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Abstract

Previously, spectra of certain weighted composition operators Wψ,ϕ on H2 were determined
under one of two hypotheses: either ϕ converges under iteration to the Denjoy-Wolff point
uniformly on all of D rather than simply on compact subsets, or ϕ is “essentially linear frac-
tional.” We show that if ϕ is a quadratic self-map of D of parabolic type, then the spectrum
of Wψ,ϕ can be found when these maps exhibit both of the aforementioned properties, and
we determine which symbols do so.
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1. Introduction

Let H2 denote the classical Hardy space, the Hilbert space of analytic functions f(z) =
∞∑
n=0

anz
n on the open unit disk D such that

‖f‖2 =
∞∑
n=0

|an|2 <∞.

A composition operator Cϕ on H2 is given by Cϕf = f ◦ ϕ. We call ϕ the symbol of the
associated composition operator. When ϕ is an analytic self-map of D, the operator Cϕ is
bounded. Composition operators on H2 have been extensively studied for several decades; [1]
and [2] are seminal books on the subject. One reason for their study is the deep connection
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to multiplication operators. H∞, the space of bounded on analytic functions on D, is the
multiplier algebra of H2: if ψ ∈ H∞ and f ∈ H2, then ψf ∈ H2. Thus, for any ψ ∈ H∞, the
multiplication operator Tψ on H2 is given by Tψf = ψf , and all such operators are bounded.
Throughout this paper, we will always assume ψ ∈ H∞. We write Wψ,ϕ := TψCϕ and call
such an operator a weighted composition operator.

The spectrum of an operator T on a Hilbert space H, denoted σ(T ), is given by {λ ∈ C :
T − λI is not invertible}. A thorough treatment of the spectrum of composition operators
on H2 is given in [1, Chapter 7]. Determining the spectra of weighted composition operators
on H2 is still largely an open question, and some results are given in [3] and [4]; in both
papers, the results depend on the behavior of ϕ on D.

Building on the work of [3] and [4], our goal is to answer the following:

If ϕ is a quadratic self-map of D and ψ ∈ H∞, can we determine σ(Wψ,ϕ) ?

While we are interested in quadratic maps, this is not the only way we will classify our choice
of symbols. The Denjoy-Wolff theorem guarantees that any analytic self-map of D (apart
from elliptic automorphisms) will have a unique attracting fixed point w in D, and that ϕ
converges, uniformly on compact subsets of D, to that point under iteration. This behavior
generally splits into three categories:

• w is properly in D with |ϕ′(w)| < 1 (elliptic),

• w is on the boundary and ϕ′(w) < 1 (hyperbolic), or

• w is on the boundary and ϕ′(w) = 1 (parabolic).

If ϕ is not analytic on ∂D, the boundary fixed point cases need to be stated more carefully
(see [1]), but that will not be an issue for our quadratic symbols.

While our primary goal is to determine σ(Wψ,ϕ), a secondary goal of ours is to show the
interplay between the conditions imposed on ϕ in [3] and [4]. In the rest of the introduction,
we will explain the concept of uniformly convergent iteration found in [3], use it to narrow
down which quadratic maps we consider, and also explain the concept of essentially linear
fractional maps found in [4].

1.1. Uniformly convergent iteration.

Let ϕn = ϕ◦ϕ · · ·◦ϕ (n times). An analytic function ϕ : D→ D with Denjoy-Wolff point
w exhibits uniformly convergent iteration (UCI) if ϕn → w uniformly on all of D, rather
than simply on compact subsets of D. The main result we need is the following:

Theorem 1.1. [3, Corollary 10] Suppose ϕ : D→ D is analytic with Denjoy-Wolff point w,
ϕn → w uniformly in D, and ψ ∈ H∞ is continuous at z = w with ψ(w) 6= 0. Then we have

σp(ψ(w)Cϕ) ⊆ σap(Wψ,ϕ) ⊆ σ(Wψ,ϕ) ⊆ σ(ψ(w)Cϕ)

In particular, if σp(Cϕ) = σ(Cϕ), then σ(TψCϕ) = σ(ψ(w)Cϕ).
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If we can show that our quadratic maps exhibit UCI, then Theorem 1.1 gives us σ(Wψ,ϕ) ⊆
σ(ψ(w)Cϕ). However, we get more than that. If the Denjoy-Wolff point w is on ∂D and

ϕ′(w) < 1, we know that σp(Cϕ) = σ(Cϕ) [1, Theorem 7.26], and in conjunction with
Theorem 1.1, we have

σ(Wψ,ϕ) = σ (ψ(w)Cϕ) .

Furthermore, [3, Theorem 4] gives a clear sufficient condition to check for when ϕ is UCI if
w is on ∂D and ϕ′(w) < 1, so there is no real work to do with quadratic maps. Likewise,
if w is properly in D and ϕ is UCI, then Wψ,ϕ is power-compact [3, Corollary 2], and again
we have σ(Wψ,ϕ) = σ(ψ(w)Cϕ) by Theorem 1.1. Therefore, we are really only interested in
parabolic maps (w is on the boundary with ϕ′(w) = 1).

1.2. ϕ is of parabolic type

For the rest of the paper, we assume that ϕ is analytic in D with a single fixed point
w on the boundary, given by a quadratic polynomial, and ϕ′(w) = 1. Since Ceiθz is a
unitary operator, we can conjugate Cϕ by Ceiθz to rotate the fixed point without affecting
the spectrum; therefore we may assume that w = 1. We can then simplify the generic
quadratic ϕ(z) = a2z

2 + a1z + a by noting

a2 + a1 + a = 1

2a2 + a1 = 1

which gives a1 = 1− 2a2, and a2 = a, so we have

ϕ(z) = az2 + (1− 2a)z + a.

We now need to confirm exactly when ϕ maps D into D.

Proposition 1.2. Suppose ϕ(z) = az2 + (1 − 2a)z + a so that ϕ(1) = ϕ′(1) = 1. Then ϕ
is a self-map of D if and only if |a− 1

4
| ≤ 1

4
. Furthermore, the only elements of ∂D that are

not mapped by ϕ into D are the point z = 1 and, in the case where |a − 1
4
| = 1

4
, the point

z = −1.

Proof. Note that ϕ(−1) = 4a− 1, so we require that |4a− 1| ≤ 1 for ϕ to be a self-map of
D. Equivalently, we have |a− 1

4
| ≤ 1

4
, so that a is contained in the disk of radius 1

4
centered

at 1
4
.

Now suppose instead that |a − 1
4
| ≤ 1

4
is given. Then, we will find the image of the

unit circle under ϕ. Thinking of ϕ as a function of a, we know by the Maximum Modulus
Principle that |f(z)| will be maximized when |a − 1

4
| = 1

4
. Therefore, writing a = A + Bi,

we have A2 +B2 = 1
2
A, and if z = X + Y i, we have X2 + Y 2 = 1.

If ϕ(z) = az2 + (1− 2a)z+ a = (A+Bi)(X +Y i)2 + (1− 2A− 2Bi)(X +Y i) + (A+Bi),
then |ϕ(z)|2 can be directly computed, resulting in a 28-term algebraic expression we will
not force the reader to endure. However, using the aforementioned equations, we are able to
simplify the expression to 2AX2 − 2A + 1. This is a real-valued quadratic in X defined on
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[−1, 1], with vertex (0,−2A+1) (which has a nonnegative y-value for 0 ≤ A ≤ 1
2
, as needed).

Since the graph is a parabola whose defining equation has a positive leading coefficient, the
maximum values in the domain occur at the endpoints x = 1 and x = −1, which both result
in |ϕ(z)|2 = 1. Note, however, that equality is always attained at ϕ(1) = 1, but equality at
x = −1 only happens for ϕ(−1) = 4a− 1 when |a− 1

4
| = 1

4
; otherwise ϕ(−1) is properly in

D. In any case, for any other value of X, we have |ϕ(z)|2 < 1, so D is mapped by ϕ into D
as desired.

While the primary purpose of Proposition 1.2 is to discover exactly when ϕ is a self-map
of D, we should also note a few key facts from this result that we will use later. In particular,
we see that Re a > 0 and |a| ≤ 1

2
. Furthermore, we will take advantage of knowing exactly

which points on the unit circle are mapped by ϕ back onto the unit circle. As we have seen in
this proof, |a− 1

4
| < 1

4
is a separate case from |a− 1

4
| = 1

4
. This will remain true throughout

the paper.

1.3. Essentially linear fractional.

First we give the definition of essenitally linear fractional found in [4]:

Definition 1.3 ([4]). An analytic self-map ϕ of D is essentially linear fractional if all of the
following hold:

1. ϕ(D) is contained in a proper subsdisk of D internally tangent to the unit circle at
some point η ∈ ∂D;

2. ϕ−1({η}) := {γ ∈ ∂D : η belongs to the cluster set of η of ϕ at γ} consists of one
element, say ζ ∈ ∂D; and

3. ϕ′′′ extends continuously to D ∪ {ζ}.

We are interested in these maps because of certain spectral results in [4]. The essential
spectrum σe(T ) is the spectrum of T in the Calkin algebra B(H)/K(H), the bounded oper-
ators on a Hilbert space H modulo the compact operators. The essential spectrum is always
a subset of the spectrum. In particular, we will find symbols where σe(Wψ,ϕ) = σe(ψ(w)Cϕ),
and combined with Theorem 1.1, we will arrive at the main theorem of the paper:

Main Theorem. Suppose ϕ(z) = az2 + (1−2a)z+a maps D into D and |a− 1
4
| < 1

4
. Then

for any ψ ∈ H∞ continuous at 1, we have

σ(Wψ,ϕ) = σ(ψ(1)Cϕ) = {ψ(1)e−2at : t ≥ 0} ∪ {0}.

The rest of the paper proceeds as follows. In Section 2, we show that if ϕ(z) = az2 +(1−
2a)z + a with |a − 1

4
| ≤ 1

4
, then ϕ exhibits UCI. In Section 3, we determine exactly which

of these symbols are essentially linear fractional. In Section 4, we combine these results to
arrive at our main theorem, as well as a few other results. In Section 5, we discuss the
connection between uniformly convergent iteration and essentially linear fractional maps,
and propose questions for further research.
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2. ϕ converges uniformly under iteration on all of D (UCI)

Rather than iterating our quadratic maps directly, we will circumvent this issue by taking
alternate approaches to showing that ϕn → 1 uniformly on all of D. For |a − 1

4
| < 1

4
, we

rely on arguments from complex dynamics. When |a − 1
4
| = 1

4
, we work directly with the

following alternate characterization of uniform convergence.

Proposition 2.1. Let ϕ be an analytic self-map of D. Then ϕn converges uniformly on D
to its Denjoy-Wolff point w if and only if

lim
n→∞

sup
z∈D
|ϕn(z)− w| → 0.

Theorem 2.2. Suppose ϕ(z) = az2 +(1−2a)z+a and |a− 1
4
| = 1

4
, a 6= 0. Then the iterates

of ϕ converge uniformly to 1 on the entire open disk D.

Proof. We will find a recursive pattern for sup
z∈D |ϕn(z)− 1| that approaches 0.

Suppose sup
z∈D |ϕn(z) − 1| = rn (the value depends on n) and consider |ϕn+1(z) − 1|.

This factors as

|a| |ϕn(z)− 1|
∣∣∣∣ϕn(z)−

(
1− 1

a

)∣∣∣∣ .
Since ϕn is an analytic map of D, we know that sup

z∈D |ϕn(z)− 1| = rn is attained at some

point z1 in D, which also lies on the circle with center 1 and radius rn (call this circle C).
We wish to find an upper bound on the distance from z1 to z0 = 1− 1

a
. To do this, we also

need to find the image of the circle |a− 1
4
| = 1

4
(ignoring a = 0) under this transformation.

Again, if a = A+Bi, then A2 +B2 = 1
2
A. Then we have

1

a
=

1

A+Bi
=

A−Bi
A2 +B2

=
2(A−Bi)

A
= 2− B

A
i,

so we have z0 = 1 − 1
a

= −1 + B
A
i, and we know 0 < A ≤ 1

2
. Without loss of generality,

assume B is positive. Then the furthest point from C, still within D, from z0 is the point
where C intersects the unit circle in the fourth quadrant (see Figure 1). Writing x2 + y2 = 1

and (x − 1)2 + y2 = r2n, we can write z1 in terms of rn: (1− r2n/2) −
(
rn

√
1− 1

4
r2n

)
i. We

now wish to find |z1 − z0| :∣∣∣∣ϕn(z)−
(

1− 1

a

)∣∣∣∣ ≤ |z1 − z0| =
√

1 + 2r2n +
B2

A2
− 2B

A
rn

√
1− 1

4
r2n.

To incorporate the rest of our original expression for |ϕn+1(z) − 1|, we recall that |a| =
√
A2 +B2 =

√
1
2
A and |ϕn(z)− 1| = rn. We can also substitute B =

√
1
2
A− A2 to get

sup
z∈D
|ϕn+1(z)− 1| ≤ rn

√√√√r2nA+
1

4
− rn

√(
1

2
A− A2

)(
1− 1

4
r2n

)
.
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Figure 1: An example scenario for z1 and z0.

For our base case, consider r1 = |ϕ(z) − 1|. Then for z = X + Y i ∈ ∂D, if a = A + Bi,
by direct computation we have

|ϕ(z)− 1|2 = 2− 2AX2 + 4AX − 2A+ 4(X − 1)
√
A/2− A2

√
1−X2 − 2X.

For smaller values of A, this value is maximized at X = −1. However, when |(4a−1)−1|2 =
|4A − 2 + 4Bi|2 = 1, we have A = 3

8
, and the situation changes. For 3

8
≤ A ≤ 1

2
, we have

|ϕ(z)− 1| ≤ 1 for all z ∈ D. For 0 < A < 3
8
, the maximum value of |ϕ(z)− 1| is 2

√
1− 2A,

so r1 = max{2
√

1− 2A, 1}.
For 0 < A ≤ 1

2
, define

f(x) =

√√√√x2A+
1

4
− x

√(
1

2
A− A2

)(
1− 1

4
x2
)
,

so f satisfies 0 < f(x) < 1 for 0 ≤ x ≤ max{2
√

1− 2A, 1}. Then

rn+1 = rn

√√√√r2nA+
1

4
− rn

√(
1

2
A− A2

)(
1− 1

4
r2n

)
= rnf(rn) < rn,

and thus, our sequence is decreasing. Since r1 is positive and 0 < f(rn) < 1 for all n ≥ 1,
we know that the sequence rn is bounded below by 0. Since our sequence is monotonically
decreasing and bounded below, it converges. Then c = lim rn+1 = lim rn, which means that
c = cf(c) where f is defined as above. We have already established that f is always positive,
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so the only solution is c = 0. Therefore, limn→∞ sup
z∈D |ϕn(z) − 1| = 0, so ϕn converges

under iteration to 1 uniformly on all of D.

For |a− 1
4
| < 1

4
, we now turn to traditional results in complex dynamics, via Beardon [5].

Theorem 2.3. Suppose ϕ(z) = az2 + (1− 2a)z + a and |a− 1
4
| < 1

4
. Then the iterates of ϕ

converge uniformly to 1 on the entire open disk D.

Proof. Consider the family of degree two polynomial maps ϕ : D→ D given by

ϕ(z) = az2 + (1− 2a)z + a,

where |a − 1/4| < 1/4. These maps all have a parabolic fixed point at z = 1 and, as maps
of C, are conjugate to the map z 7→ z − z2. Specifically, for the maps g, σ : C→ C given by

g(z) = z − z2 and

σ(z) = −1

a
z + 1,

we have g = σ−1 ◦ϕ◦σ on C. Since ϕ is forward invariant on the disk, g is forward invariant
on Da := σ−1(D), and we have the following commutative diagram:

Da
g //

σ
��

Da

σ
��

D ϕ
// D

In particular, ϕn converges uniformly to 1 on D if gn converges uniformly to 0 on Da.
For specific details regarding the dynamics of one complex variable, we refer the reader

to ([5, 6, 7]). The domain of g is partitioned into two totally invariant sets, the Julia set,
denoted J(g), and the Fatou set, denoted F(g). The Fatou set is the set of points for which
the sequence of iterates forms a normal family, and the Julia set is the complement of the
Fatou set. In this case, F(g) is just the disjoint union of the two open sets:

B(g, 0) = {z ∈ C : gn(z)→ 0} and

B(g,∞) = {z ∈ C : gn(z)→∞},

called the basin of zero and the basin of infinity, respectively. The set J(g) has no interior,
so it must be that Da is a subset of B(g, 0) or B(g,∞). Note that σ−1(0) = a, and we have
assumed that |a− 1/4| < 1/4. Define

A = {a ∈ C : |a− 1/4| < 1/4}.

Since ∣∣∣∣g(a)− 1

4

∣∣∣∣ =

∣∣∣∣a− a2 − 1

4

∣∣∣∣ =

∣∣∣∣a− 1

2

∣∣∣∣2 ≤ (∣∣∣∣a− 1

4

∣∣∣∣+
1

4

)2

<
1

4
,

7



B(g, 0)

B(g,∞)

A

J(g)

Figure 2: B(g, 0) contains A.

we have that A, an open set with nonempty interior, is forward invariant by g, so A is a
subset of either B(g, 0) or B(g,∞). It is easily verified that for real a ∈ A, gn(a)→ 0. Thus,
we have A ⊂ B(g, 0) (see Figure 2), so σ−1(0) ∈ B(g, 0) as well. It follows that Da ⊂ B(g, 0),
and gn converges uniformly on compact subsets of B(g, 0).

We complete the proof by adapting the proof of the Petal Theorem from [5], for which
we need one more conjugacy. Observe that g is conjugate by σ0(z) = 1/z to h : C→ C given
by

h(z) = z + 1 +
1

z − 1
.

The fixed point z = 0 for g corresponds to the fixed point at∞ for h. It is easy to show that
the half plane {z ∈ C : Re z > 3} is forward invariant by h, so it is contained in B(h,∞).
The image of this set by σ0 is a disk of radius 1/6 centered at 1/6, contained in B(g, 0) (since
the original set was contained in B(h,∞)). However, based on the picture of this basin in
Figure 2, it appears we can construct a much larger forward invariant set.

Instead of starting with a half plane for h, we will use the following parabolic region. For
each t ≥ 0, let

Π + t := {z = x+ iy : y2 > 12(3 + t− x)}.

It can be shown that Π := Π + 0 is forward invariant by h. In particular, if z ∈ Π, we will
show that h(z) ∈ Π + 1/2. Let z = x + iy, h(z) = X + iY , and 1/(z − 1) = u + iv, so

8



X = x+ 1 + u and Y = y + v; then

Y 2 − 12(3 + 1/2−X) = (y + v)2 − 12(3 + 1/2− (x+ 1 + u))

= y2 − 12(3 + 1/2− x) + v2 + 2yv + 12(1 + u)

> v2 + 2yv + 12(1 + u)

≥ 2yv + 12(1 + u)

≥ 12− 2|yv| − 12|u|
> 0,

where the last inequality can be derived from the fact that z ∈ Π implies |z| > 3. Since
Y 2 > 12(3 + 1/2−X), we have h(z) ∈ Π + 1/2. We also have inductively that if z ∈ Π, then
for all positive integers n,

hn(z) ∈ Π +
n

2
.

Thus, for hn(x) +Xn + iYn,

|hn(z)|2 = X2
n + Y 2

n > X2
n + 12(2 + n/2−Xn) = (Xn − 6)2 + 6n > n,

so |hn(z)| >
√
n and hn(z)→∞ uniformly on Π. The image of Π by σ0 is the cardioid

P := σ0(Π) = {z = reiθ : 6r < 1 + cos θ},

and gn(z)→ 0 uniformly on P . The set P is the “petal” referred to in the Petal Theorem.
The preimage of Da by σ0 is the half plane

Ha := σ0(Da) = {z = x+ iy : 2Re a+ 2Im a > 1}.

Note that ∂Ha, the boundary of Ha, intersects the x-axis at x = 1/(2Re a), and since
Re a > 0, it is also never a horizontal line. Moreover, ∂Π is a horizontally oriented parabola,
intersecting the x-axis at x = 3. See Figure 3. Thus, if 1/6 < Re a < 1/4, then ∂Ha

intersects the x-axis at x < 3, so ∂Ha must intersect ∂Π at exactly two finite points. If
0 < Re a ≤ 1/6, then ∂Ha intersects ∂Π at exactly two finite points, one point (at which
∂Ha is tangent to ∂Π), or zero points. In the last two cases, we have Ha ⊂ Π.

Returning to the coordinates centered at zero, this implies that either Da ⊂ P or ∂Da

intersects ∂P at exactly two nonzero points. Recall that the set Da is a disk of radius |a|
centered at ā, so both ∂P and ∂Da always contains the origin. If ∂Da intersects ∂P at exactly
two nonzero points, Da\P is nonempty with a boundary consisting of the curve segment of
∂P between the two nonzero intersections and the curve segment of ∂Da outside P and
between the two nonzero intersections. Thus, Da\P is closed and bounded, so it is compact.
It follows that Da\P is always a strict, compact (sometimes trivially) subset of B(g, 0).

Since gn converges uniformly on P and Da\P ⊂ B(g, 0), we have that gn converges
uniformly on Da. Therefore, ϕn converges uniformly on D.

Now we have the full picture:

Corollary 2.4. Suppose ϕ(z) = az2 + (1− 2a)z + a and |a− 1
4
| ≤ 1

4
. Then the iterates of ϕ

converge uniformly to 1 on the entire open disk D.

9



σ0

P

Da\P

DaΠ

Ha

Ha\Π

Figure 3: On the left are Π, H, and Ha\Π. On the right are the images of these sets under σ0: the cardioid,
P , and Da with boundaries intersecting at two nonzero points.

3. ϕ is essentially linear fractional

We have shown that when ϕ(z) = az2 + (1 − 2a)z + a with |a − 1
4
| ≤ 1

4
, ϕ converges

uniformly on all of D. Thanks to the work of [3], we know that for any ψ ∈ H∞, we have
σ(Wψ,ϕ) ⊆ σ(ψ(a)Cϕ). We would like for this containment to become equality, and in order
to do so, we introduce another property that ϕ exhibits.

Here we remind the reader of Definition 1.3. An analytic self-map ϕ of D is essentially
linear fractional [4] if all the following hold:

1. ϕ(D) is contained in a proper subsdisk of D internally tangent to the unit circle at
some point η ∈ ∂D;

2. ϕ−1({η}) := {γ ∈ ∂D : η belongs to the cluster set of η of ϕ at γ} consists of one
element, say ζ ∈ ∂D; and

3. ϕ′′′ extends continuously to D ∪ {ζ}.

We will quickly verify that most of the the maps ϕ(z) = az2 + (1− 2a)z+ a satisfy these
conditions. (Again, we assume a 6= 0.) To do so, we need another result from [4].

Proposition 3.1 ([4], Proposition 1.3). Let ϕ be an analytic self-map of D that extends
to be continuous on ∂D. Suppose that ϕ ∈ C2(1), that ϕ(1) = 1, and that |ϕ(ζ)| < 1 for
ζ ∈ ∂D\{1}. If

Re

(
1

ϕ′(1)
− 1 +

ϕ′′(1)

ϕ′(1)2

)
> 0 (3.1)

then ϕ(D) is contained in a proper subdisk of D internally tangent to ∂D at 1.
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Now to verify which our family of symbols ϕ satisfy Definition 1.3:

1. For our symbols, the left side of expression 3.1 simplifies to 2a, and we know Re a > 0.
However, Proposition 3.1 also requires that the rest of the unit circle be mapped into
D. If |a − 1

4
| < 1

4
, Proposition 3.1 applies and ϕ(D) is contained in a subdisk of D

internally tangent at 1. However, we cannot use this proposition if |a − 1
4
| = 1

4
, since

−1 maps to 4a − 1. If a 6= 1
2
, however, it is worth noting that ϕ ◦ ϕ satisfies the

definition.

2. Since our function is analytic on the boundary, we are asking that ϕ−1({1}) contain
only a single point from ∂D. The points that map to 1 are 1 and 1− 1

a
, and the latter

is outside of D if a 6= 1
2
. If a = 1

2
, then ϕ is not essentially linear fractional since −1

also maps to 1, and neither is any iterate of ϕ, so we will handle that case separately.

3. Since ϕ′′′(z) ≡ 0, this is trivial.

Unsurprisingly, just as with our work on UCI, we see that the definition of essentially
linear fractional splits our work into the cases when |a − 1

4
| < 1

4
and |a − 1

4
| = 1

4
. This

continues in the following spectral results.

4. Spectrum of Wψ,ϕ

We now have all the pieces we need; first we remind the reader of Theorem 1.1 from the
introduction:

Theorem 1.1. [3, Corollary 10]. Suppose ϕ : D→ D is analytic with Denjoy-Wolff point a,
ϕn → a uniformly in D, and ψ ∈ H∞ is continuous at z = a with ψ(a) 6= 0. Then we have

σp(ψ(a)Cϕ) ⊆ σap(TψCϕ) ⊆ σ(TψCϕ) ⊆ σ(ψ(a)Cϕ)

In particular, if σp(Cϕ) = σ(Cϕ), then σ(TψCϕ) = σ(ψ(a)Cϕ).

Composition operators with parabolic symbols are notoriously difficult when it comes
to spectral problems, and this situation is no different. We have little information about
σp(Cϕ); instead we will only use the fact that Theorem 4 gives us σ(Wψ,ϕ) ⊆ σ(ψ(a)Cϕ). We
now turn to two results from [4] regarding essentially linear fractional maps.

Theorem 4.1. [4, Theorem 3.3] Suppose that ϕ is an essentially linear fractional self-map
of D fixing 1. Suppose also that for s = ϕ′′(1), Re s > 0. Then

σ(Cϕ) = σe(Cϕ) = {e−st : t ≥ 0} ∪ {0}.

Theorem 4.2. [4, Theorem 4.3] Suppose ϕ is essentially linear fractional with ϕ(1) = 1,
and ψ ∈ H∞ is continuous at 1. Then Wψ,ϕ ≡ ψ(1)Cϕ modulo the compact operators.

Putting these facts together, we arrive at our main theorem.
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Theorem 4.3 (Main Theorem). Suppose ϕ(z) = az2 + (1 − 2a)z + a maps D into D and
|a− 1

4
| < 1

4
. Then for any ψ ∈ H∞ continuous at 1, we have

σ(Wψ,ϕ) = σ(ψ(1)Cϕ) = {ψ(1)e−2at : t ≥ 0} ∪ {0}.

Proof. By Theorem 4, we have σ(Wψ,ϕ) ⊆ σ(ψ(1)Cϕ). By Theorem 4.1, we have σ(Cϕ) =
σe(Cϕ). By Theorem 4.2, we have σe(Wψ,ϕ) = σe(ψ(1)Cϕ). Putting these together, we have

σ(ψ(1)Cϕ) = σe(ψ(1)Cϕ) = σe(Wψ,ϕ) ⊆ σ(Wψ,ϕ) ⊆ σ(ψ(1)Cϕ),

and since the first and last sets in the containment are equal, we have σ(ψ(1)Cϕ) = σ(Wψ,ϕ).
By Theorem 4.1, noting ϕ′′(1) = 2a, we have

σ(Wψ,ϕ) = {ψ(1)e−2at : t ≥ 0} ∪ {0}.

We now investigate the situation when |a − 1
4
| = 1

4
. While we have shown that ϕ still

converges under iteration to 1 uniformly on all of D, it is not essentially linear fractional
since |ϕ(−1)| = |4a − 1| = 1. Here, we must actually divide our special case yet again: if
a 6= 1

2
, then ϕ2 = ϕ ◦ ϕ is essentially linear fractional (since 4a − 1 is then mapped into

D) and of course ϕ2 is uniformly convergent under iteration on all of D. Therefore, we as a
corollary to Theorem 4.3, we get the following:

Corollary 4.4. Suppose ϕ(z) = az2 + (1 − 2a)z + a maps D into D and |a − 1
4
| = 1

4
for

a /∈ R. Then for any ψ ∈ H∞ continuous at 1, we have

σ(Wψ,ϕ2
) = σ(ψ(1)Cϕ2

) = {ψ(1)e−4at : t ≥ 0} ∪ {0}
where ϕ2 = ϕ ◦ ϕ.

Proof. The proof follows exactly as before, except that ϕ′′2(1) = 4a.

The result of Corollary 4.4 suggests that it is most likely true that σ(Wψ,ϕ) is the same
as shown in Theorem 4.3 when |a− 1

4
| = 1

4
, but we do not have a proof.

However, even then, a = 1
2

proves itself to be an entirely distinct case. Here, instead of
functional behavior, we now rely on a linear algebra trick also used in [3].

Lemma 4.5. [3, Lemma 3] If A and B are bounded linear operators on a Hilbert space H,
then σ(AB) ∪ {0} = σ(BA) ∪ {0}.

Using this, we can now finish the story with a = 1
2
, which actually varies just slightly

from the result in Theorem 4.3.

Theorem 4.6. Suppose ϕ(z) = 1
2
z2 + 1

2
, an analytic self-map of D. Then for any ψ ∈ H∞

continuous at 1, we have

σ(Wψ,ϕ) = {ψ(1)e−t/2 : t ≥ 0} ∪ {0}.
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Proof. If f(z) = 1
2
z + 1

2
, then we have Cϕ = Cz2Cf . By Lemma 4.5, we have σ(Cϕ) ∪ {0} =

σ(Cz2Cf ) ∪ {0} = σ(CfCz2) ∪ {0} = σ(Cf2) ∪ {0}. Note that f 2(z) = 1
4
z2 + 1

2
z + 1

4
, which

falls under Theorem 4.1 with s = 1
2
. Since we also know Cϕ is not invertible, we have

σ(Cϕ) = {ψ(1)e−t/2 : t ≥ 0} ∪ {0}.
Likewise, let ψ ∈ H∞ be continuous at 1 and consider TψCϕ = TψCz2Cf . Again by

Lemma 4.5, we have σ(TψCz2Cf ) ∪ {0} = σ(CfTψCz2) ∪ {0} = σ(Tψ◦fCf2) ∪ {0}. Since f
maps D into D analytically and f is continuous at 1, we still have that ψ ◦ f ∈ H∞ and
and ψ ◦ f is continuous at 1 (and ψ ◦ f(1) = ψ(1)). Again, we also know that TψCϕ is not
invertible. Then, by Theorem 4.3 we have

σ(W∗ψ,ϕ) = σ(ψ(1)Cϕ) = {ψ(1)e−t/2 : t ≥ 0} ∪ {0}.

While our guess is that Theorem 4.3 holds for |a− 1
4
| = 1

4
when a is complex, the exponent

in our result for a = 1
2

does not match up with Theorem 4.3, presumably because it is more
distinct in its failure to be essentially linear fractional. However, the final result is the same
in practicality: for 0 < a ≤ 1

2
, σ(Wψ,ϕ) is the closed line segment connecting ψ(1) to the

origin.

5. Implications and Further Questions

There are two important concepts in this paper that could be pursued further. The first
is extending our methods for showing quadratics exhibit uniformly convergent iteration to
higher-degree polynomials. Certainly Corollary 2.4 implies more than it says; e.g. ϕ ◦ ϕ is
a quartic self-map of D that also converges uniformly on all of D. For any polynomial map
fixing 1, ϕn(z) − 1 will be a factor of ϕn+1(z) − 1, suggesting that our recursive approach
used in Theorem 2.2 could be generalized, but it will require deeper geometric intuition than
we use here for quadratic maps.

The second important concept is the intersection of self-maps of D that exhibit uniformly
convergent iteration on all of D, and essentially linear fractional maps. Certainly they do not
perfectly align; we have already seen that 1

2
z2 + 1

2
converges under iteration to 1 uniformly

on all of D, but is not essentially linear fractional. Likewise, a linear fractional map with
both an interior and a boundary fixed point (e.g. ϕ(z) = z

2−z ) cannot converge uniformly on

all of D; it must have only one fixed point in D [3, Theorem 3]. However, the intersection of
the two concepts is non-trivial, and leads to the following conjecture.

Conjecture 5.1. Suppose ϕ is an essentially linear fractional self-map of D with exactly
one fixed point w in D. Then ϕ converges under iteration to w uniformly on all of D.

Were this conjecture true, it would immediately provide a full description of σ(Wψ,ϕ) for
a rather broad class of symbols, by the same arguments made in this paper. Thus we end
with the following list of questions:

1. What is σ(Wψ,ϕ) if ϕ(z) = az2 + (1− 2a)z + a and |a− 1
4
| = 1

4
for a /∈ R ?
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2. When do essentially linear fractional maps converge uniformly to their Denjoy-Wolff
point on all of D?

3. Which polynomial self-maps of D converge uniformly on all of D to the Denjoy-Wolff
point?

4. If ψ ∈ H∞ is continuous at the Denjoy-Wolff point w of ϕ, and ϕ is not an automor-
phism, then when, if ever, is σ(Wψ,ϕ) 6= σ(ψ(w)Cϕ)?
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