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A B S T R A C T 

In this paper, we present an analytical model to analyze reinforced and prestressed 

concrete beams loaded in combined bending, axial load and shear, in the frame of non 

linear elasticity. In this model, the equilibrium of the beam is expressed by solving a 

system of equations, governing beams equilibrium, based on the stiffness matrix of the 

beam, which connects the load vector to the node displacements vector of the beam. It is 

built from the stiffness matrix of the section which takes into account a variation of the 

shearing modulus (depending on the shear variation) instead of assuming a constant 

shearing modulus as in linear elasticity. For the internal tendons, the stiffness matrix is 

completed by the terms due to the prestress effect in flexural equilibrium and by the 

balancing of one part of the shear by the transverse component of the force in the inclined 

cables. A computing method is then developed and applied to the calculus of some 

internally or externally prestressed concrete beams. The comparison of the results 

predicted by the model with several experimental results show that, on the one hand, the 

model predictions give a good agreement with the experimental behavior in any field of 

the behavior (after cracking, post cracking, post steel yielding and fracture of the beam); 

and, on the second hand, that the model leads to the prediction of tendons slipping at 

deviators and to the tension increase in the tendons. 

1 Modelling 

1.1 Geometrical and cinematically hypothesis 

The structure studied is a reinforced concrete beams or prestressed beams with internal or external tendons. In this last 

case, the tendons are relied to the concrete only at the deviators who considered as rigid elements [1-11]. The concrete beam 

is divided into beams elements and for the externally prestressed beams, the external cable is divided into cable elements to 

obtain the model for the analysis (figure 1). 
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Fig. 1 -  Schematic model of the externally prestressed beam for the analysis. 

The transverse section of the beam is decomposed into layers (see figure 2). The deformation of the section follows 

Bernoulli’s principle. 

 

Fig. 2 – Section discretised into concrete strips and longitudinal steel components. 

The following systems of axes are introduced to study the equilibrium of an element: a fixed global system attached to 

the structure; a local system concerning the initial position of the element; an intrinsic system linked to the deformed position 

of the element; and an intermediate system related to the translation of the local system to the origin of the intrinsic system 

(see figure 3).  

 

Fig. 3 -  Axis of the beam element. 

The evaluation of the displacement field of the elements is made by numerical integration of deformations section by 

section. The deformations of a section are calculated by use of the intrinsic system. It is assumed that deformation and 

displacements are small. The second order effects due to node displacements are introduced by a non linear transformation 

of displacements at element ends from the intrinsic system to the intermediate system [8, 12-14].  

1.2 Constitutive laws of materials 

1.2.1 Concrete constitutive law 

Many mechanical models of compressive concrete are currently used in the analysis of reinforced or prestressed concrete 

structures. Among those models, the monotonic curve introduced by Sargin [15] was adopted in this study for its simplicity 

and computational efficiency. In this model the stress strain relationship is:   
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' 1b bk k  [15]. 

On the other hand, we assume that concrete is linearly elastic in the tension region. Beyond the tensile strength, the 

tensile stress decrease with increasing the tensile strain. In this field we have adopted the monotonic concrete stress-strain 

curve introduced by Grelat [5] for describe this decreasing branch. Ultimate failure is assumed to take place by cracking, 

when the tensile strains exceed the yielding strain of the reinforcement. In this model monotonic concrete tensile behavior is 

described by formulas (2) where tensile strain is considered negative:  
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1.2.2 Reinforcement constitutive law 

Reinforcing steel is modeled as linear elastic, with yield stress 
e , as: 
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1.2.3 Prestress constitutive law 

Behaviour of prestressing steels is represented by the law recommended by regulation BPEL91 [15]. 
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1.3 Equilibrium of the beam element 

The beams elements and the external cable elements have both 6 degrees of freedom. The cable elements have no 

response to compressive loads. Elements are decomposed into intermediate sections in order to evaluate the non linear 

behavior of concrete and reinforcement (bars and bonded internal cables). The normal deformation of a section is given by 

   .y u w y    and its transverse deformation (or distortion) is defined by moy . The contribution of this deformation is 

taken into account by a non linear approach. In the case of an internal prestressed tendon it is necessary to take into account 

the “predeformation” in the cable. This predeformation represents the difference between the deformation of the tendon and 

that of the concrete at the same level, at the initial tensioning. 

The deformation increase vector of the section is given by (Eq.5): 

    moy

T
u w   

r
      (5) 
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The equilibrium equation of the section in the intrinsic system is given by: 

      S S SF P K 
rr r

      (6) 

This equation is solved by an iterative method. Its solution may be written as (Eq.7): 

  1

S S SK F P
r r r

     (7) 

Loads acting over the section are functions of the applied forces at element nodes. Their expression is given by (Eq.8): 
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If the length variation of the element is neglected, the expression of the deformation vector nS
r

  of the beam element, in 

the intrinsic system, is given using the virtual work theorem which stipulates that the virtual work of the section’s 

deformations increase is equal to the virtual work of the section’s loads increase, by (Eq.9): 
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Thus, we may write the equilibrium equation of the element in the intrinsic system as follows:  

  n n n nF P K S
rr r

     (10) 

the stiffness matrix 
nK of the element evaluated as follows: 

 
1 1

0

 ( ) ( ) 

L

T

n SK L x K L x dx    (11) 

The second order effects are introduced by transforming the equation from intrinsic system to intermediate system. In 

fact, the relationship between the expressions of the displacement in intrinsic and intermediate systems is given by (Eq.13):  
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The equilibrium equation in the intermediate system is given as follows by (Eq. 13): 
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The matrix d is calculated by neglecting the displacement contribution due to u and the non-linear term due to v  and 

the null matrix is denoted by 0.  

In the local system, using transformation matrix 
0T , the element equilibrium may be written as:  

  0 0   T

L L n LF   P T BK B D T S
rr r

      (15) 

The element stiffness matrix in the local system may finally be written as (Eq.16): 

   0 0  T

L nK T BK B D T   (16) 

Using the rotation matrix 
GT , the equilibrium equation on the global system may be written as: 

  
T
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1.4 Stiffness matrix of the transverse section 

The expression of the stiffness matrix  sK  of the section is then written as (Eq.18): 
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In the expression adopted for  sK the shearing modulus  G f E is not assumed to be constant as in linear elasticity 

but is taken as a function of the shear variation. Indeed, the coupling terms between N  and w  and those between M  

and u  cannot be ignored in flexural analysis. But we assume that the coupling terms between N  and moy  (or V

and u ), and between M  and moy  (or V and w ), are negligible. The couplings mentioned in the introduction 

between the strength due to V  and those due to  ,N M may be taken into account by the dependence of moy on stresses 

and strains due to N and M. For the prestressed beams, the matrix  sK is completed by the terms due to the prestress effect  

in flexural equilibrium and by a balancing of one part of shear by the transverse component of the force in the inclined cables 

[5, 16]. The flexural terms ( , ,N u N w M u        and M w  ) are evaluated by classical methods. For the 

evaluation of the shear terms  moyV   , a method is proposed. In this way, the problem is reduced to the evaluation of the 

middle distortion moy of transverse sections submitted to combined bending moment, normal load and shear. In this field, 

using the virtual work theorem, we use the equality of the external shear work to the internal shear work evaluated in each 

layer: 

 
1

   
m

e iw w    (19) 

The expression of the external shear work and of internal shear evaluated in each layer, which may be written as: 

   . and   . . .e moy i i i i iW V W b h          (20) 

Finally, the mean distortion of the section is given by (Eq.21):  
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where i is the shear stress increase evaluated at the layer i . It is determined by analysing for each section 
1S  of the beam 

loaded by an axial load 
1N , bending moment 

1M  and shear 
1V , a second section 

2S  of the beam, loaded by (
2 1N N , 

2 1 1M M sV  , 
2 1V V ), located at a small distance s from the first. Both sections are analyzed for the same shear stress 

distribution, satisfying sectional equilibrium in each case.  The value of the shear stress in the layer i  is obtained by solving 

the free-body equilibrium of the layer i  between the two sections. The local distortion increase i is determined at each 

layer by solving a complex system of equations, namely equilibrium equations, compatibility equations and constitutive laws 

of the materials. It is worth to note that one uses an iterative technique to find the angle of inclination of the diagonal 

compression based on stress and strain Mohr’s circles properties. A more detailed description of the solution procedure for 

the determination of these parameters may be found in Kachi & al. [7]. 

1.5 External prestress-cable element 

The length of a cable element is defined between two successive deviators (see figure 1). Cables elements are beams 

elements with only tensile efforts. These elements are linked to others beams elements by means of rigid elements. In the 

external tendon the strain is a function of the whole structure deformation and the predeformation is no longer defined in 

relation with the strain in the section (as in an internal tendon) but in relation with the variation of length of the element. 

Similarly, to beams element, the deformation increase vector of the section is given by:  

   0 0
T

g 
r

    (22) 

The equilibrium equation of the section in the intrinsic system is given by: 

       SF P Ksc 
rr r

      (23) 

the stiffness matrix  SCK of the section of the cable element, is given by:  
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The solution of this equation is obtained iteratively as (Eq.24):  

  1   K F Psc s s
r r r

      (24) 

In the same way, the relation whose link the displacements on intrinsic system and intermediate system and the 

displacements on intermediate system and local system and the displacements on local system and global system established 

for the beams element can be used for the cable element. 

The assembly of all elementary matrices into the global system leads to the following expression of the equilibrium 

equation of the structure:  

    =  Q P R U
r r r

     (25) 

1.6 Modelization of the slipping of the external tendons at the deviators 

Generally, the behaviour of the external tendons presents, under a little level of loading, a linear phase, but gradually, 

when the loads increase, it becomes both non linear and non reversible. Thus, cables may slip at deviators. Equilibrium of 
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the structure is first expressed by assuming that no slip has occurred at deviators at each stage of the external loads. After 

doing so, we have to verify, for each deviator, whether or not the following inequalities are respected: 
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The expression of 
dA in the deviator k  is developed and more details are given in [6], it may be written as follows: 
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We denote by 
k  the difference 1d d   . 

If the inequalities are satisfied at each deviator, then there is no slipping; if not, the cable has slipped and, as a 

consequence, the tension in the cable element varies. Thus, an iterative procedure is necessary to bring the equilibrium of the 

structure to a successful conclusion. 

In this case we note  d dg the slipping at the deviator k , and 
d determines the sense of the slipping (if 1d  , the 

slipping is from left to right; if 1d    the slipping is from right to left;  and if 0d  there is no slipping). Thus, the slipping 

is such as the following equations are verified:  
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The slipping may happen at several deviators, either at the same time or consecutively. The interaction between efforts 

within cable elements must be taken into account, because the direction of slipping may be different. The variation of length 

of the cable element going from deviator  1d  to the deviator  d is given by: 

 1 1d d d d dL g g       (29) 

In the general case where we have several simultaneous slipping, the equation connecting slipping to the tension in the 

cable elements may be written as follows:  

    kG g F
rr

   (30) 

The expression of the rigidity matrix of slipping G  is   
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At a stage j of loading, when a slipping is detected in former verifications, iterative procedures are again performed to 

solve this system of equations to determine the values of the slipping. We may thus evaluate the variation of the tension in 

the cable elements and obtain a new balanced structural state applied at the deviators to take into account the chronological 

emergence of slipping at the different deviators, at each stage of external loading.   
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2 Procedure of the calculation  

A step-by-step procedure is adopted to simulate the applied monotonic loading at each stage; iterative loops are 

completed until reaching force balance state. During this iterative procedure for equilibrium of external loads the slipping of 

external tendon at the deviators are considered as negligible.  

 

Fig.4 – Calculation steps. 
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After each stage of equilibrium of the structure, we verify, at each deviator, whether the slipping condition is satisfied or 

not. If this condition is verified at each deviator, there is no slipping at the deviators and the calculated solution is considered 

as correct. Otherwise the cable has slipped and an iterative procedure is then adopted to calculate the complete equilibrium 

of the structure. The procedure of the calculation for the stage n of the beams loading is presented in Fig. 4 and 5. 

 

Fig.5 – Simplified organigram of the search for the equilibrium state of a section. 

 

Fig. 6 – Dimensions and details of reinforcements for beams HZ [17]. 



84 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 9 (2022) 75–90 

 

3 Comparison with experimental results 

3.1 Simulations of reinforced or prestressed beams 

The computing method is used for calculation of four beams HZ tested by Trinh at C.E.B.T.P. [17] with the rates of 

reinforcement varying from 0 % of prestress (for HZ1) to 100 % of prestress (for HZ4). The length of the beams is 10.40 m, 

the beams are identical in form and dimensions and made up of two span. The length of each span is 5m.  The beams are 

loaded by two identical loads applied at each mid span. The reinforcement details of the beams are shown on figure 5, and 

the characteristics of the materials are given in table 1. 

Table 1 – Steel and concrete characteristics Trinh [17]. 

Concrete Reinforcement 

beam fc j (MPa) ftj (MPa) Eij (MPa) steel fe (MPa) Ea (GPa) fu (MPa) 

HZ1 39 3.4 35400  6 340 206 435 

HZ2 33 3.0 31250 HA10 428 198 545 

HZ3 34 3.4 32080 HA16 430 213 526 

HZ4 32 3.3 32000 
HA20 424 195 543 

HA25 450 230 558 

The complex arrangement of longitudinal reinforcements for different beams (HZ2, 3, 4) is given by Trinh [17]. 

The figures 7 to 10 shows the evolution of the beams deflexion at the loading point as function of the applied load for 

the HZ beams, in the experience, in proposed method and in a non linear calculus with shear stiffness preserve the linear 

elastic value.  

  

Fig.7 – Load-deflexion curves for beam HZ1. Fig.8 – Load-deflexion curves for beam HZ2. 

 

The predicting results of the model compared with the test results show that, on the one hand, the model predictions are 

in good agreement with the experimental behaviour in any field of the behaviour (after cracking, post cracking, post steel 

yielding and fracture of beam), and, on the other hand, the model permits to predict flexural fracture modes ( HZ1 and HZ2) 

and shearing fracture modes (HZ3 and HZ4) for concrete beams with the rate of reinforcement varying from 0 %  to 100 % 

of prestress. The influence of tacking of account of shear-deflexion is visible in figures 9 and 10: it explains the difference of 

behavior in the case of shearing fracture, in particular in reinforced concrete beam (HZ4).   
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Fig.9 – Load-deflexion curves for beam HZ3.    Fig.10 – Load-deflexion curves for beam HZ4. 

3.2 Externally prestressed beams 

The computing method is used for the calculation of six beams (NM) tested at the CEBTP structural laboratory [11, 18]. 

The beams are identical in form and dimensions and made up of one span. The length of the span is 6 m. The system loading, 

the geometrical characteristics, the details of the reinforcement and of the prestress are shown in figure 11. The principal 

characteristics of the NM-beams are given in Table 2. 

 

   

NM9 NM10 NM11 

Fig.11 – Geometrical Characteristics and loading system for beams (NM) [11]. 

Table 2 – Principal characteristics of the NM-Beams. 

Beam Tendon Reinforcement Impregnation 

NM9 External W = 0,02% Wax 

NM10 External W = 0,77% Cement 

NM11 External W = 0,5% Wax 
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Fig. 12 – Load-deflexion curves for beams (NM9). Fig. 13 – Load-deflexion curves for beams (NM10). 

  

Fig. 14 – Load-deflexion curves for beams (NM11). Fig. 15 – Overstress in cable element for beam (NM9). 

  

Fig. 16 – Overstress in cable element for beam (NM10) Fig. 17 – Overstress in cable element for beam (NM11). 
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On figures 12 to 14 the load-deflexion results obtained by the present computing method are compared to these 

experimental results and also to results obtained by Garcia [19]. The model predictions developed in this work (considering 

splitting at deviators and varying shear modulus in non linear behaviour) give a good agreement with the experimental 

behaviour in any field of the behaviour (after cracking, post cracking, post steel yielding and fracture of beam), and up to a 

value of the deflexion bigger than a limit value obtained by Garcia who considered the shear modulus G to be constant and 

equal to the shear modulus obtained in linear elasticity. On figures 15 to 20 overstress in cable elements and slipping of 

tendons at deviators obtained by the present computing method are compared to the experimental results. It may be seen that 

the model exhibits a good agreement for the deferent’s stages of the behaviour [16, 20-26]. 

  

  Fig. 18 – Slip of tendon at deviators beam (NM9) Fig. 19 – Slip of tendon at deviators beam (NM10). 

 

Fig. 20 – Slip of tendon at deviators for the beam (NM11) 

4 Conclusion and perspectives 

We presented a model based on the strip-analysis of the sections and on an iterative technique to find the angle of 

inclination of the diagonal compression using stress and strain Mohr’s circles properties to solve a complex system of 

equations for the determination of shear stresses distribution and of the distortion distribution. On the one hand, this model 

is able to predict the behaviour of beams with sections having unusual shapes or reinforcing details, loaded in combined 
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bending, axial load and shear. On the second hand, it permits to predict flexural fracture mode and shearing fracture mode 

(see HZ4) for concrete beams with the detail of reinforcements varying from 0 % to 100 % of prestress. Furthermore, this 

model permits to follow the behaviour of beams until very high values of the beam deflexion. 

In the case of externally prestress (NM), this model permits to predict the behaviour of beams up to very high values of 

the beam deflexion, to calculate the tendons slipping at the deviators and to estimate the overstress in the tendons at each 

stage of loading. Indeed, the fracture mode is correctly predicted for the Beams NM. The shear stiffness seem that draw near 

the elastic linear shear stiffness after concrete cracking, before this, it’s proposed evaluation permit to follow the beams 

behaviour until a higher value of the deflexion comparatively to the calculation with the linear elastic shear stiffness. We can 

see equally that the value of the fracture load calculated give very good agreement with the experimental value of this 

parameter. The tendon slipping for each beam NM seems to be evaluated correctly after concrete cracking and permit to 

follow before this the tendon slipping equally until a relatively high value for the slip. We can finally see that the evaluated 

overstress in the tendons give a very good agreement with the experimental values for each stage of the loading. 

For better estimation of the final slip at the total failure of the beams with external prestressing, we recommend new 

study with refinement of the gridding and choose another numerical resolution method (example; stepwise incremental 

resolution of loading).We could also point out the case of the taking into account of several cables which slide differently,  

the effect of the torsion and also taking into account of the presence of fiber- reinforced concrete [2, 3] in the case of tensioned 

diagonal elements (truss beams).Finally, the proposed numerical procedure makes easy the possibility of introduction other 

material’s behaviour laws. 

Aj: section of the bare i  u : translation between the local system and intermediate system in the x0 direction 

bi : base width of the layer i v : translation between the local system and intermediate system in the y0 direction 

yaj : coordinate of the bare j   : nodal rotation in the intrinsic system 

Ea : steel young modulus Ad : factor taking into account the bond of the cable element (d) at the deviator. 

Ep : prestress young modulus ΔU  the increase of the nodal displacements in the global system coordinates  

f : the curved friction coefficient  R : the global stiffness matrix of the structure,  

fei  : yielding stress of reinforcement ΔP : the global initial prestress-load cable element vector in the global system 

coordinates 

fcj :  concrete compressive strength  Q : the global external loads increase vector in the global system coordinates 

fct : concrete tensile strength Fu : nodal loads increase in the intermediate system coordinates 

hi : height of the layer i  B  : transformation matrix from intrinsic system to intermediate system coordinates 

k'b : Sargin law parameter  Su  : the nodal displacements in the intermediate system coordinates  

kb : Sargin law parameter 
nK  : the element stiffness matrix in the intrinsic system coordinates 

L : the beam element length  Fn  : nodal loads increase in the intrinsic system c 

L0 : the initial element length Sn  : the nodal displacements in the intrinsic system  

M: moment Pn  : the initial prestress-load cable element vector in the intrinsic system coordinates 

M1: moment in the section 1 LF  : nodal loads increase in the local system  

M2 : moment in the section 2 LS  : the nodal displacements in the local system  

N: normal load LP  : the initial prestress-load cable element vector in the local system coordinates 

N1: normal load in the section 1  T0 : translation matrix between intermediate system and local system coordinates 

N2: normal load in the section 2 GF  : nodal loads in the global system coordinates 

V: shear  GS  : the nodal displacements in the global system  

e : the cable diameter,  GP  : the initial prestress-load cable element vector in the global system coordinates 

V :  shear force increase.  TG : rotation matrix du local system to global system  

e : élément length increase  fep : stress fracture of prestressing steel bars 

g  : the vector of slippings,   r : compressive stress fracture of concrete  
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We : the external shear work,  e : yielding stress of the reinforcement 

Wi  : the work internal shear ep : yielding stress of the prestress cable  

 : Stresses g : the cable element axial strain increase  

N : axial load increase;  Fd  : the tension in the cable elements  

M : bending moment increase;   : the straight friction coefficient ,  

G : the rigidity matrix of slipping Δεp : pre deformation of the prestress steel 

   :  strain r : the radius of curvature of the cable at the deviator k.  

cu: ultimate concrete strain d : the deviation angles of cable elements (d)  

p : prestress cable strain Fk  : the tensile forces in the cable elements 

ct : concrete cracking strain yi : transverse reinforcement percentage of the layer i  

rt  : tensile concrete ultimate strain  e  : yielding strain of the reinforcement 

u: the axial strain increase u ultimate strain of the reinforcement 

w : the curvature increase 0: concrete strain corresponding to fcj 

moy : the mean distortion increase. Fs : the vector of exterior loads increase 

Ks : the section stiffness matrix  d :coefficient of the sense of the slipping 

Lk : the length of the deviator k Ps : the internal tendon initial prestress-action   

i : the shear stress increase s    : distance between the section 1 and the section 2 

p : stress of the prestress cable  gd : the absolute value of the slipping 

Pu  : the initial prestress-load cable element vector in the intermediate system coordinates 
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