)  Kelompok Umur  

<20□tahun   20-29□tahun 30-39□tahun 40-49□tahun 50-59□tahun

 ≥60□tahun 

 

2) Jantina  

Lelaki□  Perempuan□ 

 

3) Tahap Pendidikan 

Ijazah Sarjana muda□    Ijazah Sarjana□        Ijazah PhD□     Lain-lain□ 

 

4) Pengalaman memandu 

<2 tahun□  2-5 tahun□      6-10 tahun□  >10 tahun□ 

5) Adakah anda memiliki lesen memandu yang sah? Ya□   Tidak□ 

 

Para responden diharapkan dapat menjawab soalan dalam bahagian ini berpandukan pengalaman 

memandu mereka dengan menggunakan simulator permainan. Sila nyatakan tahap penilaian anda 

apabila berlatih menggunakan simulator permainan untuk setiap item. Skala penilaian adalah antara 0-

10, dengan  0 menunjukkan Rendah dan 10 menunjukkan Tinggi. Sila tanda        pada ruang yang 

bersesuaian. 
 

S/N Bagaimanakah anda menilai kemampuan anda 

untuk melakukan perkara-perkara berikut: 

SKALA 

Rendah                                                 

Tinggi 

1. Mengekalkan kedudukan laluan 0 1 2 3 4 5 6 7 8 9 10 

2. Pusingan 0 1 2 3 4 5 6 7 8 9 10 

3. Kawalan kelajuan 0 1 2 3 4 5 6 7 8 9 10 

4. Membrek 0 1 2 3 4 5 6 7 8 9 10 

5. Menggunakan isyarat pusingan 0 1 2 3 4 5 6 7 8 9 10 

6. Menggunakan cermin 0 1 2 3 4 5 6 7 8 9 10 

7. Mengawal stereng 0 1 2 3 4 5 6 7 8 9 10 

8. Mengentukan gear semasa mengendalikan kereta 

manual /kereta automatik 

0 1 2 3 4 5 6 7 8 9 10 

 

 

 

BAHAGIAN B: Item berhubung Tingkah laku Pemandu (DB) berdasarkan model latihan  

✓  
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S/N 

Bagaimanakah anda menilai diri anda 

berhubung perkara berikut: 

SKALA 

Rendah                                          Tinggi 

9. Memegang stereng ketika memandu? 0 1 2 3 4 5 6 7 8 9 10 

10. Melihat cermin tepi ketika memotong kenderaan 

lain? 

0 1 2 3 4 5 6 7 8 9 10 

11. Memandu antara garisan? 0 1 2 3 4 5 6 7 8 9 10 

12. Menggunakan lampu isyarat ketika membuat 

pusingan? 

0 1 2 3 4 5 6 7 8 9 10 

13. Mengundurkan kenderaan? 0 1 2 3 4 5 6 7 8 9 10 

14. Membuat pusingan di kawasan terlarang (cth. 

Dilarang berpusing balik)? 

0 1 2 3 4 5 6 7 8 9 10 

15. Berhenti di kawasan terlarang (cth. Bulatan, 

persimpangan empat laluan atau lintasan)? 

0 1 2 3 4 5 6 7 8 9 10 

16. Menggunakan tali pinggang keledar ketika 

memandu? 

0 1 2 3 4 5 6 7 8 9 10 

17. Memandu di bawah had kelajuan? 0 1 2 3 4 5 6 7 8 9 10 

 
S/N Bagaimanakah anda menilai penglihatan anda: SKALA 

Rendah                                        Tinggi 

18. Melihat kenderaan berwarna gelap ketika 

memandu pada waktu malam?  

0 1 2 3 4 5 6 7 8 9 10 

19 Melihat kenderaan berwarna gelap ketika 

memandu pada waktu siang? 

0 1 2 3 4 5 6 7 8 9 10 

20. Melihat pejalan kaki di tepi jalan ketika memandu 

pada waktu malam? 

0 1 2 3 4 5 6 7 8 9 10 

21. Melihat pejalan kaki di tepi jalan ketika memandu 

pada waktu siang? 

0 1 2 3 4 5 6 7 8 9 10 

22. Membaca papan tanda ketika memandu pada 

waktu malam?  

0 1 2 3 4 5 6 7 8 9 10 

23. Membaca papan tanda ketika memandu pada 

waktu siang? 

0 1 2 3 4 5 6 7 8 9 10 

24. Melihat jalan apabila disuluh lampu kenderaan 

dari arah hadapan ketika memandu pada waktu 

malam?  

0 1 2 3 4 5 6 7 8 9 10 

25. Menentukan jarak untuk keluar ketika memandu?  0 1 2 3 4 5 6 7 8 9 10 

26. Menentukan jarak antara anda dengan kenderaan 

lain yang bergerak ketika memandu?  

0 1 2 3 4 5 6 7 8 9 10 

27. Melihat jalan ketika hujan apabila memandu pada 

waktu malam? 

0 1 2 3 4 5 6 7 8 9 10 

 Berapa kerapkah anda dialih perhatian oleh 

perbuatan: 

0 1 2 3 4 5 6 7 8 9 10 

28. Makan/minum ketika memandu? 0 1 2 3 4 5 6 7 8 9 10 

29. Membaca iklan-iklan di tepi jalan? 0 1 2 3 4 5 6 7 8 9 10 

30. Memerhati secara berterusan sekiranya ada 

kejadian kemalangan di tepi jalan? 

0 1 2 3 4 5 6 7 8 9 10 

31. Berbual dengan penumpang, sekiranya ada 

penumpang? 

0 1 2 3 4 5 6 7 8 9 10 

32. Berkhayal? 0 1 2 3 4 5 6 7 8 9 10 
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S/N Susun matlamat anda mengikut keutamaan 

berhubung item  berikut dan berikan penilaian 

dengan wajar: 

SKALA 

Rendah                                          Tinggi 

33. Matlamat keselamatan (cth. Memastikan 

keselamatan anda dan keselamatan orang lain). 

0 1 2 3 4 5 6 7 8 9 10 

34. Matlamat masa (cth. Memastikan anda tiba ke 

destinasi anda tepat pada waktunya).  

0 1 2 3 4 5 6 7 8 9 10 

35. Mengelak daripada melanggar peraturan lalu 

lintas. 

0 1 2 3 4 5 6 7 8 9 10 

S/N Nilai hasrat anda untuk mencapai matlamat 

yang dinilai di atas: 

SKALA 

Rendah                                          Tinggi 

36. Matlamat keselamatan. 0 1 2 3 4 5 6 7 8 9 10 

37. Matlamat masa. 0 1 2 3 4 5 6 7 8 9 10 

38. Mengelak daripada melanggar peraturan lalu 

lintas. 

0 1 2 3 4 5 6 7 8 9 10 

 

 
S/N Bagaimanakah anda menilai tahap maklumat 

berhubung item berikut: 

SKALA 

Rendah                                          Tinggi 

39. Kenderaan berhenti di Lintasan Pejalan kaki? 0 1 2 3 4 5 6 7 8 9 10 

40. Lengkung (atau liku) di atas jalan? 0 1 2 3 4 5 6 7 8 9 10 

41. Kenderaan lain yang dipandu di hadapan anda? 0 1 2 3 4 5 6 7 8 9 10 

42. Pejalan kaki melintas jalan di tempat yang salah? 0 1 2 3 4 5 6 7 8 9 10 

 

 
S/N Bagaimanakah anda menilai tahap pendedahan 

anda terhadap tugas sukar berikut: 

SKALA 

Rendah                                          Tinggi 

43. Memecut ketika mendekati lampu hijau yang 

berkelip-kelip? 

0 1 2 3 4 5 6 7 8 9 10 

44. Menyalakan isyarat laluan apabila berhadapan 

dengan selekoh jalan? 

0 1 2 3 4 5 6 7 8 9 10 

45. Membrek secara perlahan sebelum memasuki 

bulatan 

0 1 2 3 4 5 6 7 8 9 10 

46. Membrek secara mengejut apabila kenderaan lain 

memasuki laluan anda 

0 1 2 3 4 5 6 7 8 9 10 

47. Mengubah gear apabila ingin memperlahankan 

kenderaan. 

0 1 2 3 4 5 6 7 8 9 10 

48. Memeriksa sekeliling apabila berada dalam 

keadaan yang tidak selamat. 

0 1 2 3 4 5 6 7 8 9 10 

49. Mengekalkan laluan di jalan raya. 0 1 2 3 4 5 6 7 8 9 10 

50. Mengawal stereng. 0 1 2 3 4 5 6 7 8 9 10 

 

 
S/N Bagaimanakah anda menilai tahap risiko anda 

berhubung perkara berikut: 

SKALA 

Rendah                                          Tinggi 

51. Memandu pada waktu malam? 0 1 2 3 4 5 6 7 8 9 10 

52. Memintas kenderaan yang perlahan di sebelah kiri 

dan bukannya di sebelah kanan? 

0 1 2 3 4 5 6 7 8 9 10 

53. Berhenti di bahu jalan (menuruni dan menaiki 

bahu jalan yang rendah)? 

0 1 2 3 4 5 6 7 8 9 10 

54. Memandu dalam bandar melepasi had kelajuan? 0 1 2 3 4 5 6 7 8 9 10 

55. Memintas dari belakang trak yang menghalang 

pandangan anda dengan tidak melihat kenderaan 

0 1 2 3 4 5 6 7 8 9 10 
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yang datang dari arah hadapan anda? 

56. Hilang kawalan ke atas kenderaan ketika 

memandu di atas jalan yang basah dan licin? 

0 1 2 3 4 5 6 7 8 9 10 

57. Hilang kawalan ke atas kenderaan ketika 

memandu di atas jalan yang kering? 

0 1 2 3 4 5 6 7 8 9 10 

58. Mengundurkan kenderaan apabila terdapat 

penglihatan tak peka? 

0 1 2 3 4 5 6 7 8 9 10 

59. Mengundurkan kenderaan apabila tiada 

penglihatan tak peka? 

0 1 2 3 4 5 6 7 8 9 10 

60. Membrek secara mengejut? 0 1 2 3 4 5 6 7 8 9 10 

61. Cabaran memandu bertujuan menguji kemampuan 

memandu anda? 

0 1 2 3 4 5 6 7 8 9 10 

 
S/N Bagaimanakah anda menilai tahap kefahaman 

anda berhubung perkara berikut: 

SKALA 

Rendah                                         Tinggi 

62. Papan tanda? 0 1 2 3 4 5 6 7 8 9 10 

63. Memandu melepasi had laju dalam bandar? 0 1 2 3 4 5 6 7 8 9 10 

64. Peraturan dan kawalan lalu lintas? 0 1 2 3 4 5 6 7 8 9 10 

65. Tanda jalan? 0 1 2 3 4 5 6 7 8 9 10 

  
S/N Bagaimanakah anda menilai diri anda apabila 

anda melakukan tindakan di luar kawalan 

(iaitu secara tak sedar) seperti berikut: 

SKALA 

Rendah                                          Tinggi 

66. Membelok secara mendadak ke arah lain tanpa 

berfikir (cth. Apabila kenderaan lain membelok di 

hadapan anda ketika memandu.)? 

0 1 2 3 4 5 6 7 8 9 10 

67. Panik sebelum menyedari anda melakukannya 

(cth. Apabila pejalan kaki melintas jalan di tempat 

yang salah di hadapan kenderaan anda ketika anda 

sedang memandu.)? 

0 1 2 3 4 5 6 7 8 9 10 

68. Mengubah laluan tanpa berniat untuk berbuat 

demikian? 

0 1 2 3 4 5 6 7 8 9 10 

69. Sukar mengawal diri daripada memintas 

kenderaan lain secara berbahaya? 

0 1 2 3 4 5 6 7 8 9 10 
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Appendix J 

Illustration of Decision Made by the Participants  

 

 

 

Dangerous swerving  
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Hitting the Pedestrian  
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Hitting the Pedestrian  
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Appendix K 

Summary of City Car Driving Simulator Features 

Features Explanation 

Multilingual Supported languages such as English, German, 

French, Italian, Spanish, Portuguese, Turkish, 

Czech, Chinese and Japanese. This enhances the 

usability of the simulator. 

Right-handed and left-handed driving modes Allows drivers drive to drive using both right-

hand and left-handed driving modes. This feature 

makes this car simulator a versatile tool, 

regardless of the country which the user resides 

in.  

Various times of day and weather conditions Allows driver feel all the difficulties of driving in 

harsh weather conditions, such as time of day: 

day time, morning, evening, and night time. 

Summer weather: Clear (dry road), humid 

(cloudy, wet road), foggy and rainy. 

Winter weather: Clear, clear ice (slippery road), 

foggy and snow as well as in conditions of poor 

visibility at night or in the fog. 

Sudden dangerous situations Help driver feel realistic driving situations. 

There's generation of such sudden events as: a 

traffic car drives on the opposite lane or cutting 

the lane just in front of the player's car, 

pedestrians crossing the road in wrong places, 

broken traffic lights, etc. 

Random routes in free driving mode Make the driving more diverse and interesting. 

Routes can be defined as without any limitations 

(set only a destination, and let the navigator pave 

the best route to it), and be represented as a small 

mission with a limited penalty scores for traffic 

rules violations (user can choose what types of 

violations will be considered - all types of 

violations or only some types). 

Virtual cities Old district - narrow streets, a lot of unsupervised 

crossings; 

Modern district - wide streets, many multi-lane 

roads, a lot of signalled and unsupervised 

crossings; Superhighway; Country road; Cart 

road; 

Southern district - wide streets with tramways, a 

lot of signalled and unsupervised crosswalks, 

narrow tangled courtyard with many parked cars; 

Mountainous area - narrow roads with 

considerable height drops. 

These provide driver with huge driving area 

including roads, crossings and junctions of 

various types and complexity that helps get 

confidence on the road in any situation. Each 

virtual city has its own large and indivisible 

virtual space. It gives driver opportunity to drive 
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from one district of the city to other without extra 

loading screens. 

Multi-level car parks Multi-level car parks with lots of parked cars, 

impeding the movement, teach driving safely in 

the modern realities of large cities with dense 

building and close parking. 

Interactive detailed city map will help driver not to get lost in a big virtual 

world. There're also navigator tips while drive 

along the route. 

Different player cars allow driver feel the difference in driving of 

various vehicle types. All cars have full set of 

controls, including the sound and light 

equipment. 

Various driving missions Missions are grouped by difficulty help driver 

train the driving skills in various road situations. 

They help learn traffic rules effectively and raise 

driving skills. By finishing exercises and getting 

achievements you gradually unlock new city 

districts and player cars. 

Categories of driving missions by difficulty: 

driving school student; 

beginner driver; 

experienced driver; 

professional driver defensive (extreme) driving 

exercises. This prepares you for the unexpected 

and extreme situations. 

Accurate rules of road control system help driver examine the road situation. 

Advanced physics engine provides with high realism of driving. 

Maximum speed corresponds to real car 

prototypes. And a mathematical model of a car 

engine simulates: friction force, inertia, realistic 

work of the starter and many other parameters. 

Both manual and automatic transmission Covers drivers of all type of vehicles. 

Transmission operates realistic and has all the 

relevant modes. 

Smart traffic AI not always follows the rules as in life settings. 

Traffic cars are physical; they're able to collide 

with player's car or with each other. Traffic 

density and its "aggression" can be adjusted in 

the game settings. 

Pedestrians look like alive and behave accordingly, 

sometimes crossing the road in the wrong places. 

The virtual city has lots of supervised and 

unsupervised crosswalks used by pedestrians. 

Pedestrian density also can be adjusted in the 

game settings. 

High-quality graphics Cars have shadows, highlights, reflections. Road 

becomes wet and greasy after rain. 

Damage  All cars get visible damage, when collide. 

Sound effects are realistic and improve immersing in the 

driving process. There are such effects as the 

sound of the slipping wheels, etc. 

Easy-to-use controls are intuitive, and the wide range of supported 

devices allows driver use a keyboard, mouse, 
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racing wheel, gamepad, joystick or multiple 

controllers simultaneously. And controlling of 

the driver's sight with the mouse allows you track 

the dead zones even while not having of more 

advanced peripherals. 

Support for the newest and the most advanced 

racing wheels 

allows driver get maximum realism while 

driving. Supported: the force feedback, 900 

degrees rotation angle, clutch pedal and all the 

other features of the most advanced and 

multifunction racing wheels. 

Mirror adjustment allows driver to set the optimum viewing angle as 

well as enhances the realism. 

Third-party mods support allows driver moding of the game and add almost 

any new car. There're also other mods available 

at the simulator forum, such as: tuning of the 

physics, road signs, license plates, etc. 

Virtual world Each virtual city has its own large and indivisible 

virtual space. It gives driver opportunity to drive 

from one district of the city to other without extra 

loading screens. The city can be selected in the 

menu before the driving start. Interactive detailed 

city map will help driver not to get lost in a big 

virtual world. 
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Appendix L System requirements to run the application 

Minimum system configuration: 

OS: Windows 7 SP1 / 8 / 8.1 / 10 (64 Bit); 

CPU: Intel Pentium Dual Core 3.2 GHz / AMD Athlon II X4 3.1 GHz; 

RAM: 4 Gb; 

Video: AMD Radeon R7 240 / NVidia GeForce GT 740; 

DirectX: version 11; 

HDD: 10 Gb of free space; 

Sound: any sound card compatible with DirectX 9.0; 

Controllers: keyboard, mouse; 

Internet: constant Internet connection (for license validation). 

Recommended system requirements for the Oculus Rift are determined by the equipment 

manufacturer. 

Recommended system configuration: 

OS: Windows 7 SP1 / 8 / 8.1 / 10 (64 Bit); 

CPU: Intel Core i3 3.2 GHz / AMD FX 4xxx 3.6 GHz; 

RAM: 8 Gb; 

Video: AMD Radeon R7 250X / NVidia GeForce GTX 750; 

DirectX: version 11; 

HDD: 10 Gb of free space; 

Sound: any sound card compatible with DirectX 9.0; 

Controllers: keyboard, mouse, racing wheel; 

Internet: constant Internet connection (for license validation). 
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