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The epidemic surrounding unintentional drug poisoning in the United States 1s Data Collection Metadata Tuning 1s the ML process of optimizing a model’s performance. Machines select parameters Rose DeRoia, the mother of my late friend Tommy, lost her son to an
not showing signs of slowing down. The American Physical Therapy Association The source of my dataset 1s Regarding metadata, the fields consist of that impact the model to enable the algorithm to perform more effectively. The top ML opiate overdose in May of 2016. Recently, she interviewed on a YouTube
report every day, more than 1,000 people are treated in emergency departments www.countyhealthrankings.org, a website hosted by lists. Some of these lists contain text: models for my dataset are AdaBoost Regressor, Huber Regressor, and Passive-Aggressive podcast called Chronic Curiosity. She describes her personal experience
for misusing prescription opioids. Being an Ohio resident for my entire life and The University of Wisconsin Population Health whereas others have numeric values. The Regressor. I find the tuned AdaBoost regression model 1s the best of the three due to 1its regarding hardships her famly taced during Tommy’s six-year battle with
losing a close friend to a drug overdose has quickly taught me the turmoil and Institute. Each year, the program provides health and || data types are integer (int) and string (str). I relatively high R? (.73) and its MAE of 77.2. addiction. Tommy was not only an undefeated MMA champion, college
detriment that drugs create. Over the past decade, family members and demographic information on individuals at the state also assume the dataset derives from a graduate, and successtul busimessman, but he was a beloved son, brother,
communities have struggled mightily with addiction, whether from opiates, heroin, | |and county level. I use data from all eighty-eight Ohio || normal distribution. There are no missing In mathematics, R? refers to how well a regression model fits the observed data. For example, and friend to all.
cocaine, or other harmful substances. In 2019, Ohio had the 3" highest drug counties in 2021 for my study. The dataset contains values for the independent variables AdaBoost’s R? 1s 73%, revealing 73% of the variability in drug overdose deaths can be It started with a Xanax prescription, then led to a poor choice, and
overdose death rate, paired with the 5th highest opioid overdose death rate in the 514 vaniables, each categorized by specific health selected. However, there are six counties, explained by the variables in the model. Typically, higher R? values indicate a better fit for the unfortunately, in a short period, his brain developed a chronic and
country (Kaiser Family Foundation). Today, these unfortunate rates remain factors. I select nine independent variables from the 1.e., missing values, with data on opioid model. Being said, this does not imply low R? values cannot still produce statistically significant | | relapsing disease.
alarming high (Figures 1 and 38). Prior studies have been able to identify individual- | | Figure 2 health factors and run them against my deaths that are still unreleased. I do not results.
level characteristics associated with drug use, abuse, and overdose. However, dependent variable: drug poisoning deaths. All data expect the missing values to hinder my She states, “if you start using opiates today, within three weeks, you will
Bozorg et al., 2021 note “most of these studies have been conducted 1n unique cleaning and analysis 1s via Python 3.10.0. regression model. Mean average error (MALE) reveals how big an error one can expect from the forecast on develop receptors i your brain that drive and direct you. If you stop
populations (e.g., people mjecting drugs, Medicaid recipients, veterans, and average. The lower the MAL, the better. Of the top three tuned regressions, AdaBoost using oplates, 1t takes an average of nine months for the brain circuitry mn
private msured populations) that may not generalize well with other US Vanable Selection Regressor yields the lowest MAE. charge of decision-making, control, etc., to get back into place. Now, what
populations”. Therefore, my study seeks to identify individual-level predictors of Based on prior literature and the opinion of a medical professional, I chose nine variables to predict do we see with rehab facilities? Four to six weeks if they have availability.”
' ‘ ' ] ' d 1Isoning deaths. Fi 2 ts the C Health Rankings Model. T te a full : . . Ohio must continue to expand access to opioid treatment centers for its
drug.OVerdOSG by using mad'lme earning Addlthnflﬂy, t beieve my data'set ref urgels)eorllst;)tril\lfzgmszelsl clﬁ(l)l:s:e Vzli)arglfsn fiome eagllln‘l‘tguclfei” of l??altllllg;actci)rsiclin?cglr izri: ah;lal}tlh Figure 4 reveals predictors of drug overdose according to the AdaBoost model. "The top five constituents. I believe indiI\)/iduals sufferin pfrorn drug addiction require
provides a more representative sample of a population compared to previous pres : ’ . . . . . _— predictors of drug poisoning deaths are rural (%), uninsured (%), the average number of ' 5 HO! 15 4
literature behawviors, social and economic factors, and physical environment). These variables include high school . . more access to enhanced treatment and detoxification centers,
‘ . . mentally unhealthy days, severe housing problems (%), and unemployed(%). The remaining . o o o ..
graduation rate, the average number of mentally unhealthy days, age-adjusted death rate. Other . . . . . ) o recreational facilities, and facilities that distribute naloxone (a medicine
. . . . . four predictors, like age-adjusted death rate, high school graduation rate, excessive drinking . . o
variables, such as rural, uninsured, severe housing problems, unemployment, excessive drinking, and S . . that rapidly reverses an opioid overdose). More robust prescription drug
. (9), and smokers (%), also provide significance to the model. These variables likely have a L )
smoking, are expressed as a percentage. . . . . monitoring programs seem to be beneficial as well.
correlation, which may influence the findings.

Rose believes, “addiction 1s a ‘disease’ in the notion that the brokenness
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Figure 4: AdaBoost Feature Importance Plot: Predictors of Drug Poisoning Deaths
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According to the AdaBoost model, the most important predictors of drug overdose are rural
. o . . Figure 2: County Health Rankings Model (96), uninsured (%), the average number of mentally unhealthy days, severe housing problems
Figure 1: Drug Poisoning Deaths in Ohio: 2016-2021 (96), and unemployed(96). Other predictors like age-adjusted death rate, high school graduation
Ohio Counties 1n 2021 rate, excessive drinking (%), and smokers (%) still provide significance to the model.
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. . 10 1586 _ o : . .
I I lte I‘ature R@Vlﬁvv | My results regarding rural communities and drug overdose are consistent with King et al.
(2014), among others. Additional predictors in my model, such as poor mental health, appear
255 113 . . . . . . . . .
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: : : : ven r re resear nsider assigning fewer vari m : 1
individuals are less likely to consume 1illicit drugs 1n areas with a higher level of socialization, such as a densely 57 1 g |3 134 89 s CIUEs 10 ut.u € TESCArchl SHOUIE CONBIACT dSSISIUIE 1IEWEL ValldbICES to the mode 50, t I AC kn Owled cm €ntS
: : : « : : o 998 44 92 - may be beneficial to ask more professionals with domain expertise to extrapolate my findings. g
populated urban community. According to King et al., (2014), “rural residents are more susceptible to opioid o w 100 5 - Gi et d q : . e their i . ; del. ; ]
) ” . . « 159 | ven their day-to-day experience, 1t 1s possible their mterpretation ol my moadel, 1ts variables -
overdose and overdose deaths than urban residents.” According to the United States Census Bureau, “rural a7 o1 S or findines. may differ ’ ’ ’ T e . i e g kol B, 6, Al 07751
areas comprise open country and settlements with fewer than 2,500 residents.” In addition, Garcia et al., (2019) . % 106 o | 55 iy ' G
* ° * * * * ° . . 10 . X i, M s 1 11 Galea, S. (2014). Understanding the rural-urban differences in nonmedical prescription opioid use and abuse in the United States, Am. J. Public Health, 104 , pp. ¢52-¢59
and Keyes et al., (2014) reveal prescription rates for opioids are higher in rural areas than their urban w ! | : : o T e e
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I % day, I wish to live 1n a world where public policy and treatment programs are better-suited for
%7 individuals suffering from drug addiction.

Figure 3: Drug overdose deaths per county in Ohio (2021)
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