
Scholarly Horizons: University of Minnesota, Morris Scholarly Horizons: University of Minnesota, Morris

Undergraduate Journal Undergraduate Journal

Volume 9 Issue 1 Article 8

March 2022

Using Temporal Session Types to Analyze Time Complexities of Using Temporal Session Types to Analyze Time Complexities of

Concurrent Programs Concurrent Programs

Joseph M. Walbran
University of Minnesota - Morris

Follow this and additional works at: https://digitalcommons.morris.umn.edu/horizons

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Walbran, Joseph M. (2022) "Using Temporal Session Types to Analyze Time Complexities of Concurrent
Programs," Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal: Vol. 9: Iss. 1,
Article 8.
Available at: https://digitalcommons.morris.umn.edu/horizons/vol9/iss1/8

This Article is brought to you for free and open access by the Journals at University of Minnesota Morris Digital
Well. It has been accepted for inclusion in Scholarly Horizons: University of Minnesota, Morris Undergraduate
Journal by an authorized editor of University of Minnesota Morris Digital Well. For more information, please contact
skulann@morris.umn.edu.

https://digitalcommons.morris.umn.edu/horizons
https://digitalcommons.morris.umn.edu/horizons
https://digitalcommons.morris.umn.edu/horizons/vol9
https://digitalcommons.morris.umn.edu/horizons/vol9/iss1
https://digitalcommons.morris.umn.edu/horizons/vol9/iss1/8
https://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.morris.umn.edu/horizons/vol9/iss1/8?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:skulann@morris.umn.edu

This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

1

Walbran: Using Temporal Session Types to Analyze Time Complexities of Conc

Published by University of Minnesota Morris Digital Well, 2022

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Joseph Moonan Walbran

Using Temporal Session Types to Analyze Time
Complexities of Concurrent Programs

Joseph Moonan Walbran
walbr037@morris.umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
Das et al. develop amethod for analyzing the time complexity
of concurrent, message-passing algorithms. Their method is
based on adding timing information to datatypes. Specifically,
they use a family of datatypes called session types; these
constrain the structure of interactions that may take place
over a channel of communication. In Das’s system, the timing
properties of an algorithm can be verified by a typechecker:
if the timing information in the session types is mismatched,
the computer will report a type error. In their paper, Das
et al. develop the theory for such a typechecker, but do not
provide an implementation.

Keywords: Formal methods, concurrent algorithms, pi cal-
culus, process calculi, formal systems, type systems.

1 Introduction
A common question in computer science is “how long does
this algorithm take to run?” Answering that question can
mean implementing the algorithm, running it, and timing
how long it takes. But trying to directly measure the runtime
of an algorithm is tricky—the answer will depend on the
hardware the program is running on, and on how many
background processes were competing with the program
for resources. Instead of measuring algorithms empirically,
it’s often more meaningful to look at an algorithm written
down and count how many steps are involved. The number
of steps is called the time-complexity of the algorithm.

Das et al. are interested in analyzing the time complexity of
concurrent algorithms. An algorithm is said to be concurrent
if it consists of two or more parts that execute independently
of each other [8]. For example, a concurrent algorithm might
have several threads, each of which does some part of the
computation. Analyzing the time complexity of concurrent
algorithms can be difficult; one needs to consider how the
pieces of a concurrent program interact with each other.
Sometimes, two pieces can run simultaneously. Other times,
one piece of the program needs to wait, idling until another
piece is ready.
Das’s paper focuses on message-passing concurrent sys-

tems. These are concurrent systems where the independent
parts only interact by sending data between each other over

channels [2]. This model can describe multithreaded pro-
grams where the threads communicate over shared queues,
or Unix processes that run in parallel, sending data over pipes.
However, the message-passing model is less suitable for de-
scribing multithreaded programs that make use of shared,
global memory.
Das et al. provide a formal method for analyzing time

complexities of concurrent, message-passing algorithms. For
example, suppose an algorithm reads data from an input
channel, processes that data, and then writes the result to an
output channel. Das’s method can be used to answer ques-
tions like “When the algorithm reads a message, how long
is the delay before it writes a result to the output channel?”
(This is called the latency of the algorithm.) It can also an-
swer questions like “how many messages can the algorithm
process per second?” (This is the maximum message rate of
the algorithm.) [2] Knowing these quantities is important
when trying to send data over a network, for example. If the
latency is too high, the network will be slow and unrespon-
sive. If someone tries to send data faster than the maximum
message rate, the network won’t be able to handle it, and it
will start dropping packets. [7]

To answer these questions, Das et al. develop a notation
for adding timing information to datatypes. Using the timing
information of each piece of the program, one can often
reconstruct the time cost of the whole algorithm.

There are two modes in which one can use Das’s method.
First, one can find the time complexity of a concurrent algo-
rithm by annotating each step of the algorithm with timing
information, and then aggregating the different pieces of
timing information to determine the total time complexity.
This process is difficult to automate, and generally needs to
be done by hand. [2]
Second, once a time complexity has been found in this

manner, one can verify that the solution is correct. It’s easy
for programmers to make mistakes when analyzing concur-
rent programs, so the fact that Das et al. provide a way to
check for errors is valuable. Furthermore, this verification
can be automated; there’s a completely mechanical proce-
dure for checking whether an algorithm is annotated with
correct time complexity. The key idea behind this procedure
is that if the timing information is given incorrectly, the
algorithm will contain a type error somewhere; the timing

2

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 9, Iss. 1 [2022], Art. 8

https://digitalcommons.morris.umn.edu/horizons/vol9/iss1/8

Using Temporal Session Types to Analyze Time Complexities of Concurrent Programs

information in the datatypes will be mismatched. In this
way, Das’s method takes the problem of verifying that an
algorithm has a particular time complexity, and turns it into
a typechecking problem. [2]

Das’s system has three layers to it:

• In the first layer, Das et al. lay out formalization for
how concurrent computationworks. The formalization
they use is called 𝜋-calculus, and it dates back to the
1990s. [6]

• In the second layer, Das et al. describe a way to type-
check concurrent algorithms. There are a few different
approaches to typechecking concurrent programs; Das
et al. use a specific system called session types, which
adds typechecking on top of 𝜋-calculus by constrain-
ing what messages can be sent over channels. [1][4][5]

• In the third layer, Das et al. introduce a way to add
timing information to datatypes. This is their novel
contribution; they call the resulting system temporal
session types. [2]

We will discuss each of these layers in turn.

2 𝜋-calculus
Computer scientists often write algorithms in pseudocode,
but for their system, Das et al. write algorithms in a particu-
lar notation with exact specifications. This helps keep their
analysis clear and rigorous, which is important when devel-
oping a general method for analyzing concurrent algorithms.
There are several competing systems for notating concur-
rent algorithms, but Das et al. use a system called 𝜋-calculus,
which was developed in the early 1990s by Milner et al. [6]

𝜋-calculus represents concurrent computation using the
notions of processes and channels. Processes are sequences
of instructions that execute in parallel with other processes.
Channels are communication links that processes use to send
data to each other. In 𝜋-calculus, there are a few elementary
operations that processes can perform, such as spawning
new processes and sending a piece of data over a channel.
The set of elementary operations is small, which helps keep
programs expressed in 𝜋-calculus easy to reason about; there
are only a few cases to consider. More complex operations
can be expressed using simple ones as building blocks. [6]

Let’s look at the elementary operations of 𝜋-calculus.1

1The details of 𝜋-calculus vary significantly from author to author. Where
there are differences, we will prefer the formulation given in Das et al, with
one exception regarding the treatment of channels.

Das et al. distinguish between a process’s primary channel, which
it provides, and secondary channels, which it uses, but which belong to
other processes. Milner et al., Honda, and Caires do not make this distinc-
tion [1][2][5][6]. There are reasons why this distinction is useful, but they
are not relevant to our topic, so we will ignore the distinction and just refer
to “channels”. [2]

2.1 Defining a process
To define a process in 𝜋-calculus, one gives it a name; a
list of arguments, where each argument is a channel that
the process will use; and a sequence of operations that the
process will perform [6]. Process definitions are written like
this:
processName(channel1, channel2, ..., channelN) =

operation1;
operation2;
...;
operationN

Here, channel1 through channelN are the arguments of
a process called processName.

2.2 Spawning a process
Processes can spawn other processes; the new processes run
in parallel with the original. Spawning a process is written
processName(channel1, channel2, ...), like a function
call. [6]
For example, the following is a process that spawns two

copies of itself before terminating.
a() = a(); a()

Running a() will cause the number of active processes to
grow exponentially.

2.3 Closing a channel
If two processes are connected by a channel, one of them can
close the channel; this destroys the channel, so that neither
process can use it again [1]. Closing a channel c is written
“close c”.

Additionally, a process can wait for a channel to be closed
by the process on the other end [1][2]. Waiting for channel
c to close is written “wait c”.

2.4 Sending a label
The main type of data that processes send to each other are
labels. A label is one of a predefined, finite set of symbols [2].
For example, a program that sends messages in Morse code
might have the following set of labels:

{ DOT, DASH, NEXT_LETTER, $ }
where the label $ indicates the end of a message.

Sending a label L over channel c is written c.L, with a
period. For example, the following example defines a process
that sends the message “HI” (“• • • • • •” in Morse code).
sayHi(outChannel) =

outChannel.DOT;
outChannel.DOT;
outChannel.DOT;
outChannel.DOT;
outChannel.NEXT_LETTER;
outChannel.DOT;
outChannel.DOT;

3

Walbran: Using Temporal Session Types to Analyze Time Complexities of Conc

Published by University of Minnesota Morris Digital Well, 2022

Joseph Moonan Walbran

outChannel.$;
close outChannel

Here, sayHi takes one argument, the channel it should
send messages over. Then, sayHi sends eight labels over
that channel, one at a time; these labels encode the text “HI”
in Morse code. Finally, sayHi closes the channel, since it’s
finished using it.

2.5 Receiving and branching on a label
When a process receives a label over a channel, it needs to
be able to take different behaviors depending on the value
of that label. In the Morse code example, a process needs to
be able to inspect a label to determine whether it’s a DOT or
a DASH.

In 𝜋-calculus, this is accomplished using the “case” opera-
tion, which reads the next label from a channel and branches
on its value [2]. The case operation is written as follows:

case c
| label1 => operation1; ...
| label2 => operation2; ...
| ...
| labelN => operationN; ...

The above process waits until it receives a label from
c, and then looks at what label it received. If it received
label1, it continues with operation1; if it received label2,
it continues with operation2; and so on.We leave undefined
what happens if the value received doesn’t match any of
label1 through labelN.
As an example of the use of the case operation, the fol-

lowing process takes a message in Morse code and changes
all the dots to dashes, and vice versa.

invert(inChannel, outChannel) =
case inChannel
| DOT =>

outChannel.DASH;
invert(inChannel, outChannel)

| DASH =>
outChannel.DOT;
invert(inChannel, outChannel)

| NEXT_LETTER =>
outChannel.NEXT_LETTER;
invert(inChannel, outChannel)

| $ =>
outChannel.$;
wait inChannel;
close outChannel

The invert process uses recursion to loop over the entire
input. The first instance of invert reads one label from
inChannel, and then spawns a new instance of invert that’s
responsible for reading the next label. In this way, invert
continues to call itself recursively until it receives the $ label,
which is the base case of the recursion. Upon receiving $,

(a) Before sending x (b) After sending x

Figure 1. Sending channel x from process 𝑃 to process 𝑄

invert makes sure all the channels close properly, and then
shuts down.

2.6 Sending and receiving channels
The characteristic feature of 𝜋-calculus is the ability to send
one channel over another channel. This lets processes pass
channels between each other, so that the network of channels
changes over time. [6]
Suppose processes 𝑃 and 𝑄 are connected by a shared

channel a, and 𝑃 has a channel x with incoming data. 𝑃 can
give 𝑄 access to the data by sending the whole channel x
over a. This operation is illustrated in figure 1.

Sending a channel x over a channel a is written “send a x”.
The complementary operation, receiving a new channel from
a and giving it the name x, is written “x <- recv a”.

Once a process sends a channel x, it loses access to x. Only
the process that receives x can use it from then on.
The following example demonstrates the use of recv. In

this example, server is a process that loops forever; in the
body of the loop, server receives two channels, one for input
and one for output. The server spawns an invert process,
as described in section 2.5, to read a Morse code message
from the first channel, process it, and write the result to the
second channel.
server(listeningConnection) =

inChannel <- recv listeningConnection;
outChannel <- recv listeningConnection;
invert(inChannel, outChannel);
server(listeningConnection)

A nice benefit of using the invert process this way is
that each instance of invert runs in parallel with server,
so server does not have to wait for invert to finish before
it can accept more channels.

2.7 Creating channels
Most formulations of 𝜋-calculus provide some method for
creating new channels. How this operation works, and what
its limitations are, vary from author to author [1][2][6]. Due
to lack of space, we won’t discuss creating new channels in
this paper.

4

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 9, Iss. 1 [2022], Art. 8

https://digitalcommons.morris.umn.edu/horizons/vol9/iss1/8

Using Temporal Session Types to Analyze Time Complexities of Concurrent Programs

2.8 Next steps
𝜋-calculus gives a precise way to describe message-passing
concurrent algorithms using a small set of rules. But, without
further tools, it’s difficult to figure out the time complexity
of a 𝜋-calculus process.
When analyzing the time complexity of a synchronous

procedure, one can count just the number of operations it
performs. This approach is not sufficient to find the time
complexity of concurrent processes, like those of 𝜋-calculus.
In concurrent programs, a process will sometimes accrue a
time cost just by sitting idle, while it waits for some other
process to be ready; when analyzing time complexity, one
needs a way to account for these delays.

For example, when a process uses an operation like case
or recv to read from a channel, it blocks, sitting idly until
the process on the other end of the channel is ready to send it
data. This type of communication between processes creates
challenges for determining the exact timing of messages. [2]
To figure out where these delays occur, Das et al. need a

way to describe the structure of interactions between processes.
This is what session types provide.

3 Session types
Session types are a family of datatypes that describe channels.
Each session type describes the structure of the interactions
that can take place over a particular channel.

Session types can be more detailed than types like “string”
or “array of integers”, but they fulfill the same role. The point
of typechecking a program is to make sure that values all
have the form that the programmer expects them to have. If
the programmer wants a variable to have the form “array of
integers”, but assigns it a value with the form “string”, then
there’s a mismatch; a typechecker reports these mismatches
as type errors.
In the same way that arrays have a particular type, it’s

possible to speak of channels as having a particular type.
Channels are defined by the kinds of messages that one is
allowed to send over them. If users of channel x are expected
to send three labels and then close x, but users of channel
y are expected to send an infinite stream of labels, then
channels x and y have different types.
Session types formalize this idea by describing what a

sequence of interactions over a channel should look like. For
example, in the server process in section 2.6, the session
type for the channel listeningConnection would contain
the information “receive a channel for reading Morse code
messages; then receive a channel for writing Morse code
messages; then repeat”. In this way, a session type is like a
very small network protocol; it’s a contract that processes
talking over the channel need to abide by. [5]
Let’s look at some of the different forms a session type

can take.

3.1 Closing a channel; waiting for a channel to close
The simplest session types are 1, which describes a channel
that should be closed immediately, and ⊥, which describes a
channel that is about to be closed from the other end.2 [1] [2]
If channel x has type 1, the only allowed operation on x

is “close x”. Similarly, if x has type ⊥, the only allowed
operation on x is “wait x”.
We say that two session types are duals of each other if

they describe the same interaction as seen from opposite
sides of the channel. For example, 1 and ⊥ are duals, since
they each describe a different side of the same interaction.

3.2 Internal choice
An internal choice type, written with the ⊕ symbol, asserts
that one label from a particular set will be sent over a channel.
Let A and B be labels. Then, if a channel x has the session type
⊕{A : 𝑇1, B : 𝑇2}, that means the only allowed operations on
x are “x.A” and “x.B”. If the process sends label A, the rest
of its interactions over x must adhere to the session type 𝑇1;
if it sends B, the rest of its actions must adhere to 𝑇2. [2]
For example, consider the process sayHi(outChannel)

from section 2.4. Here, the channel outChannel can be de-
scribed by the recursively-defined session type

sendMessage = ⊕{
DOT : sendMessage,

DASH : sendMessage,

NEXT_LETTER : sendMessage,

$: 1
}

The type sendMessage asserts that sayHi can choosewhether
to send DOT, DASH, NEXT_LETTER, or $ over outChannel. If
sayHi sends the $ label, it needs to close outChannel after-
wards. But, if sayHi sends DOT, DASH, or NEXT_LETTER, it
should take another action of type sendMessage—that is, it
should send more labels.

3.3 External choice
The dual of internal choice types are external choice types,
written with the & symbol, which assert that a process is
prepared to receive any label from a certain set. If a channel x
has the session type &{A : 𝑇1, B : 𝑇2}, then the only allowed
operation on x is “case x | A => ... | B => ...”. Here, if
the process reading from x receives A, it should proceed as
described by the session type𝑇1, and if it receives B, it should
proceed as described by 𝑇2. [2]

For example, in section 2.5, the process

invert(inChannel, outChannel)

2The notation used for session types comes from a branch of mathemat-
ics called linear logic, which studies constructions involving consumable
resources. [3][1]

5

Walbran: Using Temporal Session Types to Analyze Time Complexities of Conc

Published by University of Minnesota Morris Digital Well, 2022

Joseph Moonan Walbran

uses two channels. Of these, outChannel can be described us-
ing the session type sendMessage defined above, but inChannel
has the external choice type

readMessage = &{
DOT : readMessage,

DASH : readMessage,

NEXT_LETTER : readMessage,

$: ⊥
}

which says, roughly, that if invert sees one of DOT, DASH, or
NEXT_LETTER, it should keep reading; but, if it sees a $ label,
then it has reached the end of the message, and it should
wait for inChannel to close.

3.4 Sending a channel; receiving a channel
The final two session types describe sending and receiving a
channel.

Sending a channel is written with a ⊗ symbol. If a channel
x has session type𝑇 ⊗𝑇𝑟𝑒𝑠𝑡 , then the only allowed operation
on x is “send x f”. Here, f must be a channel of type𝑇 , and
after sending f over x, the rest of the process’s messages
over x must follow the session type 𝑇𝑟𝑒𝑠𝑡 . [2]

Receiving a channel is the dual of sending a channel, and
is written with the ⊸ symbol. If a channel x has session
type 𝑇 ⊸ 𝑇𝑟𝑒𝑠𝑡 , then the only allowed operation on x is
“f <- recv x”. Here, f is a newly-assigned channel of type
𝑇 , and the rest of the process’s messages over x must follow
the session type 𝑇𝑟𝑒𝑠𝑡 . [2]
As an example, consider the process

server(listeningConnection)

from section 2.6. Here, the channel listeningConnection
can be described by the recursively-defined session type

listen = readMessage ⊸ (sendMessage ⊸ listen) .

This type says that the server receives a channel for reading
Morse code messages; then it receives a channel for for writ-
ing Morse code messages; and then the server repeats this
process.

3.5 Next steps
Recall Das’s motivation for using session types: once one
knows how interactions over a channel are structured, one
can figure out the timing of these messages, and from there,
one can figure out the time complexity of the program.
The final layer of Das’s method, temporal session types,

allows one to find the timing of messages.

4 Temporal session types
The core idea of temporal session types is to introduce one
additional session type, ◦𝑇 , which delays the session type

𝑇 by one unit of time. As a shorthand, one writes ◦𝑛𝑇 to
indicate 𝑇 delayed by 𝑛 units of time. [2]
Which operations incur a delay is a choice that will vary

from application to application—Das’s system is flexible
enough to work with different cost models. A reasonable
choice is to decide that every operation that does I/O incurs a
time cost of one unit, and all other operations take negligible
time. Under this cost model, the operations

• close channel
• wait channel
• channel.LABEL
• case channel
• send channel x
• x <- recv channel

all produce a delay. Spawning a process doesn’t do any I/O,
so it happens instantaneously.

Using this cost model, one can annotate the source code to
show where the delays are. By convention, delays occur after
the operation that produces them; you can think of the delay
as a cooldown period. Let’s look at sayHi(outChannel):

sayHi(outChannel) =
outChannel.DOT; (delay 1)
outChannel.DOT; (delay 1)
outChannel.DOT; (delay 1)
outChannel.DOT; (delay 1)
outChannel.NEXT_LETTER; (delay 1)
outChannel.DOT; (delay 1)
outChannel.DOT; (delay 1)
outChannel.$; (delay 1)
close outChannel (delay 1)

After sayHi sends a label, it must wait one time unit before
proceeding. So, the temporal session type of outChannel is

timedSendMessage = ⊕{
DOT : ◦timedSendMessage,

DASH : ◦timedSendMessage,

NEXT_LETTER : ◦timedSendMessage,

$: ◦1
}

which is resembles the sendMessage type from section 3.2,
but with a delay after each label is sent.
The process invert(inChannel, outChannel) is more

interesting to analyze, since the temporal session type of
outChannel will depend on the message rate of inChannel:
if invert receives labels at a very slow rate, it will send
labels outChannel at a very slow rate.

6

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 9, Iss. 1 [2022], Art. 8

https://digitalcommons.morris.umn.edu/horizons/vol9/iss1/8

Using Temporal Session Types to Analyze Time Complexities of Concurrent Programs

Suppose inChannel has a delay of 𝑛 time units between
labels. Then, the temporal session type of inChannel is

readMessageSlowly = &{
DOT : ◦𝑛readMessageSlowly,

DASH : ◦𝑛readMessageSlowly,

NEXT_LETTER : ◦𝑛readMessageSlowly,

$: ◦𝑛⊥
}

If the message rate of inChannel is known, one can an-
notate the source code of invert to show where the delays
are:

invert(inChannel, outChannel) =
case inChannel
| DOT => (delay 1)

outChannel.DASH; (delay 1)
(delay k)

invert(inChannel, outChannel)
| DASH => (delay 1)

outChannel.DOT; (delay 1)
(delay k)

invert(inChannel, outChannel)
| NEXT_LETTER => (delay 1)

outChannel.NEXT_LETTER; (delay 1)
(delay k)

invert(inChannel, outChannel)
| $ => (delay 1)

outChannel.$; (delay 1)
(delay k)

wait inChannel; (delay 1)
close outChannel (delay 1)

Here, the delay of 1 after each => and . are necessary
because sending and receiving a label each take one unit
of time. By contrast, the delays of 𝑘 represent time that
invert spends idling while it waits for the next label over
inChannel.
The total delay between consecutive reads from inChan-

nel needs to equal 𝑛, the delay between messages. So one
can solve the equation 1 + 1 + 𝑘 = 𝑛 to find that the time
spent idling is 𝑘 = 𝑛 − 2. In particular, since 𝑘 needs to be
a nonnegative time, it must be true that 𝑛 ≥ 2—that is, the
maximum message rate of inChannel is 1 label every 2 time
units. If the message rate were any faster, invert would not
have time to process a label before the next one arrives.
Once the time spent idling is known, it’s possible to find

the temporal session type of outChannel: one can look
through the annotated source code, find what messages get
sent over outChannel, and find what the delay is between
those messages. We find that the temporal session type of
outChannel is ◦sendMessageSlowly, where sendMessageSlowly

is defined as follows:

sendMessageSlowly = ⊕{
DOT : ◦𝑛sendMessageSlowly,

DASH : ◦𝑛sendMessageSlowly,

NEXT_LETTER : ◦𝑛sendMessageSlowly,

$: ◦𝑛1
}

Note that ◦sendMessageSlowly has a ◦ at the beginning, un-
like readMessageSlowly. This is because invert reads from
inChannel right away, but it doesn’t write to outChannel
until one unit of time has already passed. The ◦ at the begin-
ning of ◦sendMessageSlowly reflects this initial delay.
Because of the initial delay, ◦sendMessageSlowly is offset

from readMessageSlowly by one time unit. As a consequence,
the latency of invert is one time unit; that’s how much
time elapses between when invert reads a label and when
it passes that label along.

Finally, from the definition of sendMessageSlowly, it can be
seen that outChannel has the samemessage rate as inChannel;
they both have a delay of 𝑛 time units between messages.
To summarize, this analysis shows:
• The maximum message rate of inChannel is 1 mes-
sage every 2 time units.

• The message rate of outChannel is the same as that
of inChannel.

• The latency between inChannel and outChannel is 1
time unit.

5 Conclusion
In time-sensitive applications, it’s valuable to know how
quickly an algorithm can process messages over a channel.
To address this problem, Das et al. develop temporal session
types as a way to analyze the timing properties of a message-
passing concurrent algorithm, including the latency of the
algorithm and the maximum message rates of channels.

Since these timing properties are built into the type system
of 𝜋-calculus, a typechecker can mechanically verify that
the timings are correct. Once each channel is assigned a
temporal session type, a typechecker will be able to look at
the source code and determine whether the channels actually
have the types indicated.
Das et al. have not yet implemented such a typechecker,

for 𝜋-calculus or for any programming language; their 2018
paper just develops the theory behind temporal session types.
In future work, they would like to see if a programming lan-
guage with temporal session types can be implemented and
made practical. Additionally, although Das describe how to
typecheck temporal session types, they don’t yet have a way
to infer the temporal session type of a channel automatically.
In future research, they’d like to try to add type inference to
this type system. [2]

7

Walbran: Using Temporal Session Types to Analyze Time Complexities of Conc

Published by University of Minnesota Morris Digital Well, 2022

Joseph Moonan Walbran

Acknowledgments
I’d like to thank Dr. Elena Machkasova for providing guid-
ance as my advisor, and Dr. Stephen Adams for reviewing
an earlier draft of this paper.

References
[1] Luís Caires. 2014. Types and Logic, Concurrency and Non-

Determinism. Technical Report MSR-TR-2014-104. Microsoft Research.
69–84 pages. https://www.microsoft.com/en-us/research/publication/
essays-for-the-luca-cardelli-fest/

[2] AnkushDas, JanHoffmann, and Frank Pfenning. 2018. Parallel Complex-
ity Analysis with Temporal Session Types. Proc. ACM Program. Lang. 2,
ICFP, Article 91 (July 2018), 30 pages. https://doi.org/10.1145/3236786

[3] Roberto Di Cosmo and Dale Miller. 2019. Linear Logic. https://plato.
stanford.edu/archives/sum2019/entries/logic-linear/

[4] Deepak Garg and Frank Pfenning. 2005. Type-Directed Concurrency. In
CONCUR 2005 – Concurrency Theory, Martín Abadi and Luca de Alfaro
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 6–20. https:
//doi.org/10.1007/11539452_5

[5] Kohei Honda. 1993. Types for dyadic interaction. In CONCUR’93, Eike
Best (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 509–523.
https://doi.org/10.1007/3-540-57208-2_35

[6] Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of
mobile processes, I. Information and Computation 100, 1 (1992), 1–40.
https://doi.org/10.1016/0890-5401(92)90008-4

[7] Jerome H. Saltzer and M. Frans Kaashoek. 2009. Principles of Computer
System Design: An Introduction. Morgan Kaufmann, Chapter 7.

[8] Wikipedia contributors. 2021. Concurrent computing — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?
title=Concurrent_computing&oldid=1040057524 [Online; accessed 29-
November-2021].

8

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 9, Iss. 1 [2022], Art. 8

https://digitalcommons.morris.umn.edu/horizons/vol9/iss1/8

https://www.microsoft.com/en-us/research/publication/essays-for-the-luca-cardelli-fest/
https://www.microsoft.com/en-us/research/publication/essays-for-the-luca-cardelli-fest/
https://doi.org/10.1145/3236786
https://plato.stanford.edu/archives/sum2019/entries/logic-linear/
https://plato.stanford.edu/archives/sum2019/entries/logic-linear/
https://doi.org/10.1007/11539452_5
https://doi.org/10.1007/11539452_5
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1016/0890-5401(92)90008-4
https://en.wikipedia.org/w/index.php?title=Concurrent_computing&oldid=1040057524
https://en.wikipedia.org/w/index.php?title=Concurrent_computing&oldid=1040057524

	Using Temporal Session Types to Analyze Time Complexities of Concurrent Programs
	Recommended Citation

	Abstract
	1 Introduction
	2 pi-calculus
	2.1 Defining a process
	2.2 Spawning a process
	2.3 Closing a channel
	2.4 Sending a label
	2.5 Receiving and branching on a label
	2.6 Sending and receiving channels
	2.7 Creating channels
	2.8 Next steps

	3 Session types
	3.1 Closing a channel; waiting for a channel to close
	3.2 Internal choice
	3.3 External choice
	3.4 Sending a channel; receiving a channel
	3.5 Next steps

	4 Temporal session types
	5 Conclusion
	Acknowledgments
	References

