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Abstract:
Computer tomography technology is widely used in geological exploration because it
is a nondestructive and three-dimensional imaging method that can be integrated with
computer simulation. However, the large-scale application of the computer tomography
technique is limited by economic costs and time consumption. Therefore, it is challenging
and intractable to indicate the pore structure characteristics of rock. To address this issue, a
super-resolution reconstruction algorithm based on convolutional neural networks, residual
learning, and attention mechanism was proposed to generate super-resolution images in this
study. This algorithm was applied to the reconstruction of carbonate rock and sandstone.
The performance of two-dimensional image reconstruction was evaluated by quantitative
extraction and qualitative visualization. The results from experiments indicate that the
built model performs well on different upscaling factors and is superior to the existing
super-resolution approaches based on convolutional neural network.

1. Introduction
Using digital rock technology to study the physical proper-

ties of reservoir rocks, pore-throat network structure, and the
micro-seepage mechanism of fluid in porous media provides a
new perspective for the accurate characterization of rock pores
(Lin et al., 2018; Ji et al., 2018). Digital rock technology
can establish three-dimensional (3D) rock data volume by
mathematics and computer technology, which can be used
for rock numerical mini-calculation and simulation (Andhu-
moudine et al., 2021). Among them, computer tomography
(CT) technology plays the most important role in the field
of studying digital rocks. CT technology is a nondestructive
and 3D imaging method, which is considered to be the most
effective way to obtain the rich internal structure of the rock
(Liu et al., 2017; Engelmann and Lessmann, 2021). However,
owing to the inherent limitations of devices, the difference of

the external environment, the choice of the image degradation
model, the network transmission medium, and the broadband,
collected rock images by CT technology are destructed to
some degrees. Meanwhile, it is impossible to directly obtain
ideal high-resolution (HR) images with clear details, textures,
and sharp edge information (Shi et al., 2016).

Super-resolution (SR) methods aim to generate HR images
with rich structure information from low-resolution (LR) im-
ages (Zeng et al., 2021). Images resolution can be converted
from low to high through algorithms such as digital image pro-
cessing and computer vision. At present, there are four kinds
of image SR algorithms: interpolation-based, reconstruction-
based, shallow-level learning-based, and deep learning-based
algorithms. Among them, the first three methods belong to
frequency domain algorithms, which have dominated the re-
construction methods in the past few decades. Deep learning
belongs to the spatial reconstruction algorithm. Due to the
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Fig. 1. Structure diagram of CNN.

inherent limitations of frequency-domain algorithms, deep
learning-based algorithms have become the mainstream tech-
nology in the field of image reconstruction (Wang et al.,
2020b).

In order to obtain HR images, many scholars have devoted
themselves to proposing a large number of practical algo-
rithms. Dong et al. (2015) first introduced the convolutional
neural network (CNN) to the image SR and proposed an
SR convolutional neural network. Then, Dong et al. (2016)
optimized the network based on the Super Resolution Con-
volutional Neural Network (SRCNN) and proposed the fast
SR convolution neural network model. Shi et al. (2016)
proposed a network model based on sub-pixel convolutional
layer convolution using an efficient sub-pixel convolution
neural network, which shows a significant promotion of the
reconstructed image quality, but the network structure is still
too rudimentary. Zuo et al. (2021) constructed a mixed deep
convolutional network to shrink the LR image to the specified
size in upsampling phase and extract features from LR images.
The extracted initial features are fed into a encode-decode
structure in high-dimensions for capturing SR features. Qiu
et al. (2021) employed multiple improved residual networks
to improve the reconstruction performance. However, deeper
networks for image SR are more difficult to train, and equally
treating low-frequency information across channels hinders the
representational ability of SRCNNs.

Currently, a great many scholars replace the above network
weaknesses with more efficient algorithms and these changes
are applied in the field of geo-energy research (Shan et al.,
2018; Yang et al., 2021; Liu et al., 2022). Wang et al.
(2021) constructed a dual closed-loop learning structure with
a primary face super-resolution network to generate additional
prior constraints of the primary branch for guiding the essential
facial features reconstruction. Theoretically, this can further
improve the model training efficiency and reduce parameters
without damaging the model performance. However, the ap-
proach still has a very large space of the possible mappings,
which makes it difficult to learn a good solution. Liu et
al. (2020) presented a residual feature aggregation network
to aggregate multiple residual blocks and make full use of
the hierarchical features learned. But its training promotion
outcome is inapparent. Geng et al. (2021) introduced shearlet
transform into a deep residual learning network to extract high-
frequency details of images. Chen et al. (2022) employed at-
tention augmented multi-scale residual blocks in CNN, which
increases the proportion of useful information. Compared with
convolution operations, attention mechanism focuses more on
the entirety. It simulates the human habit of observing the

environment, which only pays attention to the most important
parts and ignores unnecessary circumstances. It was originally
used in machine translation (Popel et al., 2020). However, it
is not a hot-point issue until Google proposed “attention is all
you need” (Vaswani et al., 2017), which provides a new idea to
completely replace the traditional CNN and Recurrent Neural
Network structure with the attention mechanism. After that,
there are a large number of attention mechanism applications
(Song et al., 2022).

To date, deep learning-based SR models have caught the
attention of researchers in the oil and gas field (Zha et
al., 2020). Wang et al. (2020a) developed enhanced deep
super-resolution generative adversarial networks to generate
SR images for sandstone, coal, and carbonate samples. Their
results show that SRCNN restores large-scale edge features,
while the method regenerates perceptually indistinguishable
high-frequency textures and shows excellent visual similarity
in texture regeneration. To the authors’ best knowledge, the
existing studies in the context of digital rock imaging haven’t
introduced attention mechanism for the generation of SR rock
CT images. In this study, a convolutional neural network
integrated with residual learning and attention mechanism is
designed to perform digital rock SR image reconstruction. The
remainder of this paper is organized as follows. Section 2
introduces the related model concept of deep learning and
describes the proposed residual channel attention mechanism
super-resolution reconstruction network (CA-SRResNet) in
detail. Section 3 outlines the experimental steps and model
training process. Further, it presents tests and comparisons
of our CA-SRResNet network with other methods. Section 4
discusses future research directions. Finally, Section 5 presents
the conclusions of this study.

2. Methodology

2.1 Super-resolution CNN
The structure diagram of the improved SRCNN is shown

in Fig. 1. The SRCNN model learns the resolution mapping
relationship between LR and HR images by a 22-layer CNN
to form an SRCNN network for the digital rock reconstruction
(Wang et al., 2019). Based on the relationship between deep
learning and traditional sparse coding, the SRCNN network
first uses bicubic interpolation to construct LR images into a
specified size, which is transmitted to the network, and then the
network is divided by multi-layer convolution for image block
extraction, feature nonlinear mapping, and final reconstruction.
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Fig. 2. Channel attention mechanism.

2.2 Attention mechanism
In the SRCNN, image SR reconstruction is realized by

combining input information with the weights of the training
model to efficiently reconstruct images with high quality.
However, in the process of feature learning, only nonlin-
ear mapping, such as convolution operation and activation
function, cannot make full use of high-frequency informa-
tion, which makes it impossible to acquire detailed images.
Attention mechanism can search and transfer high-frequency
information. Adding attention mechanism to the network can
make better use of high-frequency information, improve the
network’s ability to extract high-frequency information, and
make a significant performance improvement for image recog-
nition. Soft attention mechanism and hard attention mechanism
are widely used to calculate attention in recent years. In
this research, soft attention mechanism is used to improve
reconstruction accuracy and reduce training time.

soft attention mechanism is mainly used in channel atten-
tion mechanism and spatial attention mechanism. Zhang et
al. (2018) proposed the concept of channel attention, which
is used to capture the correlation among the feature maps
of different channels of the model. The model with channel
attention can automatically learn the importance of each fea-
ture channel and assign different weight coefficients to each
feature channel. If it is important to feature information, it will
be assigned more weight; if not, weight is less. In the CNN,
three channels (R, G, B) are used to represent each input color
pixel. After passing through different convolution kernels, each
channel will generate new information. The convolution kernel
information is decomposed into multiple channel information
components. The attention mechanism adds each weight value
learned to the corresponding channel information. The archi-
tecture of the channel attention mechanism is shown in Fig.
2.

2.3 Residual network
The traditional CNN can extract the characteristics of low-

frequency information, intermediate-frequency information,
and high-frequency information of the data. The more layers
of the network, the richer the features that can be extracted
(Wang et al., 2020b). Moreover, as the number of network
layers deepens, the more abstract the extracted features, the
richer the semantic information. However, when the number
of layers is increased greatly, it is difficult for the network to
converge, information of the input image feature is lost in the
deeper convolution process, resulting in fuzzy images. If only
the number of network layers is increased, gradient explosion
will be a tricky problem (Khan et al., 2020). If regularization
initialization and batch normalization is carried out, a multi-

layer network can be trained, but the network will degrade.
In order to solve the above issues, He et al. (2016) proposed
a residual network, making it effective to build model. To
address the problem of gradient dispersion in deep networks,
the residual learning technique is employed to the traditional
CNN, which can achieve a trade-off between the accuracy and
speed while the network can get deeper and deeper.

Shallow neural network models can steadily train an iden-
tity mapping function y = f (x). Using this feature function
to represent the original x information, the function value
y mapped during the learning process will produce different
errors. As the number of network layers increases, the error
will gradually accumulate. In the process of backpropagation,
the network will appear under-fitting, and the gradient will
become more and more divergent. With the addition of the
batch normalization (BN) layer, it is difficult for the network
to learn completely when the depth of the network model is
large enough. A direct connection channel in the network is
added to solve the above problem. Residual learning changes
the mapping relationship of each layer in the network, adding
the output value of each layer to the original input value as the
input value of the next layer, namely y = f (x)+x, as shown in
Fig. 3. The introduction of residual learning into the traditional
CNN not only avoids the problem of gradient dispersion in the
deep network but also addresses the issue of reduced accuracy
(Zhang et al., 2020). On the one hand, residual learning
improves accuracy; on the other hand, it speeds up. The input
data of the residual block needs to go through two paths, one
path is a straight path, through multiple convolutional layers
for feature extraction and output feature matrix; another one is
a shortcut path, directly adding the characteristic matrix output
of the input data to the characteristic matrix of the straight
path, passing the added result into an activation function,
and finally outputting the result. However, due to the need
for matrix addition, it is necessary to make the attributes of
the feature matrix output by the straight path and the feature
matrix output by the shortcut path the same.

The residual block used in this study is shown in Fig. 3(b).
Each layer contains a convolutional layer with a convolution
kernel size of 3 and a stride size of 2, the number of channels
is 64, and the activation function ELU. Since BN normalizes
the features and eliminates the flexibility of the network, the
first BN layer is deleted from the original residual block shown
in Fig. 3(a), and the second BN layer is retained, which not
only greatly improves the reconstruction effect, and it saves
a lot of memory and reduces the complexity of calculation
during the training of the network.
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Fig. 3. Residual learning.

Fig. 4 Residual channel attention module
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Fig. 4. Residual channel attention module.

2.4 Super-resolution network based on residual
attention mechanism
2.4.1 Residual attention module

The introduction of the attention mechanism is of great
help to the recovery of image details and textures. However,
embedding the attention module directly in the backbone
network will greatly weaken the network’s ability to extract
features. Based on residual learning, the sum of the input of the
network and the weighted feature of the attention mechanism
acts as the output of the network. Not only solves the above
problems, but also enhances the ability of feature extraction.

The BN layer directly normalizes each batch feature of the
input information and restores the original input by stretch-
ing, scaling, and transformation. It not only can accelerate
the model convergence but also has a certain regularization
effect, which can solve the problem of gradient explosion
during the training process of the model. However, during the
training process, the BN layer destroys the state of the original
information. After the image passes through the BN layer,
the color, contrast, and brightness will be normalized, which
affects the image reconstruction efficiency and makes the
model more complicated. Therefore, it is desirable to devise
a new block to address this issue. In this study, the attention
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Fig. 6 Super-resolution reconstruction based on residual channel attention
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Fig. 5. Super-resolution reconstruction based on residual channel attention.

mechanism unit is introduced to the residual block, and the
residual channel attention module is constructed, as shown
in Fig. 4. Both convolution kernel and linear rectification
function (ReLU) activation layers are used as residual blocks
to replace the BN layers. The attention unit is accessed by skip
links, but partial skip connections are still added to spread the
input information through mapping, which solves the problem
of the disappearance of features caused by the addition of
the attention mechanism. The dimensionality reduction of the
input image can effectively calculate the attention mechanism.
For the aggregation of spatial information, the method used
most often is average pooling. Some researchers believe that
maximum pooling is as convenient as average pooling. In this
paper, the average pooling and maximum pooling features
were used together to acquire more specific high-frequency
information.

2.4.2 Sub-pixel convolution module

After the deep residual module, two sub-pixel convolution
modules are added. In the SR algorithm, common methods for
expanding the size include direct up-sampling, bilinear inter-
polation, and deconvolution. In this study, the sub-pixel convo-
lution method proposed in the efficient sub-pixel convolution
neural network algorithm was used to better fit the relationship
between pixels (Shi et al., 2016). Sub-pixel convolution is an
ingenious image and feature map enlargement method, also
called pixel shuffle. The sub-pixel convolution module first
expands the number of channels of the original feature map
through convolution. The number of expanded channels is
determined by the enlarged size, which is the square of the
enlarged size. After the feature map is convolved and arranged
in a specific format, a large image can be obtained, which is the
so-called pixel cleaning. Through pixel cleaning, the number
of feature channels is restored to the original input size, but
the size of each feature map becomes larger.

2.4.3 The proposed network model

A new CNN architecture based on the residual learning
network and channel attention mechanism was proposed,
as shown in Fig. 5. The residual channel attention module
is introduced into the feature learning layer to accelerate
the model’s feature extraction. In this paper, 16 residual
channel attention modules, a 3× 3 convolutional layer, and
a randomized parametric ReLU (PReLU) function pair are

used. To extract shallow the input image feature extraction,
multiple residual channel attention modules are connected in
series to transmit information through a global jump, which
saves important shallow feature sets and improves gradient
scaling. Meanwhile, the deconvolution layer at the end of the
network has been replaced by sub-pixel convolution, which
can capture richer pixels’ information. 3×3 convolution layers
are used to enlarge the SR images, making it possible to image
reconstruction and high-dimensional feature restoration. The
attention module is added to the side branch, which means,
the dimension of the last channel passing through the attention
unit must be consistent with the number of channels of the
convolutional layer of the backbone network. The architecture
of CA-SRResNet is shown in Fig. 5.

2.4.4 Loss function

In the process of reconstructing SR images, the most
considered loss algorithm is mean square error (MSE), but
the MSE loss function will cause the reconstructed image to
be too smooth and lack realism. In order to break through the
limitations of being excessively smooth, the VGG19 model is
introduced to transform the CT image into the deep feature
space. The features are extracted from the original HR images
and reconstructed SR images by the VGG19 model and
are expressed as φSRi and φHRi , respectively. The perceptual
losses are calculated from φSRi and φHRi according to the
mathematical equation expressed as Eq. (1).

LV =
H

∑
i=0

W

∑
j=0

(φSRi −φHRi)
2

H×W
(1)

where LV denotes the two-dimensional (2D)-image loss of
VGG19 model, SRi is the SR reconstructed image, HRi
represents the original HR image, H and W represent the
height and width of the image, respectively. The model loss
L1 is expressed as Eq. (2):

L1 =
H

∑
i=0

W

∑
j=0

|φSRi −φHRi |
H×W

(2)

The perceptual loss and the model loss are combined to
obtain the total loss. The mathematical expression is as in Eq.
(3):

L = L1 +αLV (3)
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Fig. 7. Testing samples.

Table 1. Parameters of CA-SRResNet network.

Dataset parameters Crop size 96×96

Model parameters

Kernel size 3×3

Activation function ELU

Number of middle channels 64

Residual channel attention module 16

Learning parameters

Training epochs 1000

Initial learning rate 10−4

Loss function L1 loss+perceptual loss

where α represents the scaling factor. In this paper, α = e−3.

3. Experiment

3.1 Experimental setup
The experimental hardware environment is Intel Core i9-

9900KF@3.60GHz, equipped with two NVIDIA GeForce
RTX 2080Ti GPUs, configured to 32 GB. The software en-
vironment consists of a 64-bit Windows 10 operating system,
CUDA Toolkit 10.2, and the Pytorch 2.0 framework.

The used dataset in this study is from the research proposed
by Wang et al. (2019). Five sets of original CT images of
rock are used as training CT samples. Samples (1), (2), and
(3) are sandstone with a resolution of 3.8 µm. Sample (4)
is carbonate rock with a resolution of 1.07 µm. Sample
(5) is sandstone with a resolution of 1.07 µm. Using 2000
HR CT images of the rock. Among them, 1000 pictures
constitute the training set, including sandstone and carbonate.
Each rock type is represented by 400 images, which are used
for uniformly distributed rock geometry and training network
model parameters; another 1000 pictures in testing sets also
include five rock types. In the process of evaluation, each
rock type is represented by 400 images to verify the quality

and generalization ability of the network model. The images
included in the training set and testing set are shown in Figs.
6 and 7.

In order to generate labels for input pictures, HR im-
ages will be degraded to generate corresponding LR images.
According to different magnification scales, this study uses
bicubic interpolation down-sampling to perform ×2 down-
sampling, ×4 down-sampling, and ×8 down-sampling to gen-
erate LR images. The HR and LR images form an effective
image pair for later model training. To reduce the training
time, the pictures in the training set are randomly cropped,
and the LR pictures are cropped to 96×96 pixels.

3.2 Model training setting
In this study, Pytorch 2.0 deep learning platform is used

to conduct the training and testing process. In experiments,
the used parameters are listed in Table 1. The images were
cropped into 96× 96. Although the training and testing data
sets are divided into small blocks with 96× 96, the trained
convolutional network can be used for any image of any size
without cropping. The size of each other convolution kernel is
3×3. In the residual channel attention module, the number of
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cascaded modules is 16, which not only avoids the problem
of introducing too many training parameters but also ensures
rich structure information with high quality. Adam optimizer
is chosen to optimize the network performance. The initial
learning rate is set to 1×10−4. The exponential decay rate β1
is set to 0.9, and β2 is set to 0.999.

3.3 Experimental results
Both qualitative and quantitative assessments are conducted

to verify the proposed method. During qualitative comparisons
of CA-SRResNet, SRResNet, SRCNN, and Bicubic interpola-
tion process, testing data are composed of five sets of samples,
each of which has a resolution of 400× 400 pixels. The
resolution of the reconstructed image is 400× 400 pixels.
In addition, we introduce quantitative evaluation by the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM),
which are widely used to assess image quality.

PSNR is one of the most popular reconstruction quality
measurements of lossy transformation. For image SR, PSNR
is defined via the maximum pixel value and the MSE between
HR and SR images. Given the HR image f with H×W pixels
and the reconstruction SR image f̂ with H ×W pixels, the
PSNR between f and f̂ are defined as follows:

M =
H

∑
i=0

W

∑
j=0

[
f̂ (i, j)− f (i, j)

]2

H×W
(4)

P = 10lg
MAX2

i
M

(5)

where M denotes the MSE between SR and HR images, P
represents the PSNR between SR and HR images, and MAXi is
the maximum possible pixel value of the image. The higher the
value of PSNR, the better the reconstructed CT image. PSNR
is based on the error between pixels, but it does not take into
account the visual characteristics of the human vision. SSIM
can characterize the structural information of the image from
many aspects such as brightness, contrast, and structure. For
two images x and y, SSIM is expressed as:

S(x,y) =
(2µxµy +C1)(2σxσy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(6)

where S(x,y) denotes the SSIM of two images x and y, µx is
the mean of x, µy is the mean of y, µ2

x is the variance of x,
µ2

y is the variance of y, σxσy is the covariance of x and y, C1
and C2 are constants used to maintain stability. C1 and C2 are
defined as:

C1 = (k1L)2 (7)

C2 = (k2L)2 (8)
where L is the dynamic range of pixel values, k1 = 0.01, and
k2 = 0.03.

The value range of SSIM is [0,1]. The closer the SSIM
value is to 1, the closer the SR image is to the real HR image.

The results are compared with the traditional bicubic inter-
polation method, SRCNN and SRResNet at scale factors of 2,
4, and 8. Note that SRResNet is obtained by introducing the
residual learning into the SRCNN. The comparison results of

PSNR and SSIM are shown in Tables 2 and 3. The PSNR and
SSIM values in the table are the average of all image pixels.
As can be seen from the tables, the PSNR and SSIM values
obtained by CA-SRResNet are the highest, which indicates
that the performance of CA-SRResNet is the best compared
to other algorithms. At the same time, it can be seen that the
PSNR and SSIM values obtained by the bicubic interpolation
method are the lowest, which are quite different from other
algorithms. In terms of PSNR analysis, when the magnifi-
cation scale is 2, compared with bicubic interpolation, the
PSNR obtained by CA-SRResNet is increased by 16.523 dB,
18.618 dB, 6.051 dB, 5.991 dB, and 4.388 dB, respectively;
compared with SRCNN, it is increased by 11.920 dB, 6.565
dB, 1.732 dB, 5.309 dB, 4.355 dB, respectively. compared with
SRResNet, it is increased by 1.006 dB, 2.173 dB, 0.169 dB,
0.307 dB, 0.613 dB, respectively. The best values of PSNR
and SSIM for each testing set in Tables 2 and 3 are marked
in bold.

Since the magnification scale is 2, the difference between
SR and HR is not obvious for the human vision. When the
scale factor is 8, the image is blurred. Therefore, in this
section, a scale of 4 was chosen to visualize qualitative results.
The results are shown in Figs. 8-11.

These figures show that the artifacts and blurring of
the bicubic interpolation algorithm are more serious, and
the reconstruction effect is the most distorted. But with the
use of deep learning technology to reconstruct the image,
the reconstructed image effect has been greatly improved.
When the SRCNN is adjusted to the 22-layer SRResNet, the
reconstruction effect has been significantly improved. From
these figures, it can be seen that the SRCNN and SRResNet
reconstruction results are relatively clear. CA-SRResNet can
make the detailed texture information more abundant so that
the image reconstruction effect is the best.

To clearly clarify the distinguished texture features ob-
tained by the CA-SRResNet approach, the local binary patterns
(LBP) model was used to extract uniform texture information
from rock CT images. LBP is the particular case of the texture
spectrum model and can encode local texture information
of images (He and Wang, 1990). The smaller squared error
between LBPs of SR and HR, the more details are captured.
Squared errors obtained from SRCNN, SRResNet and CA-
SRResNet in different testing sets are shown in Figs. 12-15.

As can be seen that the squared errors from the CA-
SRResNet are the smallest in each testing set, which indicates
that the CA-SRResNet is able to capture more texture features
than other networks.

4. Discussion and future work
In the previous research, attention-enhanced multi-scale

residual blocks are used to enhance the proportion of useful
information obtained. In the attention-enhanced multi-scale
residual block, 3× 3, 5× 5, and 7× 7 convolution kernels
are utilized to extract multi-scale feature information. Using
smaller convolution kernels is one of the current trends to
reduce parameters while ensuring network accuracy. In our
study, 3× 3 convolution kernels are used instead of 7× 7
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Fig. 8. Enlarged detail comparison of the part from testing set 1.
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Fig. 9. Enlarged detail comparison of the part from testing set 2 .
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Fig. 10. Enlarged detail comparison of the part from testing set 3.
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Fig. 11. Enlarged detail comparison of the part from testing set 4.
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Fig. 13. Squared error between LBPs of SR from three methods vs HR in testing set 2.

convolution kernels, and 1×1 convolution kernels replace the
3×3 and 5×5 convolution kernels. Furthermore, the average
pooling and maximum pooling features are used together
to acquire more specific high-frequency information. The
above figures show that the performance of the proposed CA-
SRResNet is superior to those of previous methods. But our
experiments mainly focus on 2D images. Accurate 3D images
of rock can provide more accurate structure information that
helps geologists analyze the physical properties. In a further
study, 3D image SR will be considered for the finer digital rock
reconstruction. Furthermore, the multiscale fusion of images
has attracted much attention in the field of computer vision. It
is its superiority of fusing different scale features that provide
a superior visual effect. In future work, the rock samples will

be collected and imaged to generate LR and HR images. The
influence of resolution on pore network properties and single-
phase, unsaturated, and two-phase flow will be analyzed to
verify that pores, pore throats, average and surface area vary
with resolution. These properties of the reconstructed images
will be analyzed, which can be used to evaluate whether the re-
constructed CT images with more details are correct and good
enough to characterize the real rocks. Our study will explore
efficient multi-scale fusion SR rather than perform SR by using
single-scale images. ×2, ×4, and ×8 down-sampling images
will be used as model inputs. Then up-sampling and feature
fusion are carried out at the corresponding scales. Because the
features extracted from images of different resolutions will be
richer, the reconstruction effect produced by the multi-scale

Table 2. PSNR comparisons.

Testing set Scale factor Bicubic SRCNN SRResNet CA-SRResNet

2 30.707 35.31 46.224 47.230

1 4 29.164 30.69 30.775 30.920

8 23.725 24.28 25.471 25.551

2 27.447 39.50 43.892 46.065

2 4 25.812 26.50 27.548 27.723

8 21.237 21.23 22.402 22.471

2 33.871 38.19 39.753 39.922

3 4 25.812 29.95 33.821 33.916

8 21.237 24.28 33.821 31.492

2 38.698 39.38 44.382 44.689

4 4 38.179 37.75 38.551 38.752

8 34.496 33.81 35.594 35.705

2 46.127 46.16 49.902 50.515

5 4 45.515 41.72 45.601 46.253

8 41.355 31.41 42.163 42.458
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Table 3. SSIM comparisons.

Testing set Scale factor Bicubic SRCNN SRResNet CA-SRResNet

2 0.816 0.871 0.995 0.996

1 4 0.752 0.714 0.817 0.821

8 0.640 0.510 0.511 0.515

2 0.777 0.988 0.995 0.996

2 4 0.688 0.752 0.791 0.788

8 0.376 0.396 0.394 0.397

2 0.793 0.939 0.951 0.954

3 4 0.762 0.786 0.791 0.795

8 0.627 0.568 0.650 0.654

2 0.903 0.913 0.974 0.974

4 4 0.891 0.887 0.900 0.904

8 0.819 0.831 0.833 0.834

2 0.977 0.911 0.990 0.991

5 4 0.970 0.888 0.974 0.977

8 0.949 0.687 0.954 0.956
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Fig. 14. Squared error between LBPs of SR from three methods vs HR in testing set 3.

fusion model will be more in line with the human visual effect.

5. Conclusion
In order to deal with the distortion of rock CT images

caused by factors such as acquisition equipment, environment,
network transmission media, a reconstruction model based
on CNN, residual learning, and residual channel attention
algorithm was proposed to convert a single LR image to
an HR image. Directly embedding the attention module into
the CNN network will weaken the ability of the network
to extract features, both the average pooling and maximum
pooling together are introduced to construct the channel at-
tention module and then connect it to the residual module
by the skip connection. Meanwhile, the activation function

ELU is used, and the location of a BN layer is adjusted,
which not only gets superior SR performance but also reduces
the training time. The experimental evaluations on sandstone
and carbonate samples have verified the effectiveness of our
method towards improving detail texture features of digital
rock, which is of importance in the field of geological and
petroleum exploration.
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