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1 Introduction

We use the starting section of this thesis to slowly introduce the reader to the problem
which we are researching. For a shorter introduction we refer the reader to Section 1.1.
In our opinion the easiest way to introduce graph theory is by letting the reader imagine
a street map. It is possible to reconstruct the structure of the street map if one knows
all the different crossings in the street map and the information which crossings are
directly connected by a street. This underlying logical structure is called a graph, which
consists of two sets, the non-empty set V for vertices, which correspond to the crossings,
and the set E ⊆ {{v, w} | v, w ∈ V, v 6= w} of so called edges, which correspond to
the streets between the crossings. For a graph G we use V (G) and E(G) to reference
his vertex set and edge set, respectively. Before we continue let us introduce three
important, quite simple graphs. For n ∈ N>0, the complete graph of size n, also called
Kn, is defined by

Kn = (V (Kn), E(Kn)) := ({vi | i ∈ {1, 2, . . . , n}}, {{v, w} | v, w ∈ V (Kn), v 6= w}).

For n ∈ N>2, we define the path of length n and the cycle of length n by

Pn := ({vi | i ∈ {1, 2, . . . , n}}, {{vi, vi+1} | i ∈ {1, . . . , n− 1}}),

and

Cn := ({vi | i ∈ {1, 2, . . . , n}}, {{vi, vi+1} | i ∈ {1, . . . , n− 1}} ∪ {{v1, vn}}),

respectively. Noticing all these brackets it is a logical notation to just write uv ∈ E(G)

instead of {u, v} ∈ E(G). Using a graph as the underlying mathematical structure
one can look at many different problems. This area of mathematics is called graph
theory. One interesting problem which arises by looking at a street map is to find
the shortest path between two crossings. This problem can currently be solved quite
efficiently using graph theory and these solutions are used every time a phone is asked
for directions. We refer the interested reader to an article by Schrijver [61] depicting
the history of this problem.

Most discrete data can be depicted in a graph. Let us present one more example of an
interesting graph. Identifying each user of a given social media platform with its own
vertex and connecting the vertices with an edge if and only if the corresponding people
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are friends on the platform creates a large friendship graph. For the platform Twitter
this graph is subject of a paper by Bakhshandeh et al. [4]. In their paper they introduce,
among other things, an algorithm to calculate an approximate solution to the shortest
path problem. They find an average degree of separation of 3.43 between two random
Twitter users, meaning that for any two users u1 and u2 on average there is a path of
length less than four, consisting of users, which are pairwise friends, connecting u1 and
u2. This is a surprisingly small number and therefore another instance of the so-called
small-world experiment.

In this thesis we look at another graph theoretical problem namely the colouring prob-
lem. We use the following example to motivate this problem. In an atlas there is a
coloured map of the worlds’ countries. One notices that countries which share a border
are for better readability coloured differently. The person responsible for colouring
the atlas has to solve the following question. How many colours are necessary to
colour the countries under the restriction that adjacent countries are coloured dif-
ferently? We translate this in a graph theoretical problem as follows. The graph
GEarth = (V (GEarth), E(GEarth)), which contains all the relevant information to colour
the atlas map, arises from the neighbourhood relation between the countries as follows.
Each country of the earth is identified with its own vertex and there is an edge between
two vertices if and only if the corresponding countries share a border of positive length.
That is the reason why we generally say u is adjacent to v in G if uv ∈ E(G). The
question of finding an allowed colouring now translates into finding a k ∈ N>0 and a
map c : V (GEarth) → {1, 2, . . . , k} such that c(u) 6= c(v) for each uv ∈ E(GEarth). We
say a graph G is k-colourable, if we find such a k ∈ N>0 and a map c. Clearly every
graph G is |V (G)|-colourable by colouring every vertex in its own colour. Going back to
the atlas-map it is quite natural to ask for the smallest amount of colours necessary to
colour the countries, since when using fewer colours there is a larger visual difference
between these colours. Because of its relevance the smallest k for which a graph is
k-colourable has its own name and is called the chromatic number of G and is denoted
by χ(G). In general there is no known efficient algorithm to calculate the chromatic
number of a given graph [28]. Trying all different combinations of colours leads to an
exponential running time and therefore is highly impractical for larger graphs. Since
in general determining the chromatic number is a difficult problem, we now only col-
lect the maps from the atlas which fulfil the following quite natural restriction. We
are interested in all maps for which each country depicted in the map is topologically
connected. The graphs which arise from theses maps are so called planar graphs. Sur-
prisingly four colours are enough to colour each one of these maps. This is the famous
4-colour theorem, which was proven by Appel and Haken [2] in 1977. The more general
fact, that all maps with the special property are 4-colourable is clearly more useful than
just knowing χ(GEarth).
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Like in the example often times it is not just a single graph that one wants to know
the chromatic number of, but rather a large collection of graphs which are of interest.
So given a family of graphs the aim is to find an upper bound to the chromatic number
of these graphs. Obviously there are different ways to obtain such a family of graphs.
Before we explain the graph families that we are interested in we need to introduce two
technical definitions. Firstly for two graphs G and H, an isomorphism between G and
H is a bijection between V (G) and V (H) such that for every two vertices u, v ∈ V (G)

we have uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). If there is an isomorphism between
G and H we write G is isomorphic to H or G ∼= H. The second definition we need
is that of an induced subgraph. Given a non-empty set S ⊆ V (G), G[S] is the graph
with vertex set S and edge set E(G)∩{s1s2 : s1, s2 ∈ S}. We say that H is an induced
subgraph of G, denoted by H ⊆ind G, if there is some set S ⊆ V (G) of vertices such
that G[S] ∼= H. So for example K2 is an induced subgraph of every graph with an
edge, but P5 is not an induced subgraph of C5. Now we can define the graph families
that we are interested in. For a graph H we define the family For(H) of graphs by

For(H) = {G | H is not an induced subgraph of G}.

Or in other words, we are interested in graph families which occur by forbidding a cer-
tain (often small) graph H as an induced subgraph. This family of graphs is denoted by
For(H), short for forbidden. In general a smaller forbidden subgraphH grants a smaller
family For(H). For example the family For(K2) just consists of K1, 2K1, 3K1, . . . .
One advantage of choosing the family of graphs in this way is that for every graph
G ∈ For(H) and an induced subgraph G′ of G also G′ ∈ For(H). This is the so called
hereditary property and for all graph families G which fulfil the hereditary property
there is a family of graphs H with For(H) = G (H can be chosen to be the set of all
graphs not in G but all induced subgraphs of which are in G).

So imagine such a family of graphs. Quite clearly the chromatic number of these graphs
can be arbitrary large as long as the forbidden subgraph H is not a complete graph.
This is the case, since if H is not a complete graph the complete graph of any size is a
member of For(H). So it is a logical idea to divide the graphs into buckets depending
on the largest complete graph which they contain as an induced subgraph. Now the
aim is to find an upper bound on the chromatic number for each bucket. Or in other
word we try to find a function fH : N0 → N0 such that χ(G) ≤ fH(ω(G)) for every
G ∈ For(H), where ω(G) denotes the cardinality of the largest set of pairwise adjacent
vertices in G. The function fH is called a χ-binding function for For(H). Motivated by
the Strong Perfect Graph Conjecture of Berge [5], Gyárfás [31] first introduced these
functions. Often times is is quite difficult to figure out whether or not there is such a
function.

Let us first imagine there is an n ∈ N>2 such that Cn is an induced subgraph of H.



14 1 Introduction

It was first shown by Erdős [25] that in this setting there is no χ-binding function
for For(H). This is the case since for every k, ` ∈ N>0 there is a graph Gk,` with
χ(Gk,`) ≥ k and which shortest cycle has length at least `. So choosing ` as n+ 1 the
infinite family {Gk,` | k ∈ N>0} has clique number 2, unbounded chromatic number,
and is a subset of For(H). Since this result by Erdős the study of χ-binding functions
for (hereditary) graph families is one of the central problems in chromatic graph theory.

So to have any chance of finding a χ-binding function for For(H) we need that there is
no n ∈ N>2 such that Cn is an induced subgraph of H. The easiest graphs which fulfil
this condition are the paths. If the forbidden subgraph is a P4 it was first shown by
Seinsche [65] that one can even choose fP4(ω) = ω as a binding function. Since χ(G) ≥
ω(G) for every graph G this function is the smallest non-trivial binding function. The
family For(P5) contains so many more graphs than For(P4) that for example it is
still open whether or not there is a polynomial binding function for For(P5). So to
better understand this family many researchers forbid an additional graph. A lot of
results have been published in the last decades in this particular field and Chapter 2
is a collection of these results. We also refer the reader to surveys of Randerath and
Schiermeyer [59], and Scott and Seymour [63] for a great overview over the years of
research. Let us use this space to state that whenever we state a theorem, lemma or
corollary which is not our result there is a citation and name crediting the author. If
there is no name it is one of our results.

Like we saw in the example of For(P4) it is a logical wish to find the smallest binding
function. Also like mentioned above to research the family For(H) one additionally
forbids a second subgraph and researches this smaller family. So after this introduction
we now formally define the following often used definition of an optimal χ-binding
function. Given a set H of graphs, let f ?H : N0 → N0 be the optimal χ-binding function
for For(H), that is,

f ?H(ω) = max{χ(G) : ω(G) = ω,G ∈ For(H)}.

Finding χ-binding functions is difficult which implies that it is especially difficult to find
optimal ones. For some subfamilies of P5-free graphs we are able to determine optimal
χ-binding functions through a combination of decompositions by homogeneous sets
and clique-separators. Others we determine by structural analysis.

This thesis is organised as follows: We continue in this chapter with a motivation and
summary of our results as well as an introduction into notation and terminology. In
Chapter 2 we outline the known results in this area. Then we prove the main techniques
in Chapter 3 that are used in later proofs.

In the then following chapters we discuss the different subfamilies and their χ-binding
functions. We deal with the families For(P5, hammer), For(P5, banner), For(P5, dart),
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(a) 3K1 (b) K3 ∪K1 (c) 2K2 (d) C4 (e) C5 (f) diamond (g) paw

(h) banner (i) bull (j) dart (k) kite (l) gem (m) hammer (n) P5

(o) fork (p) paraglider (q) HVN

Fig. 1: Most frequently used forbidden induced subgraphs

For(P5, kite) and For(P5,HVN) in Chapter 4, Chapter 5, Chapter 6, Chapter 8 and
Chapter 9, respectively. Since we find nice structural results for these families we also
get result for some of their subfamilies. All these results are collected in the then
following Chapter 7. There we discuss our results for For(P5, C4),For(P5, gem), and
For(P5, diamond).

We lastly characterise all graphs H for which there is a constant c(H), only depending
on H, with f ?{P5,H}(ω) ≤ ω + c(H), for all ω ∈ N>0, in Chapter 10.

1.1 Motivation and contribution

We consider standard notation and terminology, and note that each of the considered
graphs in this thesis is simple, finite and undirected unless otherwise stated. Some
particular graphs are depicted in Fig. 1 and Fig. 2, and we denote a path and a cycle
on n vertices by Pn and Cn, respectively. Additionally, given graphs G,H1, H2, . . ., the
graph G is (H1, H2, . . .)-free if G − S is non-isomorphic to H for each S ⊆ V (G) and
each H ∈ {H1, H2, . . .}.

A function L : V (G) → N>0 is a (proper) colouring if L(u) 6= L(v) for each pair of
adjacent vertices u, v ∈ V (G) and, for simplicity, we say that each k ∈ {L(u) : u ∈
V (G)} is a colour. The smallest number of colours for which there is a proper colouring
of G is the chromatic number of G, denoted by χ(G). It is well known that each clique,
which is a set of pairwise adjacent vertices, needs to be coloured by pairwise different
colours in a proper colouring. Thus, the clique number, which is the largest cardinality
of a clique in G and that is denoted by ω(G), is a lower bound on χ(G). Since the
beginnings of chromatic graph theory, researchers are interested in relating these two
invariants. For example, Erdős [25] showed that the difference could be arbitrarily
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large by proving that, for every two integers g, k ≥ 3, there is a (C3, C4, . . . , Cg)-free
graph G with χ(G) ≥ k. In contrast, it attracted Berge [5] to study perfect graphs,
which are graphs, say G, that satisfy χ(G − S) = ω(G − S) for each S ⊆ V (G). His
research resulted in two famous conjectures, the Weak and the Strong Perfect Graph
Conjecture. The first one, proven by Lovász [46], states that the complementary graph
of a perfect graph is perfect. In contrast to the Weak Perfect Graph Conjecture, the
Strong Perfect Graph Conjecture was open for a long time but is nowadays confirmed
and known as the Strong Perfect Graph Theorem.

The Strong Perfect Graph Theorem (Chudnovsky et al. [20]). A graph G is perfect
if and only if G and Ḡ are (C5, C7, . . .)-free.

To generalize the notation of perfect graphs, Gyárfás [31] introduced the definition of
a χ-binding function as follows. A function f : N0 → N0 is a χ-binding function for a
family of graphs G if and only if χ(G′) ≤ f(ω(G′)) holds for all induced subgraphs G′

of G ∈ G. If there is a χ-binding function for a graph family G, then there is obviously
a optimal (or smallest) χ-binding function for G defined by

f ?(x) = max{χ(G′) | G′ is an induced subgraph of G ∈ G, ω(G′) = x}.

Gyárfás [31] also observed from the aforementioned result by Erdős [25] that the χ-
binding function does not exist for the family of (H1, H2, . . . , Hk)-free graphs whenever
each of the given graphs H1, H2, . . . , Hk contains an induced cycle. In other words,
to hope for χ-binding functions for the family of (H1, H2, . . . , Hk)-free graphs, at least
one of the graphs H1, H2, . . . , Hk must be a forest. Furthermore, Gyárfás [31] and,
independently, Sumner [66] conjectured that there is such an upper bound on the
chromatic numbers of H-free graphs whenever H is a forest.

Given a setH of graphs, we use the notation of f ?H for the optimal χ-binding function for
the family of H-free graphs, which means, since this family is hereditary f ?H : N0 → N0

is defined by
f ?H(ω) = max{χ(G) : ω(G) = ω,G is H-free}.

For example, the family of Pt-free graphs for t ≥ 5 has a χ-binding function (cf. The-
orem 12, [31]) although up until recently the best known upper bounds on f ?{P5} and
f ?{P5,C5} were exponential in ω [26, 22]. In 2021 Scott, Seymour, and Spirkl [64] proved
a quasi-polynomial bound for P5-free graphs. For more details about their proof we
refer to Chapter 2. The right order of magnitude of f ?{P5} is a long-standing and still
an open problem. Esperet (unpublished) even posed the difficult problem to decide
whether or not every χ-bounded family admits a polynomial χ-binding function? For
that reason, it is natural to ask whether there exists a polynomial χ-binding function
for a χ-bounded graph family G. To the best of our knowledge, it is also unknown
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whether there is a polynomial χ-binding function for the family of (C5, C7, . . .)-free
graphs (which is a short notation for the family of graphs each of which is C2k+5-free
for each k ∈ N0) although an exponential one exists [62]. For various graph families,
χ-binding functions have been established and surveyed by Gyárfás [31], Seymour and
Scott [63], and Randerath and Schiermeyer [55].

It is rather interesting that P4-free graphs are perfect by the Strong Perfect Graph
Theorem but, for supersets such as P5-free graphs and (C5, C7, . . .)-free graphs, the
best known χ-binding functions are not even polynomial. Although it is unknown
whether f ?{P5} and f ?{C5,C7,...} are polynomially or not, there is a big difference in the
order of magnitude between f ?{P4} on one hand, and f ?{P5} on the other hand. For this
reason we focus in this thesis on P5-free graphs, as this family is the smallest – in
terms of the forbidden induced paths – for which the right order of magnitude of f ?{P5}

is unknown. Note that Fouquet et al. [27] show among other things that there is no
linear χ-binding function for the class of P5-free graphs. By modifying a result of [14],
we obtain Lemma 42 which we prove in Chapter 3 and from which we especially deduce
that the families of P5-free graphs and of (C5, C7, . . .)-free graphs do not have a linear
χ-binding function.

Since the orders of magnitude of f ?{P5} and f
?
{C5,C7,...} are unknown, it is of interest to

study subfamilies of P5-free graphs and subfamilies of (C5, C7, . . .)-free graphs. For
example, it has been proven

• f ?{P5,paw}(ω) =

f ?{P5,C3}(ω) if ω ≤ 2,

ω if ω > 2

 =

3 if ω = 2,

ω if ω 6= 2

 (cf. [48, 54] or [59]),

• f ?{P5,diamond}(ω) ≤ ω + 1 (cf. [54]),

• f ?{P5,C4}(ω), f ?{P5,gem}(ω) ≤ d5ω/4e (cf. [15, 19]),

• f ?{P5,paraglider}(ω) ≤ d3ω/2e (cf. [36]), and

• f ?{C5,C7,...,bull}(ω), f ?{P5,bull}(ω) ≤
(
ω+1

2

)
(cf. [22]).

We refer the reader to the survey of Randerath and Schiermeyer [59] and Chapter 2
for additional results and further informations.

The research field of this thesis is the study of binding functions of (P5, H)-free graphs
for H ∈ {hammer, banner, dart, kite,HVN}. With our main technique which is stated
in Section 3.2 we find an approach which allows us determining optimal χ-binding
functions for some of these families. As particular tools, we need the terminologies of
critical graphs as well as those of homogeneous sets and clique-separators. A graph G
is critical if χ(G) > χ(G−u) for each u ∈ V (G). Additionally, in a connected graph G,
a set S is a homogeneous set if 1 < |S| < |V (G)| and each vertex outside S is adjacent
to each or none of the vertices of S, and S is a clique-separator if S is a clique and
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G− S is disconnected.

In its basic form, our approach for some subfamilies of For(P5) can be described as
follows:

Whenever there is a set H of graphs, it is reasonable to study the chromatic number
of critical H-free graphs only for determining f ?H since each critical graph G− S with
χ(G − S) = χ(G) and S ⊆ V (G) satisfies ω(G − S) ≤ ω(G). Assuming f ?H to be
non-decreasing and G to be not critical, we obtain by induction hypothesis

χ(G) = χ(G− S) ≤ f ?H(ω(G− S)) ≤ f ?H(ω(G)).

This observation leads to the following well-known lemma which we state here for later
reference.

Lemma 1 (Folklore). Let H be a set of graphs and CH := {H ∈ H | H is critical} and
f : N0 → N0 non-decreasing. If χ(C) ≤ f(ω(C)) for all C ∈ CH then χ(H) ≤ f(ω(H))

for all H ∈ H.

This simplification particularly implies that we can restrict our attention to graphs
without clique-separators, which is reasoned by the fact that each graph G for which
there are two graphs G1 and G2 such that V (G1) \ V (G2), V (G2) \ V (G1) 6= ∅,
E(G) = E(G1) ∪ E(G2), and V (G1) ∩ V (G2) is a clique-separator satisfies χ(G) =

max{χ(G1), χ(G2)} (cf. Lemma 37), and so G is not critical.

Furthermore, let us assume that M is a homogeneous set for which there is no ho-
mogeneous set containing M properly. For the neighbours of M , it does not matter
how a proper colouring L : V (G) → N>0 colours the vertices of M . It is only the set
of colours that L assigns to the vertices in M which is of interest. From this view, it
is reasonable to delete all but one vertex of M , assigning χ(G[M ]) as weight to the
remaining vertex, and to consider set-mappings as colourings.

By refining the concepts of critical graphs and clique-separators, we are in a position to
reduce the determination of optimal χ-binding functions to the study of set-mappings
for graphs without clique-separators and homogeneous sets. We apply this approach
and our findings, and obtain several optimal χ-binding functions. It is worth pointing
out that there are just a few graph families for which optimal χ-binding functions are
known. As described above, mostly one can only determine a χ-binding function, and
it is often a tough and challenging problem to determine the optimal one or its order of
magnitude. Our main results are collected in the following theorems. They are ordered
by their occurrence in this thesis. Note that by definition of f ?H it is possible to state
these bounds in a compact form, but for example proving f ?{P5,dart}(ω) = f ?{3K1}(ω)

requires roughly 30 pages.
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Theorem 2. If ω ∈ N>0, then

f ?{P5,hammer}(ω) = f ?{2K2}(ω).

Theorem 3. If ω ∈ N>0, then

(i) f ?{P5,banner}(ω) = f ?{3K1}(ω) and

(ii) f ?{C5,C7,...,banner}(ω) = f ?{C5,3K1}(ω).

Theorem 4. If ω ∈ N>0, then

(i) f ?{P5,dart}(ω) = f ?{3K1}(ω) and

(ii) f ?{C5,C7,...,dart}(ω) = f ?{C5,3K1}(ω).

Theorem 5. If ω ∈ N>0, then

(i) f ?{P5,C4}(ω) = f ?{P5,gem}(ω) =
⌈

5ω−1
4

⌉
and

(ii) f ?{P5,diamond}(ω) =

3 if ω = 2,

ω if ω 6= 2.

Theorem 6. If ω ∈ N>0, then

⌊
3ω

2

⌋
≤ f ?{P5,kite}(ω) = f ?{2K2,K3∪K1,C5∪K1}(ω) ≤


⌊

3ω
2

⌋
if ω ≤ 3,

2ω − 2 if ω ≥ 4.

Theorem 7. If ω ∈ N>0, then

f ?{P5,HVN}(ω) =


ω + 1 if ω /∈ {1, 3},

ω if ω = 1,

ω + 2 if ω = 3.

Last but not least, we aim for graphs F such that

f ?{P5,F}(ω) ≤ ω + c(F )

for some constant c(F ) – depending on F only – and each ω ∈ N>0. In particular,
we prove the following characterization, where Fp denotes the complementary graph of
pK1 ∪ P3 for each p ∈ N≥0.

Theorem 8. Let F be a graph. There is a constant c(F ) such that f ?{P5,F}(ω) ≤ ω+c(F )

for each ω ∈ N>0 if and only if either F ∼= P4 or F is an induced subgraph of Fp for
some p ∈ N≥0.
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(a) G1 (b) G2 (c) W5

Fig. 2: Used graphs in the characterisation of critical graphs

By results of Kim (cf. Corollary 27, [42]) and Wagon (cf. Lemma 30, [67]),

f ?{3K1}(ω) ∈ Θ

(
w2

log(w)

)
and f ?{2K2}(w) ≤

(
w + 1

2

)
∈ O(ω2),

respectively. We note that, by using a result of Gaspers and Huang [29] and an inductive
proof, we reduce the upper bound on f ?{2K2} for ω ≥ 3 in Chapter 2. Additionally, let us
note that Lemma 42 implies that the classes of (C5, 3K1)-free, 3K1-free and 2K2-free
graphs do not have a linear χ-binding function.

On our way to optimal χ-binding functions for some of these families, we charac-
terise in parallel critical graphs; all these results are collected in Theorem 9. For
this purpose, a ‘non-empty, 2K1-free’-expansion of a graph G′ is a graph G for which
there are a partition of V (G) into cliques S1, S2, . . . , S|V (G′)| and a bijective function
f : {S1, S2, . . . , S|V (G′)|} → V (G′) such that each vertex of Si is adjacent to each vertex
of Sj if f(Si) is adjacent to f(Sj) and each vertex of Si is non-adjacent to each vertex
of Sj if f(Si) is non-adjacent to f(Sj) for each distinct i, j ∈ [|V (G′)|]. Now our second
main result reads as follows.

Theorem 9. Let G be a critical graph.

(i) If G is (P5, banner)-free, then G is 3K1-free.

(ii) If G is (P5, dart)-free and S is a non-empty set of vertices such that each vertex
in S is adjacent to each vertex of V (G) \S and each homogeneous set M in G[S]

has a vertex in S \M that is non-adjacent to each vertex of M , then G − S is
critical, and G[S] is 3K1-free or a ‘non-empty, 2K1-free’-expansion of G′ with
G′ ∈ {G1, G2}.

(iii) If G is (P5, hammer)-free, then G is 2K2-free.

(iv) If G is (C5, C7, . . .)-free, and banner-free or dart-free, then G is (C5, 3K1)-free.

(v) If G is (P5, C4)-free, then G is a ‘non-empty, 2K1-free’-expansion of a graph G′

with G′ ∈ {C5,W5, K1}.

(vi) If G is (P5, gem)-free, then G is a ‘non-empty, 2K1-free’-expansion of a graph G′

with G′ ∈ {C5, G2, K1}.

(vii) If G is (P5, diamond)-free, then G is complete or a cycle of length 5.
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Let us shortly state some extra thoughts on Theorem 9 (ii), since it is by far the
most challenging characterisation; for more information see the last page of Chapter 6.
We note that an inclusion-wise minimal set S< for which each vertex is adjacent to
each vertex of the possibly empty set V (G)\S< meets the assumptions on the set S in
Theorem 9 (ii). This observation together with Theorem 9 (ii) yields a characterisation
of the critical (P5, dart)-free graphs.

An interesting open conjecture by Reed [56] is that χ(G) can be bounded from above
by d(∆(G) + ω(G) + 1)/2e, where ∆(G) denotes the maximum degree of G, i.e. the
largest number of vertices that have a common adjacent vertex. For example, this
conjecture is proven for

• (C5, C7, . . .)-free graphs [3],

• 3K1-free graphs [43, 44],

• (P5, gem)-free graphs [19],

• graphs whose complementary graph is disconnected [53], and

• graphs G with χ(G) ≤ d5ω(G)/4e [37],

and, to the best of our knowledge, it is open for 2K2-free graphs. By using Theorem 9,
parts of its proof, and the above listed results, we obtain the following corollary:

Corollary 10. If G is (P5, banner)-free or (P5, dart)-free, then

χ(G) ≤
⌈

∆(G) + ω(G) + 1

2

⌉
.

1.2 Notation and terminology

In this section, we introduce notation and terminology we use throughout this thesis.
Whenever a notation or definition is unclear the reader can come back to this section
and reread the relevant part.

Recall that we consider finite, simple, and undirected graphs if not otherwise stated.
For notation and terminology not defined herein, we refer to [8]. A graph G consists
of a non-empty vertex set V (G) and an edge set E(G), where each edge e ∈ E(G) is
a two elementary subset of V (G). For notational simplicity, we write uv instead of
{u, v} to denote an edge of G. The complementary graph of G, denoted by Ḡ, has
vertex set V (G) and edge set {uv : u, v ∈ V (G), u 6= v, uv /∈ E(G)}. We also use the
notation of co-H to talk about the complementary graph of the graph H, e.g. co-kite
and co-domino. Additionally, given two vertices u, v ∈ V (G) and a set S ⊆ V (G), we
let NG(u) denote the neighbours of u, NG[u] = NG(u) ∪ {u}, NG(S) be the set of all
vertices of V (G)\S that have a neighbour in S, NG[S] = NG(S)∪S, and distG(u, v) be
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the distance of u and v in G, which is the minimal length of a path connecting u and v
in G. Note that distG(u, u) = 0 and we define distG(u, S) = min{distG(u, s) | s ∈ S}.
We also let N i

G(S) = {u : min{distG(u, s) : s ∈ S} = i} for i ≥ 1 and N0
G(S) = S.

Also for a subgraph H of G we define N i
G(H) = N i

G(V (H)) and NG[H] = NG[V (H)].
For a graph G we call a tuple (v, w) ∈ V (G) × V (G) a comparable vertex pair, if
v 6= w, vw /∈ E(G), and NG(v) ⊆ NG(w). A vertex u ∈ V (G) is a universal vertex in G
if NG(u) = V (G) \ {u}. Observe that ∆(G) = {|NG(u)| : u ∈ V (G)} is the maximum
degree of G. Furthermore, a graph H with V (H) = V (G) and E(H) ⊆ E(G) is a
spanning subgraph of G. A vertex v ∈ V (G) is a cutvertex of G if G[V (G) \ {v}]
consists of more connected components than G.

We use N0 = {0, 1, 2, 3, . . . } and, for x ∈ N0, N>x := {n ∈ N0 | n > x}, and N≥x :=

{n ∈ N0 | n ≥ x}. So N0 and N>0 denote the set of non-negative integers and positive
integers, respectively. For some integer k ∈ N>0 we use [k] := {x ∈ N>0 | x ≤ k}. The
power set of set S we denote by 2S.

Additionally, for a function f whose range is a subset of N0, we let

Argmin{f(s) : s ∈ S} = {s : f(s) ≤ f(s′) for each s′ ∈ S}

and
Argmax{f(s) : s ∈ S} = {s : f(s) ≥ f(s′) for each s′ ∈ S},

and say that f : N0 → N0 is superadditive if f(s1)+f(s2) ≤ f(s1+s2) for each s1, s2 ∈ N0

and f(1) 6= 0. For two non-empty sets S, T and two functions f1, f2 : S → T , we
shortly write f1 ≡ t if f1(s) = t for each s ∈ S, and f1 ≡ f2, or f1 ≤ f2, or f1 ≥ f2 if
f1(s) = f2(s), or f1(s) ≤ f2(s), or f1(s) ≥ f2(s), for each s ∈ S, respectively.

Let G be a graph and q : V (G) → N0 be a function, which we also call vertex-weight
function. Given a non-empty set S of vertices of G, G[S] is the graph with vertex set
S and edge set E(G) ∩ {s1s2 : s1, s2 ∈ S}. We say that G[S] is the graph induced by
S and S induces G[S] in G. Given an additional graph H, an isomorphism between
G and H is a bijection between the V (G) and V (H) such that for every two vertices
u, v ∈ V (G) we have uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). If there is an
isomorphism between G and H we write G is isomorphic to H or G ∼= H. We say that
H is an induced subgraph of G, denoted by H ⊆ind G, if there is some set S ⊆ V (G) of
vertices such that G[S] ∼= H, we also say that S induces a H in G, if S induces G[S] in
G and G[S] ∼= H. If H ⊆ind G we reversely say G contains H as an induced subgraph
or G contains an induced H.

For simplification purposes we often times use a fixed ordering on the vertices if we claim
that S induces a H, for most graphs H. To show the fixed ordering we use [. . . ] instead
of {. . . }. Now the list of all relevant graphs and their orderings follows. We write
[v1, v2, v3, v4, v5] induces a HVN in G, if and only if G[{v1, v2, v3, v4, v5}] is isomorphic
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to HVN and v2, v3 are universal vertices in G[{v1, v2, v3, v4, v5}] and v1v4, v1v5 /∈ E(G).
We write [v1, v2, v3, v4, v5] induces a dart in G, if and only if G[{v1, v2, v3, v4, v5}] is
isomorphic to dart and v2 is a universal vertex in G[{v1, v2, v3, v4, v5}] and v3v4, v4v5 ∈
E(G). We write [v1, v2, v3, v4, v5] induces a P5 in G, if and only if vivi+1 ∈ E(G), for
i ∈ [4]. We write [v1, v2, . . . , vk] induces a Ck in G, if and only if vivi+1 ∈ E(G), for
i ∈ [k − 1]. We write [v1, v2, v3, v4] induces a 2K2 in G, if and only if G[{v1, v2, v3, v4}]
is isomorphic to 2K2 and v1v2 ∈ E(G). Lastly we write [v1, v2, v3, v4] induces a K1∪K3

in G, if and only if G[{v1, v2, v3, v4}] is isomorphic to K1 ∪K3 and v1v2, v1v3 /∈ E(G).

An often used notation is that of G[q], which denotes the graph G[{u : q(u) ≥ 1, u ∈
V (G)}]. Assuming H to be an induced subgraph of G, we further define

q(S) =
∑
s∈S

q(s) and q(H) = q(V (H)).

For simplicity in notation and terminology, we say that q instead of the restriction of
q to V (H) is a vertex-weight function of H.

Given two graphs G1, G2 with V (G1) ∩ V (G2) = ∅ and an integer k ≥ 1, we denote
by G1 ∪ G2 the union of G1 and G2, that is, G1 ∪ G2 has vertex set V (G1) ∪ V (G2)

and edge set E(G1) ∪ E(G2), and by kG1 a graph G′1 ∪ G′2 ∪ . . . ∪ G′k where G′i ∼= G1

and V (G′i) ∩ V (G′j) = ∅ for each disjoint i, j ∈ [k]. We denote by G1 + G2 the
join of G1 and G2, that is, G1 + G2 has vertex set V (G1) ∪ V (G2) and edge set
E(G1) ∪ E(G2) ∪ {v1v2 | v1 ∈ V (G1), v2 ∈ V (G2)}.

A family of graphs or a graph family is a set containing only graphs. A class of graphs
or a graph class is a family of graphs closed under isomorphism. Note that in this
thesis most of the regarded graph families are also graph classes. A family of graphs
where every induced subgraph of a graph is likewise a member of the family of graphs
is called hereditary.

In this thesis, we mainly work with forbidden induced subgraphs. Thus, given two
graphs G,H and a family H of graphs, we say that G is H-free if H is not an induced
subgraph of G, and that G is H-free if G is H-free for each H ∈ H. Recall that
(H1, H2, . . .)-free means H-free with H = {H1, H2, . . .} and we use For(H) to denote
the family of graphs consisting of all H-free graphs. A (C3, C4, C5, . . . )-free graph is
called a forest.

Let again G be a graph and q : V (G) → N0 be a vertex-weight function. Recall that
a clique of G is a set of vertices which are pairwise adjacent. The q-clique number
of G, denoted by ωq(G) is the largest integer k for which there is a clique S of G
with q(S) = k. An independent set S of G is a set of vertices which is a clique in Ḡ,
that is, the vertices of S are pairwise non-adjacent in G. The q-independence number,
denoted by αq(G), equals ωq(Ḡ). A q-colouring L : V (G) → 2N>0 is a function for
which |L(u)| = q(u) for each u ∈ V (G). We note that the integers of L(u) are also
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called colours of u for u ∈ V (G), and we say that L colours the vertices of G. In view
of a simple notation, we let

L(S) =
⋃
s∈S

L(s) and L(H) = L(V (H))

for each set S ⊆ V (G) and each induced graph H of G. The colouring L is proper
if each two adjacent vertices of G receive disjoint sets of integers. The graph G is
k-colourable (with respect to q) for some integer k ∈ N>0 if there is some proper q-
colouring L that uses at most k different integers from N>0 for the assigned sets. The
smallest integer k for which G is k-colourable (with respect to q) is the q-chromatic
number of G, denoted by χq(G). For the vertex-weight function q with q(u) = 1

for each u ∈ V (G), we use the classical terminology of clique number, independence
number, and chromatic number instead of q-clique number, q-independence number,
and q-chromatic number, and denote these graph invariants by ω(G), α(G), and χ(G),
respectively. Furthermore, recall that G is perfect if ω(G′) = χ(G′) for each induced
subgraph G′ of G. Also for the vertex-weight function q with q ≡ 1 a proper q-colouring
c of a graph G can simply be seen as a function c : V (G) → N>0, with c(u) 6= c(v)

whenever uv ∈ E(G). Note that in this case for a subset S ⊆ V (G) we see c(S) ⊆ N>0.

Given a class G of graphs, we recall that a function f : N0 → N0 is a χ-binding function
if χ(G′) ≤ f(ω(G′)) for each graph G ∈ G and each induced subgraph G′ of G. Since we
are interested in graph classes defined by a set, say H, of forbidden induced subgraphs,
we let f ?H denote the optimal χ-binding function of the class of H-free graphs, that is,
f ?H : N0 → N0 is defined by

ω 7→ max{χ(G) : ω(G) = ω and G is H-free}.

As we consider the maximum of a subset of N0, we note that max ∅ = 0. Therefore,
we see that f ?H(0) = 0 for all sets H. Also we see that f ?H(1) = 1 if K1 /∈ H. Since the
function f ?{P5} occurs often, we mostly write f ?P5

instead of f ?{P5}.

Let again G be a graph. For two disjoint sets A and B of vertices, we let EG[A,B]

denote the set of all edges between A and B in G, that is EG[A,B] := {uv ∈ E(G) | u ∈
A, v ∈ B}. Also we say EG[A,B] is complete or anticomplete if |EG[A,B]| = |A| · |B| or
|EG[A,B]| = 0 respectively. Note that the empty set is both complete and anticomplete
to every other set. We say EG[S1, S2] is mixed if EG[S1, S2] is neither complete nor
anticomplete.

A set M of vertices of G is a module if EG[M,NG(M)] is complete. We note that
a module M is a homogeneous set if 1 < |M | < |V (G)|. The graph G is prime
if there is no homogeneous set in G. A clique X of G is a clique-separator if the
number of components of G − X exceeds that of G. Let k ≥ 1 be an integer, G1, G2

be two not necessarily connected induced subgraphs of G with G = G1 ∪ G2 and
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V (G1) \V (G2), V (G2) \V (G1) 6= ∅, k ∈ N>0, and X1, X2, . . . , Xk be k pairwise vertex
disjoint modules in G. If

• EG[Xi, Xj] is complete in G for each distinct i, j ∈ [k] and

• V (G1) ∩ V (G2) = X1 ∪X2 ∪ . . . ∪Xk,

then X1 ∪X2 ∪ . . . ∪Xk is a clique-separator of modules in G.

Let q, q′ : V (G) → N0 be two vertex-weight functions of a graph G. We write q′ CG
χ q

if χq′(G) = χq(G), q′(G) < q(G), and q′(u) ≤ q(u) for each u ∈ V (G). Additionally, q
is CG

χ -minimal if there is no vertex-weight function q′ : V (G) → N0 with q′ CG
χ q and

q 6≡ 0. We note that a graph G is critical if q : V (G)→ [1] is CG
χ -minimal. Or simpler

a graph G is vertex-critical or short critical if χ(G− v) < χ(G) for every v ∈ V (G).

Let G be a graph and P be a property that a graph can have. A P -expansion of
a vertex u in G is a graph that can be obtained from G by replacing u by a graph
G′ that has property P and making each vertex of G′ adjacent to each neighbour of
u. In this thesis, given a vertex ordering ≺, we associate ≺ with a bijective function
f≺ : V (G) → [|V (G)|] which is defined by the equivalence that u ≺ v if and only if
f≺(u) < f≺(v). A P -expansion of G is a graph G′ for which there is a vertex ordering
≺ of G and a finite series {Gi}|V (G)|+1

i=1 of graphs such that

• G = G1 and G′ = G|V (G)|+1, and

• Gi+1 is a P -expansion of f−1
≺ (i) in Gi for each i ∈ [|V (G)|].

If q : V (G) → N0 is a vertex-weight function, then a q-expansion of G is a ‘complete
graph’-expansion of G in which each vertex u ∈ V (G) is replaced by a clique of size
q(u). We note that, for a ‘non-empty, 2K1-free’ -expansion G′ of G, there is a vertex-
weight function q : V (G) → N>0 such that G′ is a q-expansion of G. Furthermore, a
buoy and a connected buoy are a ‘non-empty vertex set’-expansion and a ‘connected’-
expansion of a cycle of length 5, respectively. A maximal connected buoy C in G is
an induced connected buoy in G for which there is no other induced connected buoy
(distinct from C) in G having C as an induced subgraph.

Let C be a cycle of length 5 and q : V (G) → N0 be a vertex-weight function. If
L : V (G)→ 2N>0 is a proper q-colouring of G and c1, c2 ∈ V (C) are two vertices, then

L(1)(c1) = {k : k ∈ L(c1), k /∈ L(c) for each c ∈ V (C) \ {c1}}

and

L(2)(c1, c2) = {k : k ∈ L(c1) ∩ L(c2), k /∈ L(c) for each c ∈ V (C) \ {c1, c2}}.

In Fig. 1 and Fig. 3, the most frequently used (forbidden) induced subgraphs of this
thesis are depicted. As usual, Cn, Kn, and Pn denote a cycle, a complete graph, and
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(a) A5 (b) T0,1,2

F

(c) Q[F ]

Fig. 3: Some additional frequently used forbidden induced subgraphs

a path of order n, respectively, and Kn,m denotes a complete bipartite graph whose
partite sets have sizes n and m. Additionally, if P : u1u2u3u4 is a path on 4 vertices
and F is an arbitrary graph that is vertex disjoint from P , then Q[F ] is the ‘equals
F ’-expansion of u3 in P .

When calculating χ-binding function it is good practice to state a family of graphs
which grants a lower bound. For this situation the following notation is useful. For
disjoint graphs H1, . . . H5 we define the graph C5[H1, H2, . . . , H5] to be the graph with
vertex set

⋃5
i=1 V (Hi) and edge set

5⋃
i=1

E(Hi) ∪
4⋃
i=1

{uv | u ∈ V (Hi), v ∈ V (Hi+1)} ∪ {uv | u ∈ V (H5), v ∈ V (H1)}.

Given a graph G and a vertex-weight function q : V (G) → N0, let C5(G) be the set of
all induced cycles of length 5 in G and

C?5(G, q) = Argmax{χq(C) : C ∈ C5(G)}.

We often write C : c1c2c3c4c5c1 ∈ C5(G) to shortly state, that C ∈ C5(G) and the
vertices of C are labelled by c1, . . . , c5 with cici+1 ∈ E(G) for 1 ≤ i ≤ 4. Additionally,
recall that G is (C5, C7, . . .)-free if G is C2k+5-free for each k ∈ N0.

We note that index calculations are always considered with respect to the modulo
operation. For example, all index calculations are considered modulo 5 whenever we
consider a C : c1c2c3c4c5c1 ∈ C5(G) or a buoy C : C1C2C3C4C5C1.

In what follows, we may assume that C is a cycle of length 5. An orientation of C is
an assignment of a direction to each edge. As the obtained graph is a directed graph,
we note that there are exactly two orientations of C that are directed cycles. In view
of simplicity, whenever we work with such a cycle C, we implicitly fix one orientation
that leads to a directed cycle ~C. Furthermore, for each vertex c ∈ V (C), we write c−

and c+ for the vertices of C such that (c−, c), (c, c+) ∈ E(~C). In view of simplicity, we
write c−2 and c+2 for (c−)− and (c+)+, respectively.

For the remainder of the thesis let the set G? be defined as follows. It consists of all con-
nected graphs G such that, taken an arbitrary cycle C : c1c2c3c4c5c1 ∈ C5(G), we have
that V (G)−NG[V (C)] is an independent set and that there is some integer i ∈ [5] such
that EG[{{ci, ci+2, ci+3}, NG(V (C))}] is complete and EG[{{ci+1, ci+4}, NG(V (C))}] is
anticomplete.
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A graph G is a matched co-bipartite graph if G is partitionable into two cliques C1,
C2 with |C1| = |C2| or |C1| = |C2| + 1 such that the edges between C1 and C2 are
a matching and at most one vertex in C1 and C2 is not covered by the matching. A
graph G is called complete multipartite if there is an n ∈ N>0 and a1, a2, . . . , an ∈ N>0

such that Ḡ ∼= Ka1 ∪Ka2 ∪ . . . Kan .

Let us use this space to define the Ramsey number R(m,n), for m,n ∈ N>0. The
number R(m,n) is the minimum number of vertices such that all graphs of order
R(m,n) contain an independent set of order m or a clique of order n.
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2 P5-free universe

A classical result by Erdős [25] in the field of chromatic graph theory shows that the
difference between chromatic and clique numbers of a graph can be arbitrarily large
even for graphs of large girth.

Theorem 11 (Erdős [25]). For any positive integers k, ` ≥ 3, there exists a graph G
with girth g(G) ≥ ` and chromatic number χ(G) ≥ k

However, on the positive side, in terms of forbidden induced subgraphs it is possible
to characterize graphs G whose each induced subgraph has equal clique and chromatic
number (cf. Strong Perfect Graph Theorem). Recall that such a graph G is called
perfect. A large collection of 120 graph classes, which are all perfect, has been surveyed
by Hougardy [35]. Naturally, the behaviour of the chromatic number of non-perfect
graphs is of wide interest.

A concept relating the chromatic and clique numbers of a graph and surrounding
the Strong Perfect Graph Conjecture is that of χ-binding functions for graph classes.
Recall the definition introduced by Gyárfás [31]. Given a class G of graphs, a function
f : N0 → N0 is a χ-binding function for G if χ(G− S) ≤ f(ω(G− S)) for each G ∈ G
and each S ( V (G). The function f ? : N0 → N0 with

ω 7→ max{χ(G− S) : G ∈ G, S ⊆ V (G), ω(G− S) = ω}

is the optimal χ-binding function of G.

By using Theorem 11 one can show that in general there is no χ-binding function for
a family G of graphs. Another wellknown family to illustrate that fact is based on a
construction from Mycielski [47]. In general the Mycielski construction grants a way to
construct a graph µ(G) with the following properties, if given a graph G with ω(G) ≥ 2.
Firstly χ(µ(G)) = χ(G) + 1 but also ω(µ(G)) = ω(G). The Mycielski-graph µ(G) of a
graph G is defined as follows. Let V (G) = {v1, v2, . . . , vn} and V1 be a copy of V (G)

named {v1
1, v

1
2, . . . , v

1
n}, and u be a single vertex. Then the V (µ(G)) = V (G)∪V1∪{u}

and
E(µ(G)) = E(G) ∪ {viv1

j : vivj ∈ E(G)} ∪ {v1
ju : ∀j ∈ [n]}.

We define the graph familyM byM := {µk(K2) | k ∈ N≥0}. Hence, we find ω(G) = 2

for all G ∈M and χ(µi−2(K2)) = i, for i ∈ N≥2. Thus, the familyM has no χ-binding
function.
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However, for some restricted classes of graphs such binding functions exist. Recall
that for brevity, given some graphs H1, H2, . . ., we let f ?{H1,H2,...} denote the optimal
χ-binding function of the class of (H1, H2, . . .)-free graphs. In this chapter we collect
and discuss known results in the area of χ-binding functions for subfamilies of P5-free
graphs.

Let us first talk about the biggest family and superfamily of all later talked about
families: The family of P5-free graphs. The first result is a bound by Gyarfas [31]:

Theorem 12 (Gyárfás [31]). For n ∈ N>1 and ω ∈ N>0

R(dn/2e, ω + 1)− 1

dn/2e − 1
≤ f ?Pn(ω) ≤ (n− 1)ω−1.

The lower bound follows from the observation that an induced Pn in a graph G con-
tains an independent set of size dn/2e as follows. Let G be a graph with |V (G)| =

R(dn/2e, ω + 1)− 1 with neither an independent set of size dn/2e nor a clique of size
ω + 1. Thus, α(G) = dn/2e − 1 and G is especially Pn-free, and ω(G) = ω. Therefore,
χ(G) ≥ |V (G)|/α(G) = R(dn/2e, ω + 1)− 1/(dn/2e − 1), where the first inequality is
true for every graph by definition of χ and α. This proves the lower bound. He also
mentions that the truth is probably close to the lower bound, and that the lower bound
is exact for n = 4 by a previously proven result from Seinsche [65].

Proving this upper bound is already nontrivial. The proof by Gyárfás is inductively
over ω(G). In the induction step t to t + 1 he supposes for the sake of contradiction
that there is a graph G with ω(G) = t+ 1 and χ(G) > (n− 1)t. In this graph he finds
an induced Pn by defining nesting vertex-sets V1, V2, . . . , Vn with V1 ⊇ V2 ⊇ · · · ⊇ Vn

with special properties.

The first improvement to the upper bound uses online colourings. Let us not dive too
deep into online colourings, but the idea is, that the graph which we want to colour is
not completely known in the beginning but instead is presented vertex by vertex. In
this online setting Kierstead et al. [41] prove the following.

Theorem 13 (Kierstead et al. [41]). There exists an on-line algorithm A such that
χA(G) ≤ (4w(G) − 1)/3, for every P5-free graph G.

Gravier et al. [30] improve on this bound. In their paper they especially prove the
following corollary. Note that their result is more general but we omit the more general
result here and state what is relevant for our purpose.

Corollary 14 (Gravier et al. [30]). For ω ∈ N>0, n ∈ N>2, f
?
Pn

(ω) ≤ (n− 2)ω−1.

The next improvement to this bound is by Esperet et al. [26] from 2013. By proving
that (P5, K4)-free graphs are 5-colourable, they improve the bound of Gravier et al.
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for ω = 3 and n = 5. They also state the graph C5[K1, C5, K1, C5, K1], as defined in
Section 1.2, to prove the following equality.

Theorem 15 (Esperet et al. [26]).

f ?P5
(3) = 5.

Combining their new bound and the proof from Gravier et al. [30] implies for ω ∈ N>3

that
f ?P5

(ω) ≤ 5 · 3ω−3.

Thus, f ?P5
(ω) ≤ 3ω−c, where c = 3− log 5/ log 3 ≈ 1.535.

In August 2021 Scott, Seymour and Spirkl [64] published a paper in which they prove,
for ω ∈ N≥4,

f ?P5
(ω) ≤ ωlog2(ω).

This is the currently best known general bound for f ?P5
. Bounds of this form are called

quasi-polynomial. Note that the previously stated bound is only smaller for ω = 4.
The proof to this statement is quite short and analytical. The first claim in their paper
which they use multiple times proves an upper bound for χ(G \X) for every cutset X.
Note that for k ∈ [3] the exact values of f ?P5

(k) are known. They define the function
f : N>0 → N>0 by f(1) = 1, f(2) = 3, f(3) = 5 and f(k) = klog2(k) for k ∈ N≥4 and
show that f(w − 1) + (w + 2) · f(bw/2c) ≤ f(w) for w ≥ 5 and in an additional claim
they prove that a function fulfilling the just stated inequality and some other simple
properties is a binding function for every P5-free graph. Note that their result can be
improved if one is able to find a function also fulfilling the stated inequality which is
smaller than f .

Let us now talk about the Strong Perfect Graph Theorem (SPGT) and its tight relation
with the research of χ-binding functions for subfamilies of P5-free graphs. The proof
of the SPGT is one of the biggest achievements in the last decades of graph theory. It
is one of the most challenging now proven conjectures in graph theory. During more
than four decades numerous attempts by different researchers were made to solve it.
The final concluding paper consists of over 100 pages and contains multiple ideas.

The Strong Perfect Graph Theorem (Chudnovsky et al. [20]). A graph G is perfect
if and only if G and Ḡ are (C5, C7, . . .)-free.

This question was introducted by Berge [5] and is therefore known as Berge’s conjecture.
The SPGT is useful in the research of χ-binding functions for subfamilies of P5-free
graphs. This is the case, since to find a χ-binding function one only has to look at
the non-perfect graphs and the SPGT gives structural support for these. Since P5-free
graphs are especially (C7, C9, . . . )-free and since C5

∼= C̄5 it can be assumed by SPGT,
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that G contains an induced odd antihole. Many researches use this result to make a
structural analysis of the existing odd antihole and its neighbourhood.

On a side note let us shortly talk about P4-free graphs. P4-free graphs are perfect, but
there is also the more general Observation by Randerath and Schiermeyer [55] which
states that for any subgraph T ⊆ind P4 the family For(T ) is perfect.

Observation 16 (Randerath and Schiermeyer [55]). Let G be a χ-bounded family of
graphs defined in terms of only one forbidden induced subgraph T . Then T is acyclic.
Furthermore, if T ⊆ind P4 then G has the (smallest) χ-binding function f ?T (ω) = ω, or
otherwise there exists no linear χ-binding function f for G.

Note that f ?K2
(2) = 0 but this is a trivial result. For that reason Gyárfás [31] in his

introductory paper already assumes that f(ω) ≥ ω for every χ-binding function f and
every ω ∈ N>0. The same is true for [55] and this is the reason why the word "smallest"
in Observation 16 is in brackets.

2.1 (P5, H)-free graphs

For the remainder of the chapter we at least forbid one additional graph, called H. For
the χ-binding function it is important, whether or not α(H) ≥ 3. Since in the case
α(H) ≥ 3 the best possible χ-binding function for the family of (P5, H)-free graphs is
f ?3K1

∈ Θ(ω2/ log(ω)) as we discuss in Section 2.2.1.

2.1.1 α(H) = 2

Fouquet et al [27] prove for ω ∈ N>0, k ∈ {j ∈ N>0 | ∃i ∈ N0 : j = 2i}

f ?{P5,house}(ω) ≤
(
ω + 1

2

)
and

klog2(5/2) ≈ k1.322 ≤ f ?{P5,house}(k).

Since the lower bound is discussed as a small side note in Section 4.1 of their paper,
we discuss how to achieve the bound by their recursive definition. They recursively
construct a family of (P5, P̄5)-free graphs whose chromatic number does increase non
linearly in the clique number. They start with G0

∼= K1 and Gk+1 is the ’be Gk’-
expansion of C5 for k ∈ N0. They note that ω(Gk+1) = 2 · ω(Gk) and prove that
χ(Gk+1) =

⌈
5χ(Gk)

2

⌉
for k ∈ N0, which also follows from the more general result we

state in Corollary 46. Thus, the searched binding function f := f ?P5,house has the
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following two properties

f(1) = 1 and for k ∈ N>0 : f(2k) ≥
⌈

5

2
f(2k−1)

⌉
.

Therefore,

f(2k) ≥ 5

2
f(2k−1) ≥ 5

2
(
5

2
f(2k−2)) ≥ · · · ≥ (

5

2
)k · f(2k−k) ≥ (

5

2
)k.

Note that using the exact bound and not omitting the ceiling function does grant the
same asymptotic lower bound, since

∑k−1
i=0 (5

2
)i ≤ (5

2
)k. By substituting 2k by x one

gets f(x) ≥ xlog2(5/2) ≈ x1.322. Also let us add, that the graph G2 is currently the graph
which grants the biggest known lower bound for f ?P5

(4). Note that this graph family is
also bull-free.

We next want to talk about the upper bound. They extend a result by Blázsik [6], for
For(C4, 2K2) to For(P5, P̄5). Note that by SPGT (C5, P5, P̄5)-free graphs are perfect.
So for a (P5, P̄5)-free graph G their idea is as follows. They choose a minimal subset T
of V (G), such that every C5 ∈ C5(G) contains a vertex which belongs to T . A subset
fulfilling these properties is called a minimal transversal T of the C5’s. So the main
result of their paper is the following theorem.

Theorem 17 (Fouquet et al [27]). Every minimal transversal T of the C5’s of a
(P5, P̄5)-free graph G is such that ω(T ) ≤ ω(G)− 1.

This shows that every (P5, P̄5)-free graph can be partitioned into two sets, called T

and V (G) \ T such that ω(G[T ]) ≤ ω(G)− 1 and χ(G[V (G) \ T ]) = ω(G). Inductively
they now prove the quadratic upper bound.

We use a result by Brandstädt and Mosca [9] about prime (P5, kite)-free graphs. In-
terestingly they are interested in these prime graphs for a different reason. Instead of
trying to χ-bound this family they are looking for a polynomial algorithm to determine
the maximum weight independent set. In this algorithmic problem the aim is to find
the largest independent set in a given graph. Generally this problem is NP-complete
even for K3-free graphs [50]. They prove that for the family (P5, kite)-free graphs this
problem is polynomially solvable. Since we make use of the following lemma, we shortly
want to talk about its proof.

Lemma 18 (Brandstädt and Mosca [9]). If a prime (P5, kite)-free graph contains an
induced 2K2 then it is a matched co-bipartite graph.

In the proof of this lemma they use the following result by Hoàng and Reed [34]. The
graphs A and domino are depicted in Figure 4.

Lemma 19 (Hoàng and Reed [34]). If a prime graph contains an induced 2K2 then it
contains an induced P5 or Ā or co-domino.
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(a) A (b) domino

Fig. 4: Induced subgraphs used in the paper of Brandstädt and Mosca [9]

Making use of the structural result of Hoàng and Reed and noting that P5 and Ā are not
(P5, kite)-free they assume that the researched graph contains an induced co-domino.
Now consequently researching the structure of the neighbourhood of the co-domino
they prove the statement.

Next we look at a paper by Brause et al. [14]. The main focus of this paper is to prove
χ-binding functions for some subclasses of 2K2-free graphs. But in the last section of
their paper they consider (P5, hammer)-free graphs and show that for ω ∈ N>0

f ?{P5,hammer}(ω) ≤
(
ω + 1

2

)
.

They discuss no lower bound. Note that we prove something stronger in Chapter 4 by
proving that f ?2K2 = f ?P5,hammer

. Many mathematicians research the family of 2K2-free
graphs and that is why we talk about this family and what is known about f ?2K2

in the
upcoming Section 2.2.2. Just note that this new result currently only slightly improves
the bound, because not much is known about the general bound for f ?2K2

.

One of the first researched families is the family of (P5, paw)-free graphs. Note that
this family is also important for our research of (P5,HVN)-free graphs, since HVN =

K1 + paw. Let us first state the known results:

f ?{P5,paw}(ω) =

f ?{P5,C3}(ω) if ω ≤ 2,

ω if ω > 2

 =

3 if ω = 2,

ω if ω 6= 2

 (cf. [48, 54] or [59]).

Forbidding paw is a huge restriction and these graphs are completely characterised by
Olariu [48].

Theorem 20 (Olariu [48]). G is a paw-free graph if and only if each component of G
is K3-free or complete multipartite.

Since complete multipartite graphs are perfect, the graphs which are relevant to re-
search to achieve this bound are K3-free graphs. We note that Randerath [54] charac-
terises all non-bipartite (P5, K3)-free graphs which grants the bound.

Like we mention in the introductory chapter the following result is proven

f ?{P5,gem}(ω) ≤ d5ω/4e (cf. [19]).

This bound is best possible for ω even. Clearly for example for ω = 1 it is not best
possible. In that paper they use a theorem from [38], which concretely works with the
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function f : N>0 → N>0 defined by f(w) = d5ω/4e, so it seems difficult to use the
papers result to get the best possible bound. We show in Chapter 7 as a conclusion of
other results that f ?{P5,gem}(ω) = d(5ω − 1)/4e, which is the best possible bound.

In a paper by Huang and Karthick [36] they prove

f ?{P5,paraglider}(5) = 8 and d3ω/2e − 1 ≤ f ?{P5,paraglider}(ω) ≤ d3ω/2e,

for ω ∈ N>2 \ {5}. To get this strong result they do lots of structural analysis of the
neighbourhood of a given C5. After that they first assume that additionally to the
C5 there is a vertex which is adjacent to three non-consecutive vertices of the C5. By
proving that in this case the resulting graphs are off nice structure they assume from
now on that no C5 has such a vertex in its neighbourhood. This idea of assuming the
graph contains a certain induced subgraph and analysing the structure they do for two
more graphs. In these steps they obtain graph classes with certain structural properties
and in the last section they colour the graphs from these classes. For the case ω equals
to 5 they find two (P5, paraglider)-free graphs namely the complementary graph of the
Clebsch graph C̄ and a subgraph of C̄ with ω(C̄) = 5 and χ(C̄) = 8 = d3 · 5/2e.

In a paper by Hoàng and McDiarmid [33] they introduce the notation of 2-divisibility.
A graph G is said to be 2-divisible if for all (nonempty) induced subgraphs H of G,
V (H) can be partitioned into two sets A,B such that ω(A) < ω(H) and ω(B) < ω(H).
In a recent paper by Chudnovsky and Sivaraman [22] they prove by a short, inductive
proof that for every 2-divisible graph G χ(G) ≤ 2ω(G)−1. By now proving that every
(P5, C5)-free graph is 2-divisible they conclude

f ?{P5,C5}(ω) ≤ 2ω−1.

This bound is probably far from optimal, but it is the currently best known bound at
least for ω ≤ 19. For ω ≥ 20 the quasi-polynomial bound for P5-free graphs by Scott et
al. [64] is smaller. In their paper they do not mention a lower bound for this function.
The graph C5 is one of the few graphs H where the family of (P5, H)-free graphs has
no known polynomial χ-binding function. Just additionally forbidding C5 seems to be
quite a small restriction. Also according to the Strong Perfect Graph Theorem one still
has to consider the cases that G contains an induced C̄2k+1 for every k ≥ 3.

2.1.2 α(H) ≥ 3

Schiermeyer [57] considers the graph K1 + (K1 ∪ P4), which is obtained from a gem
by adding a pendant edge to its vertex of degree 4. Therefore, it is called gem+ and
sometimes parachute. The following bound is sufficient to show Reed’s Conjecture for
this family as long as ω(G) is not too large.
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Theorem 21 (Schiermeyer [57]). Let G be a (P5, gem
+)-free graph. Then χ(G) ≤

ω2(G).

This proof is a short and elegant proof by induction on ω(G). It uses the fact that P5-
free graphs contain a dominating clique or an induced dominating P3. By subdividing
the neighbourhood of the dominating subgraph into perfect subgraphs this bound is
achieved. By proving a χ-binding function for the large family of (P5, gem

+)-free graphs
they prove a χ-binding function for all subfamilies. Subfamilies are for example the
(P5, dart)-free graphs and (P5, claw)-free graphs. This result does not grant an optimal
bound for the family of (P5, dart)-free graphs as we show in Chapter 6 and no lower
bound is stated.

Karthick et al. [39] are interested in the Weighted Vertex Colouring (WVC) problem
and whether or not in can be solved in polynomial time. TheWVC problem is explained
as follows: given a graph G and a weight function q : V (G) → N0, calculate χq(G).
They for example research the family of (P5, dart)-free graphs. Note that they do not
give bounds on the weighted chromatic number χq(G) but instead figure out how fast
one can calculate this number. To answer this question it is also necessary to study
the structure of the prime graphs. This is the reason their result is stated here even
though they do not research χ-binding functions in [39]. They prove:

Theorem 22 (Karthick et al. [39]). Let G be a prime (P5, dart)-free graph that contains
an induced C5. Then either |V (G)| ≤ 18 or G is 3K1-free.

They use Theorem 22 together with the also proven fact, that the WVC problem
is polynomial solvable for the family of (P5, dart, C5)-free graphs to prove their claim.
This suffices to show that for this family the WVC problem can be solved in polynomial
time, since for finite graphs and 3K1-free graphs it is known. To get the explicit bound
for f ?{P5,dart} one has to research the structure of all prime graphs according to our
Lemma 41. This is exactly what we do in Chapter 6.

Brause et al. [10] figure out a polynomial χ-binding function for the family of (P5, K2,t)-
free graph. Concretely they prove for k ∈ N>1, ω ∈ N>0

f ?{P5,K2,t}(ω) ≤ ct · ωt for a constant ct.

Note that this result is quite general and includes for t = 2 the family of (P5, C4)-free
graphs. Therefore, it is not surprising, that the bound for t = 2 is not optimal.

Hoàng [32] introduces the notation of perfect divisibility. A graph G is said to be
perfectly divisible if for all induced subgraphs H of G, V (H) can be partitioned into
two sets A,B such that H[A] is perfect and ω(H[B]) < ω(H). In the previously
stated paper by Chudnovsky and Sivaraman [22] they also prove inductively that the
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chromatic number χ(G) is upper bounded by
(
ω(G)+1

2

)
, for every perfectly divisible

graph G. By now proving that every (P5, bull)-free and every (bull, C5, C7, . . . )-free
graph is perfectly divisible they conclude

f ?{P5,bull}(ω), f ?{C5,C7,...,bull}(ω) ≤
(
ω + 1

2

)
,

for ω ∈ N>0. This bound is the currently best known bound. There is no talk about a
lower bound to these functions.

For integers n1 ≥ n2 ≥ · · · ≥ np ≥ 2, the generalized windmill graph W (n1, n2, . . . , np)

is defined byW (n1, n2, . . . , np) := K1 +(Kn1∪Kn2∪· · ·∪Knp). Schiermeyer [58] proves
a polynomial χ-binding function for the class of (P5,W (n1, n2, . . . , np))-free graphs. For
p ≥ 2 and a constant c(n1, . . . , np), which only depends on the integers

f ?{P5,W (n1,n2,...,np)}(ω) ≤ c(n1, . . . , np) · ω1+
∑p−1
i=1 ni .

It is clearly really difficult to find an optimal χ-binding function for this large graph
family. So the first aim of this paper is not to find an optimal χ-binding function but
instead it is to find a polynomial χ-binding function for a large graph family. They
prove more general results which they then apply to get the bound for this graph family.
Note that in the following theorem we summarize results from Schiermeyer [58]. These
results help to get an estimation for the χ-binding function of a larger graph class if the
forbidden subgraph can be build under certain construction rules by smaller graphs.
These bounds can be used generally to get a first approximation for the magnitude of
a χ-binding function.

Theorem 23 (Schiermeyer [58]). Let n1 ∈ N>1, H be a graph such that there is a
constant c ∈ R>0 with f ?H(ω) ≤ c ·ωt for some t ∈ N>0 and every ω ∈ N>0. Then there
are constants c(H), c(n1, H), c̃(H) ∈ R>0 such that

f ?K2∪H(ω) ≤ c(H) · ω2+t,

f ?{Pk,Kn1∪H}(ω) ≤ c(n1, H) · ωn1+t, and

f ?{P5,K1+H}(ω) ≤ c̃(H) · ωt+1.

Note that they save a factor of ωnp in their windmill bound by using a generalization
of the following result.

Theorem 24 (Schiermeyer [58]). Let n1, n2 ∈ N>1 with n1 ≥ n2. Then

f ?{Pk,Kn1∪Kn2} ≤ c(n1) · ωn1 ,

for a constant c(n1).
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2.2 3K1 and 2K2

If one wants to colour the family of (P5, H)-free graphs it is sometimes sufficient to
colour the family of (2K2, H) or (3K1, H)-free graphs. Clearly both 2K2 and 3K1 are
subgraphs of P5, but for certain graphs H the (P5, H)-free graphs with high chromatic
number, relative to their clique number, are all even 3K1 or 2K2-free. That is why it
is necessary to talk about the known χ-binding functions of these families.

2.2.1 3K1-free universe

In this section we want to talk about the family of 3K1-free graph. Its chromatic
number is highly related to the Ramsey number R(3, k). For that reason we want to
state some known results regarding this specific Ramsey number.

Theorem 25 (Ajtai et al. [1]). R(3, k) ∈ O(k2/ log k)

Fifteen years later Kim proves the following theorem, which is considered to be a
landslide result in this area.

Theorem 26 (Kim [42]). R(3, k) ∈ Θ(k2/ log k)

In the following lemma we introduce a concrete upper and a concrete lower bound of
f ?{3K1}(ω) only depending on ω and R(3, ω+ 1), for every ω ∈ N>0. To achieve that we
use an upper bound on the chromatic number by Schiermeyer [60]. We do not know of
an article stating these bounds. For that reason, we shortly prove them.

Corollary 27. For ω ∈ N>0,⌈
R(3, ω + 1)− 1

2

⌉
≤ f ?{3K1}(ω) ≤

⌊
R(3, ω + 1)− 2 + ω

2

⌋
and thus by Theorem 26

f ?3K1
(ω) ∈ Θ(ω2/ logω).

Proof. Note that χ(G′′) · α(G′′) ≥ |V (G′′)| for every graph G′′, which follows directly
from the fact that each colour class is an independent set. Let w ∈ N>0 be fixed and
R := R(3, w + 1)− 1. There is a 3K1-free graph G′, with ω(G′) = w and |V (G′)| = R.
Since α(G′) ≤ 2, we obtain χ(G′) ≥ R/α(G′) ≥ R/2. Thus, χ(G′) ≥ dR/2e, since
χ(G′) is an integer, which proves the lower bound.

Schiermeyer [60] proves that χ(G) ≤ (|V (G)|+ω(G) + 1−α(G))/2 for each connected
graph G. We shortly prove that this bound is also true for a disconnected graph G. Let
k ∈ N>1 and V1, V2, . . . , Vk ⊆ V (G) be such that G[Vi] induces a connected component
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of G, for i ∈ [k],
⋃
i∈[k] Vi = V (G), and χ(G) = χ(G[V1]). We shortly write G1 instead

of G[V1]. Thus,

χ(G) = χ(G1) ≤ V (G1) + ω(G1) + 1− α(G1)

2

≤ |V (G1)|+ ω(G) + 1− α(G1)−
∑k

i=2 |V (G[Vi])|+
∑k

i=2 |V (G[Vi])|
2

≤ |V (G)|+ ω(G) + 1− α(G)

2
,

by the bound by Schiermeyer [60], ω(G1) ≤ ω(G), and α(G1)+
∑k

i=2 |V (G[Vi])| ≥ α(G).

Let G be an arbitrary 3K1-free graph. By the definition of the Ramsey number
R(3, ω(G)+1), we know |V (G)| ≤ R(3, ω(G)+1)−1. If α(G) = 1, then χ(G) = ω(G).
Otherwise, α(G) = 2 and, thus,

χ(G) ≤ |V (G)|+ ω(G) + 1− α(G)

2
≤ R(3, ω(G) + 1)− 2 + ω(G)

2
.

Since R(3, ω(G) + 1)− 2 ≥ ω(G), for each ω(G) ∈ N>0, we find χ(G) ≤ (R(3, ω(G) +

1) − 2 + ω(G))/2 in both cases, which completes the proof by the arbitrariness of G
and since χ(G) is an integer.

So the asymptotic growth of the function f ?3K1
(ω) is completely solved, but the optimal

binding function is still widely open. For that reason for example Choudum et al. [16]
study some subfamilies of For(3K1) and prove bounds. In the introductory section
of their paper quite some subfamilies of For(3K1) and their χ-binding functions are
stated. We also refer to an article by Pedersen [49] for a χ-binding function for the
class of (3K1, K1 ∪K4)-free graphs.

2.2.2 2K2-free universe

In this section we talk about the known results regarding the function f ?{2K2}. Let us
first state the following useful structural result for 2K2-free graphs which Chung et
al. [24] prove.

Lemma 28 (Chung et al. [24]). If G is a connected 2K2-free graph with ω(G) ≥ 3,
then there is a clique of size ω(G) that is dominating in G.

The lower bound to f ?{2K2} is a result by Gyárfás [31] using a theorem proven by
Chung [23] five years prior.

Theorem 29 (Gyárfás [31]). There exists an ε > 0 s.t. for each ω ∈ N>0,

ω1+ε

3
≤ f ?{2K2}(ω).



40 2 P5-free universe

w1

w2 w3

ω(G)-Clique:
Aw1,w2 :

Aw2,w3 :

Aw1 :

......

(
ω
2

)
colours ω colours

Fig. 5: Illustration to Wagon’s proof

The following result from 1978 is asymptotically still the best known general upper
bound for this family. For that reason we want to talk about its nice proof in a bit
more detail.

Theorem 30 (Wagon [67]). For ω ∈ N>0,

f ?{2K2}(ω) ≤
(
ω + 1

2

)
.

In Figure 5 the main idea of the proof is visualized. Let G be a 2K2-free graph. Starting
with a clique W of size ω(G) labelled with w1, w2, . . . , wω(G) in any 2K2-free graph one
can partition the remaining vertices in the following sets. For i ∈ [ω(G)] the set Awi is
defined as the vertices x ∈ V (G) \W with NG(x) ∩W = W \ {wi}. Note that the set
{wi}∪Awi is an independent set, for i ∈ [ω(G)], since otherwise there is a clique of size
ω(G) + 1 in G which is a contradiction. For i, j ∈ [ω(G)] with i 6= j the set Awi,wj is
defined as the set of vertices x ∈ V (G) with NG(x)∩W ⊆ W \{wi, wj}. The set Awi,wj
is also an independent set, for i, j ∈ [ω(G)] with i 6= j, otherwise G contains a 2K2 as
an induced subgraph, again a contradiction. Let M = {(i, j) ∈ [ω(G)]× [ω(G] | i < j}
and A2 =

⋃
(i,j)∈M Awi,wj , then V (G) = A2 ∪W ∪

⋃
i∈[ω(G)] Awi and

χ(A2) = χ(
⋃

(i,j)∈M

Awi,wj) ≤
∑

(i,j)∈M

χ(Awi,wj) ≤
∑

(i,j)∈M

1 =

(
ω(G)

2

)
.

Since {wi} ∪ Awi is an independent set, we find χ(G − A2) ≤ ω(G), which proves
Wagon’s bound as follows:

χ(G) ≤ χ(G[V (G) \ A2]) + χ(G[A2]) ≤
(
ω(G)

2

)
+ ω(G) =

(
ω(G) + 1

2

)
.

But for ω(G) = 3 Wagon’s bound is already not best possible. Erdős first conjectured
in 1985, that f ?{2K2}(3) = 4, where the Wagon bound is 6. This Conjecture was proven
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by Nagy and Szentmiklóssy but the proof was never officially published. So the first
official paper proving that result is from 2018 by Gasper and Huang [29]. The tightness
of the bound is achieved by the graph W5, the wheel on 6 vertices.

Theorem 31 (Gasper and Huang [29]). f ?{2K2}(3) = 4

Let us restate that in this thesis we for example prove in Chapter 4 that f ?{P5,hammer} =

f ?{2K2}. Thus, every improvement to f ?{2K2} is an improvement to f ?{P5,hammer}. For this
reason we use the stated result by Gasper and Huang [29] to make an improvement on
the general bound by Wagon.

Corollary 32 ([11]). For ω ∈ N>0,

f ?{2K2}(ω) ≤
(
ω + 1

2

)
− 2

⌊ω
3

⌋
.

Proof. We prove this by induction on ω. For ω ≤ 3 this states f ?{2K2}(1) ≤
(

1+1
2

)
−0 = 1,

f ?{2K2}(2) ≤
(

2+1
2

)
−0 = 3, and f ?{2K2}(3) ≤

(
3+1

2

)
−2 = 4, where the first two inequalities

are true by Theorem 30 and the last inequality is true by Theorem 31. So we assume
there is an ω0 ∈ N≥3 such that f ?{2K2}(ω) ≤

(
ω+1

2

)
− 2

⌊
ω
3

⌋
for each ω ∈ [ω0].

So let G be a 2K2-free graph with ω(G) = ω0 + 1. By the result by Chung et al. [24]
there is a dominating clique W of size ω(G) in G. Fix v1, v2, v3 ∈ W . Now we define
the sets M and D as

M := {v ∈ V (G) \W | EG[{v},W \ {v1, v2, v3}] is complete} and
D := {v ∈ V (G) \W | EG[{v}, {v1, v2, v3}] is complete}.

For each vertex v in V (G) \ (W ∪D ∪M) there is a i ∈ [3] and a j ∈ [ω(G)] \ [3] with
vvi, vvj /∈ E(G). So we define I = [3]× [ω(G)] \ [3] and for (i, j) ∈ I we define

X(i,j) := {v ∈ V (G) \ (W ∪D ∪M) | vvi, vvj /∈ E(G)}.

Note that for (i, j) ∈ I the set X(i,j) is an independent set, since G is 2K2-free.
We obtain V (G) = {v1, v2, v3} ∪ M ∪ {v4, . . . , vω(G)} ∪ D ∪

⋃
(i,j)∈I Xi,j. Note that

ω(G[{v1, v2, v3} ∪M ]) = 3 and ω(G[{v4, . . . , vω(G)} ∪D]) = ω(G)− 3, since the largest
clique in G has size ω(G). Thus, by induction hypotheses, we get χ(G[{v1, v2, v3} ∪
M ]) ≤ 4 and χ(G[{v4, . . . , vω(G)} ∪D]) ≤

(
ω(G)−3+1

2

)
− 2

⌊
ω(G)−3

3

⌋
.

Let for the following calculation ω = ω(G):

χ(G) ≤ χ(G[{v1, v2, v3} ∪M ]) + χ(G[{v4, . . . , vω} ∪D]) + χ(G[
⋃

(i,j)∈I

Xi,j])

≤ 4 +

(
ω − 3 + 1

2

)
− 2

⌊
ω − 3

3

⌋
+
∑

(i,j)∈I

1
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Fig. 6: Icosahedron I

= 4 +

(
ω − 2

2

)
− 2(

⌊ω
3

⌋
− 1) + 3(ω − 3)

=

(
ω − 2

2

)
+ 3ω − 3− 2

⌊ω
3

⌋
=

(ω − 2)(ω − 3) + 6ω − 6

2
− 2

⌊ω
3

⌋
=
ω2 − 5ω + 6 + 6ω − 6

2
− 2

⌊ω
3

⌋
=

(
ω + 1

2

)
− 2

⌊ω
3

⌋
.

So every finite 2K2-free graph G is by induction (
(
ω(G)+1

2

)
− 2

⌊
ω(G)

3

⌋
)-colourable.

In a recent paper by Chudnovsky et al. [18] they study the class of (fork, C4)-free
graphs. A valid question is why this family is discussed here. This family is relevant
for our research since the complementary graph of such a graph is (2K2, kite)-free and
so this seems like a fitting place. Their main work in their paper can be divided into
three big parts. They first prove a structure theorem for (fork, C4)-free graphs. From
this theorem, which we use in Chapter 8, they deduce the following corollary.

Corollary 33 (Chudnovsky et al. [18]). Let G be a connected (fork, C4)-free graph.
Then G is K1,3-free or G has a universal vertex or G has a clique separator.

This corollary is used to show that to
⌈

3ω(G)
2

⌉
-colour a (fork, C4)-free graph G it is

sufficient to
⌈

3ω(G′)
2

⌉
-colour every (K1,3, C4)-free graph G′. In the second structure

theorem they characterise the structure of said graphs. Relevant graphs for this char-
acterisation are the icosahedron (cf. Figure 6) and the so called crown. Note that the
icosahedron I is completely triangulated and therefore C4-free and K1,3-free, since for
every v ∈ V (I) we have G[NI [v]] ∼= W5. In their last section they colour the relevant
graphs. This bound is not known to be optimal but again by using the clique-expansion
of the icosahedron I they show that for ω ∈ 3N>0:

4ω

3
≤ f ?{fork,C4}(ω) ≤

⌈
3ω

2

⌉
.
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Note that quite a few subfamilies of 2K2-free graphs have been studied. For the inter-
ested reader we refer to the previously stated paper by Brause et al. [14], the paper by
Karthick and Mishra [40] and Prashant and Gokulnath [52].
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3 Techniques

To achieve our aim of determining χ-binding functions different techniques are used. In
this Chapter we collect the techniques which are used multiple times in proofs of this
thesis. In Section 3.1 we start with techniques which are generally applicable. Where
the techniques of Section 3.2 are applicable for the large family of Q[P4]-free graphs.
In the following Section 3.3 we talk about some results for χ-binding functions. Finally
the last quite technical Section 3.4 is later used to colour certain graphs which contain
an induced, weighted C5.

3.1 General techniques

In chromatic graph theory, the private neighbourhood reduction is an important tool.
There is a similar reduction technique for vertex-weight functions of graphs, which is
implicitly defined in the next lemma. Note that for the unweighted version, Lemma 34
describes the private neighbourhood reduction. In particular, for q : V (G) → [1], we
have χ(G) = χ(G − u1) if there are two non-adjacent vertices u1, u2 ∈ V (G) with
NG(u1) ⊆ NG(u2). Thus, the following lemma implies that a critical graph does not
contain a comparable vertex pair.

Lemma 34 ([12]). If q : V (G)→ N0 is a CG
χ -minimal vertex-weight function and S ⊆

V (G), u ∈ V (G)\S with EG[{u}, S] is anticomplete, and q(u) > 0 and NG(u) ⊆ NG(s)

for each s ∈ S, then q(u) > χq(G[S]).

Proof. For the sake of a contradiction, let us suppose q(u) ≤ χq(G[S]). Additionally,
let q′ : V (G)→ N0 be a vertex-weight function with

v 7→

0 if v = u,

q(v) if v 6= u.

Note that q′ 6≡ 0 and for a proper q′-colouring Lq′ : V (G)→ 2[χq′ (G)] of G, one can find
a set Lu such that Lu ⊆ Lq′(S) and |Lu| = q(u) ≤ χq(G[S]) ≤ |Lq′(S)|. Hence, from
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the proper q-colouring Lq : V (G)→ 2N>0 with

v 7→

Lu if v = u,

Lq′(v) if v 6= u,

it follows χq(G) ≤ χq′(G). Thus, χq(G) = χq′(G), which contradicts our assumption
that q is CG

χ -minimal. Hence, q(u) > χq(G[S]).

Since we often create weighted graphs the following lemma is used multiple times. It
is a central result in Lovász’ [67] proof of the Weak Perfect Graph Theorem.

Lemma 35 (Lovász [46]). If G is a perfect graph, then each ‘perfect’-expansion of G
is perfect.

We continue by an observation concerning the chromatic and clique numbers of q-
expansions of a graph.

Observation 36 ([13]). If G is a graph, q : V (G) → N0 is a vertex-weight function,
and G′ is a q-expansion of G, then

χ(G′) = χq(G) and ω(G′) = ωq(G).

Note that Observation 36 together with Lemma 35 implies χq(G) = ωq(G) for each
perfect graph G and each vertex-weight function q : V (G)→ N0.

We concentrate next on our combination of homogeneous sets and clique-separators,
namely the so-called clique-separators of modules. Note that each clique-separator is
a clique-separator of modules. Having this observation in mind, the following lemma
generalises the fact that critical graphs do not contain clique-separators since it implies
thatG[q], for someCG

χ -minimal vertex-weight function q : V (G)→ N0, does not contain
a clique-separator of modules.

Lemma 37 ([13]). If G,G1, G2 are three graphs with G = G1∪G2 and V (G1)∩V (G2)

is a clique-separator of modules in G, and q : V (G) → N0 is a vertex-weight function,
then

χq(G) = max{χq(G1), χq(G2)} and ωq(G) = max{ωq(G1), ωq(G2)}.

Proof. Let k ∈ N>0 and X,X1, X2 . . . , Xk ⊆ V (G) be sets such that X = X1 ∪ X2 ∪
. . . ∪ Xk = V (G1) ∩ V (G2) and X1, X2, . . . , Xk are the modules of X. Furthermore,
for each n ∈ [2], let Ln : V (Gn) → 2[χq(Gn)] be a q-colouring which minimises |Ln(X)|.
Since EG[Xi, Xj] is complete for each distinct i, j ∈ [k] with i < j, by renaming colours
if necessary, we may assume Ln(X1) = [χq(Gn[X1])] and

Ln(Xj) = [χq(Gn[X1 ∪X2 ∪ . . . ∪Xj])] \ [χq(Gn[X1 ∪X2 ∪ . . . ∪Xj−1])]



3.2 Techniques for Q[P4]-free graphs 47

for each j ∈ [k]\{1}, that is, Ln colours the vertices of X1 with subsets of [χq(Gn[X1])],
the vertices of X2 with sets that contain only colours of {χq(Gn[X1]) + 1, χq(Gn[X1]) +

2, . . . , χq(Gn[X1∪X2])}, . . . , and the vertices of Xk with sets that contain only colours
of {χq(Gn[X1∪X2∪ . . .∪Xk−1])+1, χq(Gn[X1∪X2∪ . . .∪Xk−1])+2, . . . , χq(Gn(X))}.

We show next that we may assume that the two proper q-colourings L1 and L2 coincide
on Xj with a proper q-colouring of G[Xj] for each j ∈ [k]. If LXj : Xj → 2Ln(Xj) is a
proper q-colouring of G[Xj], then L′n : V (Gn)→ 2[χq(Gn)] with

v 7→

Ln(v) if v ∈ V (Gn) \Xj,

LXj(v) if v ∈ Xj

is a proper q-colouring of Gn since Xj a module. Thus, by our choice of Ln, Ln uses
χq(G[Xj]) colours for the vertices of Xj, and so,

Ln(X) =
k⋃
j=1

L(Xj) = [χq(G[X1]) + χq(G[X2]) + . . .+ χq(G[Xk])] = [χq(G[X])].

Hence, we may assume L1(v) = L2(v) for each v ∈ X. Thus,

χq(G) ≤ max{χq(G1), χq(G2)} ≤ χq(G),

since G1 and G2 are induced subgraphs of G. Finally, ωq(G) = max{ωq(G1), ωq(G2)}
since EG[V (G1) \X, V (G2) \X] is anticomplete, which completes our proof.

3.2 Techniques for Q[P4]-free graphs

Note that Q[P4] contains an induced banner, dart, gem and kite. We wish to establish
some results forQ[P4]-free graphs but begin by considering modules ofQ[F ]-free graphs,
where F is arbitrary and not necessarily related to P4.

Lemma 38 ([13]). If F is a graph and G is a Q[F ]-free graph, then, for each module
M in G, G[M ] is F -free or NG(M) is a clique-separator of modules or N2

G(M) = ∅.

Proof. If M = V (G), then N2
G(M) = ∅, and so let us assume that M is a module in G

such that |M | < |V (G)|, and S ⊆ M with G[S] ∼= F , and N2
G(M) 6= ∅. We continue

by showing that NG(M) is a clique-separator of modules. Let X1, X2, . . . , X` be the
sets of vertices which induce the components of Ḡ[NG(M)]. Since EG[M ∪ Xi, Xj] is
complete for each distinct i, j ∈ [`] and N2

G(M) 6= ∅, we may suppose, for the sake
of a contradiction, that there is some k ∈ [`] and a vertex w ∈ N2

G(M) for which
Xk ∩ NG(w) 6= ∅ and Xk \ NG(w) 6= ∅. Hence, by the connectivity of Ḡ[Xk], we
may assume that x1 ∈ Xk ∩ NG(w) and x2 ∈ Xk \ NG(w) are non-adjacent. Thus,
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S ∪ {w, x1, x2} induces a Q[F ], which contradicts our assumption that G is Q[F ]-free.
Thus, Xk is a module, and NG(M) is a clique-separator of modules, which completes
our proof.

Let us focus on Q[P4]-free graphs next. It is rather interesting that every vertex-weight
function for Q[P4]-free graphs can be nicely decomposed.

Lemma 39 ([13]). Let G be a Q[P4]-free graph. If q : V (G) → N0 is a vertex-
weight function with q 6≡ 0, then there exist an integer k ∈ N>0, k pairwise dis-
joint non-empty sets M1,M2, . . . ,Mk ⊆ V (G[q]), and k CG

χ -minimal vertex-weight
functions q1, q2, . . . , qk : V (G) → N0 such that V (G[qi]) ⊆ Mi, χq(G[Mi]) = χqi(G),
ωq(G[Mi]) ≥ ωqi(G), and G[Mi] is a ‘non-empty, 2K1-free’-expansion of G[qi] which
is a prime graph without clique-separators of modules for each i ∈ [k], EG[Mi,Mj] is
complete for each distinct i, j ∈ [k], and

χq(G) =
k∑
i=1

χq(G[Mi]).

Furthermore, ωq(G[Mi]) = ωqi(G) for each i ∈ [k] if q is CG
χ -minimal.

Proof. For simplicity, if (G, q) is a pair for which G is a Q[P4]-free graph and q : V (G)→
N0 is a vertex-weight function with q 6≡ 0, and both satisfy the statement of the lemma,
then we say that (G, q) is decomposable. For the sake of a contradiction, let us suppose
that (G, q) is a minimal counterexample to our lemma, that is, q 6≡ 0 and (G, q) is not
decomposable but each pair (G′, q′) with either G′ is an induced subgraph of G with
G′ 6= G and q′ 6≡ 0, or G′ = G and |V (G[q′])| < |V (G[q])| and q′ 6≡ 0, or G′ = G and
|V (G[q′])| = |V (G[q])| and q′ CG

χ q is decomposable.

If there is a vertex u ∈ V (G) with q(u) = 0, then, since (G, q) is a minimal counterex-
ample and G[q] is an induced subgraph of G with G[q] 6= G, we have that (G[q], q) is
decomposable, which also implies that (G, q) is decomposable. The latter contradiction
on our supposition on (G, q) implies G = G[q].

We show next that q is CG
χ -minimal by supposing, for the sake of a contradiction, the

contrary. Since q 6≡ 0, there is a q′ : V (G) → N0 which is CG
χ -minimal with q′ CG

χ q.
Then (G, q′) is decomposable into pairwise disjoint non-empty sets M ′

1,M
′
2, . . . ,M

′
k

and vertex-weight functions q′1, q′2, . . . , q′k : V (G[q′]) → N0 since q is a minimal coun-
terexample. Clearly, V (G[q′]) ⊆ V (G[q]). Since q′ CG

χ q, we have χq′(G) = χq(G).
Additionally, χq(G[M ′

i ]) ≥ χq′(G[M ′
i ]) and ωq(G[M ′

i ]) ≥ ωq′(G[M ′
i ]) for each i ∈ [k]. In

view of the desired result, it remains to prove χq(G[M ′
i ]) ≤ χq′(G[M ′

i ]) for each i ∈ [k].
Since EG[M ′

i ,M
′
j] is complete for each distinct i, j ∈ [k], we have

χq(G[M ′
i ]) +

∑
j∈[k]\{i}

χq(G[M ′
j]) ≤ χq(G) = χq′(G)
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=
k∑
i=1

χq′(G[M ′
i ]) ≤ χq′(G[M ′

i ]) +
∑

j∈[k]\{i}

χq(G[M ′
j]),

and so χq(G[M ′
i ]) = χq′(G[M ′

i ]) for each i ∈ [k]. Thus, (G, q) is decomposable into the
modules M ′

1,M
′
2, . . . ,M

′
k and the vertex-weight functions q′1, q′2, . . . , q′k : V (G[q])→ N0,

which contradicts our supposition on (G, q). Therefore, we have that q is CG
χ -minimal,

and so G = G[q] is connected.

Let M1 be an inclusion-wise minimal module in G for which N2
G(M1) = ∅. Note that

possibly M1 = V (G). Since q is CG
χ -minimal, G[M1] is connected. Let M be a module

in G[M1] with N2
G[M1](M) = ∅. Hence, NG(M) = (M1 \M)∪ (V (G)\M1) = V (G)\M ,

which implies M = M1 by the minimality of |M |.

We may assume first that M1 6= V (G). Thus, by the definition of M1, EG[M1, V (G) \
M1] is complete. For S ∈ {M1, V (G) \M1}, let qS : S → N0 be defined by

u 7→

q(u) if u ∈ S,

0 if u /∈ S.

Note that qM1 , qV (G)\M1 6≡ 0, since M1, V (G) \ M1 6= ∅, χq(G[M1]) = χqM1 (G) and
χq(G−M1) = χqV (G)\M1 (G), and so

χq(G) = χqM1 (G) + χqV (G)\M1 (G).

Thus, since q is CG
χ -minimal, qM1 and qV (G)\M1 are CG

χ -minimal. Hence, since we know
that |V (G[qM1 ])|, |V (G[qV (G)\M1 ])| < |V (G[q])| and (G, q) is a minimal counterexample,
we have that (G[M1], qM1) and (G[V (G) \M1], qV (G)\M1) are decomposable into pair-
wise disjoint non-empty sets M ′

1,M
′
2, . . . ,M

′
k1

and M ′
k1+1,M

′
k1+2, . . . ,M

′
k1+k2

as well as
CG
χ -minimal vertex-weight functions q′1, q′2, . . . , q′k1 : V (G) → N0 and q′k1+1, q

′
k1+2, . . . ,

q′k1+k2
: V (G)→ N0, respectively. Hence, the function q is decomposable into the mod-

ulesM ′
1,M

′
2, . . . , M

′
k1+k2

and the vertex weight functions q′1, q′2, . . . , q′k1+k2
: V (G)→ N0.

Additionally, since qS is CG
χ -minimal, we have ωq(G[M ′

i ]) = ωqS(G[M ′
i ]) = ωq′i(G) for

each i ∈ [k1 + k2] and, depending on i, some S ∈ {M1, V (G) \M1}.

It remains to assumeM1 = V (G). Recall that q is CG
χ -minimal, and so G has no clique-

separator of modules by Lemma 37. Furthermore, G is connected. If G is also prime,
then we see that (G, q) is decomposable by choosing k = 1 and q1 ≡ q; a contradiction.
Thus, there is a homogeneous set in G. Let us recall that for every homogeneous set
H in G = G[M1], by the choice of M1, N2

G(H) 6= ∅. By Lemma 38, we see that G[H]

is P4-free, for every homogeneous set H. Let M2,M3 be two homogeneous sets in G

with M2 ∩M3 6= ∅. For the sake of a contradiction, let us suppose that M2 ∪M3 is
not a homogeneous set in G. Hence, M2 \M3,M3 \M2 6= ∅, and we let m2 ∈M2 \M3,
m3 ∈M3\M2, and m4 ∈M2∩M3 be arbitrary vertices. SinceM2 andM3 are modules,
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we have

NG(m2) \ (M2 ∪M3) = NG(m4) \ (M2 ∪M3) = NG(m3) \ (M2 ∪M3),

and so V (G) = M2∪M3 sinceM2∪M3 is not a homogeneous set in G. Clearly,M2∩M3

is a module in G. Since G has no clique-separators of modules, M2∩M3 is not a clique-
separator of modules, and so a vertex of M2 \M3 is adjacent to a vertex of M3 \M2.
Hence, by the fact that M2 and M3 are modules, we have that each vertex of M2 ∩M3

is adjacent to each vertex of V (G) \ (M2 ∩ M3), and so N2
G(M2 ∩ M3) = ∅, which

contradicts the choice of M1. Hence, there is some integer k ∈ N>0 and k pairwise
disjoint homogeneous sets M ′

1,M
′
2, . . . ,M

′
k of G with M ⊆ M ′

i for each homogeneous
set M in G and, depending on M , some i ∈ [k]. Recall that G[M ′

i ] is P4-free for each
i ∈ [k]. The Strong Perfect Graph Theorem implies that G[M ′

i ] is perfect, and so
χq(G[M ′

i ]) = ωq(G[M ′
i ]) by Lemma 35 and Observation 36 for each i ∈ [k]. Since q is

CG
χ -minimal, we obtain that M ′

i is a clique, and we let u′i be a vertex of M ′
i for each

i ∈ [k]. Hence, let q1 : V (G)→ N0 be a vertex-weight function with

u 7→


q(M ′

i) if u = u′i for some i ∈ [k],

0 if u ∈M ′
i \ {u′i} for some i ∈ [k],

q(u) if u /∈
⋃k
i=1M

′
i .

Clearly, G[M1] is a ‘non-empty, 2K1-free’-expansion of G[q1]. It is further easily seen
χq(G) = χq(G[M1]) = χq1(G), ωq(G) = ωq(G[M1]) = ωq1(G), and that q1 is CG

χ -
minimal. Since G− ((M ′

1 ∪M ′
2 ∪ . . . ∪M ′

k) \ {u′1, u′2, . . . , u′k}) is prime, G[q1] is prime
as well. For the sake of a contradiction, let us suppose that X is a clique-separator of
modules in G[q1]. Since G[q1] is prime, every module of X is of size 1. Let

X(x) =

{x} if x /∈ {u′1, u′2, . . . , u′k},

M ′
i if x = ui for some i ∈ [k].

Since M ′
1,M

′
2, . . . ,M

′
k are pairwise disjoint modules which are cliques and for which

u′i ∈ M ′
i for each i ∈ [k],

⋃
x∈X X(x) is a clique-separator of modules in G, which is a

contradiction to the fact that, by Lemma 37, such a set cannot exist. Hence, (G, q) is
decomposable into the module V (G) and the vertex-weight function q1, and our proof
is complete.

We first note that Lemma 39 evokes a nice characterisation of critical Q[P4]-free graphs.

Corollary 40 ([13]). If G is a critical Q[P4]-free graph, then there is some integer k ∈
N>0 such that V (G) can be partitioned into sets M1,M2, . . . ,Mk such that EG[Mi,Mj]

is complete for distinct i, j ∈ [k], and G[Mi] is a ‘non-empty, 2K1-free’-expansion of a
prime graph without clique-separator of modules for each i ∈ [k].
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Proof. Note that the vertex-weight function q : V (G) → [1] is CG
χ -minimal since G is

critical. By Lemma 39, there exist an integer k ∈ N>0, k pairwise disjoint non-empty
sets M1,M2, . . . ,Mk ⊆ V (G), and k CG

χ -minimal vertex-weight functions q1, q2, . . . ,

qk : V (G) → N0 such that V (G[qi]) ⊆ Mi and G[Mi] is a ‘non-empty, 2K1-free’-
expansion of G[qi] which is a prime graph without clique-separators of modules for
each i ∈ [k], EG[Mi,Mj] is complete for each distinct i, j ∈ [k], and

χ(G) =
k∑
i=1

χ(G[Mi]).

Since G is critical, we conclude from the latter equality that M1,M2, . . . ,Mk is indeed
a partition of V (G), which completes the proof.

Corollary 40 is important for the proof of Theorem 9. However, by Lemma 39, we
are now in a position to formulate our central lemma which reasons to study proper
q-colourings of prime graphs without clique-separators of modules whenever we are
interested in χ-binding functions for subclasses of Q[P4]-free graphs.

Lemma 41 ([13]). Let G be a Q[P4]-free graph, q : V (G) → N0 be a vertex-weight
function, and f : N0 → N0 be a superadditive function. If χq′(G) ≤ f(ωq′(G)) for each
CG
χ -minimal vertex-weight function q′ : V (G) → N0 for which G[q′] is prime and has

no clique-separator of modules, then

χq(G) ≤ f(ωq(G)).

Proof. If q ≡ 0, then χq(G) = 0 = f(0) = f(ωq(G)), since f is superadditive. Thus,
we may assume q 6≡ 0. By Lemma 39, there is an integer k ∈ N>0 and there are k
CG
χ -minimal vertex-weight functions q1, q2, . . . , qk : V (G)→ N0 such that

χq(G) =
k∑
i=1

χqi(G) and ωq(G) ≥
k∑
i=1

ωq(G[Mi]) ≥
k∑
i=1

ωqi(G).

Furthermore, G[qi] is a prime graph without clique-separators of modules, and so
χqi(G) ≤ f(ωqi(G)) for each i ∈ [k]. The superadditivity of f implies

χq(G) =
k∑
i=1

χqi(G) ≤
k∑
i=1

f(ωqi(G)) ≤ f

(
k∑
i=1

ωqi(G)

)
≤ f(wq(G)),

which completes our proof.

3.3 Binding functions

In this section we establish four lemmas concerning the general structure of χ-binding
functions for certain graph classes.
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Lemma 42 ([13]). If H is a set of graphs and h is an integer such that each H ∈ H
satisfies that its complementary graph H̄ contains an induced cycle of length at most
h, then the class of H-free graphs has no linear χ-binding function.

Proof. We may assume that f ?H exists. Thus, H 6= ∅ and we get h ≥ 3, since the
precondition is fulfilled. By a result of Bollobás [7], for each two integers g,∆ ≥ 3,
there is a (C3, C4, . . . , Cg)-free graph Gg,∆ with ∆(Gg,∆) = ∆ and

α(Gg,∆)

|V (Gg,∆)|
<

2 log(∆)

∆
.

Hence, there is a series {Ḡh,i}∞i=3 such that, for each i ≥ 3, Ḡh,i is a graph whose
complementary graph is Gh,i. We show next that Ḡh,i is H-free, for i ≥ 3. Suppose
not, then there is a H ∈ H with H ⊆ind Ḡh,i. By the definition of H, there is a
k ∈ [h] \ [2] with Ck ⊆ind H̄. Thus, Ck ⊆ind H̄ ⊆ind Gh,i, which is a contradiction to
the fact that the graph Gh,i is (C3, C4, . . . , Ch)-free by definition. Since Gh,i is C3-free,
it follows α(Ḡh,i) = ω(Gh,i) ≤ 2. Furthermore,

ω(Ḡh,i) <
2 log(i)

i
· |V (Ḡh,i)|,

and so
i

4 · log(i)
· ω(Ḡh,i) <

|V (Ḡh,i)|
2

≤ |V (Ḡh,i)|
α(Ḡh,i)

≤ χ(Ḡh,i).

Note that i/(4·log(i)) tends to +∞ as i tends to +∞. Thus, there is no linear χ-binding
function for the class of H-free graphs.

Lemma 41 has obviously huge impact on studying χ-binding function. However, in view
of its application, we need that some optimal χ-binding functions, f ?{3K1}, f

?
{C5,3K1}, and

f ?{2K2} in particular, are superadditive.

Lemma 43 ([13]). If H is a set of graphs such that each H ∈ H does not contain a
complete bipartite spanning subgraph, then f ?H is superadditive or the class of H-free
graphs has no χ-binding function.

Proof. We may assume that f ?H exists. Note that f ?H(1) = 1 6= 0, since K1 /∈ H. Let
w1, w2 ≥ 1 be two integers, G1 be aH-free graph with ω(G1) = w1 and χ(G1) = f ?H(w1),
and G2 be a H-free graph with ω(G2) = w2 and χ(G2) = f ?H(w2) that is vertex disjoint
from G1. Note that G1 and G2 exist since Kwi ∈ For(H) for i ∈ [2] by the definition of
H.

Let G be the graph obtained from G1 and G2 by adding all edges between the vertices
of G1 and the vertices of G2. We prove first that G is H-free. For the sake of a
contradiction, let us suppose that there is some H ∈ H for which G contains a set S
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of vertices inducing H. Since both G1 and G2 are H-free, s1 = |S ∩ V (G1)| > 0 and
s2 = |S ∩ V (G2)| > 0. Therefore, the graph G[S] has a spanning subgraph that is a
isomorphic to Ks1,s2 . But now G[S] ∼= H gives a contradiction to our assumption that
H does not have a spanning subgraph which is a complete bipartite graph. Hence, G
is H-free.

Clearly, ω(G) = w1 + w2 and χ(G) = χ(G1) + χ(G2) = f ?H(w1) + f ?H(w2), and so

f ?H(w1 + w2) ≥ χ(G) = f ?H(w1) + f ?H(w2),

which completes our proof.

Weakening the precondition of the previous lemma the following lemma grants no
longer a superadditive χ-binding function but a sufficient condition for a graph family
H such that f ?H is at least strictly increasing.

Lemma 44. If H is a set of graphs such that each H ∈ H does not contain a universal
vertex, then f ?H is strictly increasing or the class of H-free graphs has no χ-binding
function.

Proof. We may assume that f ?H exists. We claim that f ?H(k) < f ?H(k + 1), for every
k ∈ N>0. This claim we prove by induction on k as follows. Clearly f ?H(1) = 1 < 2 ≤
f ?H(2), since K1, K2 ∈ For(H). So let k ∈ N>1 such that f ?H(k′) < f ?H(k′ + 1) for all
k′ ∈ N>0 with k′ < k. Since f ?H(k) 6= 0, there is a H-free graph G with χ(G) = f ?H(k)

and ω(G) = k. We define the graph G′ as G′ := G+ {v1} for v1 /∈ V (G). For the sake
of a contradiction, let us suppose that there is some H ∈ H for which G′ contains a
set S of vertices inducing H. Since H ∈ H, the graph H does not contain a universal
vertex so v1 /∈ S. Thus, H ∼= G′[S] = G[S] which is a contradiction to the fact, that G
is H-free. Thus, the graph G′ is an H-free graph with ω(G′) = k + 1. Therefore,

f ?H(k) < χ(G) + 1 = χ(G′) ≤ f ?H(k + 1),

which completes our proof.

For example f ?P5,kite
is strictly increasing according to Chapter 8 even though dart

contains a universal vertex. Thus, the reverse of Lemma 44 is not true. On the other
hand, we introduce in the following lemma another sufficient condition for a graph
family H such that the optimal χ-binding function f ?H is non-decreasing.

Lemma 45. If H is a set of graphs such that for all H ∈ H every connected component
of H is non-isomorphic to a complete graph, then f ?H is non-decreasing or the class of
H-free graphs has no χ-binding function.
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Proof. We may assume that f ?H exists. We claim that f ?H(k) ≤ f ?H(k+ 1), for every k ∈
N>0. This claim we prove by induction on k as follows. Clearly f ?H(1) = 1 ≤ 2 ≤ f ?H(2),
since K1, K2 ∈ For(H). So let k ∈ N>1 such that f ?H(k′) ≤ f ?H(k′ + 1) for all k′ ∈ N>0

with k′ < k. Since f ?H(k) 6= 0, there is a H-free graph G with χ(G) = f ?H(k) and
ω(G) = k. We define the graph G′ as G′ := G∪Kk+1. For the sake of a contradiction,
let us suppose that there is some H ∈ H for which G′ contains a set S of vertices
inducing H. Since H ∈ H, the graph H does not contain a connected component
which is isomorphic to a complete graph. Therefore, S ∩ V (G) = S ∩ V (G′). Thus,
H ∼= G′[S] = G[S] which is a contradiction to the fact, that G is H-free. Thus, the
graph G′ is H-free graph with ω(G′) = k + 1 and therefore

f ?H(k) = χ(G) ≤ χ(G′) ≤ f ?H(k + 1),

which completes our proof.

3.4 Techniques to colour graphs with weighted

cycles

We use the results of this section in our later proofs to colour certain graphs which
contain induced cycles of length 5. In particular, we frequently deal with cycles C ∼= C5

and vertex-weight functions q : V (C)→ N0. This section is quite technical and we use
the results of it to colour the special graphs G1, G2, G3, G4 which occur in Chapter 6.
We also use these results multiple times in other Chapters and, for that reason, we
state them here.

Following Narayanan and Shende [45], who proved

χ(G) = max

{
ω(G),

⌈
|V (G)|
α(G)

⌉}
for each ‘non-empty, 2K1-free’-expansion G of a cycle of length at least 4, we can
determine the q-chromatic number of a C5 by Observation 36.

Corollary 46 ([13]). Let ω ∈ N>0. If C is a cycle of length 5 and q : V (C)→ N0 is a
vertex-weight function such that ωq(C) = ω, then

χq(C) = max

{
ωq(C),

⌈
q(C)

2

⌉}
≤
⌈

5ωq(C)− 1

4

⌉
,

and this bound is tight.

Proof. In view of Observation 36, it remains to show⌈
q(C)

2

⌉
≤
⌈

5ωq(C)− 1

4

⌉
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and that this bound is tight. Renaming vertices if necessary, let us assume that
C : c1c2c3c4c5c1 is defined such that ωq(C) = q({c1, c2}) and q(c1) ≥ q(c2). Thus,
q({c3, c4}) ≤ ωq(C) and q(c5) ≤ bωq(C)/2c. Furthermore, for n,m ∈ N0 with ωq(C) =

4n+m and m < 4, we have⌈
q(C)

2

⌉
≤ ωq(C) +


⌊
ωq(C)

2

⌋
2

 = ωq(C) +

n if m ≤ 1

n+ 1 if m ≥ 2


= ωq(C) +

⌈
ωq(C)− 1

4

⌉
=

⌈
5ωq(C)− 1

4

⌉
.

From this chain of inequalities it follows that the bound is tight if q(c1) = q(c3) = dω/2e
and q(c2) = q(c4) = q(c5) = bω/2c, which completes our proof.

Corollary 46 is important for our later considerations. However for some subclasses,
we also need the following stronger result. This result roughly states that if and only
if the largest weighted clique in a C5 is not too big, we can colour the weighted C5

by using all colours twice except for some extra colours which we use on one special
vertex.

Corollary 47 ([12]). Let C : c1c2c3c4c5c1 be a cycle of length 5, q, q′ : V (C) → N0 be
two vertex-weight functions, and k ∈ N0 be an integer such that q(C) − k ≡ 0 mod 2,
q(c3) ≥ k, and q′ is defined by

ci 7→

q(ci)− k if i = 3,

q(ci) if i 6= 3.

There is some proper q-colouring L : V (C)→ 2N>0 with |L(1)(c3)| = k and

L(C) = L(1)(c3) ∪

(
5⋃
i=1

L(2)(ci, ci+2)

)
if and only if

ωq′(C) ≤ q′(C)

2
.

Proof. Let L′ : V (C)→ 2N>0 be a proper q′-colouring, L′(C) = [`], and L : V (G)→ 2N>0

be a proper q-colouring with

c 7→

L′(ci) ∪ {`+ 1, . . . , `+ k} if i = 3,

L′(ci) if i 6= 3.

If L(C) = L(1)(c3) ∪
(⋃5

i=1 L
(2)(ci, ci+2)

)
and |L(1)(c3)| = k, then

ωq′(C) ≤ χq′(C) ≤ ` =

∣∣∣∣∣
5⋃
i=1

L(2)(ci, ci+2)

∣∣∣∣∣ =
q(C)− k

2
=
q′(C)

2
.
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If ωq′(C) ≤ q′(C)/2, then χq′(C) = q′(C)/2 by Corollary 46 and since k ≤ q(c3). Thus,
assuming ` = χq′(C), we have

L′(C) =
5⋃
i=1

(L′)(2)(ci, ci+2) =
5⋃
i=1

L(2)(ci, ci+2)

and {χq′(C) + 1, . . . , χq′(C) + k} = L(1)(c3), which completes our proof.

In some of our proofs we use a minimal counterexample approach to properly q-colour
graphs. The next preliminary lemma helps us to gain some structural results for all
weighted graphs containing an induced C5. It is necessary to determine the weighted
chromatic number of the special graphs G1, G2, G3, G4 (cf. Chapter 8) but is more
generally applicable and therefore stated here. Before we prove this lemma let us
shortly show one of its uses. If all these assumptions are fulfilled by some smartly
chosen I and fq′ , we often find that (ii) holds which grants that ωq(G) = ωq(G − I).
Thus, there is at least one ωq(G)-Clique in G which consists of vertices of V (G) \ I
only. We choose different independent sets and, thus, obtain quite some structure for
the researched graphs.

Lemma 48 ([12]). Let G be a graph, I be a non-empty independent set in G, q,
q′ : V (G)→ N0 be two vertex-weight functions such that q′(u) = q(u)− 1 if u ∈ I and
q′(u) = q(u) if u /∈ I, C ∈ C?5(G, q) and C ′ ∈ C?5(G, q′) be two cycles, and fq, fq′ ∈ N0

be two integers such that χq′(G) ≥ fq′. If

χq(G) > max{ωq(G), χq(C), fq} and χq′(G) ≤ max{ωq′(G), χq′(C
′), fq′},

then at least one of following three statements holds:

(i) 1 ≤ max{ωq(G), χq(C), fq} ≤ fq′,

(ii) fq′ < max{ωq′(G), χq′(C
′)}, max{χq(C), fq} ≤ ωq(G), and ωq(G) = ωq(G− I),

(iii) fq′ < max{ωq′(G), χq′(C
′)}, max{ωq(G), fq} ≤ χq(C), |V (C ′) ∩ I| ≤ 1, and

χq(G)− 1 = χq(C) = χq′(C
′) =

⌈
q′(C ′)

2

⌉
=

⌈
q(C ′)

2

⌉
.

Proof. Clearly, we have χq′(G) ≥ {ωq′(G), χq′(C
′), fq′}, and so

χq′(G) = ωq′(G) or χq′(G) = χq′(C
′), or χq′(G) = fq′ .

Additionally, we note χq(G) ≤ χq′(G) + 1 since I is an independent set. Since q(u) ≥ 1

for each u ∈ I, we have ωq(G) ≥ q(u) ≥ 1.

If χq′(G) = fq′ , then max{ωq(G), χq(C), fq} ≤ fq′ since χq(G) ≤ χq′(G) + 1. Hence, we
may assume

max{ωq′(G), χq′(C
′)} = χq′(G) > fq′
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for the rest of our proof.

If χq′(G) = ωq′(G), then we obtain ωq(G) = ωq′(G) from

ωq(G) + 1 ≤ χq(G) ≤ χq′(G) + 1 = ωq′(G) + 1 ≤ ωq(G) + 1.

Thus, each clique S with q′(S) = ωq′(G) does not intersect I, and so

ωq(G) = ωq′(G) = ωq′(G− I) ≤ ωq(G− I) ≤ ωq(G).

Since χq(G) = ωq(G) + 1, we additionally have max{χq(C), fq} ≤ ωq(G) by our as-
sumption χq(G) > max{ωq(G), χq(C), fq}.

If χq′(G) > ωq′(G) and χq′(G) = χq′(C
′), then

χq′(C
′) =

⌈
q′(C ′)

2

⌉
by Corollary 46. Furthermore,

χq(C) + 1 ≤ χq(G) ≤ χq′(G) + 1 = χq′(C
′) + 1 ≤ χq(C

′) + 1 ≤ χq(C) + 1,

which implies

χq(C) = χq′(C
′) =

⌈
q′(C ′)

2

⌉
≤
⌈
q(C ′)

2

⌉
≤ χq(C

′) ≤ χq(C),

and so |I∩V (C ′)| ≤ 1. Since χq(G) = χq(C)+1, we additionally have max{ωq(G), fq} ≤
χq(C) by our assumption χq(G) > max{ωq(G), χq(C), fq}.
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4 (P5, hammer)-free graphs

In this chapter, we prove f ?{P5,hammer} = f ?{2K2} which is Theorem 2 and that each
critical (P5, hammer)-free graph is 2K2-free which is Theorem 9 (iii).

Since each 2K2-free graph is especially (P5, hammer)-free we know that

f ?{P5,hammer}(ω) ≥ f ?{2K2}(ω), for ω ∈ N>0.

Note that, by Lemma 43, f ?{P5,hammer} is superadditive and thus non-decreasing. By
Lemma 1 it now suffices to show that each critical (P5, hammer)-free graph is 2K2-
free to prove the desired results. So we show exactly that. We note that there are
(P5, hammer)-free graphs that are not Q[P4]-free, for example the graph Q[P4] itself.
Hence, we cannot make use of Corollary 40 but Lemma 37 is still applicable.

For the sake of a contradiction, let us suppose that G is a critical (P5, hammer)-free
graph that contains an induced 2K2. We clearly can assume that G is connected and
that q : V (G) → [1] is CG

χ -minimal. For two vertices u, v ∈ V (G), we define the set
Xu,v by Xu,v := NG(u) ∩NG(v).

Let u1u2 be an arbitrary edge of G such that |E(G − NG[{u1, u2}])| ≥ 1. If v ∈
NG({u1, u2}), w ∈ NG(v) ∩ N2

G({u1, u2}), and x ∈ NG(w) \ NG[{u1, u2, v}], then, re-
naming vertices if necessary, we assume u1v ∈ E(G). Thus, [x,w, v, u1, u2] induces
a P5 if u2v /∈ E(G) and a hammer if u2v ∈ E(G), which is a contradiction to the
fact that G is (P5, hammer)-free. Hence, N i

G({u1, u2}) = ∅ for i ≥ 3, and each vertex
subset of N2

G({u1, u2}) inducing a component of G[N2
G({u1, u2})] is a module. Since

|E(G−NG[{u1, u2}])| ≥ 1, there is some set W of vertices which induces a component
of G[N2

G({u1, u2})] with at least one edge, say w1w2.

Let us first show that deleting Xu1,u2 ∩Xw1,w2 disconnects the graph. Suppose not and
let P : p1, p2, · · · pk be the shortest path in G′ = G−(Xu1,u2∩Xw1,w2) starting in {u1, u2}
and ending in {w1, w2}. By otherwise renaming the vertices we assume without loss of
generality that p1 = u1 and pk = w1. Note that 3 ≤ k ≤ 4, since w1, w2 ∈ N2

G({u1, u2})
and G′ is P5-free. Since P is the shortest path we know that uipj /∈ E(G′) for i ∈
[2], j ∈ {3, 4} ∩ [k] and wipj /∈ E(G) for i ∈ [2], j ∈ {k − 3, k − 2} ∩ [k]. If k = 4,
P ∪{u2} induces a hammer, if u2p2 ∈ E(G), and P ∪{u2} induces a P5, if u2p2 /∈ E(G).
So k = 3 and since p2 /∈ Xu1,u2 ∩Xw1,w2 we know p2u2 /∈ E(G) or p2w2 /∈ E(G). Again
by Symmetry we assume p2w2 /∈ E(G). But now P ∪ {w2} ∪ {u2} induces a hammer,
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if u2p2 ∈ E(G), and P ∪ {w2} ∪ {u2} induces a P5, if u2p2 /∈ E(G). So u1 and w1

are not in the same component in G − (Xu1,u2 ∩Xw1,w2) and deleting Xu1,u2 ∩Xw1,w2

disconnects the graph.

Let X1, X2, . . . , X` be the sets of vertices which induce the components of Ḡ[Xu1,u2 ∩
Xw1,w2 ], and i ∈ [`]. We are going to show that Xi is a module. For the sake of
a contradiction, let us suppose that there is a vertex y ∈ V (G) \ (Xu1,u2 ∩ Xw1,w2)

with Xi ∩ NG(y) 6= ∅ and Xi \ NG(y) 6= ∅. Since Ḡ[Xi] is connected, we may assume
that x1 ∈ Xi ∩ NG(y) and x2 ∈ Xi \ NG(y) are non-adjacent. Let Y be the set of
vertices which induces the component of G − (Xu1,u2 ∩ Xw1,w2) that contains y. If
|Y | = 1, then NG(y) ⊆ NG(u1), which contradicts Lemma 34 since q : V (G) → [1]

is CG
χ -minimal. Thus, |Y | ≥ 2 and there is a vertex y′ ∈ Y ∩ NG(y). Since u1 and

w1 are not in the same component in G − (Xu1,u2 ∩ Xw1,w2), we have u1, u2 /∈ Y or
w1, w2 /∈ Y . Renaming vertices if necessary, we may assume u1, u2 /∈ Y . Since Y induces
a component of G−NG[{u1, u2}], it is a module. Thus, x1y

′ ∈ E(G) but x2y
′ /∈ E(G),

and [x2, u1, x1, y, y
′] induces a hammer; a contradiction. Hence, y does not exist, and

Xi is a module. Let M1 be set of vertices which are in the connected component of
u1 in G − (Xu1,u2 ∩ Xw1,w2) and Z1 = M1 ∪ (Xu1,u2 ∩ Xw1,w2) and Z2 = V (G) \M1

Clearly, Z1 ∩ Z2 = Xu1,u2 ∩Xw1,w2 and G = G[Z1] ∪G[Z2]. Thus, Xu1,u2 ∩Xw1,w2 is a
clique-separator of the modules X1, X2, . . . , X`, and we have

χ(G) = max{χ(G[Z1]), χ(G[Z2])}

by Lemma 37. Since u1, u2 ∈ Z1 and w1, w2 ∈ Z2, we have that G is not critical,
which contradicts our assumption on G. Thus, every critical (P5, hammer)-free graph
is 2K2-free, which completes our proof.
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5 (P5, banner)-free graphs

This chapter is devoted to a proof of the statements of Theorem 3, Theorem 9 and
Corollary 10 concerning banner-free graphs. So we prove f ?{P5,banner}(ω) = f ?{3K1}(ω),

f ?{C5,C7,...,banner}(ω) = f ?{C5,3K1}(ω), for ω ∈ N>0, which together form Theorem 3, that
each critical (P5, banner)-free is 3K1-free, which is Theorem 9 (i), and that each critical
(banner, C5, C7, . . .)-free graph is (C5, 3K1)-free, which is Theorem 9 (iv). Lastly we
show one part of Corollary 10. That is, if G is (P5, banner)-free, then

χ(G) ≤
⌈

∆(G) + ω(G) + 1

2

⌉
.

We note that instead of verifying f ?H(ω) ≤ f(ω) for the corresponding χ-binding func-
tion f : N>0 → N>0, we show the slightly stronger statement

χq(G) ≤ f(ωq(G))

for each H-free graph G and each vertex-weight function q : V (G)→ N0.

We note that each graph of {banner, C7, C9, . . . , P5} contains at least one induced 3K1.
Consequently, for each ω ∈ N>0, we have

f ?{C5,C7,...,banner}(ω) ≥ f ?{C5,3K1}(ω) and f ?{P5,banner}(ω) ≥ f ?{3K1}(ω).

Since neither C5 nor 3K1 contains a spanning subgraph that is complete bipartite and

f ?{C5,3K1}(ω) ≤ f ?{3K1}(ω) ∈ Θ(ω2/ log(ω)),

it follows that f ?{3K1} and f ?{C5,3K1} are superadditive by Lemma 43, where the order
of magnitude of the function is subject of Corollary 27. Additionally, each banner-
free graph is Q[P4]-free. Thus, given a graph G, which is (C5, C7, . . . , banner)-free or
(P5, banner)-free, by Lemma 41, we can focus on studying the q-chromatic number of
G for CG

χ -minimal vertex-weight functions q : V (G)→ N0 for which G[q] is prime and
has no clique-separator of modules.

For prime banner-free graphs, the following two results are known.

Theorem 49 (Hoáng [32]). If G is a prime (C5, C7, . . . , banner)-free graph of inde-
pendence number at least 3, then G is perfect.
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Theorem 50 (Karthick, Maffray, and Pastor [39]). If G is a prime (P5, banner)-free
graph of independence number at least 3, then G is perfect.

If G is (C5, C7, . . . , banner)-free or (P5, banner)-free, and q : V (G) → N0 is a CG
χ -

minimal vertex-weight function for which G[q] is prime and has no clique-separator
of modules, then G[q] is perfect or 3K1-free by Theorem 49 and Theorem 50. Addi-
tionally, a q-expansion G′ of G[q] is perfect by Lemma 35 or 3K1-free by construction,
respectively. We obtain, by Observation 36,

χq(G) = χq(G[q]) = χ(G′) ≤ f ?{3K1}(ω(G′)) = f ?{3K1}(ωq(G[q])) = f ?{3K1}(ωq(G)).

Hence,
f ?{P5,banner} = f ?{3K1} and f ?{C5,C7,...,banner} = f ?{C5,3K1}.

Using the previously stated theorems we next prove that every critical (P5, banner)-free
graph and every critical (C5, C7, . . . , banner)-free graph is 3K1-free. Let G be a critical
(P5, banner)-free graph or a critical (C5, C7, . . . , banner)-free graph. By Corollary 40,
the vertex set of G can be partitioned into k ≥ 1 setsM1,M2, . . . ,Mk such that G[Mi] is
a ‘non-empty, 2K1-free’-expansion of a prime graph Gp

i for each i ∈ [k] and EG[Mi,Mj]

is complete for each distinct i, j ∈ [k]. By Theorem 49 and Theorem 50, Gp
i is either

3K1-free or perfect for each i ∈ [k]. Thus, G[Mi] is 3K1-free or, by Lemma 35, G[Mi]

is perfect. In the latter case, G[Mi] is complete since G is critical. Thus, in both
cases, G[Mi] is 3K1-free. Since EG[Mi,Mj] is complete for each distinct i, j ∈ [k], G is
3K1-free as well.

Let us lastly prove that Corollary 10 (Reed’s Conjecture) is true for (P5, banner)-free
graphs. Let G be a (P5, banner)-free graph and G′ be a critical graph with V (G′) ⊆
V (G) and χ(G′) = χ(G). By Theorem 9(i) we know that G′ is 3K1-free. Since Reed’s
conjecture is proven for 3K1-free graphs [43, 44] we get

χ(G) = χ(G′) ≤
⌈

∆(G′) + ω(G′) + 1

2

⌉
≤
⌈

∆(G) + ω(G) + 1

2

⌉
,

which proves one part of Corollary 10.
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6 (P5, dart)-free graphs

This chapter is devoted to a proof of the statements of Theorem 4, Theorem 9 and
Corollary 10 concerning dart-free graphs. So we prove f ?{P5,dart}(ω) = f ?{3K1}(ω),

f ?{C5,C7,...,dart}(ω) = f ?{C5,3K1}(ω), which together form Theorem 4, and that each criti-
cal (dart, C5, C7, . . .)-free graph is (C5, 3K1)-free, which is one part of Theorem 9 (iv).
This chapter can conceptually also be found in [12].

We also fully characterise all critical (P5, dart)-free graphs according to Theorem 9 (ii).
There we state that for each critical (P5, dart)-free graph G and S a non-empty set of
vertices such that each vertex in S is adjacent to each vertex of V (G) \ S and each
homogeneous set M in G[S] has a vertex in S \M that is non-adjacent to each vertex
of M , then G−S is critical, and G[S] is 3K1-free or a ‘non-empty, 2K1-free’-expansion
of G′ with G′ ∈ {G1, G2}.

We also show one part of Corollary 10. That is, that if G is (P5, dart)-free, then

χ(G) ≤
⌈

∆(G) + ω(G) + 1

2

⌉
.

Assuming Theorem 9 to be proven we firstly prove Corollary 10. Note that to prove
Reed’s Conjecture for all (P5, dart)-free graphs it clearly suffices to prove it for all
critical graphs; of those we know the structure. Theorem 9 and the fact that Reed’s
conjecture is proven for 3K1-free graphs [43, 44], graphs whose complementary graphs
are disconnected [53], and graphs G with χ(G) ≤ d5ω(G)/4e [37] imply that is suffices
to show the latter inequality for each ‘non-empty, 2K1-free’-expansion of G1 and of G2

in order to prove Corollary 10.

So it remains to show the statements of Theorem 4 and Theorem 9 that particularly
contain a proof of the inequality χq(Gi) ≤ d(5ωq(Gi)− 1)/4e for each i ∈ [2] and each
vertex-weight function q : V (Gi)→ N0. We note that instead of for example verifying
f ?H(ω) ≤ f(ω) for the corresponding χ-binding function f : N>0 → N>0, we show the
slightly stronger statement

χq(G) ≤ f(ωq(G))

for each H-free graph G and each vertex-weight function q : V (G)→ N0.

At the beginning, let us mention that we start our proof similarly to that of banner-
free graphs. Namely, each graph of {dart, C7, C9, . . . , P5} contains at least one induced
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3K1, and so

f ?{C5,C7,...,dart}(ω) ≥ f ?{C5,3K1}(ω) and f ?{P5,dart}(ω) ≥ f ?{3K1}(ω)

for each ω ≥ 1.

Let us note that f ?{3K1} and f
?
{C5,3K1} are superadditive by Lemma 43 since neither C5

nor 3K1 contains a spanning subgraph that is complete bipartite and f ?{C5,3K1}(ω) ≤
f ?{3K1}(ω) ∈ Θ(ω2/ log(ω)). Additionally, each dart-free graph is Q[P4]-free. Thus,
given a graphG, which is (C5, C7, . . . , dart)-free or (P5, dart)-free, by Lemma 41, we can
focus on studying the q-chromatic number of G for CG

χ -minimal vertex-weight functions
q : V (G)→ N0 for which G[q] is prime and has no clique-separator of modules.

To finally get our two optimal χ-binding functions f ?{P5,dart} and f
?
{C5,C7,...,dart}, we need

to divide our proof into smaller parts. First of all, we show that Ḡ is (C7, C9, . . .)-free
whenever G is a prime dart-free graph of independence number at least 3 that is P5-free
or C5-free.

Lemma 51. If G is a prime dart-free graph with independence number at least 3,
which is C5- or P5-free, then the complementary graph Ḡ is (C7, C9, . . . )-free.

Proof. For the sake of a contradiction, let us suppose that G is a prime dart-free graph
of independence number at least 3 which is C5- or P5-free, and for which C2k+1 is an
induced subgraph of Ḡ for some integer k ≥ 3, say C : c1c2 . . . c2k+1c1 ∈ C2k+1(Ḡ).
Clearly, G is connected, since G is prime and |V (G)| ≥ 3. Let M be the set of vertices
of V (G) \V (C) such that EG[{m}, V (C)] is mixed if and only if m ∈M , and D be the
vertices of NG(V (C)) such that EG[{d}, V (C)] is complete if and only if d ∈ D.

Let m ∈M be an arbitrary vertex. If there is some i ∈ [2k+ 1] such that cim, ci+1m /∈
E(G), then, renaming vertices if necessary, we may assume that ci+2m ∈ E(G).
Since [ci+1, c,m, ci+2, ci] does not induce a dart for each c ∈ {ci+4, ci+5}, we have
ci+4m, ci+5m /∈ E(G). But now, [m, ci+2, ci+4, ci, ci+5] induces a dart; a contradiction.
Thus, cim ∈ E(G) or ci+1m ∈ E(G) for each i ∈ [2k + 1]. Since 2k + 1 is odd, there is
some t(m) ∈ [2k+1] such that ct(m)m /∈ E(G) but ct(m)−1m, ct(m)+1m, ct(m)+2m ∈ E(G).

If u ∈ NG(V (C)) and v ∈ V (G) \ NG[V (C)] are two adjacent vertices, then we see
that [v, u, c3, c1, c4] if u ∈ D and [v, u, ct(u)+1, ct(u)−1, ct(u)+2] if u ∈ M induces a dart;
a contradiction. Hence, EG[NG[V (C)], V (G) \ NG[V (C)]] is anticomplete, and the
connectivity of G implies V (G) = NG[V (C)].

Let I be an independent set of size 3 in G such that∑
a∈I

distḠ(a, V (C))

is minimal.
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Since G[V (C)] is 3K1-free, and ciu ∈ E(G) or ci+1u ∈ E(G) for each u ∈ D ∪ M
and each i ∈ [2k + 1], we have |I ∩ V (C)| ≤ 1. Let a1, a2 be two vertices of I \
V (C). We assume first that there is some vertex cj ∈ V (C) \ (NG(a1) ∪ NG(a2))

for some j ∈ [2k + 1]. Hence, aicj′ ∈ E(G) for each i ∈ [2] and each j′ ∈ {j −
1, j + 1}. For each c ∈ {cj+2, cj+3}, since [cj, c, a1, cj−1, a2] does not induce a dart,
we have a1c /∈ E(G) or a2c /∈ E(G). Furthermore, recall that aicj+2 ∈ E(G) or
aicj+3 ∈ E(G) for each i ∈ [2]. Thus, renaming vertices if necessary, we may assume
a1cj+2, a2cj+3 ∈ E(G) and a1cj+3, a2cj+2 /∈ E(G). Hence, [a1, cj+2, cj, cj+3, cj+1] induces
a C5 and [a1, cj+2, cj, cj+3, a2] induces a P5, which is a contradiction to the fact that G
is C5- or P5-free. Hence, I ∩ V (C) = ∅, and V (C) \ (NG(a1) ∪ NG(a2)) = ∅ for each
distinct a1, a2 ∈ I.

Let I = {a1, a2, a3} and, renaming vertices if necessary, let us assume

distḠ(a1, V (C)) ≤ distḠ(a2, V (C)), distḠ(a3, V (C)).

We consider first the case where a1 ∈M . Recall that by definition a1ct(a1) /∈ E(G) but
a1ct(a1)−1, a1ct(a1)+1, a1ct(a1)+2 ∈ E(G) and a2ct(a1), a3ct(a1) ∈ E(G). Since [a1, ct(a1)+2,

a2, ct(a1), a3] does not induce a dart, we have a2ct(a1)+2 /∈ E(G) or a3ct(a1)+2 /∈ E(G).
Thus, the fact V (C) \ (NG(a2) ∪ NG(a3)) = ∅ implies that either a2ct(a1)+2 /∈ E(G)

or a3ct(a1)+2 /∈ E(G). Renaming vertices if necessary, we may assume the latter case,
and so a3ct(a1)+1 ∈ E(G). Since [a3, ct(a1)−1, a1, ct(a1)+2, a2] does not induce a dart,
we have some i ∈ [3] such that aict(a1)−1 /∈ E(G). Clearly, i 6= 1 and, since the
set V (C) \ (NG(a2) ∪ NG(a3)) is empty, the integer i is uniquely determined. Thus,
[a1, ct(a1)+1, a3, ct(a1), ct(a1)+2] induces a C5 and [a1, ct(a1)−1, a5−i, ct(a1), ai] induces a P5,
which contradicts our assumption that G is C5- or P5-free. Thus, a1 ∈ D and, since
2 ≤ distḠ(a1, V (C)) ≤ distḠ(a2, V (C)), distḠ(a3, V (C)), we have I ⊆ D.

Let u ∈ V (G) \ (NG[a1] ∪ {a2, a3}). Since a1 ∈ D and V (G) = NG[V (C)], it fol-
lows u /∈ V (C) and there is some j ∈ [2k + 1] such that cj ∈ NG(u), respec-
tively. Furthermore, [a1, cj, a2, u, a3] does not induce a dart, and so a2u /∈ E(G) or
a3u /∈ E(G). Renaming vertices if necessary, we may assume the latter case. By
the choice of I, we have distḠ(V (C), a2) ≤ distḠ(V (C), u). Thus, distḠ(V (C), a1) ≤
distḠ(V (C), a2) ≤ distḠ(V (C), v) for each v ∈ V (G) \NG[a1]. In particular, it follows
distḠ(V (C), a1) =∞. Let D′ with I ⊆ D′ ⊆ D be the set of vertices inducing a com-
ponent of Ḡ. Since distḠ(V (C), a1) =∞, we have that EG[D′, V (G) \D′] is complete,
and so D′ is a homogeneous set, which contradicts the fact that G is prime. Thus, our
proof is complete.

Using the Lemma 51 it follows from the Strong Perfect Graph Theorem that every prime
(C5, C7, . . . , dart)-free graph is perfect or 3K1-free. Similarly as we argue in Chapter 5
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for (C5, C7, . . . , banner)-free graphs, we prove next that each critical (C5, C7, . . . , dart)-
free graph is 3K1-free by applying Corollary 40. Let G be a critical (C5, C7, . . . , dart)-
free graph. By Corollary 40, the vertex set of G can be partitioned into k ≥ 1 sets
M1,M2, . . . ,Mk such that G[Mi] is a ‘non-empty, 2K1-free’-expansion of a prime graph
Gp
i for each i ∈ [k] and EG[Mi,Mj] is complete for each distinct i, j ∈ [k]. By Lemma 51

Gp
i is 3K1-free or perfect for each i ∈ [k]. Thus, G[Mi] is 3K1-free or, by Lemma 35

and Observation 36, G[Mi] is perfect. In the latter case, G[Mi] is complete since G is
critical. Thus, in both cases, G[Mi] is 3K1-free. Since EG[Mi,Mj] is complete for each
distinct i, j ∈ [k], G is 3K1-free as well.

Since we characterized all critical graphs we know, by Lemma 1, that f ?{C5,C7,...,dart} =

f ?{C5,3K1}.

In contrast to prime (P5, banner)-free graphs which are perfect by Theorem 50 if the
independence number is at least 3, there exist prime (P5, dart)-free graphs which are
not perfect although their independence number is at least 3, for example G1, G2, G3,

and G4, depicted in Figs. 7-10. We note that, by a result of Karthick, Maffray, and
Pastor [39], each such graph contains at most 18 vertices. However, in order to apply
Lemma 41, we need a full characterisation of these graphs.

Lemma 52. If G is a prime (P5, dart)-free graph of independence number at least 3,
then either G is W5-free and Ḡ is A5-free, or G ∼= G1.

Proof. Let G be a prime (P5, dart)-free graph of independence number at least 3 with
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G 6∼= G1. Since G is prime, we immediately obtain that G is connected. We show first
that G contains an induced cycle of length 5. Clearly, G is (C7, C9, . . .)-free, and from
Lemma 51 we deduce that Ḡ is (C7, C9, . . .)-free as well. Hence, G contains an induced
cycle of length 5 or it is perfect by the Strong Perfect Graph Theorem. But in the
latter case, G is W5-free and Ḡ is A5-free.

For some C : c1c2c3c4c5c1 ∈ C5(G), let M(C) be the set of vertices of V (G)\V (C) such
that EG[{m}, V (C)] is mixed if and only if m ∈ M(C), and let D(C) be the set of
vertices of NG(V (C)) such that EG[{d}, V (C)] is complete if and only if d ∈ D(C).
Furthermore, for some vertex u ∈ NG(V (C)), let iC(u) ∈ [5] and jC(u), kC(u) ∈ N0 be
such that

(i) ciC(u)u, ciC(u)+1u, . . . , ciC(u)+jC(u)u ∈ E(G) and ciC(u)+jC(u)+1u /∈ E(G),

(ii) ciC(u)−1u, ciC(u)−2u, . . . , ciC(u)−kC(u)u /∈ E(G) and ciC(u)−(kC(u)+1)u ∈ E(G),

(iii) with respect to (i) and (ii), jC(u) is minimum, and

(iv) with respect to (i), (ii), and (iii), kC(u) is maximum.

Since [m, ciC(m), ciC(m)−1, ciC(m)−2, ciC(m)−3] does not induce a P5, we have kC(m) ≤ 2

for each m ∈M(C). For each i ∈ [5], let

Ai(C) = {a : NG(a) ∩ V (C) = {ci, ci+2}} and

Bi(C) = {b : NG(b) ∩ V (C) = {ci, ci+2, ci+3}}.

Clearly, Ai(C) ∪ Bi(C) ⊆ M(C) and iC(u) = i if u ∈ Ai(C) ∪ Bi(C) for each i ∈ [5].
With

X≥2(C) = {x : x ∈ NG(V (C)), jC(x) ≥ 2} and

X≥3(C) = {x : x ∈ NG(V (C)), jC(x) ≥ 3},

we obtain

M(C) =

(
5⋃
i=1

Ai(C) ∪Bi(C)

)
∪ (X≥2(C) \D(C))

by the fact that kC(m) ≤ 2 for each m ∈ M(C). Obviously, EG[N2
G(V (C)), X≥2(C)]

is anticomplete since [w, x, ciC(u), ciC(u)+1, ciC(u)+2] does not induce a dart for each w ∈
N2
G(V (C)) and each x ∈ NG(w)∩X≥2(C). Consequently, V (G) = D(C)∪M(C)∪V (C)

if M(C) \X≥2(C) = ∅. Furthermore, let

A(C, x) =

AiC(x)−2(C) \NG(x) if x ∈ X≥3(C) \D(C),

∅ if x ∈ D(C),

and

B(C, x) =

BiC(x)−1(C) \NG(x) if x ∈ X≥3(C) \D(C),

∅ if x ∈ D(C)
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for each x ∈ X≥3(C).

We continue by proving four claims from which we finally deduce our desired result.

Claim 52.1. If C : c1c2c3c4c5c1 ∈ C5(G) with X≥3(C) 6= ∅, then M(C) \ X≥2(C) =⋂
x∈X≥3(C) B(C, x) and |M(C) \X≥2(C)| ≤ 1.

Proof. For the sake of simplicity, we divide the proof of this claim into three parts and
prove step-by-step for each C ∈ C5(G):

(i) M(C) \X≥2(C) =
⋂
x∈X≥3(C)(A(C, x) ∪B(C, x)),

(ii) M(C) \X≥2(C) =
⋂
x∈X≥3(C)B(C, x), and

(iii) |M(C) \X≥2(C)| ≤ 1.

Note that
⋂
x∈X≥3(C)(A(C, x)∪B(C, x)) ⊆M(C)\X≥2(C), and (i) implies (ii) and (iii)

if D(C) 6= ∅. Hence, for (ii) and (iii), we may assume D(C) = ∅.

For the sake of a contradiction, let us suppose that (i) is false. Let m ∈M(C)\X≥2(C)

and x ∈ X≥3(C) be two arbitrary vertices. Note that jC(m) = 0 and ciC(m)−1m,

ciC(m)+1m /∈ E(G). Furthermore, the maximality of kC(m) implies ciC(m)+2m ∈ E(G).
If x ∈ D(C), then, redefining iC(x) if necessary, we may assume iC(m) = iC(x).
Hence, [m, ciC(x), ciC(x)−1, x, ciC(x)+1] if mx /∈ E(G) and [ciC(x)−1, x,m, ciC(x)+2, ciC(x)+1]

if mx ∈ E(G) induces a dart; a contradiction. Thus, x /∈ D(C), and so jC(x) = 3 and
kC(x) = 1. If iC(m) = iC(x), then

• [ciC(x)−1, ciC(x), ciC(x)+1, x,m] if mx ∈ E(G),

• [m, ciC(x)+2, ciC(x)+1, x, ciC(x)+3] if ciC(x)+3m,mx /∈ E(G), and

• [ciC(x)−1, ciC(x)+3,m, ciC(x)+2, x] if ciC(x)+3m ∈ E(G) but mx /∈ E(G)

induces a dart; a contradiction. Hence, iC(m) 6= iC(x). If iC(m) = iC(x) + 1, then
[ciC(x), x,m, ciC(x)+3, ciC(x)+2] if mx ∈ E(G) and [m, ciC(x)+1, ciC(x), x, ciC(x)+2] if mx /∈
E(G) induces a dart; a contradiction. Hence, iC(m) 6= iC(x) + 1. If iC(m) = iC(x) + 2,
then

• [ciC(x)+3, x, ciC(x)+1, ciC(x),m] if ciC(x)m,mx ∈ E(G),

• [ciC(x), x,m, ciC(x)+2, ciC(x)+3] if ciC(x)m /∈ E(G) but mx ∈ E(G), and

• [m, ciC(x)+2, ciC(x)+1, x, ciC(x)+3] if mx /∈ E(G)

induces a dart; a contradiction. Hence, iC(m) 6= iC(x) + 2. If iC(m) = iC(x) + 3,
then [ciC(x)−1, ciC(x)+3, ciC(x)+2, x,m] if mx ∈ E(G) and [ciC(x)−1, ciC(x),m, ciC(x)+1, x] if
ciC(x)+1m ∈ E(G) but mx /∈ E(G) induces a dart; a contradiction. Hence, ciC(x)+1m,

mx /∈ E(G), and so m ∈ A(C, x). If iC(m) = iC(x) + 4, then

• [ciC(x)+3, x, ciC(x), ciC(x)+1,m] if mx ∈ E(G) and
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• [m, ciC(x)+1, ciC(x), x, ciC(x)+2] if ciC(x)+2m,mx /∈ E(G)

induces a dart; a contradiction. Hence, ciC(x)+2m ∈ E(G) but mx /∈ E(G), and so
m ∈ B(C, x), which completes our proof for (i).

For (ii), let us assume that x ∈ X≥3(C) \ D(C) is an arbitrary vertex, and, for the
sake of a contradiction, let us suppose that A(C, x) 6= ∅. Let S be the set of ver-
tices of G such that ciC(x)s, ciC(x)+3s ∈ E(G) but ciC(x)+1s, ciC(x)+2s, sx /∈ E(G) if and
only if s ∈ S. Note that A(C, x) ∪ {ciC(x)+4} ⊆ S and Ḡ[A(C, x) ∪ {ciC(x)+4}] is
connected. Hence, let A be the set of vertices that induces the component of Ḡ[S]

which contains all vertices of A(C, x) ∪ {ciC(x)+4}. We note that, for each a ∈ A,
Ca : ciC(x)ciC(x)+1ciC(x)+2ciC(x)+3aciC(x) is an induced C5 in G and NG(x) ∩ V (Ca) =

NG(x)∩V (C). Since A is not a homogeneous set in G, there is some vertex u ∈ V (G)\A
that has a neighbour, say a1, and a non-neighbour, say a2, in A. Since Ḡ[A] is con-
nected, we can assume a1a2 /∈ E(G). Clearly, u /∈ A ∪ V (C) ∪ {x}. Note that
a2 ∈ A(Ca1 , x). Thus, by (i), u /∈ X≥3(Ca1). If u ∈ X≥2(Ca1) \ X≥3(Ca1), then
|NG(u) ∩ V (Ca2)| = 2 since a1u ∈ E(G) but a2u /∈ E(G). Thus, by (i), u ∈ A(Ca2 , x),
and so u ∈ S. To be more precise, since a2u /∈ E(G), we have u ∈ A by the choice of
A, which is a contradiction to the fact u ∈ V (G) \ A. Consequently, by (i), it remains
to consider the case where u ∈ A(Ca1 , x) ∪ B(Ca1 , x), and so, since a1u ∈ E(G), we
have u ∈ B(Ca1 , x). Hence, kCa2 (u) = 3, which contradicts the fact that kCa2 (v) ≤ 2

for each v ∈ NG(V (Ca2)) as shown above. Consequently, A(C, x) = ∅, which proves
(ii).

We finally prove (iii) and assume that there exists some vertex x ∈ X≥3(C) \ D(C).
For the sake of a contradiction, let us suppose |M(C) \ X≥2(C)| > 1. Recall that
EG[N2

G(V (C)), X≥2(C)] is anticomplete. Therefore, since [x, ciC(x)+3, ciC(x)+4, b, w] does
not induce a P5 for each b ∈ B(C, x) and each w ∈ N2

G(V (C)), we additionally have
EG[B(C, x), N2

G(V (C))] is anticomplete. Thus, the connectivity of G and (ii) imply

V (G) = V (C) ∪D(C) ∪M(C) = V (C) ∪

 ⋂
x∈X≥3(C)

B(C, x)

 ∪X≥2(C).

Since B(C, x) ⊆M(C) \X≥2(C), (ii) implies B(C, x) = M(C) \X≥2(C). Additionally,
since B(C, x) is not a homogeneous set, there are vertices b1, b2 ∈ B(C, x) and u ∈
V (G) \ B(C, x) such that u is adjacent to b1 but not to b2. Hence, u ∈ X≥2(C) by
(ii). By (ii) and the fact b1u ∈ E(G), it follows u /∈ X≥3(C). Thus, u ∈ X≥2(C) \
X≥3(C). In particular, jC(u) = kC(u) = 2. Furthermore, [ciC(x), ciC(x)+1, b1, ciC(x)+2, b2]

does not induce a dart, and so b1b2 ∈ E(G). Since [u, b1, ciC(x)+1, b2, ciC(x)+4] and
[u, b1, ciC(x)+2, b2, ciC(x)+4] do not induce a dart in G, we have ciC(x)+1u, ciC(x)+2u ∈ E(G)

or ciC(x)+4u ∈ E(G). Let us consider first the case where ciC(x)+1u, ciC(x)+2u ∈ E(G).
Since kC(u) = 2, it follows ciC(x)u /∈ E(G) or ciC(x)+3u /∈ E(G). Renaming vertices
if necessary, we may assume ciC(x)u /∈ E(G). Thus, [ciC(x), ciC(x)+1, u, b1, b2] induces a
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dart; a contradiction. Thus, let us consider the second case where ciC(x)+4u ∈ E(G).
But now,

• [ciC(x), ciC(x)−1, u, b1, b2] if ciC(x)u /∈ E(G),

• [ciC(x)+3, ciC(x)+4, u, b1, b2] if ciC(x)+3u /∈ E(G), and

• [b2, ciC(x)+4, ciC(x)+3, u, ciC(x)] if ciC(x)u, ciC(x)+3u ∈ E(G)

induces a dart; a contradiction. Hence, |M(C) \ X≥2(C)| ≤ 1, (iii) follows. and our
proof is complete. (�)

Claim 52.2. If C : c1c2c3c4c5c1 ∈ C5(G) with X≥3(C) 6= ∅ and M(C) \ X≥2(C) 6= ∅,
then |X≥3(C)| = 1.

Proof. Let x ∈ X≥3(C). For the sake of a contradiction and by Claim 52.1, let us
suppose that there is a vertex b ∈ B(C, x) but |X≥3(C)| ≥ 2. For each x1, x2 ∈
X≥3(C), we have NG(x1) ∩ V (C) = NG(x2) ∩ V (C) 6= V (C) by Claim 52.1, and
x1x2 ∈ E(G) by the fact that [ciC(x1)−1, ciC(x1), x1, ciC(x1)+1, x2] does not induce a dart.
Since X≥3(C) is not a homogeneous set, there is some vertex u ∈ V (G) \ X≥3(C)

that is, renaming vertices if necessary, adjacent to x1 but non-adjacent to x2. Re-
call that EG[N2

G(V (C)), X≥2(C)] is anticomplete, and so u ∈ NG(V (C)). Hence,
by Claim 52.1, u ∈ X≥2(C) \ X≥3(C), and so jC(u) = kC(u) = 2. Furthermore,
[u, x1, ciC(x1), x2, ciC(x1)+3] does not induce a dart, which means ciC(x1)u ∈ E(G) or
ciC(x1)+3u ∈ E(G). Renaming vertices if necessary, we may assume ciC(x1)u ∈ E(G).
Since [ciC(x1)−1, ciC(x1), u, x1, x2] does not induce a dart, it follows ciC(x1)−1u ∈ E(G).
From jC(u) = kC(u) = 2, we obtain further that either ciC(x1)+1u ∈ E(G) or ciC(x1)+3u ∈
E(G). If ciC(x1)+1u ∈ E(G), then [u, ciC(x1)+1, b, ciC(x1)+2, x2] induces a dart if bu /∈ E(G)

and [ciC(x1)+3, ciC(x1)+2, b, u, ciC(x1)] induces a P5 if bu ∈ E(G), which contradicts our
assumption that G is (P5, dart)-free. Hence, ciC(x1)+1u /∈ E(G) and ciC(x1)+3u ∈ E(G).
But now, [b, ciC(x1)+4, ciC(x1)+3, u, ciC(x1)] if bu /∈ E(G) and [b, u, ciC(x1), x1, ciC(x1)+3] if
bu ∈ E(G) induces a dart; the final contradiction. It implies |X≥3(C)| ≤ 1, which
completes our proof. (�)

Claim 52.3. If C : c1c2c3c4c5c1 ∈ C5(G), then M(C) \X≥2(C) 6= ∅.

Proof. For the sake of a contradiction, let us suppose M(C) \X≥2(C) = ∅. Note that
since EG[N2

G(V (C)), X≥2(C)] is anticomplete, and, by the connectivity of G, it follows
V (G) = V (C)∪X≥2(C). In view of Lemma 52, let {a1, a2, a3} be a set of three pairwise
non-adjacent vertices, such that

(i)
∑3

i=1 distḠ(ai, V (C)) is minimum, and

(ii) with respect to (i), distḠ(a1, V (C)) ≤ distḠ(a2, V (C)) ≤ distḠ(a3, V (C)).
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Since M(C) \ X≥2(C) = ∅, and so jC(x) ≥ 2 for each x ∈ NG(V (C)), we have
|{a1, a2, a3} ∩ V (C)| ≤ 1, and so distḠ(a2, V (C)) ≥ 1.

If distḠ(a1, V (C)) = ∞, then the set, say S, of vertices inducing the component of
Ḡ that contains a1, a2, a3 satisfies that EG[S, V (G) \ S] is complete, and so, S is a
homogeneous set in G, which is contradiction to our assumption that G is prime. Thus,
distḠ(a1, V (C)) <∞. Hence, let P : p1p2 . . . p`, ` ≥ 1, be a shortest path connecting a1

and a vertex of C in Ḡ, where a1 = p1 and p` ∈ V (C). Renaming vertices if necessary,
we may assume p` = c1. By the minimality of

∑3
i=1 distḠ(ai, V (C)), we further have

a2p2, a3p2 ∈ E(G).

If ` = 1, then a1 = c1. Since a2, a3 /∈ V (C) and jC(a2), jC(a3) ≥ 2, it follows
a2c3, a2c4, a3c3, a3c4 ∈ E(G). Furthermore, [c1, c2, a2, c3, a3] does not induce a dart,
and so a2c2 /∈ E(G) or a3c2 /∈ E(G). Similarly, a2c5 /∈ E(G) or a3c5 /∈ E(G). How-
ever, jC(a2) = jC(a3) = 2, and so, renaming vertices if necessary, we may assume
a2c2 ∈ E(G) and a3c5 ∈ E(G). Thus, [a2, c2, c1, c5, a3] induces a P5, which is a contra-
diction to our assumption that G is P5-free. Hence, ` ≥ 2.

If ` ≥ 3, then EG[{a1, a2, a3}, V (C)] is complete. Since V (G) = V (C) ∪X≥2(C), there
is some i ∈ [5] such that p2ci ∈ E(G), and so [a1, ci, a2, p2, a3] induces a dart, which is
a contradiction to our assumption that G is dart-free. Thus, ` = 2.

Since ` = 2, we have a1 /∈ D(C). Hence, a1ciC(a1)−1 /∈ E(G) but a1ciC(a1), a1ciC(a1)+1,

a1ciC(a1)+2 ∈ E(G). Recall that further a2ciC(a1)−1, a3ciC(a1)−1 ∈ E(G) by the min-
imality of

∑3
i=1 distḠ(ai, V (C)). The set [a1, ciC(a1), a2, ciC(a1)−1, a3] does not induce

a dart, and so there is some i ∈ {2, 3} such that aiciC(a1) /∈ E(G). Again, by
the minimality of

∑3
i=1 distḠ(ai, V (C)), we have a5−iciC(a1) ∈ E(G). Similarly, since

[ai, ciC(a1)+1, a1, ciC(a1), a5−i] does not induce a dart and a1ciC(a1)+1 ∈ E(G), we have
a2ciC(a1)+1 /∈ E(G) or a3ciC(a1)+1 /∈ E(G). Hence, there is some j ∈ {2, 3} such
that ajciC(a1)+1 /∈ E(G). Again, by the minimality of

∑3
i=1 distḠ(ai, V (C)), it fol-

lows a5−jciC(a1) ∈ E(G). But now, [a1, ciC(a1)+1, a5−j, ciC(a1)−1, aj] induces a P5, which
is a contradiction to our assumption that G is P5-free. The last contradiction completes
our proof. (�)

Claim 52.4. G is G1-free.

Proof. For the sake of a contradiction, let us suppose that S induces a G1 and the
vertices of S are denoted as in Fig. 7. Furthermore, let T ⊆ V (G) be the set of vertices
such that (NG(t) ∩ S) \ {g} = {g1, g2, g3} for each t ∈ T . Note that g ∈ T and
(S \ {g}) ∪ {t} induces a G1 for each t ∈ T . If V (G) = S ∪ T , then T = {g} since G
is prime, and we conclude G ∼= G1, which is a contradiction to our assumption that
G 6∼= G1. Hence, by the connectivity of G, we may assume that there is some vertex
u ∈ NG(S ∪ T ). Renaming vertices if necessary, we may assume u ∈ NG(S).
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For each i, j, k with {i, j, k} = [3], C{i,j} : ggig{i,k}g{j,k}gjg ∈ C5(G), gk ∈ M(C{i,j}) \
X≥2(C{i,j}), and g{i,j} ∈ X≥3(C{i,j}). From Claim 52.1 and Claim 52.2, we deduce

NG(V (C{i,j})) = M(C{i,j}) ∪D(C{i,j}) = {gk, g{i,j}} ∪ (X≥2(C{i,j}) \X≥3(C{i,j})).

Thus, u satisfies jC{i,j}(u) = kC{i,j}(u) = 2.

We assume first gu /∈ E(G). It follows g{i,k}u, g{j,k}u ∈ E(G), and either giu ∈ E(G)

or gju ∈ E(G) for each {i, j, k} = [3], where the latter observation cannot be satisfied
for all three triples {1, 2}, {1, 3}, and {2, 3}. Thus, gu ∈ E(G).

If there are integers i, j, k with {i, j, k} = [3] such that giu, gju ∈ E(G), then g{i,k}u,
g{j,k}u /∈ E(G) since jC{i,j}(u) = kC{i,j}(u) = 2. Thus, either gku ∈ E(G) or gi,ju ∈
E(G). Since u /∈ T , we have gku /∈ E(G) and gi,ju ∈ E(G), and so [gk, gi,k, gi, u, gj]

induces a P5; a contradiction.

Finally, we consider the case that there is some i ∈ [3] such that giu ∈ E(G) but
gju /∈ E(G) for each j ∈ [3] \ {i}. But now, u /∈ X≥2(C[3]\{i}), which is a contradiction
to the above observations. Hence, NG(S ∪ T ) = ∅, which completes our proof. (�)

For each C : c1c2c3c4c5c1 ∈ C5(G), we haveM(C)\X≥2(C) 6= ∅ by Claim 52.3. Further-
more, Claim 52.1 implies that V (C)∪{m,x} induces a G1 in G if m ∈M(C)\X≥2(C)

and x ∈ X≥3(C). Thus, since G is G1-free by Claim 52.4, X≥3(C) = ∅, and so G is
W5-free and Ḡ is A5-free, which completes our proof.

By Lemma 51 and Lemma 52, it remains to study the q-chromatic number of G1 and
of prime (P5, dart,W5)-free graphs of independence number at least 3 whose comple-
mentary graphs are (A5, C7, C9, . . .)-free. We study graphs of this type by proving the
next slightly stronger result. Note that the complementary graph of a dart-free graph
is T0,1,2-free. We show this stronger result because in this form this lemma is also
applicable for (P5, gem)-free graphs as we show in Chapter 7. For the definition of G?

we refer to page 23.

Lemma 53. If G is a prime (P5,W5)-free graph for which Ḡ is (A5, C7, C9, . . . , T0,1,2)-
free, then G is perfect or G ∈ G? or G ∼= G′ with

G′ ∈ {C5, G2, G3, G3−g,G3−g4,1, G3−{g, g4,1}, G3−{g2,2, g4,1}, G3−{g, g2,2, g4,1}, G4}.

Proof. For some maximal connected buoy C : C1C2C3C4C5C1 in G and each i ∈ [5], let

Ai(C) = {a : NG(a) ∩ V (C) = Ci ∪ Ci+2} and

Bi(C) = {b : NG(b) ∩ V (C) = Ci ∪ Ci+2 ∪ Ci+3}.

Furthermore, let

C◦5(G) = Argmax{|B1(C) ∪B2(C) ∪ . . . ∪B5(C)| : C ∈ C5(G)}.
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We introduce first five claims from which we finally deduce our desired result.

Claim 53.1. If C : C1C2C3C4C5C1 is a maximal connected buoy, then NG(V (C)) =⋃
i∈[5]Ai(C) ∪Bi(C), and Aj−1(C) ∪ Cj is independent for each j ∈ [5].

Proof. Let v ∈ NG(V (C)) be an arbitrary vertex. Since G is W5-free and Ḡ is A5-free,
there are two integers i1, i2 ∈ [5] such that EG[{v}, Ci1 ∪ Ci2 ] is anticomplete.

For the sake of a contradiction, let us suppose that, for each two integers j1, j2 ∈ [5]

with j2 = j1 + 2, one of the two sets EG[{v}, Cj1 ], EG[{v}, Cj2 ] is not complete. Since
v ∈ NG(C), there are some k ∈ [5] and a vertex ck ∈ Ck∩NG(v). Since, for every triple
(ck+1, ck+2, ck+3) ∈ Ck+1 × Ck+2 × Ck+3, [v, ck, ck+1, ck+2, ck+3] does not induce a P5,
there is some ` ∈ {k + 1, k + 2, k + 3} such that EG[{v}, C`] is complete. Let c` ∈ C`.
By our supposition, there are some c`+2 ∈ C`+2 \NG(v) and c`+3 ∈ C`+3 \NG(v). Since
[v, c`, c`−1, c`+3, c`+2] for each c`−1 ∈ C`−1 and [v, c`, c`+1, c`+2, c`+3] for each c`+1 ∈ C`+1

do not induce copies of P5, we have that EG[{v}, C`−1 ∪ C`+1] is complete, which
contradicts our supposition. Thus, there are two integers j1, j2 ∈ [5] such that j2 = j1+2

and EG[{v}, Cj1 ∪ Cj2 ] is complete.

If i2 = i1 + 1, then j1 = i2 + 1 and j2 = i1 − 1, and, by the maximality of C, we
have that EG[{v}, Cj−2] is anticomplete, and so v ∈ Aj1(C). Thus, renaming vertices
if necessary, we may assume i2 = i1 + 2, j1 = i1 + 1, and j2 = i2 + 1. For two
adjacent vertices ci1−1, c

′
i1−1 ∈ Ci1−1 with ci1−1 ∈ NG(v), we have c′i1−1 ∈ NG(v) since

[c′i1−1, ci1−1, v, cj1 , ci2 ] for some cj1 ∈ Cj1 and some ci2 ∈ Ci2 does not induce a P5. By the
connectedness of Ci1−1, this observation implies v ∈ Aj1(C) ∪ Bj1(C). Furthermore,
by the arbitrariness of v, it follows NG(V (C)) =

⋃
i∈[5]Ai(C) ∪ Bi(C). Thus, Cj is

a module for each j ∈ [5], and so |Cj| = 1 since G is prime. In particular, each
connected buoy C ′ : C ′1C ′2C ′3C ′4C ′5C ′1 is indeed an induced cycle, and so Aj−1(C)∪Cj is
an independent set for each j ∈ [5]. (�)

Claim 53.2. If C : c1c2c3c4c5c1 ∈ C5(G), then

(i) N3
G(V (C)) = ∅ and

(ii) N2
G(V (C)) is an independent set.

Proof. LetW be a set of vertices inducing a component in G−NG[V (C)] and let us sup-
pose, for the sake of a contradiction, that w1 ∈ N2

G(V (C))∩W and w2 ∈ [N2
G(V (C))∪

N3
G(V (C))] ∩ W are two arbitrarily chosen adjacent vertices. By Claim 53.1, there

is some vertex in
⋃5
i=1(Ai(C) ∪ Bi(C)) that is adjacent to w1. Let v be an arbi-

trary neighbour of w1 in NG(V (C)). Renaming vertices if necessary, we may assume
v ∈ Ai(C)∪Bi(C). Since [ci−1, ci, v, w1, w2] does not induce a P5, we have vw2 ∈ E(G),
and so w2 ∈ N2

G(V (C)). Thus, since v is arbitrarily chosen, NG(w1) ∩ NG(V (C)) ⊆
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NG(w2) ∩NG(V (C)), and so, by the arbitrariness of w1 and w2, W is a homogeneous
set in G, which contradicts the fact that G is prime. Hence, (i) and (ii) follow. (�)

Claim 53.3. If C : c1c2c3c4c5c1 ∈ C5(G), then,

(i) for each j ∈ [5] and each aj ∈ Aj(C), EG[{aj}, Aj−1(C) ∪ Aj+1(C) ∪ Bj+1(C)] is
complete and EG[{aj}, Aj(C)∪Bj(C)∪Bj+2(C)∪N2

G(V (C))\{aj}] is anticomplete.

(ii) for each j ∈ [5], each set Bj(C) is a module in G[NG[V (C)]],

(iii) there is some integer p(C) ∈ [5] such that

(a) Bp(C)+1(C) ∪Bp(C)+3(C) ∪Bp(C)+4(C) = ∅,

(b) EG[Bp(C)(C), Bp(C)+2(C)] is anticomplete,

(c) EG[Bp(C)(C) ∪ Bp(C)+2(C), N2
G(V (C))] is complete if none of the three sets

Bp(C)(C), Bp(C)+2(C), and N2
G(V (C)) is empty,

(d) |Bp(C)(C) ∪ Bp(C)+2(C) ∪ N2
G(V (C))| = 3 or at least one of the three sets

Bp(C)(C), Bp(C)+2(C), N2
G(V (C)) is empty, and

(iv)
⋃5
i=1Ai(C) = ∅ or N2

G(V (C)) = ∅.

Proof. Let us assume aj ∈ Aj(C). Note that Claim 53.1 implies that Aj(C) is in-
dependent. By considering the cycle C ′ : ajcj+2cj+3cj+4cjaj ∈ C5(G), the same claim
implies

Aj−1(C) ∪ Aj+1(C) ∪Bj+1(C) ⊆ NG(aj) and NG(aj) ∩ [Bj(C) ∪Bj+2(C)] = ∅.

Furthermore, since [w, aj, cj+2, cj+3, cj+4] does not induce a P5 for some w ∈ N2
G(V (C)),

we have that EG[{aj}, N2
G(V (C))] is anticomplete. Thus, (i) follows.

Recall that N i
G(V (C)) = ∅ for each i ≥ 3 by Claim 53.2. Hence, V (G) \ NG[V (C)] =

N2
G(V (C)). For simplicity, whenever there is some i ∈ [5] and a vertex bi, we let

bi ∈ Bi(C). Since neither [ci+2, bi, ci, ci−1, bi+1] induces a P5 in G if bibi+1 /∈ E(G) nor
{ci+3, ci+2, bi, bi+1, ci−1, ci} induces a T0,1,2 in Ḡ, we have that Bi(C) = ∅ or Bi+1(C) = ∅
for each i ∈ [5]. Thus, (a) is proven. Furthermore, we conclude (b) from the fact that
the set {bp(C)+2, cp(C)−1, cp(C), bp(C), cp(C)+2, cp(C)+1} does not induce a T0,1,2 in Ḡ.

Let us assume that w ∈ N2
G(V (C)) is an arbitrarily chosen vertex, and there are

two vertices bp(C) ∈ Bp(C)(C) and bp(C)+2 ∈ Bp(C)+2(C). Since w ∈ N2
G(V (C)), (i)

implies that there is a vertex b ∈ Bp(C)(C) ∪ Bp(C)+2(C) which is adjacent to w.
Renaming vertices if necessary, we may assume b ∈ {bp(C), bp(C)+2}. Since neither
[w, bp(C), cp(C)−2, cp(C)−1, bp(C)+2] nor [w, bp(C)+2, cp(C)−1, cp(C)−2, bp(C)] induces a P5, we
have bp(C)w, bp(C)+2w ∈ E(G). Thus, by considering the cycle C ′ : wbp(C)cp(C)−2cp(C)−1

bp(C)+2w ∈ C5(G), Claim 53.1 and (b) imply Bp(C)(C) ∪ Bp(C)+2(C) ⊆ NG(w), and so
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(c) follows. Recall that, by (i), EG[{aj}, N2
G(V (C))] is anticomplete. Hence, N2

G(V (C))

is a module, and (d) follows if (ii) holds since G is prime.

For the sake of a contradiction, let us suppose that Bj(C) is not a module in graph
G[NG[V (C)]]. Thus, there are two vertices bj, b′j ∈ Bj(C) and a vertex v ∈ NG(V (C))\
Bj(C) such that bjv ∈ E(G) but b′jv /∈ E(G). By Claim 53.1, there is some i ∈ [5] such
that v ∈ Ai(C) ∪Bi(C). By (a), (b), and the fact v /∈ Bj(C), we have v /∈ Bi(C), and
so v ∈ Ai(C). Furthermore, (i) implies i = j + 1 or i = j + 2. By the symmetry of the
cycle, we may assume i = j + 1. But now, {cj+3, b

′
j, cj+2, bj, v, cj+1} if bjb′j /∈ E(G) and

{bj, v, cj+3, b
′
j, cj, cj+4} if bjb′j ∈ E(G) induces a T0,1,2 in Ḡ, which is a contradiction to

our assumption that Ḡ is T0,1,2-free. Thus, (ii) as well as (d) follow.

We finally show (iv). Let w ∈ N2
G(V (C)). By (i), by Claim 53.1, and by renam-

ing vertices if necessary, we may assume b1 ∈ B1(C) is adjacent to w. Note that
(i) implies that EG[A5(C), B1(C)] is complete and EG[A1(C) ∪ A4(C), B1(C)] is anti-
complete. Furthermore, EG[Ai(C), N2

G(V (C))] is anticomplete by (i) for each i ∈ [5].
Since neither [w, b1, c1, c2, a2] nor [w, b1, c1, c5, a3] induces a P5 for each a2 ∈ A2(C)

and each a3 ∈ A3(C), we have that EG[A2(C) ∪ A3(C), {b1}] is complete. Thus,
EG[Ai(C) ∪ {ci+1}, {b1}] is either complete or anticomplete for each i ∈ [5]. For the
sake of a contradiction, let us suppose that there is some i ∈ [5] such that Ai(C) 6= ∅.
The fact that Ai(C) ∪ {ci+1} is not a homogeneous set implies that there are vertices
ai, c

′
i ∈ Ai(C)∪{ci+1} and v /∈ Ai(C)∪{ci+1} such that aiv /∈ E(G) but c′iv ∈ E(G). We

let C ′ : c′ici+2ci+3ci+4cic
′
i ∈ C5(G). For the sake of simplicity, let us rename the vertices

of C such that C ′ : c′1c′2c′3c′4c′5c′1 ∈ C5(G) and ci+2 = c′i+1. Note that by the fact that
EG[Ai(C) ∪ {ci+1}, {b1}] is either complete or anticomplete, we have b ∈

⋃5
j=1Bj(C

′).
Furthermore, since c′iw /∈ E(G) by (i), it follows w ∈ N2

G(V (C ′)). By Claim 53.1,

v ∈
5⋃
j=1

(Aj(C
′) ∪Bj(C

′)).

Since aiv /∈ E(G) and ai ∈ Ai−1(C ′), (i) and (iii) imply v ∈ Bp(C′)(C
′) ∪ Bp(C′)+2(C ′).

Let j ∈ {p(C ′), p(C ′) + 2} such that v ∈ Bj(C
′). If vw ∈ E(G), then, similarly as for

b1 and C, we have that EG[Ai−1(C ′) ∪ {c′i}, {v}] is either complete or anticomplete,
which contradicts the fact that ai ∈ Ai−1(C ′) and aiv /∈ E(G) while c′iv ∈ E(G). If
vw /∈ E(G), then b1 6= v, and so, by (c), it follows b1, v ∈ Bj(C

′). Since Bj(C
′)

is a module in G[NG[V (C ′)]] by (ii), we have b1c
′
i ∈ E(G) but aib1 /∈ E(G), which

contradicts the fact that EG[Ai(C) ∪ {ci+1}, {b1}] is either complete or anticomplete.
Thus,

⋃5
i=1Ai(C) = ∅ and (iv) follows. (�)

Claim 53.4. If C : c1c2c3c4c5c1 ∈ C◦5(G) and
⋃5
i=1 Ai(C) 6= ∅, then

(i) there are two vertices b1 ∈ Bi+1(C) and b2 ∈ Bi+3(C) such that {ai, ai+2, b1, b2} ∪
V (C) induces a G4 if there exist an integer i ∈ [5] and two adjacent vertices
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ai ∈ Ai(C) and ai+2 ∈ Ai+2(C),

(ii) for each i ∈ [5] and each a ∈ Ai(C), there is some b ∈ Bi+3(C) ∪Bi+4(C) that is
non-adjacent to a,

(iii) for each i ∈ {p(C), p(C) + 2} and each b ∈ Bi(C), there is at most one a ∈
Ai+1(C) ∪ Ai+2(C) that is non-adjacent to b, and

(iv) for each i ∈ {p(C), p(C) + 2}, |Ai+1(C) ∪ Ai+2(C)| ≤ |Bi(C)| ≤ 1.

Proof. Before we start, let us note that N2
G(V (C)) = ∅ by Claim 53.3 (iv), and so

|Bi(C)| ≤ 1 for each i ∈ [5] by Claim 53.3 (ii) and since G is prime.

We focus first on verifying (i). Note that C ′ : aici+2ci+3ci+4ciai ∈ C5(G) but ai+2 ∈
Ai+2(C)∩ (Bp(C′)(C

′)∪Bp(C′)+2(C ′)). Since C ∈ C◦5(G), there is some b1 ∈ (Bp(C)(C)∪
Bp(C)+2(C)) \ (Bp(C′)(C

′) ∪Bp(C′)+2(C ′)). By Claim 53.1,

b1 ∈
5⋃
j=1

Aj(C
′).

Thus, aib1 /∈ E(G) but b1ci+1 ∈ E(G). If b1 ∈ Bi+4(C), then ai+2b1 /∈ E(G) by
Claim 53.3 (i), and [b1, ci+1, ci, ai, ai+2] induces a P5. From this contradiction to our
assumption on G, we conclude b1 /∈ Bi+4(C). Since b1 ∈

⋃5
j=1Aj(C

′) by Claim 53.1,
we have b1 ∈ Bi+3(C). Furthermore, ai+2b1 ∈ E(G) by Claim 53.3 (i). Similarly,
considering C ′′ : ai+2ci+4cici+1ci+2ai+2 instead of C ′, we obtain that there is some b2 ∈
Bi+1(C) with aib2 ∈ E(G) but ai+2b2 /∈ E(G). By Claim 53.3 (b), b1b2 /∈ E(G), and so
G[V (C) ∪ {ai, ai+2, b1, b2}] ∼= G4, which implies (i).

We continue by proving (ii). For the sake of a contradiction, let us suppose that
there is some i ∈ [5] and some vertex a ∈ Ai(C) such that each b ∈ Bi+3 ∪ Bi+4 is
adjacent to a. Since G is prime, {a, ci+1} is not a homogeneous set. Thus, there is
some vertex v ∈ V (G) such that either av ∈ E(G) and ci+1v /∈ E(G) or av 6∈ E(G)

and ci+1v ∈ E(G). Clearly, v ∈ NG(V (C)) and C ′ : ciaci+2ci+3ci+4ci ∈ C5(G). Thus,
from Claim 53.1 and Claim 53.3 we deduce

v ∈

[Ai−2(C) ∪ Ai+2(C)] ∩ [Bp(C′)(C
′) ∪Bp(C′)+2(C ′)] if av ∈ E(G), ci+1v /∈ E(G),[⋃5

i=1Ai(C
′)
]
∩ [Bi+3(C) ∪Bi+4(C)] if av /∈ E(G), ci+1v ∈ E(G).

By our assumption on a, we conclude v /∈ Bi+3(C)∪Bi+4(C), which means av ∈ E(G)

and ci+1v /∈ E(G). Hence, (i) implies that there is some b ∈ Bi+3(C)∪Bi+4(C) that is
non-adjacent to a. This conclusion is a contradiction to our supposition on a. Thus,
(ii) follows.

We focus next on a proof for (iii) and let b ∈ Bi(C). For the sake of a contradiction,
let us suppose that there are two integers j, k ∈ {i+ 1, i+ 2}, which are not necessarily
distinct, and two vertices a1 ∈ Aj(C) and a2 ∈ Ak(C) that are non-adjacent to b. If
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j 6= k, then, renaming vertices if necessary, we may assume j = i + 1 and k = i + 2.
By Claim 53.3 (i), a1a2 ∈ E(G), and so [ci, b, ck, a2, a1] induces a P5; a contradiction.
Hence, j = k and, renaming vertices if necessary, we by symmetry may assume j =

k = i+1. Since G is prime, {a1, a2} is not a homogeneous set. Thus, renaming vertices
if necessary, there is some vertex v ∈ V (G) such that a1v ∈ E(G) but a2v /∈ E(G).
Clearly, v ∈ NG(V (C)) \ {a1, a2, b}. Considering the two cycles C ′ : a1ci+3ci+4cici+1a1

and C ′′ : a2ci+3ci+4cici+1a2, Claim 53.1 implies

v ∈ [Bp(C′)(C
′) ∪Bp(C′)+2(C ′)] ∩

[
5⋃
i=1

Ai(C
′′)

]
.

In particular, either ci+1v ∈ E(G) or ci+3v ∈ E(G). Note that further either NG(v) ∩
V (C) = NG(v)∩V (C ′′) or NG(v)∩V (C) = (NG(v)∩V (C ′′))∪{ci+2}. If ci+1v ∈ E(G),
then ci+3v /∈ E(G). Hence, ci+4v ∈ E(G). By Claim 53.3 (iii) (a), ci+2v /∈ E(G).
However, bv ∈ E(G) by Claim 53.3 (i). Note that a1 ∈ Ai+1(C) and v ∈ Ai+4(C) are
adjacent. By (i), there is some b′ ∈ Bi+2(C) such that b′v /∈ E(G). By Claim 53.3 (i)
and (iii), a1b

′, a2b
′ ∈ E(G) but bb′ /∈ E(G). Recall that a1a2 /∈ E(G) since Ai+1(C) is

independent by Claim 53.1. Thus, [a2, b
′, a1, v, b] induces a P5; a contradiction. Hence,

ci+1v /∈ E(G) but ci+3v ∈ E(G), and so civ ∈ E(G). If ci+2v ∈ E(G), then b, v ∈ Bi(C),
which contradicts the fact that |Bi(C)| ≤ 1. Thus, ci+2v /∈ E(G) and v ∈ Ai+3(C). By
Claim 53.3 (i), bv /∈ E(G). Hence, [ci+2, b, ci, v, a1] induces a P5; a contradiction. This
final contradiction completes our proof for (iii).

Let us finally consider (iv) and let us assume Ai+1(C) ∪ Ai+2(C) 6= ∅. By (ii) and
the fact that Bi−1(C) ∪ Bi+1(C) = ∅, it follows that, for each a ∈ Ai+1(C) ∪ Ai+2(C),
there is a vertex in Bi(C) that is non-adjacent to a. Since |Bi(C)| ≤ 1, the vertex
b ∈ Bi(C) is non-adjacent to all vertices of Ai+1(C) ∪ Ai+2(C). By (iii), it follows
|Ai+1(C) ∪ Ai+2(C)| ≤ 1, and thus (iv) follows. (�)

Claim 53.5. If C : c1c2c3c4c5c1 ∈ C5(G) and N2
G(V (C)) 6= ∅, then

(i) G ∼= G2 if none of the three sets Bp(C)(C), Bp(C)+2(C), and N2
G(V (C)) is empty,

and

(ii) for each C ′ ∈ C5(G), N2
G(V (C ′)) 6= ∅.

Proof. We focus on a short proof for (i) first. By Claim 53.1, NG(V (C)) =
⋃5
i=1(Ai(C)∪

Bi(C)). Furthermore, from Claim 53.3 (iii) (a) and (iv) as well as from the fact
N2
G(V (C)) 6= ∅, we obtain NG(V (C)) = Bp(C)(C) ∪ Bp(C)+2(C). By Claim 53.3 (iii)

(d), |Bp(C)(C)| = |Bp(C)+2(C)| = |N2
G(V (C))| = 1. Additionally, V (G) = NG[V (C)] ∪

N2
G(V (C)) by Claim 53.2 and the result follows from Claim 53.3 (iii) (b) and (c).

Let us consider (ii). Clearly, by (i) and the fact that (ii) holds for G if G ∼= G2, we
may assume either Bp(C)(C) = ∅ or Bp(C)+2(C) = ∅. Renaming vertices if necessary,
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we may assume the latter case. Furthermore, we only need to consider some arbitrary
C ′ ∈ C5(G)\{C}. Note that Claim 53.1 and Claim 53.3 (iii) and (iv) implyNG(V (C)) =

Bp(C)(C). Thus, EG[Bp(C)(C), {cp(C), cp(C)+2, cp(C)+3, }] is complete. Since N2
G(V (C))

is independent, we have V (C) ∩ V (C ′) = ∅. Consequently,

distG(cp(C)−1, V (C ′)), distG(cp(C)+1, V (C ′)) ≥ 2,

which completes our proof for (ii). (�)

Now, the proof of the lemma can be completed as follows:

Let us assume that G is not perfect. Since G is P5-free and Ḡ is (C7, C9, . . .)-free, the
Strong Perfect Graph Theorem implies C5(G) 6= ∅.

Let C : c1c2c3c4c5c1 ∈ C5(G) be an arbitrary cycle. Recall that, by Claim 53.1 and
Claim 53.2 (i),

V (G) = V (C) ∪

(
5⋃
i=1

(Ai(C) ∪Bi(C))

)
∪N2

G(V (C)).

From Claim 53.3 (iii) (a), we have that there is some integer p(C) ∈ [5] such that
Bp(C)+1(C) ∪Bp(C)+3(C) ∪Bp(C)+4(C) = ∅.

If none of the three sets Bp(C)(C), Bp(C)+2(C), N2
G(V (C)) is empty, then G ∼= G2 by

Claim 53.5 (i).

If Bp(C)+2(C) = ∅ but N2
G(V (C)) 6= ∅, then

⋃5
i=1Ai(C) = ∅ by Claim 53.3 (iv), and so

V (G) = V (C) ∪Bp(C)(C) ∪N2
G(V (C)). Additionally, EG[{cp(C)+1, cp(C)+4}, NG(V (C))]

is anticomplete, EG[{cp(C), cp(C)+2, cp(C)+3}, NG(V (C))] is complete, and N2
G(V (C)) is

independent, by Claim 53.2 (ii). By Claim 53.5 (ii), it follows N2
G(V (C ′)) 6= ∅ for each

C ′ : c′1c
′
2c
′
3c
′
4c
′
5c
′
1 ∈ C5(G). Arguing in the exact same way for C ′ as we did for C we

obtain that V (G) − NG[V (C ′)] is independent and that there is some integer i ∈ [5]

such that EG[{c′i, c′i+2, c
′
i+3}, NG(V (C ′))] is complete and EG[{c′i+1, c

′
i+4}, NG(V (C ′))]

is anticomplete, since in this case G 6∼= G2 and N2
G(V (C ′)) 6= ∅. Hence, G ∈ G?.

Analogously, G ∈ G? if Bp(C)(C) = ∅ but N2
G(V (C)) 6= ∅. Thus, we may consider the

case where N2
G(V (C)) = ∅.

Let us assume for the rest of our proof that we additionally have C ∈ C◦5(G). By
Claim 53.3 (ii) and the fact that G is prime, |Bi(C)| ≤ 1 for each i ∈ {p(C), p(C) + 2}.
Furthermore, by Claim 53.4 (iv),

|Ap(C)+1(C) ∪ Ap(C)+2(C)| ≤ |Bp(C)(C)| ≤ 1 and

|Ap(C)+3(C) ∪ Ap(C)+4(C)| ≤ |Bp(C)+2(C)| ≤ 1.

Moreover, Claim 53.4 (ii) implies Ap(C)(C) = ∅. Thus, |V (G)| ≤ 9.
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(a) ap ∈ Ap(C)+1(C),

ap+2 ∈ Ap(C)+3(C)
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(b) ap ∈ Ap(C)+1(C),

ap+2 ∈ Ap(C)+4(C)
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(c) ap ∈ Ap(C)+2(C),

ap+2 ∈ Ap(C)+3(C)
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bp+2

ap

ap+2

(d) ap ∈ Ap(C)+2(C),

ap+2 ∈ Ap(C)+4(C)

Fig. 11: Illustration of the adjacences in {bp, bp+2, ap, ap+2}

bpbp+2

ap

ap+2

(a) Case Ap(C)+2(C) ∪Ap(C)+4(C) = ∅

bpbp+2

ap

ap+2

(b) Case Ap(C)+1(C) ∪Ap(C)+3(C) = ∅

Fig. 12: Illustration of the symmetry between cases Ap(C)+1(C) ∪Ap(C)+3(C) = ∅ and Ap(C)+2(C) ∪
Ap(C)+4(C) = ∅

If there is a vertex ap ∈ Ap(C)+1(C) ∪ Ap(C)+2(C), then there is also a vertex bp ∈
Bp(C)(C) with apbp /∈ E(G) by Claim 53.4 (ii). Furthermore, by Claim 53.3 (i),
EG[{ap}, Bp(C)+2(C)] is complete if ap ∈ Ap(C)+1(C) and anticomplete otherwise. Sim-
ilarly, if there is a vertex ap+2 ∈ Ap(C)+3(C) ∪ Ap(C)+4(C), then there is also a vertex
bp+2 ∈ Bp(C)+2(C) with ap+2bp+2 /∈ E(G), and EG[{ap+2}, Bp(C)(C)] is complete if
ap+2 ∈ Ap(C)+4(C) and anticomplete otherwise. Recall that EG[Bp(C)(C), Bp(C)+2(C)]

is anticomplete by Claim 53.3 (iii) (b). So note that the adjacencies on the set
{ap, bp, bp+2} and on the set {ap+2, bp, bp+2} are forced regardless of the existence of
ap+2 and ap, respectively. It is left to argue whether or not apap+2 ∈ E(G) in those
four cases. A complete illustration can be seen in Figure 11. If ap ∈ Ap(C)+1(C) and
ap+2 ∈ Ap(C)+4(C), then apap+2 ∈ E(G) since [bp, ap+2, cp(C)+1, ap, bp+2] does not induce
a P5, and so G ∼= G4 by Claim 53.4 (i). If ap ∈ Ap(C)+2(C) and ap+2 ∈ Ap(C)+3(C),
then apap+2 ∈ E(G) by Claim 53.3 (i), and so

{cp(C)+1, cp(C), bp+2, cp(C)+4, ap, ap+2, cp(C)+3, bp, cp(C)+2}

induces a G3, note that we counter-clockwise order the vertices as in Figure 9 starting
at g. Hence, Ap(C)+1(C) ∪ Ap(C)+3(C) = ∅ or Ap(C)+2(C) ∪ Ap(C)+4(C) = ∅. Using
the symmetry of the cycle, which is illustrated in Figure 12, and renaming vertices
if necessary, we may assume the latter case. If the vertices ap ∈ Ap(C)+1(C) and
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ap+2 ∈ Ap(C)+3(C) exist, then apap+2 /∈ E(G) since otherwise Claim 53.4 (i) implies
the existence of a vertex b ∈ Bp(C)+4(C), which is not possible by Claim 53.3 (iii) (a).
Thus, {ap+2, cp(C), cp(C)+4, bp+2, ap, cp(C)+1, cp(C)+2, bp, cp(C)+3} induces a G3 if ap and
ap+2 exist, and so we may assume that ap or ap+2 does not exist. Hence,

• G ∼= G4 − g1
∼= G3 − g or G ∼= G3 − g4,1 or G ∼= G3 − {g2,2, g4,1} if ap+2 and bp+2

exist,

• G ∼= G3 − g or G ∼= G3 − {g, g4,1} or G ∼= G3 − {g, g2,2, g4,1} if ap+2 does not but
bp+2 exists,

• G ∼= G3−{g2,2, g4,1} or G ∼= G3−{g, g2,2, g4,1} if V (G) 6= V (C), and neither ap+2

nor bp+2 exists, and

• G ∼= C5 if V (G) = V (C).

The last observation completes our proof.

By Lemma 51, Lemma 52, and Lemma 53, all prime (P5, dart)-free graphs of indepen-
dence number at least 3 are characterised. We continue by colouring these graphs.

Lemma 54. If G ∈ G? is a (P5, Q[P4])-free graph such that Ḡ is (C7, C9, . . .)-free, and
q : V (G)→ N0 is a vertex-weight function, then

χq(G) = max{ωq(G),max{χq(C) : C ∈ C5(G)}}.

Proof. Clearly,

χq(G) ≥ max{ωq(G),max{χq(C) : C ∈ C5(G)}}.

For the sake of a contradiction, let us suppose that q is a minimal counterexample,
that is,

χq(G) > max{ωq(G),max{χq(C) : C ∈ C5(G)}} and

χq′(G) ≤ max{ωq′(G),max{χq′(C) : C ∈ C5(G)}}

for each vertex-weight function q′ : V (G) → N0 with q′(G) < q(G). We clearly may
assume that q is CG

χ -minimal.

If G[q] is C5-free, then it is perfect by the Strong Perfect Graph Theorem, and so

χq(G) = χq(G[q]) = ωq(G[q]) = ωq(G)

by Lemma 35 and Observation 36. Hence, we may assume C?5(G[q], q) 6= ∅.

Let C : c1c2c3c4c5c1 ∈ C?5(G[q], q) and, in view of an application of Lemma 48, C ′ ∈
C5(G) with V (C) 6= V (C ′). Renaming vertices if necessary, we may assume that
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EG[{c1, c3, c4}, NG(V (C))] is complete. Thus, |V (C ′) ∩ V (C)| ≤ 3. As an immediate
consequence, we obtain |V (C ′) ∩ V (C)| ≤ 1 from the latter fact since C ′ is (C3, C4)-
free. In particular, it follows |V (C ′) \ NG[V (C)]| ≤ 2 and |V (C ′) ∩ NG(V (C))| ≥ 2

since V (G) \ NG[V (C)] is independent. Since EG[{c1, c3, c4} ∩ V (C ′), NG(V (C))] is
complete, we have |V (C ′) ∩ V (C)| = 0 or that NG(V (C)) ∩ V (C ′) is independent.
However, the latter case cannot occur since V (C ′) \NG[V (C)] is independent as well.
Thus, V (C ′) ∩ V (C) = ∅. Since {c2, c1, p1, p2, p3, p4, c4} does not induce a copy of
Q[P4] for each four vertices p1, p2, p3, p4 ∈ NG(V (C)), G[NG(V (C))] is P4-free. Hence,
|V (C ′) \ NG[V (C)]| = 2 and |V (C ′) ∩ NG(V (C))| = 3. As an interesting conclusion,
we have |V (C ′) ∩ I| ≥ 2 for each C ′ ∈ C5(G[q]) if V (G[q]) \ NG[V (C)] ⊆ I and
|I ∩ V (C)| ≥ 2.

Let I1 = {c1, c4}∪ (V (G[q]) \NG[V (C)]), I2 = {c2, c4}∪ (V (G[q]) \NG[V (C)]), fq′ = 0,
and fq = ωq(G[q]). By applying Lemma 48 on G[q], we conclude χq(C) ≤ ωq(G[q]) =

ωq(G),

ωq(G) = ωq(G− I1) = q({c2, c3}), and

ωq(G) = ωq(G− I2) = max{q({c1, c5}), q({c1} ∪ S)}

for some clique S in G[NG(V (C))]. However, since q(c5) ≥ 1, Lemma 34 implies
q(c5) > χq(G[S]) = ωq(G[S]) = q(S). Thus, ωq(G) = q({c1, c5}), and so

2ωq(G) < q({c1, c5}) + q({c2, c3}) + q(c4) = q(C) ≤ 2χq(C) ≤ 2ωq(G).

This contradiction proves our lemma.

Lemma 55. If q : V (G4)→ N0 is a vertex-weight function, then

χq(G4) = max{ωq(G4),max{χq(C) : C ∈ C5(G4)}}.

Proof. Clearly, χq(G4) ≥ max{ωq(G4),max{χq(C) : C ∈ C5(G4)}}. For the sake of a
contradiction, let us suppose that q is a minimal counterexample, that is,

χq(G4) > max{ωq(G4),max{χq(C) : C ∈ C5(G4)}}

and
χq′(G4) ≤ max {ωq′(G4),max{χq′(C) : C ∈ C5(G4)}}

for each vertex-weight function q′ : V (G4)→ N0 with q′(G4) < q(G4).

Let C ∈ C5(G4). By the pigeonhole principle, there is an integer i ∈ [9] such that
gi+4, gi+5 ∈ V (C). Clearly, both vertices have distance 2 in G4, NG4(gi+4)∩NG4(gi+5) =

{gi, gi+1, gi+8}, NG4(gi+4) \ NG4(gi+5) = {gi+7}, and NG4(gi+5) \ NG(gi+4) = {gi+2}.
Since gi+1gi+7, gi+2gi+8 ∈ E(G), we have C = Cgi : gigi+4gi+7gi+2gi+5gi. Hence,

C5(G4) = {Cgi : i ∈ [9]}.
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Note that G4 and Ḡ4 are (C7, C9, . . .)-free, and so χq(G4) = χq(G4[q]) = ωq(G4[q]) =

ωq(G4) by the Strong Perfect Graph Theorem, Lemma 35, and Observation 36 if
C5(G4[q]) = ∅. From this contradiction to our supposition on q, we have C5(G4[q]) 6= ∅,
and so q(gi) > 0 or q(gi+1) > 0 for each i ∈ [9]. Since 9 is odd, there is some integer
i ∈ [9] such that q(gi+4), q(gi+5) > 0. However, for the sake of a contradiction, let us
suppose that, for each j ∈ [9], there is some k ∈ {j, j + 1, j + 2} such that q(gk) = 0.
Hence, q(gi+3) = q(gi+6) = 0, and so q(gi+2), q(gi+7) > 0. Since q(gi+3) = q(gi+6) = 0

and C5(G4[q]) 6= ∅, we have C5(G4[q]) = {Cgi}, and so q(gi+1) = q(gi+8) = 0. Thus,
G4[q] ∼= C5 which contradicts our supposition on q. Hence, there is some integer j ∈ [9]

such that q(gj−1), q(gj), q(gj+1) > 0.

Let I = {gj−1, gj, gj+1} and q′ : V (G4)→ N0 be a vertex-weight function with

u 7→

q(u)− 1 if u ∈ I,

q(u) if u /∈ I.

By applying Lemma 48 on G4 with fq = ωq(G4) and fq′ = 0, we obtain

χq(C) ≤ ωq(G4) = ωq(G4 − I) = max{q({gj+2, gj+6}), q({gj+2, gj+7}), q({gj+3, gj+7})}

or
ωq(G4) ≤ χq(C) =

⌈
q′(C ′)

2

⌉
=

⌈
q(C ′)

2

⌉
for each C ∈ C?5(G4, q) and each C ′ ∈ C?5(G4, q

′).

We consider first the latter case. Since |V (C ′) ∩ I| ≥ 1, we have that q(C ′) is even,
and so

ωq(C
′) ≤ ωq(G4) ≤ q(C ′)

2
= χq(C

′) ≤ χq(C)

by Corollary 46. For Cgi ∈ Argmax{q(C ′′) : C ′′ ∈ C5(G4)} with some i ∈ [9], it
follows Cgi ∈ C?5(G4, q). Renaming cycles if necessary, we may assume C = Cgi . Hence,
bq(C)/2c ≥ ωq(G4). Let k ∈ {0, 1} be such that q(C) ≡ k mod 2. If q(gi) < k, then
q(gi) = 0 and k = 1. Hence,⌊

q(C)

2

⌋
=
q(C)− 1

2
=
q({gi+2, gi+4, gi+5, gi+7})− 1

2
≤ 2ωq(C)− 1

2
< ωq(G4),

which is a contradiction. Thus, we have q(gi) ≥ k, and we let q′′ : V (C) → N0 be a
vertex-weight function with

u 7→

q(u)− k if u = gi,

q(u) if u 6= gi.

For simplicity, let C : c1c2c3c4c5c1 where c3 = gi and c4 = gi+4. Hence,

q′′(C)

2
=

⌊
q(C)

2

⌋
≥ ωq(G4) ≥ ωq(C) ≥ ωq′′(C).
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By Corollary 47, there is some proper q-colouring LC : V (C)→ 2N>0 such that

|L(1)
C (gi)| = k and LC(C) = L

(1)
C (gi) ∪

(
5⋃

i′=1

L
(2)
C (ci′ , ci′+2)

)
.

Note that, since q(C) ≥ 2ωq(G4),

q(C) = |L(1)
C (gi)|+ 2 ·

5∑
i′=1

|L(2)
C (ci′ , ci′+2)| ≥ 2ωq(G4).

Using |L(1)
C (gi)| ≤ 1, this even implies ωq(G4) ≤

∑5
i′=1 |L

(2)
C (ci′ , ci′+2)|. The maximality

of q(C) additionally grants

q(gi+3) ≤ q(gi+4) = |L(2)
C (gi+4, gi+2) ∪ L(2)

C (gi+5, gi+4)|

and
q(gi+6) ≤ q(gi+5) = |L(2)

C (gi+5, gi+4) ∪ L(2)
C (gi+7, gi+5)|.

The sets {gi, gi+3, gi+6}, {gi+1, gi+4, gi+7} and {gi+2, gi+5, gi+8} are cliques and ωq(G4) ≤∑5
i′=1 |L

(2)
C (ci′ , ci′+2)|, therefore

q({gi+3, gi+6}) ≤ |L(2)
C (gi+4, gi+2) ∪ L(2)

C (gi+5, gi+4) ∪ L(2)
C (gi+7, gi+5)|,

q(gi+1) ≤ |L(2)
C (gi+2, gi)| and q(gi+8) ≤ |L(2)

C (gi, gi+7)|.

For each i′ ∈ {i+ 1, i+ 3, i+ 6, i+ 8}, let Lagi′ ⊆ L
(2)
C (gi′+1, gi′−1) such that

|Lagi′ | = min{q(gj), |L(2)
C (gi′+1, gi′−1)|}.

Furthermore, let Lbgi+3
, Lbgi+6

⊆ L
(2)
C (gi+5, gi+4) be two disjoint sets such that

q(gi+3) = |Lagi+3
|+ |Lbgi+3

| and q(gi+6) = |Lagi+6
|+ |Lbgi+6

|,

which is possible by the previous restrictions on q(gi+3), q(gi+6), and q({gi+3, gi+6}).
Finally, let Lbgi+1

= Lbgi+8
= ∅. Thus, L : V (G4)→ 2N>0 with

u 7→

LC(u) if u ∈ V (C),

Lau ∪ Lbu if u 6∈ V (C)

is a proper q-colouring of G4, and so χq(G4) ≤ χq(C), which is a contradiction to our
supposition on q. Hence,

χq(C) ≤ ωq(G4) = max{q({gj+2, gj+6}), q({gj+2, gj+7}), q({gj+3, gj+7})}.

Renaming vertices if necessary, we may assume ωq(G4) = q({g3, g8}). Note that

q(Cgi) ≤ 2χq(Cgi) ≤ 2χq(C) ≤ 2ωq(G4)
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by Corollary 46 and the fact that C ∈ C?5(G4, q) for each i ∈ [9]. Let Lg3 , Lg8 ⊆ [ωq(G4)]

be disjoint sets such that |Lg3| = q(g3) and |Lg8 | = q(g8). Clearly, Lg3 ∪Lg8 = [ωq(G4)].
Since q({g2, g5, g8}), q({g3, g6, g9}) ≤ ωq(G4) = q({g3, g8}), there are pairwise disjoint
sets Lg2 , Lg5 ⊆ Lg3 and Lg6 , Lg9 ⊆ Lg8 such that |Lg2| + |Lg5 | ≤ |Lg3|, |Lg6| + |Lg9| ≤
|Lg8|, and |Lu| = q(u) for each u ∈ {g2, g5, g6, g9}. Since q({g4, g8}), q({g3, g7}) ≤
ωq(G4) = q({g3, g8}), we have q(g4) ≤ q(g3) = |Lg3 | and q(g7) ≤ q(g8) = |Lg8 |. Hence,
let Lg4 ⊆ Lg3 and Lg7 ⊆ Lg8 be such that Lg4 ⊆ Lg5 or Lg5 ⊆ Lg4 , Lg7 ⊆ Lg6 or
Lg6 ⊆ Lg7 , and |Lg4| = q(g4) and |Lg7| = q(g7). Since q({g1, g4, g7}) ≤ ωq(G4) and
q(Cg1), q(Cg3), q(Cg8) ≤ 2ωq(G4) but ωq(G4) = q({g3, g8}), we have

q(g1) ≤ min{ωq(G4)− |Lg4| − |Lg7|, ωq(G4)− |Lg5| − |Lg6|,
ωq(G4)− |Lg5| − |Lg7|, ωq(G4)− |Lg4| − |Lg6|}.

Thus, for Lg1 ⊆ [ωq(G4)] \ ((Lg4 ∪Lg5)∪ (Lg6 ∪Lg7)) with |Lg1| = q(g1), it follows that
L : V (G4)→ 2N>0 with u 7→ Lu is a proper q-colouring of G4, and so χq(G4) ≤ ωq(G4).
However, the last observation contradicts the fact that q is a minimal counterexample.
Thus, our proof is complete.

Lemma 56. If q : V (G3)→ N0 is a vertex-weight function, then

χq(G3) = max{ωq(G3),max{χq(C) : C ∈ C5(G3)}}.

Proof. For some arbitrary vertex weight-function q′ : V (G3)→ N0, let

Rq′(G3) = max{ωq′(G3),max{χq′(C) : C ∈ C5(G3)}}.

Note that
Rq′(G3) = max

{
ωq′(G3),max

{⌈
q′(C)

2

⌉
: C ∈ C5(G3)

}}
by Corollary 46.

Clearly, χq(G3) ≥ Rq(G3) and it remains to prove χq(G3) ≤ Rq(G3). For the sake of
a contradiction, let us suppose that q is a minimal counterexample, that is, χq(G3) >

Rq(G3) but χq′(G3) ≤ Rq′(G3) for each vertex-weight function q′ : V (G3) → N0 with
q′(G3) < q(G3). Note that q is CG3

χ -minimal.

Since G3 − g ∼= G4 − g1, it follows χq(G3 − g) = Rq(G3 − g) by Lemma 55. Hence,
we may assume q(g) ≥ 1. By Lemma 34, q(g2,1), q(g2,2) < q(g). If q(g3,1) = q(g3,2) =

0, then {g, g2,1, g2,2} is a module in G3[q], and the CG3
χ -minimality of q implies that

q(g2,1) = q(g2,2) = 0, and so χq(G3) = χG(C) = Rq(G3) for C : gg1,1g4,2g4,1g1,2g by
Corollary 46, which contradicts our supposition that q is a minimal counterexample.
Hence, renaming vertices if necessary, we may assume q(g3,2) > 0.

Recall that G3 is P5-free. Furthermore, G3 has four vertices of degree at least 4, and so
Ḡ3 is (C7, C9, . . .)-free. Additionally, we note that G3 − g1,1 and G3 − g1,2 are C5-free,
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and so both graphs are perfect by the Strong Perfect Graph Theorem. Lemma 35 and
Observation 36 imply χq(G3− g1,i) = ωq(G3− g1,i) for each i ∈ [2]. By our supposition
on G3, we conclude q(g1,1), q(g1,2) ≥ 1. Additionally, we let C ∈ C?5(G3[q], q).

Let I1 = {g1,1, g1,2}. Since G3− g1,1 and G3− g1,2 are C5-free, |V (C ′)∩ I1| ≥ 2 for each
C ′ ∈ C5(G3[q]). By applying Lemma 48 on G3[q] with fq′ = 0 and fq = ωq(G3[q]), we
obtain

ωq(G3) = ωq(G3[q]) = ωq(G3[q]− I1)

= max{q({g3,1, g3,2}), q({g3,1, g4,1}), q({g3,2, g4,2}), q({g4,1, g4,2})}.

For the sake of simplicity, let u ∈ {g3,1, g4,2} and v ∈ {g3,2, g4,1} such that ωq(G3) =

q({u, v}). Since vg1,2 ∈ E(G) and ug1,1 ∈ E(G), q(u) ≥ q(g1,2) > 0 and q(v) ≥
q(g1,1) > 0.

Let I2 = {g1,1, g3,2, g4,1} ∩ V (G3[q]). By the above observations, we have q1,1, g3,2 ∈ I2

but q(g4,1) = 0 or q(g4,1) ≥ 1. Since G3 − g1,1 and G3 − {g3,2, g4,1} are C5-free,
g1,1 ∈ V (C ′) and |V (C ′) ∩ {g3,2, g4,1}| ≥ 1 for each C ′ ∈ C5(G3), respectively. Thus,
|V (C ′) ∩ I2| ≥ 2 for each C ′ ∈ C5(G3[q]), and, by applying Lemma 48 on G3[q] with
fq′ = 0 and fq = ωq(G3[q]), we conclude χq(C) ≤ ωq(G3[q]) = ωq(G3) and

ωq(G3) = ωq(G3[q]) = ωq(G3[q]− I2) = max{q({g, g1,2}), q({g1,2, g2,1})}

no matter whether q(g4,1) = 0 or q(g4,1) ≥ 1. Since q(g) > q(g2,1), we have ωq(G3) =

q({g, g1,2}). With C ′′ : gg1,1uvg1,2g ∈ C5(G3[q]) we obtain

q(C ′′) ≥ 2ωq(G3) + q(g1,1) > 2ωq(G3) ≥ 2χq(C) ≥ 2χq(C
′′) ≥ 2

⌈
q(C ′′)

2

⌉
≥ q(C ′′),

which is a contradiction. Hence, our proof is complete.

Lemma 57. If q : V (G2)→ N0 is a vertex-weight function, then

χq(G2) = max

{
ωq(G2),max{χq(C) : C ∈ C5(G2)},

⌈
q(G2)

3

⌉}
≤
⌈

5ωq(G2)− 1

4

⌉
.

Proof. We start our proof by showing the second inequality first. For each i ∈ [2]

and each j ∈ {3, 4}, the sets {gi, gi,j}, {g1,j, g2,j, gj}, and {g3, g4} are cliques in G1.
Therefore,

2q(G2) = q({g3, g4}) +
∑

j∈{3,4}

(
q({g1, g1,j}) + q({g2, g2,j}+ q({g1,j, g2,j, gj})

)
≤ 7ωq(G2)

and so, for n,m ∈ N0 with ωq(G2) = 6n+m and m < 6,

⌈
q(G2)

3

⌉
≤


⌊

7ωq(G2)

2

⌋
3

 = ωq(G2) +


⌊
ωq(G2)

2

⌋
3

 = ωq(G2) +

n if m ≤ 1,

n+ 1 if m ≥ 2


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=

⌈
7ωq(G2)− 1

6

⌉
≤
⌈

5ωq(G2)− 1

4

⌉
.

Now, Corollary 46 completes the proof of the second inequality.

Clearly, χq(G2) ≥ max{ωq(G2),max{χq(C) : C ∈ C5(G2)}} and

χq(G2) = χq(G2[q]) ≥ dq(G2[q])/3e = dq(G2)/3e

since α(G2[q]) ≤ 3. It remains to prove

χq(G2) ≤ max

{
ωq(G2),max{χq(C) : C ∈ C5(G2)},

⌈
q(G2)

3

⌉}
.

We continue by supposing, for the sake of a contradiction, that q is a minimal coun-
terexample, that is,

χq(G2) > max

{
ωq(G2),max{χq(C) : C ∈ C5(G2)},

⌈
q(G2)

3

⌉}
but

χq′(G2) = max

{
ωq′(G2),max{χq′(C) : C ∈ C5(G2)},

⌈
q′(G2)

3

⌉}
for each vertex-weight function q′ : V (G2) → N0 with q′(G2) < q(G2). Hence, we may
assume that q is CG2

χ -minimal.

Observe that C5(G2) = {Cg1 : g3g1,3g1g1,4g4g3, Cg2 : g3g2,3g2g2,4g4g3}. Note that G2 −
gi,j ∈ G? and G2 − gi ∼= G4 − {g4, g7} for each i ∈ [2] and j ∈ {3, 4}. Hence, by
Lemma 54 and Lemma 55, we may assume q(gi) ≥ 1 and q(gi,j) ≥ 1 for each i ∈ [2]

and j ∈ {3, 4}. Furthermore, G2 and Ḡ2 are (C7, C9, . . .)-free, and G2 − gj is C5-
free for each j ∈ {3, 4}. Hence, by the Strong Perfect Graph Theorem, Lemma 35,
Observation 36, and our supposition on G2, we may assume G2[q] = G2. In particular,
since q(gi) ≥ 1, Lemma 34 implies

q(gi) > χq(G[{g3−i,3, g3−i,4}]) = max{q(g3−i,3), q(g3−i,4)},

and so q({gi,3, g3−i,4}) < ωq(G2) for each i ∈ [2].

For each i ∈ [2] and j ∈ {3, 4}, note that Ij = {q1, q2, qj} and Ii,j = {qi, qj, q3−i,7−j}
are independent sets in G2. Additionally |Ij ∩ V (Cg)| = |Ii,j ∩ V (Cg)| = 2 for each
g ∈ {g1, g2}. By applying Lemma 48 on G2 for each of the six independent sets with

fq =

⌈
q(G2)

3

⌉
and fq′ = fq − 1

(
=

⌈
q(G2)

3

⌉
− 1 =

⌈
q′(G2)

3

⌉)
,

and since q({g1,3, g2,4}), q({g2,3, g1,4}) < ωq(G2), we obtain fq ≤ ωq(G2) as well as

ωq(G2) = ωq(G2 − Ij) = q({q3, g1,3, g2,3}) = q({q4, g1,4, g2,4})
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and

ωq(G2) = ωq(G2 − Ii,j) = q({q1, g1,3}) = q({q1, g1,4}) = q({q2, g2,3}) = q({q2, g2,4})

for each i ∈ [2] and each j ∈ {3, 4}. Hence, there are some integers a, b, c ∈ N>0 such
that

q(g1,3) = q(g1,4) = a, q(g2,3) = q(g2,4) = b, q(g3) = q(g4) = c, q(g1) = b+ c, q(g2) = a+ c,

and so

a+b+c+1 ≤ a+b+c+
⌈ c

3

⌉
≤
⌈

3a+ 3b+ 4c

3

⌉
=

⌈
q(G2)

3

⌉
= fq ≤ ωq(G2) = a+b+c.

This final contradiction completes our proof.

Lemma 58. If q : V (G1)→ N0 is a vertex-weight function, then

χq(G1) = max

{
ωq(G1),

⌈
q(G1)−min{q(gi) : i ∈ [3]}

2

⌉
,

⌈
q(G1) + q({g{1,2}, g{1,3}, g{2,3}})

3

⌉}
≤
⌈

5ωq(G1)− 1

4

⌉
.

Proof. For simplicity, we let S = {g{1,2}, g{1,3}, g{2,3}}, T = {g1, g2, g3},

Rq′(G1) = max

{⌈
q′(G1)−min{q′(gi) : i ∈ [3]}

2

⌉
,

⌈
q′(G1) + q′(S)

3

⌉}
for each vertex-weight function q′ : V (G1) → N0, and f1, f2 : N>0 → N>0 be two func-
tions with

w 7→ w and w 7→
⌈

5w − 1

4

⌉
,

respectively. Note that f2(w) ≥ f1(w) = w for each w ∈ N>0. Additionally, renaming
vertices if necessary, we may assume q(g1) ≤ q(g2) ≤ q(g3).

Let L : V (G1)→ 2[χq(G1)] be a proper q-colouring of G1. Note that S is a clique in G1,
and so |L(S)| = q(S). Additionally, each colour of L(S) can be used at most twice by
L. Hence, since α(G1) = 3, we have

χq(G1) ≥ |L(S)|+ |L(G1) \ L(S)| ≥ q(S) +

⌈
q(G1)− 2q(S)

3

⌉
=

⌈
q(G1) + q(S)

3

⌉
.

Furthermore, α(G1 − gi) = 2, which implies

χq(G1) ≥ χq(G1 − gi) ≥
⌈
q(G1)− q(gi)

2

⌉
for each i ∈ [3]. Thus, χq(G1) ≥ max{ωq(G1), Rq(G1)} and, for the rest of our proof,
it suffices to show

χq(G1) ≤ max {f`(ωq(G1)), Rq(G1) + 1− `} ,



88 6 (P5, dart)-free graphs

for each ` ∈ [2]. For the sake of a contradiction, let us suppose that (q, `) is a minimal
counterexample, that is,

χq(G1) > max {f`(ωq(G1)), Rq(G1) + 1− `}

but
χq′(G1) ≤ max {f`′(ωq′(G1)), Rq′(G1) + 1− `′}

for each `′ ∈ [2] if the vertex-weight function q′ : V (G1)→ N0 satisfies q′(G1) < q(G1),
and for each `′ ∈ [`−1] if q ≡ q′. Recall f`(ωq(G1)) ≥ ωq(G1), and so χq(G1) > ωq(G1).

We first argue that q(u) > 0 for each u ∈ V (G1) \ {g1}. Observe that G1 − g, Ḡ1 −
g,G1 − {g1, g2}, Ḡ1 − {g1, g2}, are (C5, C7, . . .)-free. Thus, G1 − g and G1 − {g1, g2}
are perfect by the Strong Perfect Graph Theorem. Since χq(G1) > ωq(G1), we have
that G1[q] is not perfect by Lemma 35 and Observation 36, and so q(g) > 0 and
q(g3) ≥ q(g2) > 0. If q(g[3]\{i}) = 0 for some i ∈ [3], then G1−g[3]\{i} ∼= G4−{g2, g4, g7}
and the combination of Corollary 46 and Lemma 55 implies

max {f`(ωq(G1)), Rq(G1) + 1− `} < χq(G1)

= max

{
ωq(G1),

⌈
q(G1)− q({gi, g[3]\{i}})

2

⌉}
≤ max {f`(ωq(G1)), Rq(G1)} .

Hence, ` = 2. However, again by Corollary 46 and Lemma 55, f2(ωq(G1)) ≥ χq(G1).
From this contradiction to our supposition on (q, `), we obtain that q(g{1,2}), q(g{1,3}),
q(g{2,3}) > 0. Hence, u = g1 if u ∈ V (G1) is a vertex with q(u) = 0. Additionally,
ωq(G1) ≥ 3.

For each i ∈ [3], we fix j(i), k(i) ∈ [3] such that {i, j(i), k(i)} = [3] and let qi : V (G1)→
N0 be the vertex-weight function with

u 7→

q(u)− 1 if u ∈ {g, g{j(i),k(i)}},

q(u) if u 6∈ {g, g{j(i),k(i)}}.

It follows qi(G1) < q(G1), Rqi(G1) = Rq(G1)− 1, ωqi(G1) ≤ ωq(G1), and so

Rq(G1) + 1− ` ≤ max {f`(ωq(G1)), Rq(G1) + 1− `} < χq(G1) ≤ χqi(G1) + 1

≤ max {f`(ωqi(G1)) + 1, Rqi(G1) + 2− `}
= max {f`(ωqi(G1)) + 1, Rq(G1) + 1− `}
= f`(ωqi(G1)) + 1 ≤ f`(ωq(G1)) + 1 ≤ χq(G1)

by the minimality of (q, `) and since {g, g{j(i),k(i)}} is an independent set in G1. Hence,
Rq(G1) + 1− ` ≤ f`(ωq(G1)). Since f`(ωq(G1)− 1) < f`(ωq(G1)), it follows further

ωq(G1) = ωqi(G1) = ωq(G1 − {g, g{j(i),k(i)}}) = q({gi, g{i,j(i)}, g{i,k(i)}}),
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for each i ∈ [3]. Note that this especially implies that q(g{2,3}) ≤ q(g1), since S is a
clique. Consequently,

Rq(G1) ≥
⌈
q(G1) + q(S)

3

⌉
=

⌈(∑3
i=1 q({gi, g{i,j(i)}, g{i,k(i)}})

)
+ q(g)

3

⌉

= ωq(G1) +

⌈
q(g)

3

⌉
≥ ωq(G1) + 1.

Thus, since Rq(G1) + 1− ` ≤ f`(ωq(G1)), it follows ` = 2. In particular, we have

max{ωq(G1) + 1, Rq(G1)} ≤ f2(ωq(G1)) + 1 ≤ χq(G1)

≤ max{ωq(G1), Rq(G1)} = Rq(G1)

by the minimality of (q, `), which implies χq(G1) = Rq(G1) = f2(ωq(G1)) + 1.

Since q({g, gi}) ≤ ωq(G1) for each i ∈ [3], we have

3q(g) ≤ 3ωq(G1)− q(T ) =

(
3∑
i=1

q({gi, g{i,j(i)}, g{i,k(i)}})

)
− q(T ) = 2q(S) ≤ 2ωq(G1).

Hence, q(g) ≤ 3 if 3 ≤ ωq(G1) ≤ 5, q(g) ≤ 5 if 6 ≤ ωq(G1) ≤ 8, and q(g)/3 ≤
(ωq(G1)− 1)/4 if ωq(G1) ≥ 9, which implies⌈

q(G1) + q(S)

3

⌉
+ 1 = ωq(G1) +

⌈
q(g)

3

⌉
+ 1 ≤ ωq(G1) +

⌈
ωq(G1)− 1

4

⌉
+ 1

= f2(ωq(G1)) + 1 = Rq(G1) =

⌈
q(G1)− q(g1)

2

⌉
.

Thus, since q(G1) − q(g1) − q(g) + q(g{2,3}) = 2ωq(G), it follows q(g) > q(g2,3). Let
q′ : V (G1)→ N0 be a vertex-weight function defined by

u 7→


0 if u ∈ {g1, g{2,3}},

q(g)− q(g{2,3}) if u = g,

q(u) if u /∈ {g, g1, g{2,3}}.

Clearly, G1[q′] ∼= C5 and ωq(G1) ≥ ωq′(G1) + q(g{2,3}), since q(g{2,3}) ≤ q(g1). By
Corollary 46 and the fact that {g, g{2,3}} is an independent set in G1,

f2(ωq(G1)) + 1 = Rq(G1) =

⌈
q(G1)− q(g1)

2

⌉
≤ χq(G1 − g1)

≤ χq′(G1 − g1) + q(g{2,3}) ≤
⌈

5ωq′(G1)− 1

4

⌉
+ q(g{2,3}) ≤ f2(ωq(G1)),

which is a contradiction. Thus, (q, `) is not a minimal counterexample and our proof
is complete.
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We are finally in a position to show χq(G) ≤ f ?{3K1}(ωq(G)) for each (P5, dart)-free
graph G and each vertex weight function q : V (G) → N0. Recall and observe that
f ?{3K1} is superadditive and that it remains to prove

χq(G) ≤ f ?{3K1}(ωq(G))

for each vertex weight function q : V (G) → N>0 of a prime (P5, dart)-free graph G by
Lemma 41. The latter inequality follows immediately if G is 3K1-free. Hence, we may
assume α(G) ≥ 3. By Lemma 51, we obtain that Ḡ is (C7, C9, . . .)-free. Additionally,
Lemma 52 implies that either G isW5-free and Ḡ is A5-free, or G ∼= G1. By Lemma 53,
and since G is (C7, C9, . . .)-free and Ḡ is T0,1,2-free, we further have that G is perfect
or Gp

1
∼= G′ for

G′ ∈ {C5, G1, G2, G3, G4,

G3 − g,G3 − g4,1, G3 − {g, g4,1}, G3 − {g2,2, g4,1}, G3 − {g, g2,2, g4,1}} ∪ G?.

IfG is perfect, then χq(G) = ωq(G) by Lemma 35 and Observation 36, and, ifG ∼= G′ for
some induced subgraph G′ of G′′ ∈ {G1, G2, G3, G4}∪G?, then Corollary 46, Lemma 54,
Lemma 55, Lemma 56, Lemma 57, and Lemma 58 imply

χq(G) ≤
⌈

5ωq(G)− 1

4

⌉
.

However, the q′-expansion of C5 is 3K1-free for each vertex-weight function q′ : V (C5)→
N0, and so Observation 36 and Corollary 46 imply⌈

5ωq(G)− 1

4

⌉
≤ f ?{3K1}(ωq(G)).

Hence, χq(G) ≤ f ?{3K1}(ωq(G)) for each (P5, dart)-free graph G, which particularly
implies f ?{P5,dart} = f ?{3K1}.

Let G be a critical (P5, dart)-free graph, and S be a non-empty set of vertices such that
EG[S, V (G)\S] is complete and each homogeneous set M in G[S] satisfies N2

G[S](M) 6=
∅.

Let us firstly argue that such a set S exists. Starting with S0 = V (G), we either
notice that S0 fulfils the second property as well or there is a homogeneous set H0 in
G[S0] with N2

G[S0](H0) = ∅. Now defining S1 = H0 we see that EG[S1, V (G) \ S1] is
complete and we either notice that S1 fulfils the second property as well or there is
a homogeneous set H1 in G[S1] with N2

G[S1](H1) = ∅. So we get a strictly decreasing
sequence S0 ) S1 ) . . . of vertex sets and since |V (G)| is finite there exists a set S
with |S| ≥ min{2, |V (G)|} fulfilling both properties.

Clearly, G[S] and G−S are critical. By Corollary 40, S can be partitioned into modules
M1,M2, . . . ,Mk such that EG[Mi,Mj] is complete for distinct i, j ∈ [k], and G[Mi] is
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a ‘non-empty, 2K1-free’-expansion of a prime graph Gp
i without clique-separator of

modules for each i ∈ [k].

We consider first the case that S = M1. Hence, there is a vertex-weight function
qS : V (Gp

1) → N>0 such that G[S] is the qS-expansion of the prime graph Gp
1. From

Lemma 51, Lemma 52, and Lemma 53, we obtain that Gp
1 is 3K1-free or Gp

1 is perfect
or Gp

1
∼= G′ for

G′ ∈ {C5, G1, G2, G3, G4,

G3 − g,G3 − g4,1, G3 − {g, g4,1}, G3 − {g2,2, g4,1}, G3 − {g, g2,2, g4,1}} ∪ G?.

Note that qS is CGp1
χ -minimal since G[S] is critical. Thus, Lemma 54, Lemma 55, and

Lemma 56 imply that Gp
1 is 3K1-free or Gp

1 is perfect or Gp
1
∼= G′ for some G′ ∈

{C5, K1, K2, G1, G2}. If Gp
1 is perfect, then G[S] is perfect by Lemma 35, and so G[S]

is a complete graph and especially 3K1-free since G[S] is critical. If Gp
1
∼= G′ for some

G′ ∈ {C5, K1, K2} or in general if Gp
1 is 3K1-free, then G[S] is 3K1-free, which gives

the desired result.

Hence, we may assume S \M1 6= ∅. Clearly, M1 and S \M1 are modules in G[S],
and EG[M1, S \ M1] is complete, by the partition of S. We obtain N2

G[S](M1) = ∅
and N2

G[S](S \ M1) = ∅, which implies |M1| = |S \ M1| = 1 by the definition of S.
Thus, |V (G[S])| = 2 and G[S] is 3K1-free, which completes our proof for the critical
(P5, dart)-free graphs.
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7 Consequences for other graph
classes

In this chapter we obtain χ-binding functions for (P5, gem)- and (P5, diamond)-free
graphs by applying Lemma 39 and the structural results we obtain in Chapter 6 con-
cerning (P5, dart)-free graphs. Similarly we obtain a χ-binding function for (P5, C4)-free
graphs from the structural results of Chapter 5, where we talk about (P5, banner)-free
graphs.

Note that diamond is an induced subgraph of dart and C4 is an induced subgraph
of banner, so every banner-free graph is especially C4-free. The same is not true for
gem-free graphs, but in Lemma 53 we look at graphs which are especially gem-free. So
we apply this lemma in the respective section. Hence, one can say that we obtain our
results on C4-free graphs, gem-free graphs, and diamond-free graphs as by-products of
the previous results about (P5, banner)- and (P5, dart)-free graphs.

7.1 (P5, C4)-free graphs

In this section we prove that f ?{P5,C4}(ω) =
⌈

5ω−1
4

⌉
, for ω ∈ N>0, which is one part of

Theorem 5(i) and that every critical (P5, C4)-free graph G is complete or a ‘non-empty,
2K1-free’-expansion of a graph G′ with G′ ∈ {C5,W5}, which is Theorem 9(v).

Let G be a critical (P5, C4)-free. We first show Theorem 9(v) and use it to prove
f ?{P5,C4}(ω) =

⌈
5ω−1

4

⌉
, for ω ∈ N>0.

By Corollary 40, there is some integer k ∈ N>0 such that V (G) can be partitioned
into sets M1,M2, . . . ,Mk such that EG[Mi,Mj] is complete for distinct i, j ∈ [k], and
G[Mi] is a ‘non-empty, 2K1-free’-expansion of a prime graph without clique-separator
of modules for each i ∈ [k]. Let us assume α(G[M1]) ≥ α(G[Mi]) for each i ∈ [k]. If
α(G[M1]) = 1, then G = G[M1 ∪M2 ∪ . . . ∪Mk] is a complete graph. In view of the
desired result, it remains to assume α(G[M1]) ≥ 2. Since G is C4-free, we have that
V (G) \M1 is a clique in G or V (G) \M1 = ∅. In the first case G −M1 is complete
and a ‘non-empty, 2K1-free’-expansion of G[u] for some u ∈ V (G) \M1. We note that
since α(G[M1]) ≥ 2 and G is critical, we have χ(G[M1]) > ω(G[M1]). Thus, G[M1] is
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not perfect. Let Gp be the prime graph such that G[Mi] is a ‘non-empty, 2K1-free’-
expansion of Gp. By Lemma 35, the graph Gp is not perfect. Additionally, Gp is a
prime (P5, C4, banner)-free graph, and so Gp is 3K1-free by Theorem 50. Hence, Ḡp is
(2K2, C3)-free and non-perfect, by the Strong Perfect Graph Theorem. By the Strong
Perfect Graph Theorem, the graph Ḡp even contains an induced C5 and therefore is
non-bipartite. Randerath’s [54] characterisation of non-bipartite (P5, C3)-free graphs
imply that the prime ones are copies of C5. Thus, we get Ḡp

∼= C5, which implies
Gp
∼= C5 and so G[M1] is a ‘non-empty, 2K1-free’-expansion of a C5. Thus, combining

all the cases there exists a function q′ : V (G′) → N>0 such that G is a q′-expansion of
G′ ∈ {C5,W5, K1}, which completes our claim.

Now onto the χ-binding function. By Lemma 1 and Observation 36 to prove the upper
bound it now suffices to show that

χq′(G
′) ≤

⌈
5ωq′(G

′)− 1

4

⌉
,

for each G′ ∈ {C5,W5, K1}, since the given function is non-decreasing. Which is trivial
for G′ = K1. By Corollary 46 this is true for G′ = C5. Additionally, we denote the
universal vertex in V (W5) by u. Hence, we have

χq′(W5) ≤ χq′(W5 − u) + χq′(W5[{u}])

≤
⌈

5ωq′(W5 − u)− 1

4

⌉
+ ωq′(W5[{u}]) ≤

⌈
5ωq′(W5)− 1

4

⌉
by Corollary 46 and since W5

∼= C5 +K1.

Lastly every q-expansion of C5 with q : V (C5) → N0 with q 6≡ 0 is (P5, C4)-free. By
Observation 36 and Corollary 46, we have, for ω ∈ N>0,

f ?{P5,C4}(ω) ≥
⌈

5ω − 1

4

⌉
,

which completes our proof.

7.2 (P5, gem)-free graphs

In this section we prove that f ?{P5,gem}(ω) =
⌈

5ω−1
4

⌉
, for ω ∈ N>0, which is one part of

Theorem 5(i) and that every critical (P5, gem)-free graph G is a ‘non-empty, 2K1-free’-
expansion of a graph G′ with G′ ∈ {K1, C5, G2}, which is Theorem 9(vi). It is further
interesting to note that we obtain the structural result for the prime (P5, gem)-free
graphs from our characterisation of (P5, dart)-free graphs.

Firstly every q-expansion of C5 with q : V (C5) → N0 with q 6≡ 0 is (P5, gem)-free. By
Observation 36 and Corollary 46, we have, for ω ∈ N>0,

f ?{P5,gem}(ω) ≥
⌈

5ω − 1

4

⌉
.
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Concerning (P5, gem)-free graphs, we may assume that G is (P5, gem)-free and that
q : V (G) → N0 is CG

χ -minimal. Note that χq(G) = χq(G[q]), ωq(G) = ωq(G[q]), G[q]

is (P5, gem)-free, and so we may assume G = G[q]. We show that G is complete or
a ‘non-empty, 2K1-free’-expansion of a graph G′ with G′ ∈ {C5, G2}. By Lemma 39,
there exist an integer k ∈ N>0, k pairwise disjoint non-empty sets M1,M2, . . . ,Mk ⊆
V (G[q]), and k CG

χ -minimal vertex-weight functions q1, q2, . . . , qk : V (G) → N0 such
that V (G[qi]) ⊆ Mi, χq(G[Mi]) = χqi(G), ωq(G[Mi]) = ωqi(G), and G[Mi] is a ‘non-
empty, 2K1-free’-expansion of G[qi] which is a prime graph without clique-separators
of modules for each i ∈ [k], EG[Mi,Mj] is complete for each distinct i, j ∈ [k], and

χq(G) =
k∑
i=1

χq(G[Mi]).

Note that V (G) =
⋃k
i=1 Mi, since q is CG

χ -minimal. We first show that if k ≥ 2, then
G is complete. In this case we have that G−Mi is P4-free for each i ∈ [k], since G is
gem-free. By the Strong Perfect Graph Theorem, Lemma 35, Observation 36, and the
fact q is CG−Mi

χ -minimal, we have that G −Mi is complete, for i ∈ [k]. Hence, G is
complete if k ≥ 2. Thus, we may assume k = 1 and G is not complete. Clearly, G is
(P5,W5)-free and Ḡ is (A5, C7, C9, . . . , T0,1,2)-free. Hence, G[q1] is perfect or G[q1] ∼= G′

with

G′ ∈ {C5, G2, G3, G4,

G3 − g,G3 − g4,1, G3 − {g, g4,1}, G3 − {g2,2, g4,1}, G3 − {g, g2,2, g4,1}} ∪ G?

by Lemma 53. Since q1 is CG
χ -minimal, we obtain G′ ∈ {C5, G2} similarly as for dart-

free graphs, by Lemma 54, Lemma 55, and Lemma 56. If we collect both cases, we
find that G is a ‘non-empty, 2K1-free’-expansion of a graph G′ with G′ ∈ {K1, C5, G2}.
Thus, we obtain the desired characterisation of Theorem 9. Additionally, returning to
our CG

χ -minimal vertex-weight function q, for each vertex-weight function q> : V (G)→
N with q CG

χ q
>, we have

χq>(G) = χq(G) ≤
⌈

5ωq(G)− 1

4

⌉
≤
⌈

5ωq>(G)− 1

4

⌉
by Corollary 46 and Lemma 57, which completes our proof for this part of Theorem 5(i).

7.3 (P5, diamond)-free graphs

We note that Theorem 5 (ii), which is

f ?{P5,diamond}(ω) =

3 if ω = 2,

ω if ω 6= 2,
, for ω ∈ N>0,
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and Theorem 9 (vii), which characterizes the critical graphs, can be obtained from
Theorem 9 (vi), proven in Section 7.2, as follows.

Let G,G′ be two (P5, diamond)-free graphs that are not necessarily distinct but for
which χ(G) = χ(G′), ω(G) ≥ ω(G′), and G′ is critical. Clearly, G′ is gem-free, and
so G′ is complete or a ‘non-empty, 2K1-free’-expansion of a graph G′′ ∈ {C5, G2} by
Theorem 9 (vi). In the latter case, since G′ is not G′′-free but diamond-free, we have
G′ ∼= G′′. By Lemma 57, we see that χ(G2) = ω(G2) = 3, and so G′ is complete or
G′ ∼= C5, which proves Theorem 9 (vii). Additionally,

χ(G) = χ(G′) ≤

3 if ω(G′) = 2,

ω(G′) if ω(G′) 6= 2

 ≤
3 if ω(G) = 2,

ω(G) if ω(G) 6= 2.

From the fact that C5 and Kn are (P5, diamond)-free for each n ≥ 1, we obtain Theo-
rem 5(ii).
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8 (P5, kite)-free graphs

In this chapter we look at the family of (P5, kite)-free graphs. This chapter can con-
ceptually also be found in [12]. Instead of finding a binding function for this graph
class directly we argue that f ?{K1∪K3,K1∪C5,2K2} = f ?{P5,kite} and prove a linear bound
for f ?{K1∪K3,K1∪C5,2K2} in Theorem 63. To show that we prove Lemma 62 by using a
combination of known results and new ideas. Let us state the known results first.

Lemma 59 (Brandstädt and Mosca [9]). If G is a prime (P5, kite)-free graph, then G
is a matched co-bipartite graph or 2K2-free.

By Wagon [67] and followup research by Gaspers and Huang [29] we know the following
corollary.

Corollary 60 (Wagon [67], Gaspers et al. [29]). If G is (2K2, K4)-free, then χ(G) ≤⌊
3ω(G)

2

⌋
.

There is also a recent paper by Chudnosky et al. [18] in which they research the family
of (co-kite, C4)-free graphs. Another name commonly given to the graph co-kite is fork.
To understand this lemma we additionally need to define when we call a graph candled.
A graph H is called a candelabrum (with base Z) if its vertices can be partitioned into
non trivial disjoint sets Y, Z such that Y is an independent set, Z is a clique, and
Y and Z are matched. One can add a candelabrum to a graph G via the following
procedure: Let H be a candelabrum with base Z. Take the disjoint union of G and H,
then add edges to make Z complete to V (G). We refer to this construction procedure
as candling the graph G. We say that a graph G is candled if it can be constructed by
candling some induced subgraph G0 ⊆ G.

Lemma 61 (Chudnovsky et al. [18][17]). If G is a (co-kite, C4)-free graph, then

(i) G is not connected or

(ii) G contains a universal vertex or

(iii) G contains a homogeneous clique or

(iv) G is candled or

(v) Ḡ is candled or
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(vi) G is K1,3-free.

Using the above stated results we are able to show the following lemma.

Lemma 62. Let f : N>0 → N>0 be such that

(i) f(w) ≥ b3w/2c for each w ∈ N>0,

(ii) f(w1) + f(w2) ≤ f(w1 + w2) for each w1, w2 ∈ N>0 and

(iii) χ(G) ≤ f(ω(G)) for each connected, prime, (K1∪K3, K1∪C5, 2K2)-free graph G
whose complementary graph is a connected graph.

If G is a (P5, kite)-free graph, then χ(G) ≤ f(ω(G)).

Proof. For the sake of a contradiction, let us suppose that G is a (P5, kite)-free graph
with χ(G) > f(ω(G)). We may assume that G is a counterexample of minimum order,
that is, χ(G′) ≤ f(ω(G′)) for each (P5, kite)-free graph G′ with |V (G′)| < |V (G)|.
It is easily seen that f is strictly increasing by (i) and (ii). Thus, the graph G is
connected, critical, and not perfect. Furthermore, Lemma 37 implies that G has no
clique separator of modules.

We prove next that G is 2K2-free. Let M ⊆ V (G) be a module in G such that
V (G) \ M 6= ∅. Since G is critical and, thus, does not contain a clique separator
of modules, Lemma 34 and Lemma 38 imply |M | = 1 or N2

G(M) = ∅. It follows
EG[M,V (G) \M ] is complete in the latter case, and so we obtain

f(ω(G)) < χ(G) = χ(G[M ]) + χ(G−M) ≤ f(ω(G[M ])) + f(ω(G−M))

≤ f(ω(G[M ]) + ω(G−M)) = f(ω(G))

from the facts that G is a counterexample of minimum order and that f(w1)+f(w2) ≤
f(w1 + w2) for each w1, w2 ∈ N>0. By this contradiction, we obtain that each module
M is either of size 1 or of size |V (G)|. In other words, G is prime. Observe that
in contrast to G each induced subgraph, say G′, of a matched co-bipartite graph is
ω(G′)-colourable. Hence, each matched co-bipartite graph is perfect and, thus, since
G is not perfect, G is 2K2-free by Lemma 59.

We proceed by showing that G is (K1 ∪ K3)-free. Note that Ḡ is (co-kite, C4)-free.
Since G is connected, Ḡ has no universal vertex. Furthermore, since G is prime, Ḡ is
prime as well. Thus, Ḡ has no homogeneous set and is connected. By Lemma 37 and
the fact that G is critical, neither G nor Ḡ are candled. Lemma 61 implies that Ḡ is
K1,3-free, and thus G is (K1 ∪K3)-free.

Our next goal is to prove that G is (K1 ∪ C5)-free. Let us assume that C is an
arbitrary induced 5-cycle in G and C is oriented, meaning that C : c1c2c3c4c5c1 ∈ C5(G)

and, recall Section 1.2, for c ∈ V (C) we denote by c+ and c− the neighbours of c in
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V (C), depending on the orientation. Additionally, let A be the set of all vertices of
G − V (C) that have a neighbour and a non-neighbour in C, B be the set of vertices
of G − V (C) that are adjacent to all vertices of C, and D be the set of vertices that
have no neighbour in C. For the sake of a contradiction, let us suppose that D 6= ∅.
Since G is (2K2, K1 ∪K3)-free, every vertex a ∈ A satisfies that either NG(a) ∩ V (C)

or V (C) \ NG(a) is an independent set of size 2. Let A2 be the set of vertices of A
that have two neighbours in C and A3 be the set of vertices that have three neighbours
in C. Since G is 2K2-free, the set D is an independent set in G and EG[A2, D] = ∅.
Furthermore, EG[A3 ∪ B,D] is complete since G is (K1 ∪K3)-free. Since G is prime,
it follows |D| = 1.

For the sake of contradiction let us suppose that there is some vertex a ∈ A2, and
c ∈ V (C) is such that c−, c+ ∈ NG(a). By Lemma 34, there is some u ∈ NG(a) that
is not a neighbour of c. Thus, u /∈ D. Since [a, u, c−2, c+2] does not induce a 2K2,
u is adjacent to c−2 or c+2. By symmetry, we may assume that c−2u ∈ E(G). Since
[c−2, u, c+, c] does not induce a 2K2, it follows that c+u ∈ E(G). Since [d, c+, a, u]

does not induce a K1 ∪ K3, it follows du ∈ E(G). Furthermore, c+2u /∈ E(G) but
c−u ∈ E(G) since u ∈ A3, and so [c+2, a, c−, u] induces a K1 ∪K3, which contradicts
the fact that G is (K1 ∪K3)-free. Hence, A2 = ∅ and A = A3.

Observe that B is a module in G−A3 and G− (A3∪B) is disconnected. By Lemma 37
and the fact that G is a counterexample of minimal order, we obtain A3 6= ∅. For each
a ∈ A3, let Ba = B \ NG(a). Since there is a vertex c ∈ V (C) \ NG(a), and every
vertex of B is adjacent to every vertex of V (C), and G is (K1 ∪ K3)-free, it follows
that {a} ∪ Ba is an independent set in G. Let, for each c ∈ V (C), A3,c be the set of
vertices of A3 that are adjacent to c−2, c, and c+2. Clearly, A3 =

⋃
c∈V (C) A3,c. Since

[c+, a1, a2, d] does not induce a K1 ∪K3 for each a1, a2 ∈ A3,c ∪ A3,c+2 , it follows that
A3,c ∪ A3,c+2 is an independent set in G. Furthermore, for each c ∈ V (C), we have
Ba1 = Ba2 if a1 ∈ A3,c and a2 ∈ A3,c+2 since neither [a1, a2, b, c

−] nor [a2, a1, b, c
−2]

induces a K1 ∪K3 for each b ∈ Ba1 ∪ Ba2 . Let c ∈ V (C) be chosen such that A3,c 6= ∅
and, subject to this condition, |A3,c+2| is maximum. Since A3 6= ∅, we have A3,c 6= ∅. If
A3,c+2 = ∅, then A3,c−2 = ∅, and A3,c− = ∅ or A3,c+ = ∅. By symmetry, we may assume
A3,c− = ∅, and so {c, c+2} ∪ A3,c+ , {c−} ∪ A3,c, {c−2, c+, d} is a partition of V (G− B)

into three independent sets. Thus,

χ(G) ≤ χ(G[B]) + χ(G−B) ≤ f(ω(G[B])) + 3

≤ f(ω(G[B])) + f(2) ≤ f(ω(G[B]) + 2) ≤ f(ω(G)).

From this contradiction on our supposition on G, we obtain A3,c+2 6= ∅. Recall that
Ba1 = Ba2 for each a1 ∈ A3,c, each a2 ∈ A3,c+2 . Thus, Ba1 = Ba2 for each two
vertices a1, a2 ∈ A3,c∪A3,c+2 . Observe that {c−2, c}∪A3,c− , {c−, c+, d}, {c+2}∪A3,c−2 ∪
A3,c+ , A3,c ∪A3,c+2 ∪Ba1 is a partition of V (G− (B \Ba1)) into four independent sets,
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and so χ(G− (B \Ba1)) ≤ 4. For a1 ∈ A3,c and a2 ∈ A3,c+2 , it follows

f(ω(G)) < χ(G) ≤ χ(G[B \Ba1 ]) + 4 ≤ f(ω(G[B \Ba1 ])) + 4

≤ f(ω(G[B \Ba1 ])) + f(3) ≤ f(ω(G[B \Ba1 ]) + 3)

by the facts that G is a counterexample of minimal order, that f(w) ≥ b3w/2c for
each w ∈ N0, and that f(w1) + f(w2) ≤ f(w1 + w2) for each w1, w2 ∈ N0. Therefore,
ω(G) ≤ ω(G[B \Ba1 ]) + 2 since f is non-decreasing. Hence,

ω(G) ≤ ω(G[B \Ba1 ]) + 2 ≤ ω(G[B]) + 2 ≤ ω(G),

and so ω(G[B \ Ba1 ]) = ω(G[B]) = ω(G) − 2. On the other hand, for some clique W
of size ω(G[B]) in G[B \ Ba1 ], we have that W ∪ {a1, c

−2, c+2} is a clique in G and
therefore ω(G) ≥ ω(G[B]) + 3. This contradiction implies that D = ∅, and that G is
(K1 ∪ C5)-free by the arbitrariness of C.

Recall that G is connected, prime, (K1 ∪ K3, K1 ∪ C5, 2K2)-free graph and Ḡ is con-
nected. Thus, χ(G) ≤ f(ω(G)). From this final contradiction to our supposition, we
obtain χ(G) ≤ f(ω(G)).

Theorem 63.

f ?{P5,kite} ≡ f ?{2K2,kite} ≡ f ?{2K2,K1∪K3} ≡ f ?{2K2,K1∪K3,K1∪C5}

and for ω ∈ N>0⌊
3ω

2

⌋
≤ f ?{2K2,K1∪K3,K1∪C5}(ω) ≤


⌊

3ω
2

⌋
if ω ≤ 3,

2ω − 2 if ω ≥ 4.

Proof. Since f ?{P5,kite} ≤ f ?P5
and by Theorem 12, we know that the class of (P5, kite)-

free graphs has a χ-binding function. Note that

f ?{P5,kite} ≥ f ?{2K2,kite} ≥ f ?{2K2,K1∪K3} ≥ f ?{2K2,K1∪K3,K1∪C5},

since in each equality either another forbidden subgraph gets added or the forbidden
graph H is replaced by an induced subgraph of H.

Since each graph of {2K2, K1 ∪ K3, K1 ∪ C5} does not contain a complete bipartite
spanning subgraph, we conclude that f ?{2K2,K1∪K3,K1∪C5} is superadditive, by Lemma 43.
Thus, this functions fulfils condition (ii) of Lemma 62

We show next that f ?{2K2,K1∪K3,K1∪C5} also fulfils the condition (i) of Lemma 62. We
construct the family {Gω | ω ∈ N>0} of (2K2, K1 ∪ K3, K1 ∪ C5)-free graphs. Let
Gq
∼= K1 and for ω ∈ 2N>0 we define Gω as the complete join of ω/2 distinct C5’s.

Also for ω ∈ N>2 \ (2N>0) we define Gω = Gω−1 + K1. Note that ω(Gω) = ω and
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χ(Gω) = b3w(Gω)/2c for ω ∈ N>0. Additionally, each graph of the family {Gω |
ω ∈ N>0} is (2K2, K1 ∪ K3, K1 ∪ C5)-free as follows. The complementary graph Ḡω

consists of a disjoint union of C5’s with at most one isolated vertex, which is clearly a
(C4, K1,3,W5)-free graph. So f ?{2K2,K1∪K3,K1∪C5}(w) ≥ b3w/2c for each w ∈ N>0.

The function f ?{2K2,K1∪K3,K1∪C5} also fulfils condition (iii) of Lemma 62 by definition.
Therefore, Lemma 62 finally implies that f ?{P5,kite} ≤ f ?{2K2,K1∪K3,K1∪C5}, which proves
the first statement of the theorem.

We prove the second statement by induction on ω(G). For this it suffices to prove
χ(G) ≤ 2ω(G) − 2 for graphs G that are (K1 ∪K3, K1 ∪ C5, 2K2)-free and that have
clique number at least 3, by Lemma 60. For ω = 3 we get d3ω/2e = 2ω−2, which is the
induction base. So let G be a graph with ω(G) = k ≥ 4 and {w1, w2, . . . , wk} be a clique
of size ω(G) in G. We define S ⊆ V (G) as the non-neighbours of w1. Since the graph is
(K1∪K3, K1∪C5, 2K2)-free G[S] does not contain an odd cycle as an induced subgraph.
Thus, since a graph with no odd cycles is bipartite, we know that χ(G[S ∪ {w1}]) ≤ 2.
Note that ω(G−(S∪{w1})) = ω(G)−1, since EG[{w1}, V (G−(S∪{w1}))] is complete
and {w2, . . . , wk} ⊆ V (G− (S ∪ {w1})). By induction hypothesis we now conclude

χ(G) ≤ χ(G[S ∪ {w1}]) + χ(G− (S ∪ {w1})) ≤ 2 + 2(ω(G)− 1)− 2 = 2ω(G)− 2.

This inequality chain completes the proof of the theorem.
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9 (P5,HVN)-free graphs

In this section we discuss the optimal χ-binding function for (P5,HVN)-free graphs (cf.
Theorem 7). Let us repeat Theorem 7 which states

f ?{P5,HVN}(ω) =


ω + 1 if ω /∈ {1, 3},

ω if ω = 1,

ω + 2 if ω = 3,

for ω ∈ N>0. To prove this theorem we need Lemma 64 and Lemma 65, which we
prove in Section 9.2 and Section 9.3 respectively. Recall that a critical graph does not
contain a comparable vertex pair and does not contain a cutvertex, which follows from
Lemma 34 and Lemma 37 respectively. Assuming Lemma 64 and Lemma 65 to be
already proven, we prove the theorem in the remainder of this section.

Lemma 64. If G is a critical (P5,HVN, C5)-free graph then G is perfect or G ∼= C̄7.

Lemma 65. If G is a critical (P5,HVN)-free graph with ω(G) ≥ 4 which contains an
induced C5, then χ(G) ≤ ω(G) + 1.

We first argue that for ω ≤ 3, the theorem is known. Every graph G with ω(G) ≤ 3

is clearly HVN-free, (P5, K2)-free graphs are 1-colourable, (P5, K3)-free graphs are 3-
colourable [66], and (P5, K4)-free graphs are 5-colourable [26]. Also according to the
respective papers these bounds are best possible.

So we fix for the remainder of this paragraph ω ≥ 4. The following construction shows
f ?{P5,HVN}(ω) ≥ ω + 1. We define the graph Gω by C5[K1, Kω−1, K1, Kω−1, K1]. Note
that ω(Gω) = ω and Gω is (P5,HVN)-free, so it remains to show that χ(Gω) = ω + 1.
Let C be a C5 with vertex-weight function q fulfilling ωq(C) = ω and q(C) = 2 · ω + 1.
Note that the chromatic number of a weighted C5 only depends on the size of the
largest clique and the sum of the weights, thus, by Corollary 46,

χ(Gω) = χq(C) = max

{
ωq(C),

⌈
q(C)

2

⌉}
= ω + 1.

Thus, it remains to show that f ?{P5,HVN}(ω) ≤ ω+ 1. Let G be an arbitrary (HVN, P5)-
free graph with ω(G) = ω. Let G′ be a critical subgraph of G with χ(G) = χ(G′). If
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G′ is C5-free, we find, by Lemma 64,

χ(G) = χ(G′) =

ω(G′) + 1, if G′ ∼= C̄7

ω(G′), else.

Thus, χ(G) ≤ ω + 1, since ω(G′) ≤ ω(G) = ω. If on the other hand the graph G′

contains an induced C5, we distinguish two cases. If ω(G′) ≥ 4, then χ(G) = χ(G′) ≤
ω(G′) + 1 ≤ ω + 1, by Lemma 65. Otherwise ω(G′) ≤ 3 and we find χ(G) = χ(G′) ≤
5 ≤ ω + 1, since (P5, K4)-free graphs are 5-colourable [26].

Thus, it remains to prove Lemma 64 and Lemma 65.

9.1 Results for (P5, paw)-free graphs

Before we prove Lemma 64 and Lemma 65 we first need to better understand the
family of (P5, paw)-free graphs. Note that paw + K1

∼= HVN, so these families are
closely related. In this section we use known results to talk about the critical (P5, K3)-
free graphs and the critical (P5, paw)-free graphs. From that we deduce f ?{P5,paw} and
introduce a special colouring.

Lemma 66 (Sumner [66]). The critical (P5, K3)-free graphs are K1, K2 and C5.

Proof. Let G be a critical (P5, K3)-free graph. Clearly G is connected. If G is perfect,
G is isomorphic to K2 or K1. If G is not perfect, then G contains an induced C5,
by the SPGT, because it is (P5, K3)-free. Let C : c1c2c3c4c5c1 ∈ C5(G). For the sake
of contradiction we suppose there is a x ∈ NG(C). Then there is an i ∈ [5] with
NG(x) ∩ V (C) = {ci, ci+2}, since G is (P5, K3)-free. We know that (x, ci+1) is not
a comparable vertex pair, by Lemma 34, so there is a y ∈ V (G) with yx ∈ E(G)

and yci+1 /∈ E(G). Since G is P5-free, y ∈ NG(C). Thus, there is a j ∈ [5] with
NG(y) ∩ V (C) = {cj, cj+2}. We see that j /∈ {i, i + 2}, otherwise {x, y, cj} induces
a K3, and j 6= i + 3, otherwise {x, y, ci} induces a K3. But now yci+1 ∈ E(G); a
contradiction. Thus, our supposition is false and G ∼= C5.

Lemma 67 (Olariu [48]). The critical (P5, paw)-free graphs are the complete graphs
and C5.

Proof. Let G be a critical (P5, paw)-free graph. Clearly G is connected. According to
Olariu (cf. Theorem 20, [48]), G is a complete multipartite graph or K3-free. In the
second case G is K1, K2, or C5 according to Lemma 66. In the first case G is perfect
and, since critical, a complete graph.
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Corollary 68. For ω ∈ N>0,

f ?{P5,paw}(ω) =

ω if ω 6= 2,

ω + 1 if ω = 2.

Proof. Since C5 and Kω are (P5, paw)-free graphs, for ω ∈ N>0, the stated bound is a
lower bound of f ?{P5,paw}. To prove the reverse direction let G be an arbitrary (P5, paw)-
free graph and G′ a critical induced subgraph of G with χ(G) = χ(G′). By Lemma 67
G′ ∼= Kω(G′) or G′ ∼= C5. In the first case we see χ(G) = χ(G′) = ω(G′) ≤ ω(G) ≤ χ(G).
In the latter case we find 2 = ω(G′) ≤ ω(G) ≤ χ(G) = χ(G′) = 3. Thus, ω(G) = 2

and χ(G) = ω(G) + 1 or ω(G) = 3 = χ(G). Thus, the proof is complete.

In the later proofs we not only need that a (P5, paw)-free graph G has small chro-
matic number, but also that it can be χ(G)-coloured even if some vertices are already
precoloured.

Lemma 69. If G is a (P5, paw)-free graph and I1, I2 are vertex-disjoint independent
sets of G, then there is a colouring cI1,I2 : V (G)→ [max{χ(G), 3}] with |cI1,I2(I1∪I2)| ≤
1, if I2 6= ∅ and |cI1,I2(I1 ∪ I2)| ≤ 2 else.

Proof. Note that it suffices to show this result for a connected graph G, since proving it
for every connected graph and applying the result to each component of a disconnected
graph grants the result by renaming colours. By Olariu (cf. Theorem 20, [48]), the
graph G is complete multipartite or K3-free. If G is complete multipartite the optimal
ω(G)-colouring of G fulfils both bounds. If G is K3-free and χ(G) ≤ 2 the result is true
by simply colouring I1 with an additional colour, if I2 = ∅, or by optimally colouring
the graph which implies |cI1,I2(I1 ∪ I2)| ≤ 2 in the other case. The last remaining
case is that G is K3-free and χ(G) ≥ 3. In this case we see that G is non-perfect.
Therefore, the graph G contains an induced C5, since G is (P5, K3)-free and by the
Strong Perfect Graph Theorem. Since G is K3-free, Randerath [54] proves that G is
isomorphic to C5[k1 ·K1, k2 ·K2, . . . , k5 ·K5], for some k1, k2, . . . , k5 ∈ N>0. Let us denote
the vertices in the independent sets of this C5 in order by V1, V2, V3, V4, V5 respectively.
By otherwise renaming the vertices we may assume that V5 ∩ (I1 ∪ I2) = ∅. Also we
assume I1 ⊆ V1∪V3. We define the colouring cI1,I2 which colours the vertices of V1∪V3

with 1, the vertices of V2 ∪ V4 with 2 and the vertices of V5 with 3. This proves the
lemma.

9.2 Proof of Lemma 64

If G is not perfect then G contains an induced C̄7, by the Strong Perfect Graph The-
orem, since HVN ⊆ind C̄2p+1, for p ≥ 4, and P5 ⊆ind C2p+1, for p ≥ 3. Let V (C̄7) = C
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and the vertices of the C̄7 be labelled by c1, . . . , c7 with cici+1 /∈ E(G) for 1 ≤ i ≤ 7,
where all additions on the cycle are considered modulo 7.

(C1): For every w ∈ NG(C), there exists an i ∈ [7] with wci, wci+1 ∈ E(G): Suppose
not, then there is a w ∈ NG(C), such that for all i ∈ [7] wci /∈ E(G) or wci+1 /∈
E(G). Now there exists a j ∈ [7] with wcj ∈ E(G), wcj−1, wcj+1, wcj+2 /∈ E(G),
since 7 is odd. But [w, cj, cj+2, cj−1, cj+1] induces a P5; a contradiction.

(C2): If w ∈ NG(C) with wci, wci+1, wci+2 ∈ E(G) then wci+4, wci+5 /∈ E(G): Other-
wise we see that [ci+1, w, ci+4, ci+2, ci] or [ci+1, w, ci+5, ci+2, ci] induces a HVN; a
contradiction.

We define

W 3
i := {w ∈ NG(C) | C ∩NG(w) = {vi, vi+1, vi+2}},

W 4
i := {w ∈ NG(C) | C ∩NG(w) = {vi, vi+1, vi+2, vi+3}},

W 3 :=
⋃
i∈[7]

W 3
i ,

W 4 :=
⋃
i∈[7]

W 4
i .

(C3): NG(C) = W 3 ∪W 4: If w ∈ NG(C), then there is an i ∈ [7] with wci, wci+1 ∈
E(G), by (C1). If wci−1, wci+2 /∈ E(G), [w, ci, ci+2, ci−1, ci+1] induces a C5; a
contradiction. Thus, wci−1 ∈ E(G) or wci+2 ∈ E(G). By symmetry of the cycle
we assume the latter. By (C2), wci+4, wci+5 /∈ E(G). If wci+3, wci−1 ∈ E(G), then
using (C2) with wci−1, wci, wci+1 ∈ E(G) we get the contradiction wci+3 /∈ E(G).
Thus, w ∈ W 3 ∪W 4.

(C4): N2
G(C) = ∅: For the sake of contradiction we suppose N2

G(C) 6= ∅. Let n2 ∈
N2
G(C) then, by (C3), there is a w ∈ W 3 ∪W 4 with wn2 ∈ E(G). There is an

i ∈ [7] with w ∈ W 3
i ∪W 4

i . Now [n2, w, ci, ci+4, ci+6] induces a P5; a contradiction.

(C5): G is K4-free: Suppose not, then there is an induced K4 in G, which we call K,
with nC(K) := |V (K) ∩ C|. Clearly nC(K) ≤ 3. We next look at the remaining
cases one by one. By (C3), nC(K) < 3. Suppose nC(K) = 2, then there is an
i ∈ [7] with V (K) ∩ C = {ci, ci+2} or V (K) ∩ C = {ci, ci+3}. Again by (C3),
V (K) ∪ {ci+5} induces a HVN; a contradiction.

Suppose nC(K) = 1 and V (K) ∩ NG(C) = {x, y, z}. For i ∈ [7] we define
ni := |EG[{ci}, {x, y, z}]| and by otherwise renaming the vertices in C let n3 = 3.
We know that n5, n1 ≤ 1, since otherwise there is a induced K4 in G, called K ′,
with nC(K ′) ≥ 2; a contradiction to the previous case. Clearly n5, n1 6= 1, since
otherwise V (K) ∪ {n1} or V (K) ∪ {n5} induces a HVN. So n5 = n1 = 0. Since
|EG[{x, y, z}, C]| ≥ 9, we find n2 = 3, n4 = 3, by (C3). Thus, there is an induced
K4 in G, called K ′, with nC(K ′) ≥ 2; a contradiction to the previous case.
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Suppose last nC(K) = 0. Thus, V (K) ∩ NG(C) = 4, by (C4). This implies, by
(C3), |EG[V (K), C]| ≥ 12, so by the pigeonhole principle there is an i ∈ [5] with
ni ≥ 2. Clearly ni > 2, since the graph is HVN-free. So there is an induced K4,
called K ′, with nC(K ′) = 1; the final contradiction to a previous case.

Chudnosky et al. [21] prove, that (K4, C5, C7, C9, . . . )-free graphs are 4-colourable.
Since χ(C̄7) = 4, C̄7 ⊆ind G, and G is critical, we conclude G ∼= C̄7.

9.3 Proof of Lemma 65

For the remainder of the section we may suppose for the sake of contradiction that
the graph G is counterexample of minimum order to this lemma. So G is a connected,
critical (P5,HVN)-free graph which contains an induced C5 and χ(G) ≥ ω(G) + 2 ≥ 6.
Since ω(G) ≥ 4, we find G[NG(v)] is a (P5, paw)-free graph and thus χ(G[NG(v)]) ≤
ω(G)− 1, by Corollary 68, for each v ∈ V (G).

Let C : c1c2c3c4c5c1 ∈ C5(G). We define, depending on C, the following sets:

Ai(C) := {w ∈ NG(C) | V (C) ∩NG(w) = {ci, ci+2}}, for i ∈ [5],

Bi(C) := {w ∈ NG(C) | V (C) ∩NG(w) = {ci, ci+1, ci+2}}, for i ∈ [5],

Yi(C) := {w ∈ NG(C) | V (C) ∩NG(w) = {ci, ci+2, ci+3}}, for i ∈ [5],

Hi(C) := {w ∈ NG(C) | V (C) ∩NG(w) = {ci, ci+1, ci+2, ci+3}}, for i ∈ [5],

D(C) := {w ∈ NG(C) | V (C) ∩NG(w) = V (C)},

A(C) :=
⋃
i∈[5]

Ai(C),

B(C) :=
⋃
i∈[5]

Bi(C),

Y (C) :=
⋃
i∈[5]

Yi(C),

H(C) :=
⋃
i∈[5]

Hi(C).

Since G is P5-free, NG(C) = A(C)∪B(C)∪Y (C)∪H(C)∪D(C). Note that, we often
omit the C in these notations. For each C : c1c2c3c4c5c1 ∈ C5(G) we define

nB(C) := |{i ∈ [5] | Bi(C) 6= ∅}|.

Also we define nmax
B := max{nB(C) | C ∈ C5(G)}, which only depends on the minimal

counterexample G.

The remainder of the proof is now organized as follows. In the following Claim 69.1 we
analyse the structure of the neighbourhood of any given C5 in G. The different results
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are labelled for later reference. (S4) for example directly implies that nB(C) ≤ 2 for
any C ∈ C5(G). Thus, nmax

B ≤ 2. Using the structure from Claim 69.1 we show in the
then following three claims, by means of a complete case distinction, that the minimal
counterexample G does not exist. Note that the last subclaim in each of these three
claims is a clear contradiction to something previously assumed and the claims cover
all possible cases. So all that is left to do is to prove the following four claims. Let us
start with the structural results.

Claim 69.1. Let C : c1c2c3c4c5c1 ∈ C5(G) and i ∈ [5]. We omit the C in the following
notations and write for example Ai instead of Ai(C).

(S1) EG[Ai, Bi+2 ∪Bi+3] is anticomplete.

(S2) EG[Ai, Ai+1 ∪ Ai+4 ∪Bi+1 ∪Bi+4 ∪ Yi+1 ∪Hi+1 ∪Hi+3] is complete.

(S3) EG[A ∪B,N2
G(C)] is anticomplete.

(S4) If Bi 6= ∅, then Bi+1 = ∅.

(S5) If Bi 6= ∅, then Yi+3 ∪ Yi+4 = ∅.

(S6) If Bi 6= ∅, then Hi ∪Hi+4 = ∅.

(S7) EG[Bi, Yi ∪ Yi+2] is anticomplete.

(S8) EG[Bi, Yi+1] is complete.

(S9) EG[Bi, Hi+1 ∪Hi+3 ∪D] is anticomplete.

(S10) Each X ∈ {Yi | i ∈ [5]} ∪ {Hi | i ∈ [5]} ∪ {D} is an independent set.

(S11) H ∪D is an independent set.

(S12) EG[Hi, Yi+1 ∪ Yi+2] is complete and EG[Hi, Yi ∪ Yi+3 ∪ Yi+4] is anticomplete.

(S13) EG[Yi, Yi+1] is complete.

(S14) EG[D, Y ] is anticomplete.

(S15) There is no induced K4 in G[D∪Y ∪H∪N2
G(C)] with |V (K4)∩(D∪Y ∪H)| ≥ 2.

Proof. Proof of (S1): Suppose not then there is an a ∈ Ai, and a b ∈ Bi+2 ∪Bi+3 with
ab ∈ E(G). If b = bi+2 ∈ Bi+2 then [ci+1, ci, a, b, ci+3] induces a P5; a contradiction. If
b = bi+3 ∈ Bi+3 then [ci+1, ci+2, a, b, ci+4] induces a P5; a contradiction.

Proof of (S2): Suppose not then there is an a ∈ Ai, and a b ∈ Ai+1∪Ai+4∪Bi+1∪Bi+4∪
Yi+1∪Hi+1∪Hi+3 with ab /∈ E(G). If b = ai+1 ∈ Ai+1∪Bi+1 then [a, ci, ci+4, ci+3, ai+1]
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induces a P5; a contradiction. If b = ai+4 ∈ Ai+4 ∪ Bi+4 then [ai+4, ci+4, ci+3, ci+2, a]

induces a P5; a contradiction. If b = yi+1 ∈ Yi+1 ∪ Hi+1 then [a, ci, ci+1, yi+1, ci+3]

induces a P5; a contradiction. If b = hi+3 ∈ Hi+3 then [a, ci+2, ci+1, hi+3, ci+4] induces
a P5; a contradiction.

Proof of (S3): Suppose not then there is an i ∈ [5], a x ∈ Ai ∪Bi, and an n2 ∈ N2
G(C)

with xn2 ∈ E(G). But now [n2, x, ci+2, ci+3, ci+4] induces a P5; a contradiction.

Proof of (S4): Suppose not, so there is a bi ∈ Bi and a bi+1 ∈ Bi+1. If bibi+1 /∈
E(G), then [bi+1, ci+3, ci+4, ci, bi] induces a P5; a contradiction. If bibi+1 ∈ E(G), then
[ci, bi, ci+1, ci+2, bi+1] induces a HVN; a contradiction.

Proof of (S5): Suppose not, so there is a bi ∈ Bi and a y ∈ Yi+3∪Yi+4. If y = yi+3 ∈ Yi+3,
then [bi, ci+1, yi+3, ci+3, ci+4] induces a P5 if biyi+3 /∈ E(G), and [ci+2, ci+1, bi, ci, yi+3]

induces a HVN if biyi+3 ∈ E(G); a contradiction. Thus, y = yi+4 ∈ Yi+4. But
[bi, ci+1, yi+4, ci+4, ci+3] induces a P5 if biyi+4 /∈ E(G), and [ci, ci+1, bi, ci+2, yi+4] induces
a HVN if biyi+4 ∈ E(G); a contradiction.

Proof of (S6): Suppose not, so there is a bi ∈ Bi and a h ∈ Hi ∪Hi+4. If h = hi ∈ Hi,
then [bi, ci+1, hi, ci+3, ci+4] induces a P5 if bihi /∈ E(G), and [ci+3, ci+2, hi, ci+1, bi] induces
a HVN if bihi ∈ E(G); a contradiction. If h = hi+4 ∈ Hi+4, then [bi, ci+1, hi+4, ci+4, ci+3]

induces a P5 if bihi+4 /∈ E(G), and [ci+4, ci, hi+4, ci+1, bi] induces a HVN if bihi+4 ∈
E(G); a contradiction.

Proof of (S7): Suppose not, so there is a bi ∈ Bi and a y ∈ Yi∪Yi+2 with biy ∈ E(G). If
y = yi ∈ Yi, then [ci+1, bi, yi, ci+3, ci+4] induces a P5; a contradiction. If y = yi+2 ∈ Yi+2,
then [ci+1, bi, yi, ci+4, ci+3] induces a P5; a contradiction.

Proof of (S8): Suppose not, then there is a yi+1 ∈ Yi+1 and a bi ∈ Bi with yi+1bi /∈ E(G).
But now [ci, bi, ci+2, ci+3, yi+1] induces a P5; a contradiction.

Proof of (S9): Suppose not, so there is a bi ∈ Bi and a x ∈ Hi+1 ∪Hi+3 ∪D with bix ∈
E(G). If x = hi+1 ∈ Hi+1, then [ci, ci+1, bi, ci+2, hi+1] induces a HVN; a contradiction.
If x ∈ Hi+3 ∪D, then [ci+4, ci, x, ci+1, bi] induces a HVN; a contradiction.

Proof of (S10): Suppose not, then there are x, x′ ∈ X with xx′ ∈ E(G). So there is an
i ∈ [5] with x, x′ ∈ Yi or x, x′ ∈ Hi or x, x′ ∈ D and [ci, x, x

′, ci+2, ci+3] induces a HVN;
a contradiction.

Proof of (S11): For i ∈ [5] Hi and D are independent sets, by (S10). Suppose H ∪D
is not an independent set, then there is an i ∈ [5], a j ∈ [5] \ {i} and a fi ∈ Hi∪D and
a fj ∈ Hj with fifj ∈ E(G). If j = i + 1, then [ci, fi, ci+1, ci+2, fj] induces a HVN; a
contradiction. If j = i+ 2, then [ci, fi, fj, ci+2, ci+3] induces a HVN; a contradiction. If
j = i + 3, then [ci+3, fi, fj, ci, ci+1] induces a HVN; a contradiction. If j = i + 4, then
[ci+3, fi, ci+2, ci+1, fj] induces a HVN; a contradiction.
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Proof of (S12): Suppose not, then there is a hi ∈ Hi and a y ∈ Yi+1 ∪ Yi+2 with
hiy /∈ E(G) or y ∈ Yi ∪ Yi+3 ∪ Yi+4 with hiy ∈ E(G). Let us look at the first case: If
y = yi+1 ∈ Yi+1, then [yi+1, ci+4, ci, hi, ci+2] induces a P5; a contradiction. If y = yi+2 ∈
Yi+2, then [yi+2, ci+4, ci+3, hi, ci+1] induces a P5; a contradiction. Let us now look at the
second case: If y = yi ∈ Yi, then [ci, yi, hi, ci+2, ci+4] induces a HVN; a contradiction.
If y = yi+3 ∈ Yi+3, then [ci+3, yi+3, hi, ci, ci+1] induces a HVN; a contradiction. If
y = yi+4 ∈ Yi+3, then [ci, hi, ci+1, ci+2, yi+4] induces a HVN; a contradiction.

Proof of (S13): Suppose not, then there is a yi ∈ Yi and a yi+1 ∈ Yi+1 with yiyi+1 /∈
E(G). But now [yi, ci+2, ci+1, yi+1, ci+4] induces a P5; a contradiction.

Proof of (S14): Suppose not, then there is an i ∈ [5], a yi ∈ Yi, and a d ∈ D with
dyi ∈ E(G). But now [ci, yi, d, ci+2, ci+3] induces a HVN; a contradiction.

Proof of (S15): Suppose for the sake of contradiction there is such aK4. If |V (K4)∩(D∪
Y ∪H)| = 2, there is a j ∈ [5] such that {cj} ∪ V (K4) induces a HVN, by pigeonhole
principle; a contradiction. So we may assume |V (K4) ∩ (D ∪ Y ∪ H)| ≥ 3. Since
EG[D, Y ∪H] is anticomplete andD is independent, by (S14) and (S11), |V (K4)∩D| = 0

Since H is independent, by (S11), |V (K4) ∩ H| ≤ 1. Recall that, for i ∈ [5], Yi is
independent, by (S10). Let us first look at the case |V (K4) ∩H| = 1. Let i ∈ [5] with
|V (K4)∩Hi| = 1. By (S12) and (S10), |V (K4)∩ (Y ∪H)| ≤ 3. So |V (K4)∩ (Y ∪H)| =
3, and there is a yi+1 ∈ Yi+1 ∩ V (K4), yi+2 ∈ Yi+2 ∩ V (K4), and V (K4) ∪ {ci+1}
induces a HVN; a contradiction. Let us lastly look at the case |V (K4) ∩ H| = 0. If
|V (K4) ∩ Y | = 4, there is an i ∈ [5] with yi ∈ Yi, yi+1 ∈ Yi+1, yi+2 ∈ Yi+2, yi+3 ∈ Yi+3

and V (K4) = {yi, yi+2, yi+3, yi+4}, since for each j ∈ [5] Yj is independent. But now
[ci+1, yi+1, yi+3, yi+2, yi] induces a HVN; a contradiction. If |V (K4) ∩ Y | = 3, there is
an i ∈ [5] with V (K4) ∩ Y = {yi, yi+1, yi+2} or V (K4) ∩ Y = {yi, yi+1, yi+3}. In the
first case V (K4) ∪ {ci+2} and in the second case V (K4) ∪ {ci+1} induces a HVN, a
contradiction.

Claim 69.2. Let nmax
B = 2 in this case there is a C : c1c2c3c4c5c1 ∈ C5(G) with

nB(C) = 2. We omit the C in the following notations and write for example Ai instead
of Ai(C). By (S4), there is an i ∈ [5] with Bi, Bi+2 6= ∅.

(C1) If Yi+2 6= ∅, then EG[Bi, Bi+2] is anticomplete.

(C2) If Hi+3 ∪D 6= ∅, then EG[Bi, Bi+2] is complete.

(C3) NG(C) = A ∪B ∪D or NG(C) = A ∪B ∪Hi+3 or NG(C) = A ∪B ∪ Yi+2.

(C4) If NG(C) = A ∪B ∪D or NG(C) = A ∪B ∪Hi+3, then N2
G(C) = ∅.

(C5) Ai+1, Ai+3, Ai+4 are independent sets.

(C6) EG[Ai+1, Ai+3] is anticomplete.



9.3 Proof of Lemma 65 111

(C7) If NG(C) = A∪B∪D or NG(C) = A∪B∪Yi+2, then G is (ω(G)+1)-colourable.

(C8) If NG(C) = A ∪B ∪Hi+3, then G is (ω(G) + 1)-colourable.

(C9) G is (ω(G) + 1)-colourable.

Proof. Proof of (C1): Suppose not, then there is a bi ∈ Bi, a bi+2 ∈ Bi+2, and a y ∈ Yi+2

with bibi+2 ∈ E(G). By (S7) biy, bi+2y /∈ E(G) and [ci+1, bi, bi+2, ci+4, y] induces a P5;
a contradiction.

Proof of (C2): Suppose not, then there is a bi ∈ Bi, a bi+2 ∈ Bi+2, and a x ∈ Hi+3 ∪D
with bibi+2 /∈ E(G). By (S9) bix, bi+2x /∈ E(G) and [bi, ci, x, ci+3, bi+2] induces a P5; a
contradiction.

Proof of (C3): By (S5) Yi∪Yi+1∪Yi+3∪Yi+4 = ∅. By (S6) Hi∪Hi+1∪Hi+2∪Hi+4 = ∅.
So it remains to show that at most one of the three sets D, Hi+3, Yi+2 is non empty. If
Hi+3 ∪D 6= ∅, then EG[Bi, Bi+2] is complete by (C2). If Yi+2 6= ∅, then EG[Bi, Bi+2] is
anticomplete by (C1). Thus, Yi+2 = ∅ or Hi+3 ∪D = ∅. In the latter case the claim is
shown so we may assume the the first case. For the sake of contradiction we suppose
hi+3 ∈ Hi+3, d ∈ D. By (S11) hi+3d /∈ E(G). For bi ∈ Bi [hi+3, ci+4, d, ci+2, bi] induces
a P5, by (S9); a contradiction.

Proof of (C4): Suppose not, then there is an n2 ∈ N2
G(C). Since G is connected, there

is a x ∈ D ∪Hi+3 with xn2 ∈ E(G), by (S3). Now [n2, x, ci+3, bi+2, bi] induces a P5, by
(C2) and (S9); a contradiction.

Proof of (C5): Suppose not, then there is a j ∈ {i+ 1, i+ 3, i+ 4} and a, a′ ∈ Aj with
aa′ ∈ E(G). If j = i + 1, [ci, bi, ci+1, a, a

′] induces a HVN, by (S2); a contradiction. If
j = i + 3, [ci+2, bi+2, ci+3, a, a

′] induces a HVN, by (S2); a contradiction. If j = i + 4,
[ci+2, bi, ci+1, a, a

′] induces a HVN, by (S2); a contradiction.

Proof of (C6): Suppose not, then there is a bi+2 ∈ Bi+2, an ai+1 ∈ Ai+1, and an
ai+3 ∈ Ai+3 with ai+1ai+3 ∈ E(G). We know that ai+1bi+2, ai+3bi+2 ∈ E(G), by (S2).
Therefore, [ci+2, ci+3, bi+2, ai+3, ai+1] induces a HVN; a contradiction.

Proof of (C7): We colour NG(ci+2) with the colours 1, . . . , ω(G)−1, in such a way that
c(Yi+2) ⊆ {1}, which is possible by Corollary 68 and Lemma 69. By (C5) and (C6) we
proper colour G[Ai+1 ∪ Ai+3 ∪ Ai+4 ∪ {ci, ci+2, ci+4}] with 2 colours as follows:

c(u) =

ω(G), for u ∈ Ai+1 ∪ Ai+3 ∪ {ci+2, ci+4},

ω(G) + 1, for u ∈ Ai+4 ∪ {ci}.

So N2
G(C) 6= ∅ and NG(C) = A ∪ B ∪ Yi+2 is the only remaining case, by (C4). Let

S1, . . . , Sk be the connected components of G[V (G) \ NG[C]]. For each j ∈ [k] there
is a y ∈ Yi+2 with [y, Sj] is complete, since G is connected and P5-free. So

⋃k
j=1 Sk is



112 9 (P5,HVN)-free graphs

(ω(G)−1)-colourable, by Corollary 68. Using the colours {2, . . . , ω} on
⋃k
i=1 Sk admits

an (ω(G) + 1)-colouring of G.

Proof of (C8): We know by (C4) that V (G) = NG[C]. We colour G[Ai+1 ∪ Ai+3 ∪
Ai+4 ∪ {ci, ci+2, ci+4}] with 2 colours as follows (identical as in (C7)):

c(u) =

ω(G), for u ∈ Ai+1 ∪ Ai+3 ∪ {ci+2, ci+4},

ω(G) + 1, for u ∈ Ai+4 ∪ {ci}.

Thus, if we proper colour NG(ci+2)∪Hi+3 with at most ω(G)−1 colours, then the claim
is proven. IfHi+3 = ∅ we colour NG(ci+2) with at most ω(G)−1 colours, which is doable
by Corollary 68. So for the remainder of this claim let hi+3 ∈ Hi+3 6= ∅. We show next
that for j ∈ {i, i + 2} EG[Aj, Bj] is complete and EG[Aj, Bi+2−(j−i)] is anticomplete:
Suppose there is a j ∈ {i, i + 2} with ajbj /∈ E(G), then [ci+4−2(j−i), hi+3, aj, ci+2, bj]

induces a P5, by (S2) and (S9); a contradiction. Suppose there is a j ∈ {i, i + 2}
with ajbi+2−(j−i) ∈ E(G), if j = i, this is a contradiction to (S1), if j = i + 2 then
[ci+1, ci+2, bi, bi+2, ai+2] induces a HVN, by (C2); a contradiction. We show next that Ai
and Ai+2 are independent sets. Suppose not then there is a j ∈ {i, i+2} with a, a′ ∈ Aj
with aa′ ∈ E(G). But now [ci+1+(j−i), ci+2, bj, a, a

′] induces a HVN; a contradiction.
Also Bi and Bi+2 are independent sets. Suppose not then there is a j ∈ {i, i+ 2} with
b, b′ ∈ Bj with bb′ ∈ E(G). But now [ci+2(j−i), b, b

′, ci+2, bi+2−(j−i)] induces a HVN, by
(C2); a contradiction. Now NG(ci+2) is 2-colourable, as follows:

c(u) =

1, for u ∈ Ai ∪Bi+2 ∪ {ci+1},

2, for u ∈ Ai+2 ∪Bi ∪ {ci+3}.

So colouring Hi+3 in 3 admits a 3-colouring of NG(ci+2) ∪ Hi+3. Since 3 ≤ ω(G) − 1

the claim is proven.

Proof of (C9): This follows directly from (C3), (C7) and (C8).

Claim 69.3. Let nmax
B ≤ 1 and χ(G[B(C)]) ≤ 1, for each C ∈ C5(G). In this case we

fix C : c1c2c3c4c5c1 ∈ C5(G) with |D(C)| = min{|D(C ′)| : C ′ ∈ C5(G)}. We omit the C
in the following notations and write for example Ai instead of Ai(C). In this setting
we show the following claims:

(C1) There is no C ′ ∈ C5(G) with a vertex in N2
G(C), D and V (C) ∪ A ∪B.

(C2) For i ∈ [5], G[Ai] is K3-free.

(C3) G[NG[C]] is K4-free.

(C4) N3
G(C) = ∅.

(C5) G[N2
G(C)] is not K3-free.
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By (C5) there is a component in N2
G(C) containing 3 pairwise adjacent vertices. We

call the component K and the pairwise adjacent vertices k1, k2, k3 ∈ K.

(C6) If x ∈ H ∪ Y , then EG[{x}, K] is complete or anticomplete.

(C7) EG[D,N2
G(C)] is complete.

(C8) There is a C ′ ∈ C5(G) with χ(G[B(C ′)]) ≥ 2.

Proof. Proof of (C1): This is true if D = ∅. If D 6= ∅, for such a cycle C ′ |D(C ′)| = 0,
by (S3), (S11), and (S14), which is a contradiction to the choice of C.

Proof of (C2): Suppose not and a, a′, ã ∈ Ai with aa′, aã, a′ã ∈ E(G). But now
[a, ci+2, ci+3, ci+4, ci] induces a C5, which we call C ′, with a′, ã ∈ B(C ′); a contradiction
to χ(G[B(C ′)]) ≤ 1.

Proof of (C3): Suppose not, then there is a K4, which we call K, with nC(K) :=

|V (K) ∩ V (C)|. Clearly nC(K) ≤ 2. Suppose nC(K) = 2 with x, y ∈ V (K4) ∩NG(C),
then there is an i ∈ [5] with ci, ci+1 ∈ V (K4). So x, y /∈ A, and since EG[D,H ∪Y ∪B]

is anticomplete and D is independent, by (S9),(S11),(S14), we know x, y /∈ D. Suppose
first y ∈ Yi+3. Since Yi+3 is independent, x ∈ H∪B. Since xy ∈ E(G) x ∈ Hi+1∪Hi+2∪
Bi+2, by (S12), (S7) and (S5), a contradiction to xci, xci+1 ∈ E(G). So x, y /∈ Yi+3 and
|{x, y} ∩ B| = 1, since H and B are independent sets. For the final contradiction in
this case we suppose x ∈ Bi ∪ Bi+4 and y ∈ H. If x ∈ Bi, then y ∈ Hi+2, by (S6) and
(S9), a contradiction to yci+1 ∈ E(G). If x ∈ Bi+4, then y ∈ Hi+1, by (S6) and (S9); a
contradiction to yci ∈ E(G).

Suppose nC(K) = 1, V (K4) ∩ NG(C) = {x, y, z}. For i ∈ [5] we define the integer ni
by ni := |EG[{ci}, {x, y, z}]| and let j ∈ [5] with cj ∈ V (K4), so nj = 3. We first argue
that, for i ∈ [5], if ni = 3, then ni+1 = ni−1 = 0. We know that ni+1, ni−1 ≤ 1, since
otherwise there is a K4 K

′ with nC(K ′) ≥ 2; a contradiction to the previous case. Also
ni+1, ni−1 6= 1, since otherwise {ci+1, ci, x, y, z, } or {ci−1, ci, x, y, z} induces a HVN; a
contradiction. Which proves the just stated claim and we know nj−1 = nj+1 = 0. Also
nj+2 6= 2 and nj−2 6= 2, since otherwise V (K4)∪ {c1} or V (K4)∪ {c5} induces a HVN.
Since

∑5
i=1 ni ≥ 6, nj−2 > 1 or nj+2 > 1. Thus, by symmetry we may assume nj+2 = 3.

But now nj−2 = nj+2+1 = 0, and x, y, z ∈ A3; a contradiction to (C2).

Suppose last nC(K) = 0. Since |EG[V (K4), V (C)] ≥ 8, there is an i ∈ [5] with
|EG[{ci}, V (K4)]| ≥ 2, by the pigeonhole principle. Since the graph is HVN-free, this
even implies |EG[{ci}, V (K4)]| > 2. Thus, there is a K4, called K ′, with nC(K ′) ≥ 1;
a contradiction to the previous case.

Proof of (C4): Suppose not, then there is an n3 ∈ N3
G(C), n2 ∈ N2

G(C), and a d ∈ D
with n3n2, n2d ∈ E(G), since G is P5-free. Since d is not a cutvertex, by Lemma 37,
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since G is critical, there is a d′ ∈ D \ {d}. Since [n3, n2, d, c1, d
′] does not induces a P5,

d′n2 ∈ E(G). Since (d, d′) and (d′, d) are not comparable vertex pairs, by Lemma 34,
sinceG is critical, there is a pd, pd′ ∈ V (G) with pdd, pd′d′ ∈ E(G) and pd′d, pdd′ /∈ E(G).
Clearly pd, pd′ /∈ D. If pd′ , pd ∈ N2

G(C) then [pd′ , d
′, c1, d, pd] induces a C5, since G is

P5-free; a contradiction to (C1). Since EG[D,H ∪ Y ∪ B] is anticomplete, we may
assume, by otherwise renaming, pd ∈ A. If also pd′ ∈ A, [pd′ , d

′, n2, d, pd] induces a C5,
since G is P5-free; a contradiction to (C1). So pd′ ∈ N2

G(C) and there is an i ∈ [5] with
pd ∈ Ai, and [pd′ , d

′, ci+1, d, pd] induces a P5; a contradiction.

Proof of (C5): This follows from the fact that ω(G) ≥ 4, from (S15), and G[NG[C]] is
K4-free, by (C3).

Proof of (C6): Suppose not, then there are k, k′ ∈ K, an i ∈ [5], and a x ∈ Hi∪Yi with
xk ∈ E(G) and xk′ /∈ E(G). By the connectivity of K we may assume kk′ ∈ E(G).
But now [k′, k, h, ci, ci−1] induces a P5; a contradiction.

Proof of (C7): Suppose not, then there is a d ∈ D and an n2 ∈ N2
G(C) with dn2 /∈ E(G).

Since n2 ∈ N2
G(C), there is a x ∈ H∪Y ∪D with xn2 ∈ E(G). If x ∈ H∪Y , there is an

i ∈ [5] with x ∈ Hi∪Yi and [ci+4, d, ci+2, x, n2] induces a P5; a contradiction. So x ∈ D.
Since (d, x) is not a comparable vertex pair, there is a pd ∈ V (G) with pdd ∈ E(G)

and pdx /∈ E(G). If pd ∈ N2
G(C), then [pd, d, c1, x, n2] induces a C5, since G is P5-free;

a contradiction to (C1). So pd ∈ A ∪ B and there is an i ∈ [5] with pd ∈ Ai ∪ Bi, and
[n2, x, ci+1, d, pd] induces a P5; the final contradiction.

Proof of (C8): Since the graph is connected, there is a x ∈ D∪Y ∪H with EG[{x}, K]

complete, by (C6) and (C7). Since x is not a cutvertex, by Lemma 37, there is a
y ∈ D ∪ Y ∪H with x 6= y such that EG[{y}, K] is complete. We see that xy /∈ E(G),
since xy ∈ E(G) is a contradiction to (S15). Since (x, y) and (y, x) is not a comparable
vertex pair, there are px, py ∈ V (G) with pxx, pyy ∈ E(G) and pxy, pyx /∈ E(G). Clearly
px, py /∈ K. Also EG[{px} ∪ {py}, K] is anticomplete, since otherwise EG[{pz}, K] is
complete, for a z ∈ {x, y}, and we end in a contradiction to (S15). Therefore, pxpy ∈
E(G), since G is P5-free. But now C ′ : pxxk1ypypx ∈ C5(G) with k2, k3 ∈ B(C ′).

Claim 69.4. Let nmax
B = 1 and there be a C ∈ C5(G) with χ(G[B(C)]) ≥ 2. We fix

C : c1c2c3c4c5c1 ∈ C5(G) with

χ(G[B(C)]) = max{χ(G[B(C ′)]) : C ′ ∈ C5(G)} ≥ 2.

Let i ∈ [5] with Bi(C) 6= ∅. We omit the C in the following notations and write
for example Ai instead of Ai(C). Since there is an edge bb′ ∈ E(G[Bi]) quite some
restrictions on NG(C) follow:

(C1) Yi+3, Yi+4, Hi, Hi+4, Hi+1, Hi+3, D = ∅.

(C2) Ai+1, Ai+2, Ai+4 are independent sets.
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(C3) EG[Yi+1, Ai+1 ∪ Ai+4] is anticomplete.

(C4) Ai+1 ∪ Ai+4 ∪ Yi+1 ∪ {ci, ci+2} is an independent set.

(C5) G is (ω(G) + 1)-colourable

Proof. Recall that, by (S13), EG[Yi, Yi+1] is complete, by (S8), EG[Bi, Yi+1] is complete,
by (S7), EG[Bi, Yi ∪Yi+2] is anticomplete, by (S1), EG[Bi, Ai+2 ∪Ai+3] is anticomplete,
and, by (S2), EG[Bi, Ai+1 ∪ Ai+4] is complete.

Proof of (C1): Recall that, by (S5), Yi+3, Yi+4 = ∅ and, by (S6), Hi, Hi+4 = ∅. By (S9),
EG[B,Hi+1 ∪Hi+3 ∪D] is anticomplete. We first show that D = ∅. Suppose not, then
there is a d ∈ D with db, db′ /∈ E(G), by (S9). But now [d, ci, ci+1, b, b

′] induces a HVN;
a contradiction. Suppose there is a j ∈ {i + 1, i + 3} with h ∈ Hj, then, also by (S9),
[h, ci+3−(j−i), ci+1, b, b

′] induces a HVN; a contradiction.

Proof of (C2): Suppose not, then there is a j ∈ {i+ 1, i+ 2, i+ 4} with a, a′ ∈ Aj and
aa′ ∈ E(G). If j = i + 1 or j = i + 4, then [ci, b, ci+1, a, a

′] induces a HVN, by (S2); a
contradiction. If j = i+ 2, then [a, ci+4, ci, ci+1, ci+2] induces a C5 C

′ with nB(C ′) ≥ 2;
a contradiction to nmax

B = 1.

Proof of (C3): Suppose not, then there is a yi+1 ∈ Yi+1 and a j ∈ {i + 1, i + 4} with
a ∈ Aj and yi+1a ∈ E(G). But now [ci, b, ci+1, yi+1, a] induces a HVN, by (S8); a
contradiction.

Proof of (C4): Suppose not, then there is a x ∈ Ai+1 ∪ Ai+4 ∪ Yi+1 ∪ {ci, ci+2} and a
y ∈ Ai+1 ∪ Ai+4 ∪ Yi+1 ∪ {ci, ci+2} with xy ∈ E(G). Note that x, y /∈ {ci, ci+2}. Also x
and y are not both in one of the 3 subsets, by (C2) and (S10). By (C3), x, y /∈ Yi+1.
So x ∈ Ai+1, y ∈ Ai+4 but now [ci, bi, ci+1, x, y] induces a HVN; the final contradiction.

Proof of (C5): Recall that by (S12) EG[Hi+2, Yi+2 ∪ Yi] is anticomplete. Thus, Yi and
Yi+2 ∪ Hi+2 are two independent sets by (S10). We colour NG(ci) with colours from
[ω(G) − 1] colours in such a way that |c(Hi+2 ∪ Yi+2 ∪ Yi)| ≤ 2. Which is possible by
Lemma 69, since ω(G) ≥ 4. The remainder of G[NG[C]] we colour as follows.

c(u) =

ω(G), for u ∈ Ai+1 ∪ Ai+4 ∪ Yi+1 ∪ {ci, ci+2},

ω(G) + 1, for u ∈ Ai+2 ∪ {ci+3},

which is a proper colouring by (C4). So G is (ω(G) + 1)-colourable or N2
G(C) 6= ∅.

Clearly N3
G(C) = ∅, since D = ∅. The trivial components in N2

G(C) we colour with
colour ω(G) + 1. So let S1, . . . , Sk be the non-trivial components of G[N2

G(C)]. We
choose j ∈ [k] arbitrary. Observe first that if x ∈ NG(Sj), we know that EG[{x}, Sj] is
complete, since G is P5-free and D = ∅. Thus, there is a y ∈ Y ∪H with EG[{y}, Sj] is
complete, since G is connected. So χ(G[Sj]) ≤ ω(G)−1, by Corollary 68. To prove our
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claim it suffices to show that if χ(G[Sj]) = ω(G)−1, then |c(NG(Sj)∩(Y ∪H))| ≤ 2. If
EG[Yi+1, Sj] is anticomplete the claim is proven, since |c(Yi ∪ Yi+2 ∪Hi+2)| ≤ 2. Thus,
we may assume there is a yi+1 ∈ Yi+1 with EG[{yi+1}, Sj] is complete by the previous
observation. But now EG[Yi ∪ Yi+2, Sj] is anticomplete, by (S15), since EG[Yj, Yj+1]

is complete for each j ∈ [5], by (S13). So in this case NG(Sj) ⊆ Yi+1 ∪ Hi+2 and
EG[Hi+2, Yi+1] is anticomplete, by (S15). If Hi+2 ∩ NG(Sj) = ∅ we are done so we
suppose for the sake of contradiction, that there is a hi+2 ∈ Hi+2 with EG[{hi+2}, Sj]
is complete. Now C ′ : n2, hi+2, ci+2, ci+1, yi+1, n2 ∈ C5(G) for every n2 ∈ Sj. But
also nB(C ′) ≥ 2, because b ∈ B(C ′), since byi+1, bci+1, bci+2 ∈ E(G), by (S8), and
n′2 ∈ NG(n2) ∩N2

G(C) is in B(C ′) with n′2ci+2 /∈ E(G); the final contradiction.
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10 Characterisation of graphs H
with f?{P5,H}

(ω) ≤ ω + c(H)

Let us recall that f ?{P5,HVN}(ω) ≤ ω + 2 and f ?{P5,H}(ω) = f ?{H}(ω) ≤ ω = ω + 0, for
every ω ∈ N>0 and each H ⊆id P4 (c.f. Theorem 7 and Observation 16). It is quite rare
to find a graph H such that the family of (P5, H)-free graphs has a binding function
of that form.

In this section, we characterize all graphs H such that

f ?{P5,H}(ω) ≤ ω + c(H)

for some constant c(H) – depending on H only – and each ω ∈ N>0. To do that
we define the following special graph. For p ∈ N0 the graph Fp is defined as Fp :=

(K1 ∪ K2) + Kp. Note that F2
∼= HVN , F1

∼= paw, F0
∼= K1 ∪ K2, and Fp is the

complementary graph of pK1 ∪ P3 for each p ∈ N0. So this section is dedicated to the
proof of Theorem 8 which states the following. For a graph H, there is a constant c(H)

such that f ?{P5,H}(ω) ≤ ω + c(H), for ω ∈ N>0, if and only if either H ∼= P4 or H is an
induced subgraph of Fp for some p ∈ N0.

One direction we order in the following three lemmas.

Lemma 70. Let p ∈ N>0 and G be a (P5, Kp)-free graph. There exists a c(Kp) =

c(p) ∈ N0 such that χ(G) ≤ c(p).

Proof. For p ∈ N>0 we define c(p) := f ?P5
(p− 1) ∈ N0 and G be a (P5, Kp)-free graph.

Note that f ?P5
is superadditive, by Lemma 43, and thus especially increasing. Since G

is P5-free and ω(G) ≤ p− 1, we conclude χ(G) ≤ f ?P5
(ω(G)) ≤ f ?P5

(p− 1).

We use the upcoming Section 10.1 to prove the following Lemma 71.

Lemma 71. Let p ∈ N0 and G be a (P5, Fp)-free graph. There exists a c(Fp) = c(p) ∈
N0 such that χ(G) ≤ ω(G) + c(p).

Lemma 72. Let p ∈ N0 and G be a (P5, 2K1 +Kp)-free graph. There exists a c1(2K1 +

Kp) = c1(p) ∈ N0 such that χ(G) ≤ ω(G) + c1(p).
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Proof. Let p ∈ N0 be fixed. We define c1(p) := c(p) ∈ N0, where c is the function from
Lemma 71. Let G be an arbitrary (P5, 2K1 +Kp)-free graph. Since 2K1 +Kp ⊆ind Fp,
we find G is (P5, Fp)-free. Thus, we know that χ(G) ≤ ω(G) + c(p) = ω(G) + c1(p), by
Lemma 71, which completes the proof.

The following Lemma 73 states the reverse direction of Theorem 8. Note that in this
lemma we use our Lemma 42 from Section 3.3.

Lemma 73. Let H be a graph. If there exists a c(H) ∈ N0 such that χ(G) ≤ ω(G) +

c(H) for all (P5, H)-free graphs G, then H ∈ {Fp | p ∈ N0} or H ∈ {2K1+Kp | p ∈ N0}
or H ∈ {Kp | p ∈ N>0} or H ∼= P4.

Proof. We prove this lemma by contraposition, thus, it suffices to show that

lim
ω→+∞

(f ?{P5,H}(ω)− ω) = +∞

for each graph H which is neither isomorphic to P4 nor an induced subgraph of Fp
for some p ∈ N0. For all graphs H for which H̄ is not a forest, we get that the class
of (P5, H)-free graphs does not even have a linear χ-binding function, by Lemma 42.
Thus, it remains to assume that H̄ is a forest. For each t ≥ 1, let Gt be the graph which
is the complementary graph of t pairwise vertex distinct cycles of length 5. Note that
Gt has clique number 2t, chromatic number 3t, and Gt is P5-free and Ḡt is (P5, K1,3)-
free. Consequently, if H̄ contains an induced P5 or K1,3, then each graph Ḡt is H̄-free,
and so it follows that Gt is (P5, H)-free and limω→+∞(f ?{P5,H}ω) − ω) = +∞. In view
of the desired result it remains to assume that H̄ is (P5, K1,3)-free. In other words, H̄
is a linear forest each component of which is of order at most 4. Now, for each t ≥ 1,
let Gt

∼= C5[Kt, Kt, Kt, Kt, Kt]. It is easily seen that Gt is of clique number 2t but
χ(Gt) ≥ 5t/2 as Gt is of independence number at most 2. Furthermore, Gt is P5-free.
As the complementary graph of Gt contains of 5 independent sets of size k and the
complementary graph of C5 is isomorphic to C5, we find that Ḡt is (K1∪P4, 2K2)-free.
Consequently, if H̄ contains an induced K1 ∪P4 or 2K2, then each graph Ḡt is H̄-free,
and so it follows that Gt is (P5, H)-free and limω→+∞(f ?{P5,H}(ω)− ω) = +∞. In view
of the desired result it remains to assume that H̄ is (P5, K1,3, K1 ∪P4, 2K2)-free forest.
In other words, H̄ is isomorphic to P4 or an induced subgraph of (pK1) ∪ P3 for some
p ∈ N0. Thus, H is either isomorphic to P4 or an induced subgraph of Fp for some
p ∈ N0, which completes this proof.

Note that one direction of Theorem 8 follows from Lemma 70, Lemma 71, Lemma 72
and the fact that f ?{P5,P4} ≡ idN0 by the Strong Perfect Graph Theorem. The reverse
direction follows from Lemma 73. Therefore, it remains to show Lemma 71.

For (P5, Fp)-free graphs we show quite a small χ-binding function. For that reason
there is quite a bit of work to do.
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10.1 Proof of Lemma 71

At the beginning of this section, let us introduce additional notation and terminology
we specifically use in this section. A hole in a graph is an induced cycle of length at
least four, and an antihole is an induced subgraph whose complementary graph is a
hole in the complementary graph. Let for the following definitions G be connected
graph that contains an induced odd antihole C. We let A(C) be the set of vertices of
V (G) \ V (C) that have a neighbour and a non-neighbour in C, B(C) be the vertices
of V (G) \ NG[V (C)] that have a neighbour in A(C), and M(C) be the set of vertices
which are adjacent to all vertices of C. Furthermore, let X(C) := V (G) \ [A(C) ∪
B(C) ∪M(C) ∪ V (C)], and Y (C) be the set of vertices of X(C) such that for each
y ∈ Y (C) there exist two vertices my ∈ M(C) and xy ∈ X(C) such that myy /∈ E(G)

but myxy, xyy ∈ E(G). In what follows, we may assume that C is in C5(G). For
the definition of the notation c− and c+ for a vertex c of C recheck Section 1.2. We
further say that C extends to a O[F ] in G for some graph F if there is a vertex set
U ⊆ V (G) and a vertex c ∈ V (C) such that G[U ] is isomorphic to F , U ∩V (C) = {c},
EG[U, {c−, c+}] is complete, and EG[U, {c−2, c+2}] is anticomplete. Moreover, U is the
extender of C and G[U ∪ V (C)] is isomorphic to O[F ].

For each imperfect graph G, let

ϕ(G) := min{χ(G[NG[V (C)]]) : C is an odd antihole}

and, for p ∈ N≥2,

ϑ(p) := sup{ϕ(G) : G is (P5, Fp, O[Kp])-free and imperfect}.

Before we prove Lemma 71, we show some preliminary results. We note that Fp-free
graphs have been studied in [14] as well, using these results we f.e. show in the upcoming
Chapter 11 that f ?{2K2,Fp} is not non-decreasing, for some large p ∈ N>0. We show firstly
that f ?{P5,Fp} is non-decreasing, for each p ∈ N0. Note that each F0-free graph is perfect,
and so each complete graph G is (P5, F0)-free and satisfies χ(G) = f ?{P5,F0}(ω(G)).

Lemma 74. If p ≥ 1 and r ≥ 0 are integers, then

x ≤ f ?{P5,Fp}(x) ≤ f ?{P5,Fp}(x+ 1) and f ?{P5,Fp}(x) + 2r ≤ f ?{P5,Fp+r}(x+ r)

for each x ≥ 1.

Proof. Since f ?P5
exists, we find that f ?{P5,Fp} exists. We first show that x ≤ f ?{P5,Fp}(x).

Note that Kx is a (P5, Fp)-free graph of clique number x and therefore x ≤ f ?{P5,Fp}(x).
This shows that for every p ≥ 1 and every x ≥ 1 there is always a graphG′ ∈ For(P5, Fp)

with ω(G′) = x and χ(G′) = f ?{P5,Fp}(x).
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The claim that f ?{P5,Fp}(x) ≤ f ?{P5,Fp}(x+ 1) follows directly from Lemma 45.

We prove the last inequality by induction on r. Trivially, we can assume r ≥ 1. Let
Gr−1 be a (P5, Fp+(r−1))-free graph of clique number x + (r − 1) such that χ(Gr−1) =

f ?{P5,Fp+(r−1)}(x + (r − 1)). Let Gr := C5[K1, Gr−1, K1, Gr−1, K1]. We see that Gr is
(P5, Fp+r)-free and of clique number x+ r. To figure out χ(Gr), we let C be a C5 with
vertex-weight function q fulfilling ωq(C) = χ(Gr−1)+1 and q(C) = 2·χ(Gr−1)+3. Note
that the chromatic number of a weighted C5 only depends on the size of the largest
clique and the sum of the weights, thus, by Corollary 46,

χ(Gr) = χq(C) = max

{
ωq(C),

⌈
q(C)

2

⌉}
= χ(Gr−1) + 2.

Thus, we obtain

f ?{P5,Fp}(x)+2r ≤ f ?{P5,Fp+(r−1)}(x+(r−1))+2 = χ(Gr−1)+2 = χ(Gr) ≤ f ?{P5,Fp+r}(x+r)

by induction hypothesis.

In what follows is a series of lemmas culminating in the fact that f ?{P5,Fp}(x) ≤ x+ c(p)

for some constant c(p), and for each p ≥ 0 and each x ≥ 1.

Lemma 75. Let p ≥ 1 and G be a connected (P5, Fp)-free graph.

(i) If C is an odd antihole in G, then EG[X(C), A(C) ∪B(C)] is anticomplete.

(ii) If C is an odd antihole in G, then EG[B,A(C)∩NG(B)] is complete for each set
B of vertices that induces a component of G[B(C)].

(iii) If C is an odd antihole in G with Y (C) = ∅, then EG[X,M(C) ∩ NG(X)] is
complete for each set X of vertices that induces a component of G[X(C)].

(iv) If C is an odd antihole in G, then V (C) \NG(a) is an independent set for every
vertex a ∈ A(C) which has a neighbour in B(C).

(v) If S ⊆ V (G) is a clique of size at most p, then

χ(G[
⋂
s∈S

NG(s)] ≤ f ?{P5,Fp−1}(ω(G)− 1)− 2(|S| − 1).

(vi) If S1 ⊆ V (G) and S2 ⊆
⋂
s∈S1

NG(s) are two sets of vertices, then G[S1] has clique
number at most p− 1 or G[S2] is (K1 ∪K2)-free.

Proof. We prove (i)-(iii) first. Let C be an odd antihole in G. By definition, no vertex of
A(C) has a neighbour in X(C). We now suppose, for the sake of a contradiction, that a
vertex a ∈ A(C) has a neighbour in b ∈ B(C) which is adjacent to a vertex x of (B(C)\
NG(a))∪X(C). As a has a neighbour and a non-neighbour on C and as C is connected,
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we find two adjacent vertices c1, c2 ∈ V (C) such that ac1 ∈ E(G) but ac2 /∈ E(G). It
follows that [x, b, a, c1, c2] induces a P5. By this contradiction to our assumption on G,
we find that our supposition is false. By the fact that EG[X(C), A(C)] is anticomplete
and by the connectivity of G[B], (i) and (ii) follow, respectively. It remains to assume
that Y (C) = ∅ for (iii). We now find that by the connectivity of G[X], each vertex
of X is adjacent to each vertex of M(C) ∩NG(X) as otherwise Y (C) 6= ∅. Thus, (iii)
follows.

We proceed with our proof for (iv). Let a ∈ A(C) be a vertex with a neighbour
b ∈ B(C). As C̄ is connected, we find two non-adjacent vertices c1, c2 ∈ V (C) such
that ac1 ∈ V (C) and ac2 /∈ V (C). As [b, a, c1, c, c2] does not induce a P5, we find
ac ∈ E(G) for each c ∈ V (C) ∩ NG(c1) ∩ NG(c2). Let c3 ∈ V (C) \ {c1, c2} such that
c1c3 /∈ E(G) and c4 ∈ V (C) \ {c1, c2, c3} be such that c3c4 /∈ E(G). We find that a is
adjacent to c4 as c4 ∈ V (C)∩NG(c1)∩NG(c2). As [b, a, c4, c2, c3] does not induce a P5,
it follows ac3 ∈ E(G). Thus, V (C) \ NG(a) consists of at most two vertices which, in
particular, are c2 and possibly a vertex that is distinct from c1 but non-adjacent to c2.
Thus, (iv) follows.

We continue and prove (v). As G[S ∪ (
⋂
s∈S NG(s))] is an induced subgraph of G, we

have that G[S ∪ (
⋂
s∈S NG(s))] is a (P5, Fp)-free graph of clique number at most ω(G).

Furthermore, EG[S,
⋂
s∈S NG(s)] is complete, and so

ω(G[
⋂
s∈S

NG(s)]) + |S| = ω(G[
⋂
s∈S

NG(s)]) + ω(G[S]) ≤ ω(G).

Now, let us suppose for the sake of contradiction, that G[
⋂
s∈S NG(s)] contains a vertex

set U that induces a Fp−|S|. We find that U ∪ S induces a Fp in G as S is a clique S
and EG[S, U ] is complete. From this contradiction on our assumption on G, we find
that G[

⋂
s∈S NG(s)] is Fp−|S|-free, and so

χ(G[
⋂
s∈S

NG(s)]) ≤ f ?{P5,Fp−|S|}(ω(G)− |S|).

By Lemma 74, we have

f ?{P5,Fp−|S|}(ω(G)− |S|) + 2(|S| − 1) ≤ f ?{P5,Fp−1}(ω(G)− 1),

which completes our proof for (v).

Finally, we prove (vi). For the sake of a contradiction, let us suppose that G[S] contains
a clique W of size p and {u1, u2, u3} ⊆ S2 induces a K1 ∪K2. As EG[{u1, u2, u3},W ] is
complete, it follows that {u1, u2, u3} ∪W induces a Fp in G. By this contradiction to
the fact that G is Fp-free, (vi) follows.

Lemma 76. Let p ≥ 2 and G be a connected (P5, Fp)-free graph. If C is an odd antihole
in G, then
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(i) χ(G[X(C)]) ≤ f ?{P5,Fp−1}(ω(G)− 1) + f ?P5
(p− 1) or

(ii) there is a C ′ ∈ C5(G) that extends to a O[Kp] in G with |Y (C ′)| < |Y (C)|.

Proof. By definition and by Lemma 75 (i), we find that no vertex of A(C)∪B(C)∪V (C)

is adjacent to a vertex of X(C), that is, M(C) is a cut-set which disconnects X(C)

from V (G) \ (M(C) ∪ X(C)). Let G? be a minimal induced subgraph of G[X(C)]

such that χ(G[X(C)]) = χ(G?) and such that there is a vertex m ∈ M(C) for which
G[V (G?)∪ {m}] is connected. Clearly, G? is connected. We now partition V (G?). Let
S be the set of neighbours of m in G?, and let T1 and T2 be the sets of vertices of
G?−S which are in components of G?−S with clique number at most p−1 and clique
number at least p, respectively.

We first claim that any set, say, T of vertices that induces a component of G?[T1 ∪ T2]

is a homogeneous set in G? or consists of one vertex only. As G?[T ] is a connected
graph, it suffices to prove that two arbitrarily chosen adjacent vertices of G?[T ] have
the same neighbours in S. Let t1 and t2 be two such vertices and c ∈ V (C). As neither
[t1, t2, s2,m, c] nor [t2, t1, s1,m, c] induces a P5 in G? for each s1 ∈ S∩NG?(t1) and each
s2 ∈ S ∩ NG?(t2), we find that t1 and t2 have the same neighbours in S, which shows
our claim.

We next claim that (ii) follows or the neighbours in S of the vertices of any component
of G?[T2] form a clique. Let G′ be an arbitrary component of G?[T2] and t ∈ V (G′)

be a vertex that is in a clique W of size p in G′. First of all, let us assume that t has
two non-adjacent neighbours, say, s1 and s2 in S. Let i ∈ [2]. If NG?(si) ⊆ NG?(s3−i),
then χ(G?) = χ(G? − si), by Lemma 34. Furthermore, as NG?(si) ⊆ NG?(s3−i) and as
s3−i ∈ NG(m), we find that G[V (G? − si) ∪ {m}] is connected, which contradicts the
minimality of G?. Thus, for each i ∈ [2], we find that si has a neighbour, say, s′i in
G? that is non-adjacent to s3−i. Let us suppose, for the sake of a contradiction, that
t is adjacent to some s′i. As s′i and s3−i are non-adjacent and as t and its neighbours
in G?[T2] have the same neighbours in S, we find s′i ∈ S. By Lemma 75 (vi), we
find that the component of G?[T1 ∪ T2] which contains t is of clique number at most
p− 1. From this contradiction to the fact t ∈ T2, we find that t is adjacent to neither
s′1 nor s′2 in G?, and thus in G. As [s′1, s1, t, s2, s

′
2] does not induce a P5, we find

that the same vertex set induces a C5 called C ′ in G. As the component of G?[T2]

that contains t is a homogeneous set, it follows that EG[W, {s1, s2}] is complete and
EG[W, {s′1, s′2}] is anticomplete, and so C ′ extends to a O[Kp] in G. Thus, in order
to prove (ii), it remains to show that |Y (C ′)| < |Y (C)|. We find m ∈ A(C ′) as m is
adjacent to s1 and s2 but non-adjacent to t. Furthermore, as neither [t, s1,m, c, a] for
each a ∈ A(C) and each c ∈ NG(a) ∩ V (C), nor [t, s1,m, a, b] for each b ∈ B(C) and
each a ∈ A(C) ∩NG(b) induces a P5, it follows that all vertices of A(C) and B(C) are
adjacent to m, respectively. Thus, A(C)∪B(C)∪{m} ⊆ A(C ′)∪B(C ′). Furthermore,



10.1 Proof of Lemma 71 123

we find that any c ∈ V (C) is a vertex of A(C ′) ∪ B(C ′) as c is adjacent to m, and so
V (C) ⊆ A(C ′)∪B(C ′). By Lemma 75 (i), it follows that all vertices ofM(C) are not in
X(C ′) as each of them is adjacent to a vertex c ∈ V (C) ⊆ A(C ′)∪B(C ′). Moreover, we
find X(C ′) ⊆ X(C). We note that t ∈ Y (C) \ Y (C ′). For the sake of a contradiction,
let us suppose that there is a vertex y′ ∈ Y (C ′) \ Y (C). In particular, we find two
vertices m′ ∈ M(C ′) and x′ ∈ X(C ′) such that m′y′ /∈ E(G) but m′x′, x′y′ ∈ E(G).
Note that x′, y′ ∈ X(C ′), and so x′, y′ ∈ X(C). Furthermore, note that m′ /∈ M(C)

as otherwise y′ ∈ Y (C). As m ∈ A(C ′), it follows by Lemma 75 (i) that x′ and y′ are
non-neighbours of m, and so [y′, x′,m′,m, c] for some c ∈ V (C) if mm′ ∈ E(G) and
[y′, x′,m′, s1,m] if mm′ /∈ E(G) induces a P5. By this contradiction to our assumption
on G, we finally obtain that our supposition is false, and so |Y (C ′)| < |Y (C)|. We find
that (ii) follows. In order to prove our claim, it remains to assume that S ∩NG?(t) is a
clique. As the component G′ of G?[T2] that contains t is a homogeneous set, it follows
that S ∩NG?(V (G′)) is a clique. By the arbitrariness of G′, the neighbours in S of the
vertices of any component of G?[T2] form a clique.

We proceed by assuming that (ii) does not hold and we colour the vertices of G?.
As G?[T1] is of clique number at most p − 1, we find χ(G?[T1]) ≤ f ?P5

(p − 1) and,
as f ?P5

(p − 1) ≥ 1, it suffices to show that there is a colouring c : V (G? − T1) →
[f ?{P5,Fp−1}(ω(G)−1)+1] of G?−T1 that uses colour f ?{P5,Fp−1}(ω(G)−1)+1 on vertices
of T2 only. Let k = f ?{P5,Fp−1}(ω(G) − 1) + 1. As all vertices of S are adjacent to m,
by Lemma 75 (v) there is a colouring c : S → [k − 1] of G?[S]. Let G′ be an arbitrary
component of G?[T2] and S ′ := NG?(V (G′))∩S. Note that |S ′| ≥ 1 as G[V (G?)∪{m}]
is connected. As S ′ is a clique and as NG?(t) ∩ S = S ′ for each t ∈ V (G′), we find
that there is a vertex s′ ∈ S that is adjacent to all vertices of (S ′ \ {s′}) ∪ V (G′).
Thus, by Lemma 75 (v) there is a colouring c′ : V ((S ′ \ {s′}) ∪ V (G′)) → [k] \ {c(s′)}
of G?[(S ′ \ {s′}) ∪ V (G′)] such that c(s) = c′(s) for each s ∈ S ′ \ {s′}. In particular,
c′(v) = k implies v ∈ T2. The arbitrariness of G′ completes our proof.

We proceed by considering ϑ(p) for p ≥ 3. As C5 is (P5, Fp, O[Kp])-free and imperfect,
we find ϑ(p) ≥ 3 but possibly ϑ(p) = +∞. We next show that the latter fact cannot
occur.

Lemma 77. If p ≥ 3, then ϑ(p) ≤ max {10, 2p+ 3} · f ?P5
(p− 1).

Proof. Let G be an arbitrary imperfect (P5, Fp, O[Kp])-free graph.

If G contains an induced C5 C, then we partition NG[V (C)] into 10 sets of vertices,
each of which induces a graph of clique number at most p − 1. Let N be the vertices
of NG(V (C)) each of which has an independent non-neighbourhood in C. As there are
at most 5 independent sets I1, I2, . . . , I5 of size 2 in C, we can partition the vertices of
N into at most 5 sets S1, S2, . . . , S5 of vertices such that EG[Si, V (C) \ Ii] is complete
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for each i ∈ [5]. As V (C) \ Ii induces a K1 ∪ K2, we find that G[Si] is Kp-free
by Lemma 75 (vi). We now partition NG[V (C)] \ N . By definition, each vertex of
NG[V (C)] \ N has at most 3 neighbours on C. As G is P5-free, we further find that
each such vertex, say, u has at least 2 neighbours on C and there is a vertex c ∈ V (C)

such that u is adjacent to c and c+2. As u /∈ N , we find

{c, c+2} ⊆ NG(u) ⊆ {c, c+, c+2}.

We define for c ∈ V (C) the set S ′c as all vertices v ∈ NG[V (C)] \N with EG[v, {c, c+2}]
is complete. Thus,

⋃
c∈V (C) S

′
c is a partition of NG[V (C)] \N . As G is O[Kp]-free, we

find that G[S ′c] is Kp-free for each c ∈ V (C). Consequently, we partition NG[V (C)]

into 10 sets of vertices, each of which induces a graph of clique number at most p− 1,
and so

χ(G[NG[V (C)]]) ≤ 10 · f ?P5
(p− 1).

If G is C5-free, then let C be an odd antihole of order at least 7 in G. As G is Fp-free,
C contains at most 2p + 3 vertices. We first show that every vertex of NG[V (C)] is
adjacent to two non-adjacent vertices of V (C). For the sake of a contradiction, let
us suppose that u is a counterexample to this claim. Clearly, u /∈ V (C). By the
supposition on u and as C is of odd order, u has at most (|V (C)|− 1)/2 neighbours on
C. This fact particularly implies that u is non-adjacent to an independent set {c1, c2}
of C. As u ∈ NG(V (C)), we may assume that a neighbour c3 of u on C is non-adjacent
to c2. By definition, c3 is adjacent to c1. Let c4 be the second non-neighbour of c3.
As u is adjacent to c3, we find that u is non-adjacent to c4 by our supposition on u,
and so [u, c3, c1, c4, c2] induces a P5, a contradiction. Thus, we find that each vertex
of NG[V (C)] is adjacent to two non-adjacent vertices of V (C). Let u be such a vertex
and c′1, c

′
2 be the two non-adjacent neighbours. We let c′3 and c′4 be the second non-

neighbour of c′1 and c′2, respectively. As [u, c′1, c
′
4, c
′
3, c
′
2] does not induce a C5, we find

that u is adjacent to three vertices of C which induce a K1 ∪ K2. As C is an odd
antihole on at most 2p + 3 vertices, there are at most 2p + 3 sets I1, I2, . . . , I2p+3 of
vertices in C that induce copies of K1∪K2. We can partition NG[V (C)] into 2p+3 sets
S1, S2, . . . , S2p+3 such that EG[Si, Ii] is complete for each i ∈ [2p+ 3]. As G is Fp-free,
we find that G[Si] is Kp-free for each i ∈ [2p+ 3] by Lemma 75 (vi). Consequently, we
partition NG[V (C)] into 2p+ 3 sets of vertices, each of which induces a graph of clique
number at most p− 1, and so

χ(G[NG[V (C)]]) ≤ (2p+ 3) · f ?P5
(p− 1).

We are now in a position to prove our main preliminary result.

Lemma 78. Let p ≥ 3. If G is a connected (P5, Fp)-free graph with ω(G) ≥ p+2, then

χ(G) ≤ max{ϑ(p), f ?{P5,Fp−1}(ω(G)− 1) + f ?P5
(p− 1)}+ f ?P5

(p− 1).
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Proof. Let G? be the smallest induced connected subgraph of G such that χ(G?) =

χ(G) and ω(G?) ≥ p+2. We note that G? is (P5, Fp)-free, and the desired result follows
if

χ(G?) ≤ max{ϑ(p), f ?{P5,Fp−1}(ω(G?)− 1) + f ?P5
(p− 1)}+ f ?P5

(p− 1)

as f ?{P5,Fp−1} is non-decreasing by Lemma 74. We may assume, without loss of generality,
that G = G?.

We begin by showing that NG(u) 6⊆ NG(v) and NG(v) 6⊆ NG(u) for each two non-
adjacent vertices u, v ∈ V (G). For the sake of a contradiction, let us suppose that u, v
is a pair with NG(u) ⊆ NG(v). We note that χ(G) = χ(G− u) as we can safely assign
the colour of v in a χ(G−u)-colouring to u. As G−u is connected and ω(G) = ω(G−u),
we find G 6= G?, a contradiction. Thus, NG(u) 6⊆ NG(v) and NG(v) 6⊆ NG(u) for each
two non-adjacent vertices u, v ∈ V (G).

If G is a perfect graph, then

χ(G) = ω(G) ≤ f ?{P5,Fp−1}(ω(G)− 1) + f ?P5
(p− 1)

as f ?{P5,Fp−1}(ω(G)−1) ≥ ω(G)−1 by Lemma 74 and f ?P5
(p−1) ≥ 1 by definition. Thus,

we assume that G is imperfect. By the Strong Perfect Graph Theorem, G contains an
induced odd hole or induced odd antihole. As G is P5-free, each odd hole is a C5, and
so an odd antihole as well. We continue with four cases arguably covering all possible
situations.

Case 1: There is some odd antihole C in G such that Y (C) 6= ∅ but there is no C5 C
′

in G that extends to a O[Kp] in G with |Y (C ′)| < |Y (C)|.

We note that Lemma 76 immediately implies χ(G[X(C)]) ≤ f ?{P5,Fp−1}(ω(G) − 1) +

f ?P5
(p − 1). Let y ∈ Y (C) and m ∈ M(C), x ∈ X(C) be such that my /∈ E(G)

but mx, xy ∈ E(G). By Lemma 75 (i), G −M(C) is disconnected and contains all
components of G[X(C)]. As [y, x,m, c, a] does not induce a P5 for each c ∈ V (C) and
a ∈ A(C), it follows thatm is adjacent to all vertices of A(C). Similarly, as [y, x,m, a, b]

does not induce a P5 for each a ∈ A(C) and b ∈ B(C), it follows that m is adjacent
to all vertices of B(C). By Lemma 75 (v), we find that χ(G[A(C) ∪B(C) ∪ V (C)]) ≤
χ(G[NG(m)]) ≤ f ?{P5,Fp−1}(ω(G)− 1). As M(C) is a cutset and, by Lemma 75 (vi), we
have χ(M(C)) ≤ f ?P5

(p− 1), it follows

χ(G) ≤ χ(G[M(C)]) + max{χ(G[A(C) ∪B(C) ∪ V (C)]), χ(G[X(C)])}
≤ f ?{P5,Fp−1}(ω(G)− 1) + 2f ?P5

(p− 1),

which completes our proof of Case 1. 4

We may assume for the remaining cases that there is a C ′ ∈ C5(G) that extends to a
O[Kp] in G with |Y (C ′)| < |Y (C)| for each odd antihole C in G with Y (C) 6= ∅. In
other words,
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(a) there is a C ′ ∈ C5(G) that extends to a O[Kp] in G with Y (C ′) = ∅ or

(b) Y (C) = ∅ for each odd antihole C in G.

We consider situation (a) next. Let C(G) be the subset of C5(G), such that each cycle,
say C, of C(G) can be extended to a O[Kp] in G and satisfies Y (C) = ∅. We now
distinguish two cases – Case 2 and Case 3 of this proof.

Case 2: C(G) 6= ∅ and, for some C ∈ C(G), there is a connected graph F with
χ(F ) ≥ 2f ?P5

(p− 1) such that C extends to a O[F ] in G called H whose extender is a
homogeneous set in G.

Let us partition the vertices of A(C) ∪M(C) ∪ V (C). Let U be the extender of C to
H. Recall that by definition, we have exactly two vertices, say, c1 and c2 in H with
EG[{c1, c2}, U ] is complete. Furthermore, we may assume c2 = c+2

1 .

For each i ∈ [2], we define two sets Ai,− and Ai,+ such that

• Ai,− contains all vertices of G that are adjacent to ci and c−2
i but non-adjacent

to c+
i and c+2

i ,

• Ai,+ contains all vertices of G that are adjacent to ci and c+2
i but non-adjacent

to c−i and c−2
i .

By definition, U ⊆ A1,+ and A1,+ = A2,−. We now let

o(C) := max{ω(G[A1,−]), ω(G[A2,+])}.

We may assume, without loss of generality, that C maximizes o(·) among all cycles
C ′ ∈ C(G) for which there is a connected graph F ′ with χ(F ′) ≥ 2f ?P5

(p− 1) such that
C ′ extends to a O[F ′] in G called H ′ whose extender is a homogeneous set in G.

We can now compare χ(G[A1,−]) and χ(G[A2,+]). Again without loss generality, let us
assume χ(G[A1,−]) ≤ χ(G[A2,+]). As [a1,−, c1, c

+
1 , c2, a2,+] does not induce a P5 for each

a1,− ∈ A1,− and each a2,+ ∈ A2,+, it follows that EG[A1,− ∪ {c2}, A2,+] is complete. By
Lemma 75 (vi), G[A1,− ∪ {c2}] is (K1 ∪K2)-free or ω(G[A2,+]) ≤ p + 1. We conclude
χ(G[A1,−]) ≤ f ?P5

(p− 1) in both cases.

Let A3 be the set of vertices which have a neighbour on C but which are non-adjacent to
c1 and c2. As G is P5-free, it follows that EG[A3∪{c1, c2}, U ] is complete. As χ(G[U ]) >

f ?P5
(p−1), there is a clique of size p in U . By Lemma 75 (vi), G[A3∪{c1, c2}] is (K1∪K2)-

free. As EG[{c1, c2}, A3] is anticomplete, we find that A3, and so A3 ∪ {c1, c2}, is an
independent set in G.

We next show that all vertices of A(C) ∪M(C) ∪ V (C) which are in none of the sets
A1,−, A2,+, A3 ∪ {c1, c2} are adjacent to c1 and c2. For the sake of a contradiction, let
us assume that a with a ∈ A(C) ∪M(C) ∪ V (C) and a /∈ A1,− ∪ A2,+ ∪ A3 ∪ {c1, c2}
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is a vertex which is not adjacent to ci for some i ∈ [2]. We note that a /∈ U by
definition, and EG[{a}, U ] is complete or anticomplete as U is a homogeneous set. As
a /∈ A3 ∪ {c1, c2} but a ∈ A(C) ∪M(C) ∪ V (C), we find that a and c3−i are adjacent.
As {a, c1, c2}∪W does not induce a Fp for some clique W ⊆ U of size p, it follows that
EG[{a}, U ] is anticomplete. As [a, c2, c

+
1 , c1, c

−
1 ] if i = 1 or [a, c1, c

+
1 , c2, c

+
2 ] if i = 2 does

not induce a P5, it follows that a is adjacent to c−1 or c+
2 , and so a ∈ A2,+ or a ∈ A1,−.

From this contradiction to our assumption on a, we obtain the desired fact.

Let A′ := [A(C) ∪M(C) ∪ {c+
1 }] \ [A1,− ∪ A2,+ ∪ A3]. Note that

A′ = [A(C) ∪M(C) ∪ V (C)] \ [A1,− ∪ A2,+ ∪ A3 ∪ {c1, c2}].

We partition A′ into sets A′1,+, A′4, and A′5. Let a1 ∈ A1,− and a2 ∈ A2,+ be two vertices
which are in maximum cliques of G[A1,−] and G[A2,+], respectively. Furthermore, let
A′1,+ be the set of those vertices of A′ which are non-adjacent to a1 and a2, A′4 be the
set of those vertices of A′ which are adjacent to a2 but non-adjacent to a1, and A′5 be
the set of those vertices of A′ which are adjacent to a1.

As a1 and a2 are adjacent, we find that [c1, c
+
1 , c2, a2, a1] induces a C5, say, C ′. Let

u ∈ NG(V (C))\V (C ′) and c ∈ V (C) be a neighbour of u. If c /∈ V (C ′), then c ∈ A(C ′)

and, as V (C ′) \NG(c) is not independent, we have u /∈ B(C ′) by Lemma 75 (iv), and
so u ∈ NG[V (C ′)] by definition. In other words, we conclude NG[V (C)] ⊆ NG[V (C ′)]

no matter whether or not c ∈ V (C ′). Similarly, we find NG[V (C ′)] ⊆ NG[V (C)], and
so NG[V (C)] = NG[V (C ′)] and B(C) ∪X(C) = B(C ′) ∪X(C ′).

We now have to distinguish four subcases.

Case 2.1: o(C) ≥ p

Let W2 be a clique of size p in G[A2,+] that contains a2. As ω(G[A2,+]) ≥ p, as
EG[{c2}, A1,−] is anticomplete, and as EG[A2,+, A1,−∪{c2}] is complete, we obtain that
A1,− is independent by Lemma 75 (vi).

We first prove that EG[A3, B(C)∪X(C)] is anticomplete. Recall that B(C)∪X(C) =

B(C ′) ∪X(C ′). For the sake of a contradiction, we suppose that a3 ∈ A3 is adjacent
to a vertex u ∈ B(C ′) ∪ X(C ′). By Lemma 75 (i) and (iv), we find u ∈ B(C ′) and
EG[{a3}, {a1, a2} ∪ U ] is complete, respectively. As [w2, a2, a3, c

+
1 , c1] does not induce

a P5 for each w2 ∈ W2, we find that EG[{a3},W2] is complete. Thus, {a1, a3, c2} ∪
W2 induces a Fp. From this contradiction to our assumption on G, we find that
EG[A3, B(C) ∪X(C)] is anticomplete.

We next prove that ω(G[A′4]) ≤ p − 2. Suppose, for the sake of a contradiction, that
ω(G[A′4]) ≥ p− 1. Let W4 be a clique of size p− 1 in G[A′4]. As {a1, c2, w4} ∪W2 does
not induce a Fp and as w4 is adjacent to a2, we find that EG[{w4},W2] is mixed for
each w4 ∈ W4. Recall that the extender U is a homogeneous set in G and χ(G[U ]) ≥ 2.
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Let u1, u2 ∈ U be two adjacent vertices. We note that each w4 ∈ W4 is adjacent to
u1 and u2 as otherwise [ui, c1, w4, a2, w2] induces a P5 for some w2 ∈ W2 \NG(w4) and
some i ∈ [2]. Thus, {c2, a2, u1, u2} ∪W4 induces a Fp, a contradiction. We conclude
that ω(G[A′4]) ≤ p− 2 and

χ(G[A′4]) ≤ f ?P5
(p− 2) = f ?{P5,Fp−2}(p− 2) ≤ f ?{P5,Fp−1}(p− 1)− 2 = f ?P5

(p− 1)− 2

by Lemma 74.

We further have ω(G[A′5]) ≤ p − 1 by Lemma 75 (vi), and so χ(G[A′5]) ≤ f ?P5
(p − 1).

By Lemma 75 (v), there is a colouring of G[NG(c2)] with at most f ?{P5,Fp−1}(ω(G)− 1)

colours. We recall that A3 ∪ {c1, c2} and A1,− are independent sets. Thus, we use one
additional colour for the vertices of A3 ∪ {c1, c2}, one additional colour for the vertices
of A1,−, and f ?P5

(p− 1)− 2 additional colours for the vertices of A′4. We use f ?P5
(p− 1)

additional colours for the vertices of A′5. We obtain a colouring of G[NG[V (C)]] with
at most f ?{P5,Fp−1}(ω(G) − 1) + 2f ?P5

(p − 1) colours such that the vertices of A′4 ∪ A′5
are coloured by at most 2f ?P5

(p − 1) − 1 colours. By Lemma 75 (iv), all vertices of
A(C) ∪M(C) which have a neighbour in B(C) ∪ X(C) are indeed vertices of A3 ∪
A′4 ∪A′5. However, we recall that EG[A3, B(C) ∪X(C)] is anticomplete. Furthermore,
by Lemma 75 (i), (ii) and (iii), each set X of vertices that induces a component of
G[B(C)∪X(C)] has a vertex a ∈ A(C)∪M(C) with EG[{a}, X] is complete. Thus, we
can reuse f ?{P5,Fp−1}(ω(G)−1) colours fromNG[V (C)]\(A′4∪A′5) to colour G−NG[V (C)],
which completes the proof of this subcase.

Case 2.2: o(C) ≤ p− 1 and f ?{P5,Fp−1}(ω(G)− 1) = 2f ?P5
(p− 1)

Note that NG[V (C)] = NG(c2) ∪ A1,− ∪ (A3 ∪ {c1, c2}). Recall that χ(G[A1,−]) ≤
f ?P5

(p − 1) and A3 ∪ {c1, c2} is an independent set. By Lemma 75 (v), we also have
χ(G[NG(c2)]) ≤ f ?{P5,Fp−1}(ω(G)− 1). Thus,

χ(G[NG[V (C)]]) ≤ χ(G[NG(c2)]) + χ(G[A1,−]) + χ(G[A3 ∪ {c1, c2}])
≤ f ?{P5,Fp−1}(ω(G)− 1) + f ?P5

(p− 1) + 1.

Consequently, we colour the vertices of NG(c2) by f ?{P5,Fp−1}(ω(G) − 1) colours, the
vertices of A1,− by f ?P5

(p − 1) additional colours, and the vertices of A3 ∪ {c1, c2} by
again an additional colour. Let G′ be an arbitrary component of G[B(C)∪X(C)]. By
Lemma 75 (iv), V (G′) has its neighbours in A3 ∪ (NG(c2) \ U). Hence, we can reuse
the colours of A1,− and f ?P5

(p − 1) − 1 additional ones if χ(G′) ≤ 2f ?P5
(p − 1) − 1 to

colour the vertices of V (G′). Thus, we may assume χ(G′) ≥ 2f ?P5
(p−1). As Y (C) = ∅,

we obtain from Lemma 75 (i), (ii), (iii), and (v) that χ(G′) ≤ f ?{P5,Fp−1}(ω(G)− 1). As
f ?{P5,Fp−1}(ω(G)− 1) = 2f ?P5

(p− 1), we have χ(G′) = 2f ?P5
(p− 1).

We now claim that NG(V (G′)) is coloured by at most f ?{P5,Fp−1}(ω(G)− 1) colours. For
the sake of a contradiction, let us suppose that V (G′) has neighbours in all colours
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we assign to the vertices of NG(c2) and A3 ∪ {c1, c2}. In particular, there is a vertex
a3 ∈ A3 which has a neighbour in V (G′). By Lemma 75 (ii), EG[{a3}, V (G′)] is
complete. Furthermore, there is a vertex a ∈ NG(c2) \ U which has a neighbour in
V (G′). Suppose for the sake of contradiction that a vertex a′ ∈ NG(c2) \U exists with
EG[{a′}, U ] is complete, then

f ?{P5,Fp−1}(ω(G)− 1) = 2f ?P5
(p− 1) ≤ χ(G[U ])

≤ χ(G[NG(a′) ∩NG(c2)]) ≤ f ?{P5,Fp−1}(ω(G)− 1)− 2

by Lemma 75 (v), a contradiction. Thus, as U is homogeneous, we find that EG[NG(c2)\
U,U ] is anticomplete. In particular, EG[{a}, U ] is anticomplete, and so a ∈ A(C).
Moreover, EG[{a}, V (G′)] is complete by Lemma 75 (ii). If aa3 ∈ E(G), then {a3} ∪
V (G′) ⊆ NG(a). It follows

f ?{P5,Fp−1}(ω(G)− 1) = 2f ?P5
(p− 1) = χ(G′)

≤ χ(G[NG(a) ∩NG(a3)]) ≤ f ?{P5,Fp−1}(ω(G)− 1)− 2

by Lemma 75 (v), a contradiction. We conclude aa3 /∈ E(G). Furthermore, U ⊆
NG(a3) \ NG(a) and c2 ∈ NG(a) \ NG(a3). Now [c+

1 , a3, v, a, c2] for some v ∈ V (G′)

induces a C5 C
′. Furthermore, EG[U, {a3, c2}] is complete and EG[U, {a, v}] is anticom-

plete. In other words, U is an extender of C ′ to a O[F ]. Recall that EG[NG(c2) \U,U ]

is anticomplete, and therefore M(C ′) = ∅. Thus, Y (C ′) = ∅ and so C ′ ∈ C(G).
As EG[V (G′), {a, a3}] is complete and EG[V (G′), {c+

1 , c2}] anticomplete, and G′ has a
clique of size p, it follows o(C ′) ≥ p. As o(C) ≤ p− 1, we have a contradiction to our
choice of C. We conclude that our supposition is false and NG(V (G′)) is coloured by at
most f ?{P5,Fp−1}(ω(G)−1) colours. Thus, we find that we can reuse f ?P5

(p−1)+1 colours
from NG[V (C)] and add new f ?P5

(p−1)−1 colours to colour the vertices of B(C)∪X(C).
We conclude that G is coloured by at most f ?{P5,Fp−1}(ω(G)− 1) + 2f ?P5

(p− 1) colours,
which complete the proof in this subcase.

Case 2.3: o(C) ≤ p− 1 and f ?{P5,Fp−1}(ω(G)− 1) 6= 2f ?P5
(p− 1)

Note that f ?{P5,Fp−1}(ω(G)− 1) 6= 2f ?P5
(p− 1) implies f ?{P5,Fp−1}(ω(G)− 1) > 2f ?P5

(p− 1)

as
f ?{P5,Fp−1}(ω(G)− 1) ≥ χ(G[NG(c1)]) ≥ χ(G[U ]) ≥ 2f ?P5

(p− 1).

As U is a homogeneous set and EG[c+
1 , A1,− ∪ A2,+] is anticomplete, we conclude that

EG[U,A1,− ∪ A2,+] is anticomplete. In particular, we have a1, a2 /∈ NG(U), and so
U ⊆ A′1,+. Now let U ′ ⊆ A′1,+ \ U be the maximal set with EG[U ′, U ] is complete and
GU be the component of G[A′1,+] that contains the vertices of U .

We now claim that EG[V (G1) \ U ′, V (G2)] is either complete or anticomplete for each
two components G1 of G[A′1,+] and G2 of G[A1,−] or G[A2,+]. We prove this claim in two
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steps. For the sake of a contradiction, let us suppose that a vertex a′1,+ ∈ A′1,+ \U ′ and
a component G′ of G[A1,−] or G[A2,+] exist with EG[{a′1,+}, V (G′)] is mixed. We may
assume that V (G′) ⊆ A2,+. Recall that EG[U,A2,+] is anticomplete. Thus, a′1,+ /∈ U .
As a′1,+ /∈ U ′, there is a vertex u ∈ U that is non-adjacent to a′1,+. AsG′ is connected, we
find two vertices a2,+, a

′
2,+ ∈ A2,+ such that a′1,+a2,+, a2,+a

′
2,+ ∈ E(G) but a′1,+a′2,+ /∈

E(G). Recall that a2,+u, a
′
2,+u /∈ E(G). Thus, [u, c1, a

′
1,+, a2,+, a

′
2,+] induces a P5, a

contradiction. Consequently, for every vertex a′1,+ ∈ A′1,+ \ U ′ and every component
G′ of G[A1,−] or G[A2,+] we have EG[{a′1,+}, V (G′)] is either complete or anticomplete.
For the sake of a contradiction, let us suppose that a vertex a2,+ ∈ A1,− ∪ A2,+ –
by symmetry we may assume a2,+ ∈ A2,+ – and a component G′ of G[A′1,+] with
EG[{a2,+}, V (G′) \ U ′] is mixed. As EG[{a2}, A′1,+] is anticomplete, we have a2,+ 6= a2.
Let a′1,+ ∈ V (G′) \ U ′ be a neighbour of a2,+. As EG[{a′1,+}, V (G′′)] is complete,
where G′′ is the component of G[A2,+] that contains a2,+, it follows that a2 /∈ V (G′′).
In particular, we find a2a2,+ /∈ E(G). As EG[{a2,+}, V (G′) \ U ′] is mixed but G′

is connected, there are two vertices a′′1,+, a′′′1,+ ∈ V (G′) such that a′′1,+a′′′1,+, a′′1,+a2,+ ∈
E(G) and a′′′1,+a2,+ /∈ E(G). Recall that a′′1,+ and a′′′1,+ as vertices of A′1,+ are non-
adjacent to a1 and a2. But now [a2, a1, a2,+, a

′′
1,+, a

′′′
1,+] induces a P5, a contradiction.

Consequently, for every vertex a2,+ ∈ A1,−∪A2,+ and every component G′ of G[A′1,+] we
have EG[{a2,+}, V (G′) \U ′] is either complete or anticomplete. Moreover, we conclude
that EG[V (G1)\U ′, V (G2)] is either complete or anticomplete for each two components
G1 of G[A′1,+] and G2 of G[A1,−] or G[A2,+].

We now colour the vertices of A1,−, A
′
1,+, and A2,+. In particular, we define a ver-

tex colouring of G[A′1,+] such that, for each component G′ of G[A′1,+] with χ(G′) <

f ?{P5,Fp−1}(ω(G) − 1) no vertex of G′ receives colour f ?{P5,Fp−1}(ω(G) − 1). To achieve
that let cU : V (GU) → [χ(GU)] be a colouring of GU such that cU uses all colours
of [χ(G[U ])] on U . As χ(G[U ]) ≥ 2f ?P5

(p − 1), we find that cU uses all colours of
[2f ?P5

(p − 1)] on U . Recall that EG[U,A1,− ∪ A2,+] is anticomplete, and so we find
that EG[V (GU) \ U ′, A1,− ∪ A2,+] is anticomplete. As EG[U ′, U ] are complete, we find
that all colours which are used by cU on the vertices of U ′ are not in [2f ?P5

(p − 1)].
As o(C) ≤ p − 1, we further find χ(G[A1,−]), χ(G[A2,+]) ≤ f ?P5

(p − 1). Thus, we can
extend the colouring cU to the vertices of A1,− ∪ A2,+ with colours from [χ(G1)] for
each component G1 of G[A1,−] and from [f ?P5

(p − 1) + χ(G2)] \ [f ?P5
(p − 1)] for each

component G2 of G[A2,+].

It remains to colour the components of G[A′1,+] that are distinct from GU . Recall
that EG[V (G′), V (G2)] is either complete or anticomplete for such a component G′ of
G[A′1,+] and each component G2 of G[A1,−] or G[A2,+]. We now distinguish some simple
cases depending on the edges between V (G′) and A1,−∪A2,+. If EG[V (G′), A1,−∪A2,+]

is anticomplete, then we colour G′ with colours from [χ(G′)] which is a subset of
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[f ?{P5,Fp−1}(ω(G)− 1)] as

χ(G′) ≤ χ(G[NG(c1)]) ≤ f ?{P5,Fp−1}(ω(G)− 1)

by Lemma 75 (v). In what follows, we may assume that EG[V (G′), V (G2)] is complete
to component G2 of G[A1,−] or G[A2,+]. Let a ∈ A1,− ∪ A2,+ be an arbitrary vertex
with EG[{a}, V (G′)] is complete. As EG[{a, c1, c2}, V (G′)] is complete and {a, c1, c2}
induces a K1 ∪ K2, Lemma 75 (vi) implies that G′ has clique number at most p −
1. If EG[V (G′), A1,−] is anticomplete, we can colour the vertices of G′ with colours
from [f ?P5

(p − 1)]. If EG[V (G′), A2,+] is anticomplete, we can colour the vertices of
G′ with colours from [2f ?P5

(p − 1)] \ [f ?P5
(p − 1)]. Thus, it remains to assume that

EG[V (G′), V (G1) ∪ V (G2)] is complete, where G1 and G2 are a component of G[A1,−]

and of G[A2,+], respectively. We may assume that G1 and G2 are chosen such that
their chromatic number is maximum subject to the completeness to V (G′). Recall that
EG[V (G1), V (G2)] is complete. If χ(G[V (G′)∪V (G1)]) ≤ f ?P5

(p−1), then we can use the
colours of [f ?P5

(p−1)]\[χ(G1)] to colour the vertices of V (G′). If χ(G[V (G′)∪V (G2)]) ≤
f ?P5

(p− 1), then we can use the colours of [2f ?P5
(p− 1)] \ [χ(G2) + f ?P5

(p− 1)] to colour
the vertices of V (G′). Thus, we may assume that χ(G[V (G′) ∪ V (Gi)]) > f ?P5

(p − 1),
and so ω(G[V (G′)∪V (Gi)]) ≥ p, for each i ∈ [2]. As EG[V (G′)∪V (Gi), {ci}∪V (G3−i)]

is complete, Lemma 75 (vi) implies that {ci}∪V (G3−i) does not induce a K1∪K2. As
EG[{ci}, V (G3−i)] is anticomplete, we have that V (G3−i) is an independent set. Thus,
A1,− ∩ NG(V (G′)) and A2,+ ∩ NG(V (G′)) are independent sets. We can colour V (G′)

by f ?P5
(p−1) colours from [f ?P5

(p−1) + 2]\{1, f ?P5
(p−1) + 1}, which is a proper subset

of [f ?{P5,Fp−1}(ω(G) − 1)] as f ?{P5,Fp−1}(ω(G) − 1) > 2f ?P5
(p − 1) ≥ f ?P5

(p − 1) + 2, since
p ≥ 3.

We next colour the vertices of A3 ∪ {c1, c2}, A′4, and A′5. Firstly, let us colour the
vertices of the independent set A3 ∪ {c1, c2} by colour f ?{P5,Fp−1}(ω(G) − 1) + 1. By
Lemma 75 (vi), we have χ(G[A′4]), χ(G[A′5]) ≤ f ?P5

(p− 1). Let I be a (possibly empty)
independent set of G[A′4] such that χ(G[A′4]− I) < f ?P5

(p− 1). Furthermore, as

χ(G[(A′4 \ I) ∪ A′5]) ≤ χ(G[A′4]− I) + χ(G[A′5]) ≤ 2f ?P5
(p− 1)− 1,

we can use colours from [f ?{P5,Fp−1}(ω(G)− 1) + 2f ?P5
(p− 1)] \ [f ?{P5,Fp−1}(ω(G)− 1) + 1]

to colour the vertices of (A′4 \ I) ∪ A′5. At this point of our proof, let us note that
all vertices of G[NG[V (C)]] \ I are coloured and there are no two adjacent ones which
are coloured alike. Finally, let us colour the vertices of the independent set I by
colour f ?{P5,Fp−1}(ω(G)− 1). For the sake of a contradiction, we suppose that a vertex
i ∈ I is adjacent to a vertex, say, a′ of NG[V (C)] \ I which is coloured by colour
f ?{P5,Fp−1}(ω(G)− 1). As f ?{P5,Fp−1}(ω(G)− 1) > 2f ?P5

(p− 1), we find that a′ ∈ A′1,+. Let
G′ be the component of G[A′1,+] that contains a′. As i has a neighbour in V (G′) and G′

is connected, we find that either EG[{i}, V (G′)] is complete or there are two adjacent
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vertices a′1,+ ∈ V (G′)∩NG(i) and a′′1,+ ∈ V (G′)\NG(i). As [a′′1,+, a
′
1,+, i, a2, a1] does not

induce a P5, it follows indeed that EG[{i}, V (G′)] is complete. Thus, EG[{c2, i}, V (G′)]

is complete, and so

χ(G′) ≤ χ(G[NG(c2) ∩NG(i)]) ≤ f ?{P5,Fp−1}(ω(G)− 1)− 2

by Lemma 75 (v). By our colouring of G[A′1,+], no vertex of G′ is coloured by colour
f ?{P5,Fp−1}(ω(G)− 1). From this contradiction to our supposition, we can safely assign
colour f ?{P5,Fp−1}(ω(G) − 1) to all vertices of I and obtain a colouring c : NG[V (C)] →
[f ?{P5,Fp−1}(ω(G) − 1) + 2f ?P5

(p − 1)]. Furthermore, we easily see that the vertices of
A3 ∪ A′4 ∪ A′5 are coloured by at most 2f ?P5

(p− 1) + 1 colours.

We proceed and colour the vertices of G[B(C)∪X(C)]. By Lemma 75 (i), (ii), and (iii),
for each component G′ of G[B(C) ∪ X(C)], there is a vertex a ∈ A3 ∪ A′4 ∪ A′5 with
EG[{a}, V (G′)] is complete. Thus, χ(G′) ≤ f ?{P5,Fp−1}(ω(G)− 1) by Lemma 75 (v). For
the sake of a contradiction, let us suppose that G′ is a component of G[B(C) ∪X(C)]

with χ(G′) = f ?{P5,Fp−1}(ω(G) − 1) and the neighbours of V (G′) in A3 ∪ A′4 ∪ A′5 are
coloured by 2f ?P5

(p−1)+1 colours. In other words, V (G′) has a neighbour a3 ∈ A3 and
a neighbour a′4 ∈ A′4. Note that χ(G′) = f ?{P5,Fp−1}(ω(G) − 1) and EG[{a3, a

′
4}, V (G′)]

is complete. It follows that a3a
′
4 /∈ E(G) as otherwise

f ?{P5,Fp−1}(ω(G)− 1) = χ(G′) ≤ χ(G[NG(a3) ∩NG(a′4)]) ≤ f ?{P5,Fp−1}(ω(G)− 1)− 2

by Lemma 75 (v). But now [c2, a
′
4, v, a3, a1] for some v ∈ V (G′) induces a P5, a

contradiction. Thus, our supposition is false and each component G′ of G[B(C)∪X(C)]

satisfies χ(G′) < f ?{P5,Fp−1}(ω(G) − 1) or the neighbours of V (G′) in A3 ∪ A′4 ∪ A′5 are
coloured by at most 2f ?P5

(p − 1) colours. Thus, we can extend our colouring c to a
colouring of G on f ?{P5,Fp−1}(ω(G)− 1) + 2f ?P5

(p− 1) colours. This completes our proof
in this subcase. 4

Before we proceed with Case 3, we prove an auxiliary claim that we use in its proof as
well as in the proof of Case 4.

Claim 78.1. Let C be an odd antihole with Y (C) = ∅ and k, ` be integers with k ≥
f ?{P5,Fp−1}(ω(G)− 1) + 1, k > `, and ` ≥ f ?P5

(p− 1). If cN : NG[V (C)]→ [k] is a vertex
colouring such that all vertices in NG(V (G′)) are coloured by at most k− ` colours for
each component G′ of G − NG[V (C)], then there is a vertex colouring c : V (G) → [k]

or we find a C ′ ∈ C(G) that extends to a O[F ] in G called H for some connected graph
F with χ(F ) ≥ `+ 1 and the extender is a homogeneous set in G.

Proof. If, for each component G′ of G−NG[V (C)], there is a colouring cG′ : V (G′)→ [k]

such that cG′(u1) 6= cN(u2) for each two adjacent vertices u1 ∈ V (G′) and u2 ∈ NG(C),
then there is a vertex colouring c : V (G) → [k]. In view of the desired result, let us
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assume that F is a component of G−NG[V (C)] that does not have such a colouring.
Let S be the set NG(V (C)) ∩ NG(V (F )). Trivially, χ(F ) ≥ ` + 1 as cN colours the
vertices of S by at most k − ` colours. In other words, F contains a clique of size p.
Moreover, S is not a clique. We show this fact as follows: As Y (C) = ∅, there is a
vertex s ∈ S with EG[{s}, V (F ) ∪ (S \ {s})] is complete, and so χ(G[V (F ) ∪ S]) ≤
f ?{P5,Fp−1}(ω(G)−1)+1 ≤ k by Lemma 75 (v). If S is a clique, then there is a colouring
cF∪S : V (F ) ∪ S → [k] such that cN(s′) = cF∪S(s′) for each s′ ∈ S. We find that cF∪S
restricted to the vertices of F gives a colouring, say, cF of F such that cF (u1) 6= cN(u2)

for each two adjacent vertices u1 ∈ V (F ) and u2 ∈ NG(C). Thus, S is not a clique,
and so there are two non-adjacent vertices s1, s2 ∈ S. We now distinguish three cases.

Case a: There is a set S ′ ⊆ A(C) ∪ M(C) such that χ(G[S ′]) ≤ 2f ?P5
(p − 1) and

NG(V (H)) ⊆ S ′ for some component H of G − S ′ with V (H) ⊆ B(C) ∪ X(C), and
there is a vertex s ∈ S ′ with EG[{s}, V (H)] is mixed.

By the connectivity of H, there are two adjacent vertices u1, u2 ∈ V (H) such that
u1s
′ ∈ E(G) but u2s

′ /∈ E(G). Let G′ be an arbitrary component of G− S ′.

If G′ is a component whose all vertices are in B(C)∪X(C), then there is a vertex in s′′ ∈
S ′ with EG[{s′′}, V (G′)] is complete as Y (C) = ∅. Hence, χ(G′) ≤ f ?{P5,Fp−1}(ω(G)− 1)

by Lemma 75 (v). If G′ is a component that has a vertex which is not in B(C)∪X(C),
then the vertices of C are also vertices of G′. Furthermore, G′ has a vertex which
is adjacent to s′. Now all vertices of G′ are adjacent to s′ as [u2, u1, s

′, v1, v2] does
not induce a P5 for each two vertices v1 ∈ NG(s′) ∩ V (G′) and v2 ∈ NG(v1) ∩ V (G′).
Consequently, χ(G′) ≤ f ?{P5,Fp−1}(ω(G)− 1) by Lemma 75 (v).

We find χ(G′) ≤ f ?{P5,Fp−1}(ω(G)− 1) for each component G′ of G−S ′, and χ(G[S ′]) ≤
2f ?P5

(p− 1). Therefore, χ(G) ≤ f ?{P5,Fp−1}(ω(G)− 1) + 2f ?P5
(p− 1).

Case b: V (F ) is a homogeneous set.

Let u ∈ V (F ). As we assume NG(s1) 6⊆ NG(s2) and NG(s2) 6⊆ NG(s1), there are two
vertices s′1 ∈ NG(s1) \ NG(s2) and s′2 ∈ NG(s2) \ NG(s1). As V (F ) is a homogeneous
set in G, as F has a clique of size p, and as {s1, s2, s

′
i} induces a K1 ∪ K2 for each

i ∈ [2], we find that neither s′1 nor s′2 has a neighbour in V (F ) by Lemma 75 (vi). As
G is P5-free, [s′1, s1, u, s2, s

′
2] induces a C5, say, C ′ that extends to a O[F ] in G and the

extender V (F ) is a homogeneous set in G. It remains to show Y (C ′) = ∅.

For the sake of a contradiction, let us suppose y′ ∈ Y (C ′). Thus, there are vertices
m′ ∈ M(C ′) and x′ ∈ X(C ′) such that m′y′ /∈ E(G) but m′x′, x′y′ ∈ E(G). As
EG[M(C ′), V (C ′)] is complete, we find that M(C ′) ⊆ S \ V (C ′). Thus, M(C ′) ⊆
A(C)∪M(C). Let X ′ be the set of vertices that induces the component of G−M(C ′)

which contains x and y. Note that M(C ′) separates V (C ′) and X ′ but does not
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separate V (C) and V (C ′). Thus, every x-u-path contains a vertex of M(C ′) for every
u ∈ V (C). As an immediate consequence, we find X ′ ⊆ B(C) ∪X(C). Furthermore,
χ(G[M(C ′)]) ≤ f ?P5

(p − 1) by Lemma 75 (vi). As we are not in Case a, we find
that EG[{m′}, X ′] is complete. By this contradiction to the fact that m′ ∈ M(C ′) is
non-adjacent to y′ ∈ X ′, we obtain Y (C ′) = ∅.

Case c: V (F ) is not a homogeneous set.

As V (F ) is not a homogeneous set, there is a vertex in s ∈ S with EG[{s}, V (F )]

is mixed. Thus, as we are not in Case a, we find that χ(G[S]) > 2f ?P5
(p − 1). In

particular, χ(G[A(C) ∩ S]) > f ?P5
(p− 1) as S ⊆ A(C) ∪M(C) and χ(G[M(C) ∩ S]) ≤

f ?P5
(p− 1) by Lemma 75 (vi). Moreover, the fact χ(G[A(C) ∩ S]) > f ?P5

(p− 1) implies
ω(G[A(C) ∩ S]) ≥ p.

Let M0,M1,M2 ⊆ M(C) with M0 ∪ M1 ∪ M2 = M(C) such that for all m0 ∈ M0

we have EG[{m0}, V (F )] is anticomplete, for all m1 ∈ M1 we have EG[{m1}, V (F )]

is complete, and for all m2 ∈ M2 we have EG[{m2}, V (F )] is mixed. We next show
that EG[M2, A(C) ∩ S] is complete. For the sake of a contradiction, let us suppose
that m2 ∈ M2 is non-adjacent to a ∈ A(C) ∩ S. As EG[{a}, V (C)] is mixed and as
EG[{m2}, V (F )] is mixed, there are three pairwise non-adjacent vertices u1, u2 ∈ V (C)

and v ∈ V (F ) such that au2 ∈ E(G) and au1,m2v /∈ E(G). Thus, [v, a, u2,m2, u1]

induces a P5, a contradiction. Consequently, EG[M2, A(C)∩S] is complete. As there is
a clique of size p in G[A(C)∩S], G[M2∪V (F )] is (K1∪K2)-free by Lemma 75 (vi), and
so complete multipartite. Let I be an independent set in F . We note that EG[(A(C)∩
S) ∪ M1, V (F )] is complete. So, NG(v1) = NG(v2) for each two vertices in I. As
we assume NG(v1) 6⊆ NG(v2), F is a complete graph of order χ(F ). In particular,
|V (F )| ≥ f ?P5

(p− 1) + 1. As p ≥ 3, it follows |V (F )| ≥ p+ 1.

Letm2 ∈M2 be arbitrary. As EG[{m2}, V (F )] is mixed, there is a vertex v ∈ V (F ) that
is non-adjacent to m2. For the sake of a contradiction, let us suppose that m1 ∈M1 is
non-adjacent to m2. As G[V (F )∪{m2}] is a complete multipartite graph, we find that
EG[{m2, v},W ] is complete for a clique W ⊆ V (F ) of size p. Hence, {m1,m2, v} ∪W
induces a Fp. From this contradiction, we find that EG[{m2},M1] is complete. Thus,
NG(v) ⊆ NG(m2), which is a contradiction to our assumption on non-adjacent vertices.
Thus, the claim is proven. (�)

Next let us focus on what is left in situation (a). In particular, let us assume we are
not in Case 2. However, as we are still in situation (a), we find C(G) 6= ∅ and Y (C) = ∅
for each C ∈ C(G).

Case 3: C(G) 6= ∅ and, for each C ∈ C(G), there is no connected graph F with
χ(F ) ≥ 2f ?P5

(p− 1) such that C extends to a O[F ] in G called H whose extender is a
homogeneous set in G.
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Let C ∈ C(G). Similarly as in Case 2, we partition A(C) ∪ M(C) ∪ V (C). Let U
be the extender that extends C to a O[Kp] in G. We define the two vertices c1 and
c2 as well as the sets A1,−, A1,+, A2,−, and A2,+ as in Case 2. In particular, we have
U ⊆ A1,+ = A2,−, and that c1 and c2 are the neighbours of A1,+ on C. We also assume
χ(G[A1,−]) ≤ χ(G[A2,+]), which implies as in Case 2 that χ(G[A1,−]) ≤ f ?P5

(p − 1).
Let us define A3 as the set of vertices which have a neighbour on C but which are
non-adjacent to c1 and c2. As in Case 2, we find that EG[A3 ∪ {c1, c2}, U ] is complete,
and so this set is independent.

We let A4 be the set of vertices of NG(V (C)) which are non-adjacent to c2 and which
do not belong to A1,− ∪ A3 ∪ V (C). We show that EG[A4, V (C) \ {c2}] is complete.
Let a ∈ A4 be arbitrary. As a /∈ A3, we find that a is adjacent to c1. As {a, c1, c2} ∪U
does not induce a Fp, we find that there is a vertex u ∈ U that is non-adjacent to a. As
[a, c1, u, c2, c

+
2 ] does not induce a P5, we find that a is adjacent to c+

2 . As a /∈ A1,−, it
follows that a is a neighbour of c+

1 . Observe that c+
1 ∈ U . As [u, c+

1 , a, c
+
2 , c

+2
2 ] does not

induce a P5, it follows that a is adjacent to c+2
2 . Consequently, EG[{a}, V (C) \ {c2}] is

complete, which proves that EG[A4, V (C) \ {c2}] is complete by the arbitrariness of a.

We next show that χ(G[A1,− ∪ A4]) ≤ 2f ?P5
(p− 1)− 1, which implies

χ(G[NG[V (C)]]) ≤ χ(G[A3 ∪ {c1, c2}]) + χ(G[NG(c2)]) + χ(G[A1,− ∪ A4])

≤ f ?{P5,Fp−1}(ω(G)− 1) + 2f ?P5
(p− 1)

as A3 ∪ {c1, c2} is an independent set and as χ(G[NG(c2)]) ≤ f ?{P5,Fp−1}(ω(G) − 1) by
Lemma 75 (v). Let W ⊆ A4 be a clique of size ω(G[A4]). As {c1, c2, a4} ∪ U does
not induce a Fp for some a4 ∈ A4 and as a4c

+
1 ∈ E(G), we get for each a4 ∈ A4

that EG[{a4}, U ] is mixed. Let w ∈ W be arbitrary and u ∈ U be a non-neighbour
of w. We show next that EG[{w}, A1,− \ {c−1 }] is complete. We suppose for the sake
of contradiction, that there is an a ∈ A1,− \ {c−1 } with wa /∈ E(G). Firstly in this
case au ∈ E(G), since [u, c+

1 , w, c
+
2 , a] does not induces a P5. But now [c+

1 , u, a, c
+
2 , c

−
1 ]

if ac−1 /∈ E(G), and [a, c−1 , w, c
+
1 , c2] if ac−1 ∈ E(G) induces a P5, a contradiction.

Therefore, EG[{w}, A1,−\{c−1 }] and, thus, EG[{w}, A1,−] is complete. Now |W | ≤ p−2

or ω(G[A1,−]) ≤ 1 as otherwise {a1, a2, c1, c
+
1 } ∪ W induces a Fp for two adjacent

a1, a2 ∈ A1,−. If |W | ≤ p− 2, then

χ(G[A1,− ∪ A4]) ≤ f ?{P5,Fp}(p− 1) + f ?{P5,Fp}(p− 2)

≤ f ?P5
(p− 1) + (f ?{P5,Fp+1}(p− 1)− 2) = 2f ?P5

(p− 1)− 2

by Lemma 74. If ω(G[A1,−]) ≤ 1, then

χ(G[A1,− ∪ A4]) ≤ 1 + f ?P5
(p− 1) ≤ 2f ?P5

(p− 1)− 1

as p ≥ 3 and so f ?P5
(p− 1) ≥ 3.
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We now show that the neighbours of a component G′ of G−NG[V (C)] are coloured by
at most f ?{P5,Fp−1}(ω(G)− 1) + 1 colours. Let b ∈ B(C) ∪X(C) and a ∈ A(C) ∪M(C)

be adjacent. By Lemma 75 (iv), we find a /∈ A1,− ∪ U . Recall that for each vertex
of a4 ∈ A4 we know that EG[{a4}, U ] is mixed. Thus, it follows a /∈ A4 as otherwise
[b, a, c+

2 , c2, u] induces a P5 for some u ∈ U that is non-adjacent to a. We conclude
NG(V (G′)) ⊆ A3∪NG(c2), which gives the desired result as the vertices of A3∪NG(c2)

are coloured by at most f ?{P5,Fp−1}(ω(G)− 1) + 1 colours.

Finally, we apply Claim 78.1 with

k := f ?{P5,Fp−1}(ω(G)− 1) + 2f ?P5
(p− 1) and ` := 2f ?P5

(p− 1)− 1.

As we are not in Case 2, we obtain a k-colouring of G and, thus, the proof of Case 3
is complete. 4

It remains to assume that we are not in situation (a) but in situation (b). Recall that
the latter means Y (C) = ∅ for each odd antihole C in G. We immediately find that G
is O[Kp]-free as otherwise we would be in situation (a) as we could find a C ∈ C5(G)

that extends to a O[Kp] in G with Y (C) = ∅.

Case 4: G is O[Kp]-free and Y (C) = ∅ for each odd antihole C in G.

Let C be an odd antihole that satisfies χ(C) ≤ ϑ(p), which exists by the definition of
ϑ. We colour NG[V (C)] by at most ϑ(p) colours, and apply Claim 78.1 with

k := max{ϑ(p), f ?{P5,Fp−1}(ω(G)− 1) + f ?P5
(p− 1)}+ f ?P5

(p− 1) and ` := f ?P5
(p− 1).

As every C ′ ∈ C(G) does not extend to a O[Kp] called H, we obtain the desired result.
Thus, the proof of Case 4 and the proof of this Lemma are complete.

We are now in a position to prove our main result, namely Lemma 71. Let ϑ′ : N0 → N0

be a function with

p 7→


0 if p ≤ 1,

4 if p = 2,

max{10, 2p+ 3} · f ?P5
(p) if p ≥ 3.

Note that ϑ′ can be thought of as an upper bound to ϑ, for p ∈ N≥3.

In view of simplicity let f ?P5
(0) = f ?P5

(−1) = 0. We first claim that each (P5, Fp)-free
graph G with χ(G) > max{f ?P5

(p+ 1), ϑ′(p) + f ?P5
(p− 1)} satisfies

χ(G) ≤ ω(G) +

p−1∑
i=1

(2f ?P5
(i)− 1)
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for each p ∈ N0. We prove this claim by induction hypothesis on p. Let Gc be a
component of G with χ(Gc) = χ(G). Note that Gc is (P5, Fp)-free with χ(Gc) >

max{f ?P5
(p+ 1), ϑ′(p) + f ?P5

(p− 1)}, and so ω(Gc) ≥ p+ 2. In view of the desired result
it suffices to show that

χ(Gc) ≤ ω(Gc) +

p−1∑
i=1

(2f ?P5
(i)− 1)

as χ(Gc) = χ(G) and ω(Gc) ≤ ω(G). For p = 0 this follows from Observation 16.
For p = 1 and p = 2 this follows from Corollary 68 of Chapter 9 and Theorem 7,
respectively.

So we may assume p ≥ 3. Thus, ϑ(p) ≤ ϑ′(p), by Lemma 77, and Lemma 78 implies

χ(Gc) ≤ f ?{P5,Fp−1}(ω(Gc)− 1) + 2f ?P5
(p− 1).

Now, let G′ be a (P5, Fp−1)-free graph with χ(G′) = f ?{P5,Fp−1}(ω(Gc)− 1) and ω(G′) =

ω(Gc)− 1. The existence of G′ follows from Lemma 74. If

χ(G′) ≤ ω(G′) +

p−2∑
i=1

(2f ?P5
(i)− 1),

then

χ(Gc) ≤ χ(G′) + 2f ?P5
(p− 1)

≤

(
ω(Gc)− 1 +

p−2∑
i=1

(2f ?P5
(i)− 1)

)
+ 2f ?P5

(p− 1) ≤ ω(G) +

p−1∑
i=1

(2f ?P5
(i)− 1).

Thus, it remains to suppose, for the sake of a contradiction, that

χ(G′) > ω(G′) +

p−2∑
i=1

(2f ?P5
(i)− 1).

As ω(Gc) ≥ p+ 2, it follows ω(G′) ≥ p+ 1. By induction we find

χ(G′) ≤ max{f ?P5
(p), ϑ′(p− 1) + f ?P5

(p− 2)}.

We consider first the case where χ(G′) ≤ ϑ′(p− 1) + f ?P5
(p− 2). Thus,

ϑ′(p) + f ?P5
(p− 1) < χ(Gc) ≤ χ(G′) + 2f ?P5

(p− 1) ≤ ϑ′(p− 1) + f ?P5
(p− 2) + 2f ?P5

(p− 1).

In other words,
ϑ′(p) < ϑ′(p− 1) + f ?P5

(p− 2) + f ?P5
(p− 1).

As f ?P5
(1) = 1 by definition, f ?P5

(2) = 3 by [66], f ?P5
(3) = 5 by Theorem 15, and as

f ?P5
(4) ≥ 7 by the facts f ?P5

(3) = f ?{P5,F2}(3), f ?P5
(4) = f ?{P5,F3}(4) and by Lemma 74,
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it follows by putting in the numbers that p ≥ 5. Thus, by the definition of ϑ′(p), it
follows

max{9, 2p+2}·f ?P5
(p) ≤ max{10, 2p+3}·f ?P5

(p)−f ?P5
(p−2) < max{11, 2p+2}·f ?P5

(p−1).

As f ?P5
(p) ≥ f ?P5

(p− 1), we find 2p+ 2 < 11, which is a contradiction to the fact p ≥ 5.
Thus, it remains to consider the case where χ(G′) > ϑ′(p − 1) + f ?P5

(p − 2), and so
χ(G′) ≤ f ?P5

(p). Now, the fact that χ(Gc) ≤ χ(G′) + 2f ?P5
(p− 1) implies

10 · f ?P5
(p) ≤ ϑ′(p) + f ?P5

(p− 1) < χ(Gc)

≤ χ(G′) + 2f ?P5
(p− 1) ≤ f ?P5

(p) + 2f ?P5
(p− 1) ≤ 3 · f ?P5

(p),

a contradiction. Therefore, our supposition is false, and our claim follows. In particular,
we have

χ(G) ≤ max

{
ω(G) +

p−1∑
i=1

(2f ?P5
(i)− 1), ϑ′(p) + f ?P5

(p− 1), f ?P5
(p+ 1)

}
(1)

for each (P5, Fp)-free graph G and each p ≥ 0.
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11 Open questions and outlook

In this concluding chapter we talk about open questions related to our research field
and give an outlook for future research. This chapter is subdivided into two sections. In
Section 11.1 we talk in some detail about a question related to the not non-decreasing
χ-binding functions. In Section 11.2 we talk about some of our χ-binding functions
and closely related open questions.

11.1 Non-decreasing χ-binding function

Let G be a family of graphs and we are interested in the optimal χ-binding function
of G. If this χ-binding function is known to be non-decreasing, it is sufficient to just
research the critical graphs of G, by Lemma 1. Since we are interested in P5-free
graphs, this raises the question, for which subfamilies of For(P5) we know that their
optimal χ-binding function is non-decreasing. Or reversely stated, we are interested in
a complete characterisation of subfamilies of For(P5) with not non-decreasing optimal
χ-binding functions. To partially answer this question, let I ⊆ N>0 with 1 ∈ I and
H =

⋃
i∈I{Hi} be a family of forbidden graphs where H1 ⊆ind P5. Let us also assume

that the graph Hi is not an induced subgraph of Hj for i, j ∈ I with i 6= j. Since
otherwise f ?H ≡ f ?H\{Hj} and the graph Hj has no influence on the optimal χ-binding
function. In this setting we know that f ?H exists, since f ?P5

exists (cf. Theorem 12, [31]).
Also note that if H1 ⊆ind P4 this optimal χ-binding function is easy to determine, since
f ?{P4}(ω) = ω for ω ∈ N>0 [66]. So from now on we may assume H1 6⊆ind P4. We
now collect sufficient conditions on H such that f ?H is non-decreasing and state some
examples of H such that f ?H is not non-decreasing.

We prove a positive result for our current aim in Lemma 44 of Section 3.3. It states
that as long as each forbidden subgraph H ∈ H does not contain a universal vertex,
the function f ?H is strictly increasing. In the same section we also show in Lemma 45
the following positive result. As long as for all H ∈ H each connected component
of H is non-isomorphic to a complete graph, we prove that the χ-binding function is
non-decreasing.

So to find a family H such that f ?H is not non-decreasing, there are minimal iu, ic ∈ I
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such that Hiu ∈ H contains a universal vertex, and one component of Hic ∈ H is
isomorphic to a complete graph. Note that the complete graph is the only graph with
a universal vertex and a component which is a complete graph. Thus, if iu = ic, there
is an n ∈ N>0 with Kn ∈ H. For n = 1 the family of Kn-free graphs is empty and for
n > 1 we see that f ?H(1) = 1, f ?H(n) = 0, since there is no graph of clique size n in
this family, which implies that the function f ?H is not non-decreasing. So in this case
f ?H ≡ 0 or f ?H is not non-decreasing.

So from now on we may assume that iu 6= ic. The case iu = 1 leads to a contradiction
to our assumption that H1 6⊆ind P4, since H1 ⊆ind P5. So in all interesting cases we
have either ic = 1 < iu or without loss of generality 1 < iu < ic.

Let us firstly note that in the latter case H1
∼= P5, since 1 < ic. So the first open

question is for which graphs Hic , Hiu the function f ?{P5,Hiu ,Hic}
is not non-decreasing. In

this situation there is no easy way to show that this function is non-decreasing, but it
still could be as the following example shows. Let us choose Hiu

∼= dart and Hic
∼= 4K1.

We know f ?{P5,dart} ≡ f ?{3K1}, by Theorem 4. It follows f ?{P5,dart,4K1} ≤ f ?{P5,dart} ≡ f ?{3K1}

and f ?{P5,dart,4K1} ≥ f ?{3K1}, since 3K1 ⊆ind P5, dart, 4K1. It becomes clear that the
function f ?{P5,dart,4K1}(≡ f ?{3K1}) is non-decreasing even though both necessary condi-
tions are fulfilled. Thus, the stated necessary conditions are not sufficient to grant a
not non-decreasing χ-binding function.

Let us now look at the first case: In this case H1
∼= P3 ∪K1, H1

∼= 3K1, or H1
∼= 2K2.

In the next paragraph we argue that f ?{3K1}∪H = f ?{P3∪K1}∪H for each graph family H.
Proving this claim shows that it suffices to consider H1 ∈ {3K1, 2K2} in this case.

Since 3K1 ⊆ind P3∪K1, we find f ?{3K1}∪H ≤ f ?{P3∪K1}∪H. To prove the other direction let
G be an arbitrary (P3 ∪K1,H)-free graph. Thus, the complementary graph Ḡ is paw-
free. Let I be a finite set and ∅ 6= Vi ⊆ V (G) for each i ∈ I such that V (G) =

⋃
i∈I Vi,

Vj induces a connected component in Ḡ, Vj and Vk are pairwise disjoint, and EḠ[Vj, Vk]

is anticomplete, for j 6= k. Thus, for each i ∈ I the graph Ḡ[Vi] is complete multipartite
or K3-free, by Olariu (cf. Theorem 20, [48]). Let I1 be the maximum subset of I with
Ḡ[Vi] is K3-free, for each i ∈ I1 and I2 = I \ I1. Note that Ḡ[

⋃
i∈I1 Vi] is K3-free if

I1 6= ∅. Thus, G[
⋃
i∈I1 Vi] is 3K1-free if I1 6= ∅. Since Ḡ[Vj] is completely multipartite

for each j ∈ I2, we obtain G[Vj] is a disjoint union of complete graphs. For j ∈ I2, let
V m
j be a subset of Vj such that G[V m

j ] is a complete graph and ω(G[V m
j ]) = ω(G[Vj]).

Let us define the set V ′ and the graph G′ by

V ′ :=
⋃
i∈I1

Vi ∪
⋃
j∈I2

V m
j and G′ = G[V ′].

Then, we find ω(G′) = ω(G) and χ(G′) = χ(G). If I1 6= ∅ and I2 6= ∅, we recall that
G[
⋃
i∈I1 Vi] is 3K1-free, G[

⋃
j∈I2 V

m
j ] is a complete graph, and EG[

⋃
i∈I1 Vi,

⋃
j∈I2 V

m
j ] is

complete. Thus, the graph G′ is 3K1-free. Otherwise, the graph G′ is also 3K1-free.
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Therefore, G′ is 3K1-free in both cases and as G′ ⊆ind G especially H-free. Thus,

χ(G) = χ(G′) ≤ f ?{3K1}∪H(ω(G′)) = f ?{3K1}∪H(ω(G)),

which completes the proof.

We lastly introduce two non-trivial examples of a set H with |H| = 2 such that f ?H is
not non-decreasing. Firstly let us look at the set of (2K2, (K1 ∪K2) +Kp)-free graphs
for some large p ∈ N>0. To use the following Theorem 79 by Brause et al. [14] let
us introduce the following definition. A graph G is a multisplit graph if its vertex set
V (G) can be divided into two vertex disjoint sets S1 and S2 such that S1 induces a
complete multipartite graph and S2 is an independent set in G.

Theorem 79 (Brause et al. [14]). If G is a connected (2K2, (K1∪K2)+Kp)-free graph
with ω(G) ≥ 2p for some integer p ≥ 2, then G is a multisplit graph.

Let us shortly argue that this statement is also true for the disconnected graphs G.
In a 2K2-free graph there is at most one connected component consisting of at least
two vertices. Additionally the disjoint union of a multisplit graph and a K1 is still
a multisplit graph, by the definition of a multisplit graph. Thus, each graph G ∈
For(2K2, (K1 ∪ K2) + Kp) with ω(G) ≥ 2p is a multisplit graph, by Theorem 79. In
the same paper they also prove that multisplit graphs are perfect. On the other hand,
let us recall Theorem 29 by Gyárfás [31], which states that there exists an ε > 0 such
that ω1+ε

3
≤ f ?{2K2}(ω), for each ω ∈ N>0. Let p = d61/ε + 2e, then p ≥ 2 and p1+ε

3
> 2p.

So using these two results and the definition of p we find

f ?{2K2,(K1∪K2)+Kp}(p) = f ?{2K2}(p) ≥
p1+ε

3
> 2p = f ?{2K2,(K1∪K2)+Kp}(2p).

Thus, this optimal χ-binding function is not non-decreasing. Brause et al. [14] also
research the family of (2K2, 2K1 +Kp)-free graphs and prove a similar result as Theo-
rem 79 for this family. One can argue analogously to our previous argumentation that
for large p ∈ N>0 the function f ?{2K2,2K1+Kp} is not non-decreasing.

Let us shortly summarize some results of this section. We prove two necessary con-
ditions on a graph family H such that f ?H is not non-decreasing. Additionally, we
introduce the graph family For(P5, dart, 4K1) fulfilling both conditions whose optimal
χ-binding function is still non-decreasing. In the final part we state two families with
not non-decreasing χ-binding function.

11.2 Improvable χ-binding functions

In this thesis we have shown a χ-binding function for the graph family of (P5, H)-free
graphs (cf. Theorem 2-8), for several graphs H. Moreover, several of these binding
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functions are exact or achieve the right order of magnitude. For example from Theo-
rem 4 and Corollary 27, which uses the landslide result by Kim (cf. Theorem 26, [42]),
we obtain

f ?{P5,dart}(ω) = f ?{3K1}(ω) ∈ Θ

(
ω2

log(ω)

)
.

Achieving the right order of magnitude is generally a great achievement and there is
further research by Pontiveros et al. [51] improving the constants of Kim. Note that
asymptotically the functions fR : N0 → N0 defined by k → R(3, k + 1) and f ?{3K1}

behave the same and for k ≤ 9 the Ramsey number R(3, k) is known but to the
best of our knowledge f ?{3K1}(k) is unknown for k ≥ 6. Pedersen just mentions the
following concrete upper bounds on f ?{3K1} in the concluding remarks of [49]. They
claim that using data from the Ramsey numbers, they calculate that f ?{3K1}(4) ≤ 7 and
f ?{3K1}(5) ≤ 9. Note that by Corollary 27 this implies f ?{3K1}(4) = 7 and f ?{3K1}(5) = 9,
since R(3, 5) = 14 and R(3, 6) = 18. Which raises the question, whether or not the
lower bound in Corollary 27 is always achieved with equality.

Question 1. For ω ∈ N>0,⌈
R(3, ω + 1)− 1

2

⌉
= f ?{3K1}(ω).

Assuming this question to be answered positively, calculating for ω ∈ N>0 values of
f ?{3K1}(ω) reduces to the problem of calculating R(3, ω+1). Proving Ramsey numbers is
a widely considered computational problem which sharply increases in difficulty when
increasing the input. Recall that the Ramsey Number R(3, k) is known for k ∈ [9].
Thus, proving the question grants multiple new values of the function f ?{3K1}.

We also prove f ?{P5,banner} ≡ f ?{2K2} in Theorem 4. As opposed to f ?{3K1} the asymp-
totically behaviour of f ?{2K2} is unknown and the best known general bound is still by
Wagon (cf. Theorem 30, [67]). By using the result of Gasper and Huang (cf. Theo-
rem 31, [29]) we improve the bound by Wagon by a linear factor in Corollary 32. Note
that the asymptotic behaviour is not improved by this proof. This raises the open
question for the asymptotic behaviour of f ?{2K2}. This seems to be a difficult problem,
since there has been no significant improvement on the bound by Wagon from 1980.

In multiple cases we reduce the problem of finding a χ-binding function for the graph
family G to the problem of finding a χ-binding function for a real subfamily G ′. Like
we argue previously to calculate f ?{3K1} or f

?
{2K2} is a challenging problem. Naturally

there are still open cases to solve and one question which arises from this thesis regards
the function f ?{P5,kite}. In Chapter 8 we show

⌊
3ω

2

⌋
≤ f ?{P5,kite}(ω) = f ?{2K2,K1∪K3,K1∪C5}(ω) ≤


⌊

3ω
2

⌋
if ω ≤ 4,

2ω − 2 if ω ≥ 5,
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for ω ∈ N>0. Our guess is also that the lower bound is sharp, but it seems to be a
challenging problem to even show f ?P5,kite

(5) = b3 · 5/2c = 7. Therefore, we formulate
it as an open question.

Question 2. For ω ∈ N>0,

f ?P5,kite
(ω) =

⌊
3ω

2

⌋
.

We prove the optimal χ-binding function for (P5, F2)-free graphs (cf. Chapter 9). We
also put quite some effort in proving a small χ-binding function for (P5, Fp)-free graphs
and p ∈ N>2 (cf. Chapter 10). In the proof of Lemma 78 there are multiple cases in
which f ?{P5,Fp−1}(ω(G)−1)+2f ?P5

(p−1) colours are needed. Thus, to improve the bound
multiple new colourings are needed. Still, it is a interesting question to ask whether or
not these χ-binding functions can be improved.

These are just a few questions which arise while working in this mathematical field.
Clearly just looking at the results of this research field collected in Chapter 2 creates a
lot of interesting open questions especially in regards to optimal χ-binding functions.
However, the stated questions are the ones which are closest related to this thesis.
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