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The extracellular domain of the nicotinic acetylcholine re-
ceptor isoforms formed by three α4 and two β2 subunits ((α4)
3(β2)2 nAChR) harbors two high-affinity “canonical”
acetylcholine (ACh)-binding sites located in the two α4:β2
intersubunit interfaces and a low-affinity “noncanonical” ACh-
binding site located in the α4:α4 intersubunit interface. In this
study, we used ACh, cytisine, and nicotine (which bind at both
the α4:α4 and α4:β2 interfaces), TC-2559 (which binds at the
α4:β2 but not at the α4:α4 interface), and 3-(2-chlorophenyl)-5-
(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI,
which binds at the α4:α4 but not at the α4:β2 interface), to
investigate the binding and gating properties of CMPI at the
α4:α4 interface. We recorded whole-cell currents from Xenopus
laevis oocytes expressing (α4)3(β2)2 nAChR in response to ap-
plications of these ligands, alone or in combination. The elec-
trophysiological data were analyzed in the framework of a
modified Monod–Wyman–Changeux allosteric activation
model. We show that CMPI is a high-affinity, high-efficacy
agonist at the α4:α4 binding site and that its weak direct acti-
vating effect is accounted for by its inability to productively
interact with the α4:β2 sites. The data presented here enhance
our understanding of the functional contributions of ligand
binding at the α4:α4 subunit interface to (α4)3(β2)2 nAChR-
channel gating. These findings support the potential use of
α4:α4 specific ligands to increase the efficacy of the neuro-
transmitter ACh in conditions associated with decline in
nAChRs activity in the brain.

Neuronal nicotinic acetylcholine receptors (nAChRs) are
pentameric ligand-gated ion channels formed of identical or
distinct but homologous subunits (α2–α10 and β2–β4).
Homomeric α7 and heteromeric α4β2 nAChRs are the major
subtypes in the brain (1–3). Postsynaptic nAChRs mediate fast
synaptic transmission, whereas presynaptic nAChRs modulate
the release of many neurotransmitters (4, 5). Thus, nicotinic
receptors are involved in complex brain functions, including
cognition, pain perception, and neuronal survival during aging
(3, 5). Furthermore, nAChRs mediate the behavioral effects of

nicotine, the major addictive component of tobacco smoking,
and are considered a major molecular target for pharmaco-
therapeutic interventions tomanage nicotine dependence (6, 7).
Therapeutics targeting the nAChRs also have potential clinical
relevance in reducing chronic pain and slow cognitive decline
associated with neuropsychiatric conditions (8).

Neuronal nAChRs consisting of α4 and β2 subunits
assemble in two stoichiometries: (α4)2(β2)3 and (α4)3(β2)2
(9). The initial pharmacological distinction between the (α4)
2(β2)3 and (α4)3(β2)2 isoforms was based on their sensitivity
to acetylcholine (ACh). ACh potency (EC50) is �1 μM at the
(α4)2(β2)3 nAChR and �100 μM at the (α4)3(β2)2 nAChR;
the two isoforms are thus referred to as the high- and low-
sensitivity α4β2 nAChRs (10). Both isoforms contain two
high-affinity agonist binding site (ABS) located in the two
α4:β2 intersubunit interfaces in the extracellular domain,
whereas the (α4)3(β2)2 nAChR has a third, low-affinity ACh-
binding site located in the α4:α4 subunit interface. Subsequent
studies on heterologously expressed (α4)3(β2)2 and (α4)2(β2)3
nAChRs revealed a number of key differences in channel
functional properties and pharmacological selectivity to
exogenous nAChR ligands (11–15). Assembly of both α4β2
nAChR isoforms has been reported in vivo (16). The (α4)3(β2)
2 nAChR isoform is considered the major isoform expressed in
the cortex (17), whereas the (α4)2(β2)3 nAChR isoform con-
tributes to nicotine dependence and is selectively upregulated
and stabilized after chronic nicotine exposure (18–21).

High-throughput screening has identified several
nAChR subtype-selective positive allosteric modulators
(PAMs) (12, 22–26). CMPI (3-(2-chlorophenyl)-5-(5-methyl-
1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole) and NS9283 (3-
[3-(3-pyridinyl)-1,2,4-oxadiazol-5-yl]benzonitrile) have been
identified as potent nAChR PAMs that preferentially poten-
tiate the (α4)3(β2)2 isoform (12, 23). At first glance, the
pharmacology of CMPI and NS9283 (location of binding site
and effect on ACh concentration-response curve) at the (α4)
3(β2)2 nAChR resembles that of benzodiazepines at the
GABAA receptor (27). However, unlike benzodiazepines and
GABA at the GABAA receptor, CMPI, NS9283, and ACh share
an overlapping binding site at the α4:α4 subunit extracellular
interface in the (α4)3(β2)2 nAChR (12, 28), raising the possi-
bility that CMPI and NS9283 could act as agonists at the α4:α4
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site. Indeed, NS9283, which binds at the α4:α4 interface and at
the β2:α4 pseudo-agonist site (29), was found to enhance
nAChR (α4)3(β2)2 channel activity by transitioning the
channel into a preactivated state (30).

In this study, we investigated the properties of CMPI and
other nAChR ligands to delineate the pharmacology of the
α4:α4 binding site and to elucidate allosteric interaction be-
tween the α4:β2 and α4:α4 interface-binding sites. Current
responses from the (α4)3(β2)2 nAChR elicited by a series of
nAChR agonists, alone or in combination with CMPI, were
analyzed using a modified Monod-Wyman-Changeux (MWC)
allosteric activation model (31–33). Our results indicate that
CMPI is a high-affinity, high-efficacy agonist at the α4:α4

binding site. It binds to the α4:α4 interface with a higher af-
finity than ACh, cytisine, or nicotine, and efficaciously po-
tentiates receptor responses to subsaturating concentrations of
these agonists. The gating efficacy of CMPI at the α4:α4 site is
equivalent to that of ACh, whereas weak direct activation of
the (α4)3(β2)2 nAChR in the presence of CMPI is accounted
for by a single binding site mediating its action. Thus, CMPI
enhances channel gating triggered by ACh at the α4:β2 sites by
providing ligand occupancy at the α4:α4 site, which is other-
wise vacant or only occupied at very high (hundreds of μM)
ACh concentrations. The data presented here enhance our
understanding of ligand-binding properties and functional
contributions of the “noncanonical” α4:α4 subunit interface to

Figure 1. Effects of CMPI and NS9283 on (α4)3(β2)2 nAChR current responses elicited by subsaturating and saturating agonist concentrations. The
traces show whole-cell currents elicited by 10 s applications of low or saturating concentrations of various nAChR agonists alone or in the presence of 1 μM
of CMPI or NS9283. Representative traces for ACh and TC-2559 are shown in (A and B), respectively. C, for each agonist concentration, the peak currents
were normalized to the peak current elicited by agonist alone. The data obtained from several oocytes were plotted as mean ± SD with values of individual
oocytes are shown in open circles. The probability (P) that calculated potentiation ratio differs from no potentiation (PR = 1) was analyzed using one-way
ANOVA with multiple comparisons versus control group (Holm–Sidak method, SigmaPlot, and Systat Software Inc). The effects of 1 μM of CMPI or NS9283 on
current elicited by 10 μM ACh, 1 μM Nicotine, 3 μM 5I-A85380, 1 μM Cytisine, 1 μM TC 2559, 10 μM TC 2559, and 30 μM TC 2559 were statistically significant
with a p < 0.001. The data for 10 μM ACh + 1 μM CMPI and 10 μM ACh + 1 μM CMPI contain data from oocytes that were reported previously (28). ACh,
acetylcholine; CMPI, 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole; nAChR, nicotinic acetylcholine receptor.
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nAChR channel gating and facilitate structure-based design of
novel therapeutics that selectively target the (α4)3(β2)2
nAChR.

Results

CMPI potentiation of (α4)3(β2)2 nAChR currents induced by
subsaturating and saturating agonist concentrations

Our initial characterization of CMPI-induced potentiation
of the (α4)3(β2)2 nAChR employed the neurotransmitter ACh
as the agonist. Coapplication of CMPI increased current re-
sponses to EC10 (10 μM) ACh to 386 ± 15% of control with a
potentiation EC50 of 0.18 ± 0.03 μM (28). CMPI at 1 μM
produced a �100 fold left-shift of the ACh concentration-
response curve enhancing ACh potency with no apparent ef-
fect on the ACh maximal response (15, 28). ACh is known to
bind with high affinity at the α4:β2 agonist-binding site (ABS)
and with a lower affinity at the α4:α4 ABS (34).

To expand these studies to other nAChR agonists and to
mechanistically characterize the interaction between drugs
that bind at the α4:α4 ABS and agonists that interact with the
α4:β2 sites, we first determined the effect of 1 μM (a saturating
concentration) CMPI on (α4)3(β2)2 nAChR currents induced
by subsaturating or saturating concentrations of a series of
nAChR agonists (Fig. 1). In parallel, we determined the effect
of NS9283, another nAChR PAM, that binds at the α4:α4
subunit extracellular interface and thus preferentially poten-
tiates the (α4)3(β2)2 isoform. CMPI and NS9283 potentiated
responses to ACh, nicotine, cytisine, and TC-2559 when the
agonists were applied at subsaturating concentrations
(potentiation folds in the presence of 1 μM CMPI or NS9283
were statistically significantly different from no potentiation
with a p < 0.001). In contrast, CMPI and NS9283 did not

potentiate responses to saturating concentrations of the tested
agonists, except for TC-2559. The effects of 1 μM CMPI or
NS9283 on currents elicited by 10 μM TC-2559 and 30 μM
TC-2559 were statistically significant with a p < 0.001.

The effects of CMPI on the concentration-response curves
for nicotine, cytisine, and TC-2559 are shown in Figure 2. The
coapplication of 1 μM CMPI produced a left-shift in the
nicotine concentration-response curve (Fig. 2A), enhancing
the potency of nicotine (EC50 decreased from 10 ± 3 μM to
0.05 ± 0.01 μM). At saturating nicotine concentrations, the
effect of CMPI was reduced, and the observed maximal re-
sponses (Emax + 1 μM CMPI) was 76 ± 3% of control (i.e.,
nicotine alone). Cytisine activated (α4)3(β2)2 nAChRs with an
EC50 of 11 ± 6 μM (Fig. 2B). In the presence of CMPI, the
cytisine concentration-response curve was biphasic. At cytisine
concentrations below 1 μM, CMPI enhanced cytisine response
by increasing both its potency and efficacy (EC50 + 1 μM
CMPI = 0.008 ± 0.001 μM; Emax + 1 μM CMPI = 246 ± 10%).
However, at cytisine concentrations greater than 1 μM, CMPI
potentiation of cytisine responses gradually declined reaching
no effect at 100 μM cytisine (I100 μM cytisine + 1 μM CMPI =
91 ± 5%). In contrast, CMPI significantly increased TC-2559
efficacy at (α4)3(β2)2 nAChRs (Emax + 1 μM CMPI = 576 ±
26% of that of 100 μM TC-2559 control) with less pronounced
effects on TC-2559 potency (EC50 = 0.34 ± 0.04; EC50 + 1 μM
CMPI = 0.12 ± 0.02 μM) (Fig. 2C). In parallel experiments,
NS9283 produced similar effects on the concentration-
response curves of nicotine (EC50 + 1 μM NS9283 = 0.43 ±
0.04 μM; Emax + 1 μM NS9283 = 141 ± 9%), cytisine (EC50 +
1 μM NS9283 = 0.013 ± 0.002 μM; Emax + 1 μM NS9283 =
188 ± 5%; I100 μM cytisine + 1 μM NS9283 = 113 ± 9%), and TC-
2559 (EC50 + 1 μM NS9283 = 0.1 ± 0.02 μM; Emax + 1 μM
NS9283 = 468 ± 30%) (data not shown).

Figure 2. Effects of coapplication of CMPI on the concentration-response curves of nicotine, cytisine, and TC-2559 at the (α4)3(β2)2 nAChR. The
whole-cell current elicited by 10 s applications of increasing concentrations of nicotine (A), cytisine (B), or TC-2559 (C) in the absence or presence of 1 μM
CMPI. For each drug application, the peak currents were normalized to the peak current elicited by 100 μM nicotine (A), 100 μM cytisine (B), or 10 μM TC-
2559 (C) applied in the same recording run. The recording runs from same oocyte were combined and each point plotted are mean ± SD of data obtained
from at least three oocytes. The data were fit to a single site model using Equation 1. CMPI, 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-
yl)isoxazole; nAChR, nicotinic acetylcholine receptor.
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Dissimilar effects of CMPI on the concentration-response
curves for nicotine, cytisine, and TC-2559 were not solely re-
flections of the differences in agonist efficacies. There was no
correlation between agonist efficacy and the extent of CMPI
potentiation (Emax) or CMPI concentration that produced
half-maximum potentiation (EC50) (Fig. 3). The current re-
sponses produced by a saturating concentration (100 μM) of
cytisine and nicotine were 10 ± 1 and 73 ± 3% of current
elicited by 1 mM ACh. CMPI potentiated the responses
induced by subsaturating concentrations of cytisine and
nicotine (which elicited 2.3 ± 0.4 and 2.9 ± 0.4% of the current
response to 1 mM ACh, respectively) with similar potencies
and efficacies. CMPI EC50s for potentiation of receptors acti-
vated by cytisine and nicotine were 0.34 ± 0.08 μM and 0.27 ±
0.04 μM and maximal potentiation was 716 ± 59 and 618 ±
34% of control, respectively (Fig. 3A). On the other hand,
CMPI potentiated (α4)3(β2)2 nAChR current responses to
subsaturating and saturating concentrations of TC-2559
(Fig. 3, B and C) with potentiation EC50s of 0.11 ± 0.01 and
0.09 ± 0.04 μM and maximal potentiation of 880 ± 13 and
634 ± 94% (equivalent to 44.6 and 48.4% of current elicited by
1 mM ACh), respectively. NS9283 potentiated (α4)3(β2)2
nAChR responses induced by 1 μM or 10 μM TC-2559 with
potentiation EC50s of 1.9 ± 0.2 and 1.8 ± 0.12 μM and maximal
potentiation of 1800 ± 307 and 1522 ± 41%, respectively (data
not shown).

CMPI potentiation of TC 2559-induced currents in the
(α4H116A)3(β2)2 nAChR

TC-2559 activates (α4)3(β2)2 and (α4)2(β2)3 nAChRs with
similar potencies (EC50s of 0.34 ± 0.04 and 0.54 ± 0.02 μM,

respectively) but has lower apparent efficacy at (α4)3(β2)2 than
(α4)2(β2)3 nAChRs (I30 μM TC-2559 = 11 ± 2% and 152 ± 21% of
current induced by 1 mM ACh, respectively) (Fig. 4). This is
consistent with TC-2559 activating the receptor through the
two α4:β2 ABS in both isoforms. The α4:α4 interface (Fig. 4B)
is formed by residues from a (+) face of one α4 subunit and a
(−) face of the adjacent α4 subunit. Amino acid residues
forming the (−) face of α4 are unique and impose an additional
layer of selectivity on agonist binding at the α4:α4 subunit
interface (11, 35). Furthermore, amino acid substitutions at the
α4 subunit (−) face have been shown to enable binding of
agonists with larger molecular volumes at the α4:α4 subunit
interface (34). Alanine substitution at α4H116 (α4H142 when
amino acid numbering includes the signal peptide) within the
α4 subunit (−) face allows TC-2559 to bind at the α4:α4 site
(34) and results in increased TC-2559 efficacy (Emax of 182 ±
5% of current induced by 1 mM ACh versus �10% in WT)
(Fig. 4C).

We have previously shown that amino acid substitutions at
positions α4K64 and α4E66, but not α4H116, significantly
reduce CMPI-mediated potentiation of ACh-induced currents
in the (α4)3(β2)2 nAChR (28). Similarly, CMPI did not
potentiate TC-2559-induced current responses in (α4)3(β2)2
nAChR containing α4K64T or α4E66I (Fig. 5A). In addition,
mutations at α4H116, which abolish potentiation by NS9283,
did not affect CMPI potentiation of current responses of (α4)
3(β2)2 nAChR induced by submaximal TC-2559
concentrations.

These results indicate that CMPI binds in the (α4)3(β2)2
nAChR to the same site and interacts with the same amino
acid residues in the presence of ACh or TC-2559. The effect of

Figure 3. Effect of coapplication of CMPI with agonist on (α4)3(β2)2 nAChR. CMPI concentration-dependent potentiation of (α4)3(β2)2 nAChR current
responses induced by 1 μM cytisine or nicotine (A), 1 μM TC-2559 (B), or 10 μM TC-2559 (C) in the absence and presence of increasing concentrations of
CMPI. The peak currents were normalized to the peak current elicited by agonist alone applied in the same recording run. Recording runs from the same
oocyte were combined and each point plotted are mean ± SD of data obtained from at least three oocytes. The data were fit to a single site model using
Equation 1. CMPI, 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole; nAChR, nicotinic acetylcholine receptor.
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amino acid substitutions at position α4H116 on CMPI
potentiation of responses to saturating concentrations of TC-
2559 was remarkable (Fig. 5, B–D). CMPI potentiation ratios
of current induced by 30 μM TC-2559 in (α4)3(β2)2 nAChR
containing amino acid substitution at α4H116 to leucine
(α4H116L), valine (α4H116V), or alanine (α4H116A) were
4.58 ± 0.24, 3.01 ± 0.39, and 0.74 ± 0.13, respectively (Fig. 5D).
Statistical analyses of the effects of these mutations on CMPI
and NS9283 potentiation of responses to saturating concen-
trations of ACh and TC-2559 are shown in Table 1. The effect
of 1 μM CMPI on current induced by 30 μM TC-2559 in (α4
H116L)3(β2)2, (α4H116V)3(β2)2, and (α4 H116A)3(β2)2
nAChRs was significantly different from that in WT (α4)3(β2)2
and not significantly different from no potentiation (Table 1).
The simplest interpretation of this decline in CMPI-
potentiation ratio is that reduction in the molecular volume

of the aliphatic amino acid residue at position α4H116 (mo-
lecular volumes of L, V, and A are 166.7, 140.0, and 88.6 Å3,
respectively) increases the affinity of TC-2559 at the α4:α4
interface, and thus at high TC-2559 concentrations, it reduces
the ability of CMPI to bind at α4:α4 interface. Indeed, CMPI
concentration-dependent potentiation and its effect on the
TC-2559 concentration-response curve of (α4)3(β2)2 nAChR
containing α4H116A substitution (Fig. 6) mirrored the effect
of CMPI on ACh-induced current responses of WT (α4)3(β2)2
nAChR. CMPI potentiated TC-2559-induced current at
(α4H116A)3(β2)2 nAChR with EC50 of 0.2 ± 0.1 μM and to
Imax of 634 ± 77% of that of control. In the absence and
presence of 1 μM CMPI, the EC50 of TC-2559 at (α4H116A)
3(β2)2 nAChR were 22 ± 7 and 0.97 ± 0.32 μM, respectively.
The Emax were 115 ± 14 and 83 ± 5% in the absence and
presence of CMPI.

Figure 4. TC-2559 efficacy at (α4)2(β2)3, (α4)3(β2)2, and (α4H116A)3(β2)2 nAChRs. A, TC-2559 concentration-response curves in (α4)2(β2)3 and (α4)
3(β2)2 nAChRs. B, a side view of the (α4)3(β2)2 nAChR (PDB accession number 6CNK) (46) showing the extracellular domain of the two adjacent α4 subunits
forming the α4:α4 interface. The amino acid residues Lysine 64 (K64), Glutamate 66 (E66), and Histidine 116 (H116) that contribute to the α4(−) face of the
α4:α4 interface are shown in stick and ball format. Also shown in stick format aromatic amino acid residues that form the (+) face of the agonist-binding site.
C, bar graph showing the peak currents elicited in response to 1, 10, 30, or 100 μM TC-2559 normalized to the peak currents elicited by 1 mM ACh applied in
the same recording run. Shown are the mean ± SD of N oocytes for each TC-259 concentration. The number of oocytes were for (α4)2(β2)3 nAChR (3/3/7)
and for (α4)3(β2)2 nAChR (13/20/17) for 1, 10, or 30 μM TC-2559, respectively. The number of oocytes were for (α4H116A)3(β2)2 nAChR (50/6/26/6) for 1, 10,
30, or 100 μM TC-2559, respectively. ACh, acetylcholine; CMPI, 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole.
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Analysis of (α4)3(β2)2 receptor activation in the framework of
the Monod–Wyman–Changeux allosteric model

To gain mechanistic insight into receptor activation in the
presence of CMPI, we analyzed the currents in the framework

of a cyclic two-state (resting and active) allosteric activation
model (31–33). In this model, channel opening is mediated by
stabilization of the active state by an agonist that, by definition,
has higher affinity to the active than resting state. In the

Figure 5. Effects of mutations at the α4(−) interface on CMPI and NS9382 potentiation of TC-2559 induced currents of (α4)3(β2)2 nAChR. A–C,
representative recordings of the whole-cell currents elicited by 10 s applications of agonist alone or with 1 μM of CMPI or NS9283. D, bar graph showing the
peak currents elicited in response to agonist + 1 μM CMPI or agonist + 1 μM NS9283 normalized to the peak currents elicited by agonist alone applied in the
same recording run. Statistical analysis of the effect of mutations on CMPI or NS9283 potentiation of current elicited by saturating concentrations of ACh or
TC 2559 is shown in Table 1. ACh, acetylcholine; CMPI, 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole; nAChR, nicotinic
acetylcholine receptor.

Table 1
Effect of mutations on CMPI and NS9283 potentiation of (α4)3(β2)2 nAChR current elicited by saturating concentrations of ACh and TC 2559

Agonist Subunits combination

+1 μM CMPI +1 μM NS9283

Ave ±SD pversus control pversus WT Ave ± SD pversus control pversus WT

TC 2559 (30 μM) (α4)3(β2)2 WT 6.41 ± 2.15 <0.001 - 5.05 ± 1.66 <0.001 -
(α4K64T)3(β2)2 1.17 ± 0.21 1.000 <0.001 4.72 ± 2.27 <0.001 0.700
(α4E66I)3(β2)2 0.99 ± 0.15 1.000 <0.001 2.68 ± 1.08 0.076 0.028
(α4H116L)3(β2)2 4.58 ± 0.24 0.004 0.003 1.18 ± 0.17 1.000 0.006
(α4H116V)3(β2)2 3.01 ± 0.39 0.518 <0.001 0.87 ± 0.06 1.000 0.004
(α4H116A)3(β2)2 0.74 ± 0.13 1.000 <0.001 0.93 ± 0.12 1.000 <0.001

ACh (1 mM) (α4)3(β2)2 WT 0.81 ± 0.15 0.969 - 1.00 ± 0.04 0.996 -
(α4K64T)3(β2)2 0.91 ± 0.08 1.000 0.446 1.10 ± 0.08 1.000 0.036
(α4E66I)3(β2)2 0.83 ± 0.10 1.000 0.931 0.95 ± 0.07 1.000 0.639
(α4H116L)3(β2)2 0.82 ± 0.05 1.000 0.877 0.95 ± 0.03 1.000 0.631
(α4H116V)3(β2)2 0.76 ± 0.05 1.000 0.827 0.90 ± 0.02 1.000 0.224
(α4H116A)3(β2)2 1.07 ± 0.13 1.000 0.015 0.98 ± 0.03 1.000 0.799

The data from Figure 5D reporting current responses to agonist, agonist + 1 μM CMPI, and agonist + 1 μM NS9283 of oocytes expressing WT and mutants (α4)3(β2)2 nAChRs
was analyzed using one-way ANOVA with multiple comparisons versus control group (Holm–Sidak method, SigmaPlot, Systat Software Inc). Shown in the table are the probability
(pversus control) that calculated potentiation folds in the presence of 1 μM CMPI or 1 μM NS9283 differ from no potentiation and the probability (pversus WT) that calculated
potentiation folds in the presence of 1 μM CMPI or 1 μMNS9283 for (α4)3(β2)2 nAChRs containing the indicated amino acid mutation differ from the calculated potentiation fold
for WT (α4)3(β2)2 nAChRs.
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presence of multiple active compounds, each drug indepen-
dently and energetically additively contributes to the stabili-
zation of the active state.

We commenced by converting the raw amplitudes of cur-
rent responses to units of probability of being in the active
state (PA units). The constitutive probability of being active
(PA,constitutive) and peak PA of the response to 1 mM ACh in the
(α4)3(β2)2 receptor were estimated by comparing the current
responses to 100 μM mecamylamine, 1 mM ACh, and 1 mM
ACh + 3 μM desformylflustrabromine (dFBr). The underlying
assumption in this approach (36) is that the application of the
blocker mecamylamine inhibits constitutively-active receptors,
thereby revealing the current level corresponding to PA �0,
whereas the coapplication of ACh and the allosteric activator
dFBr activates all receptors in the membrane and reveals the
current level with PA �1. The application of mecamylamine
elicited outward current with the mean amplitude of 2.1 ±
0.5% of the absolute response to 1 mM ACh, whereas dFBr
potentiated the peak response to 1 mM ACh to 278 ± 36% of
control. From this, we estimate a PA,constitutive of 0.00755 ±
0.00118 and a PA,1 mM ACh of 0.36 ± 0.05.

The concentration-response relationships for ACh, cytisine,
and nicotine were fitted to Equation 2. With L constrained to
220 (calculated as (1 − PA,constitutive)/PA,constitutive), the fitting
yielded a KR,ACh,α4:β2 (equilibrium dissociation constant of
ACh at the α4:β2 site in the resting receptor) of 1.32 ±
0.35 μM (best-fit parameter ±SD of the fit) and a cACh,α4:β2
(ratio of the equilibrium dissociation constant of ACh at the
α4:β2 site in the active receptor to KR,ACh,α4:β2) of 0.239 ±
0.014, and a KR,ACh,α4:α4 of 244 ± 25 μM and a cACh, α4:α4 of
0.117 ± 0.013 (affinity and efficacy parameters of ACh,

respectively, at the α4:α4 site). Thus, the binding of transmitter
to the two α4:β2 sites and the single α4:α4 site contrib-
utes −1.69 and −1.27 kcal/mol, respectively, toward stabiliza-
tion of the active state. Note that a lower value of c is
associated with higher efficacy and that the single α4:α4 site in
the presence of ACh contributes nearly as much as the com-
bined two α4:β2 sites in free energy change. Fitting of the
cytisine concentration-response curve to Equation 2 yielded a
KR,cytisine,α4:β2 of 0.63 ± 1.21 μM, a ccytisine,α4:β2 of 0.875 ± 0.029,
a KR,cytisine,α4:α4 of 8.3 ± 0.5 μM, and a ccytisine,α4-α4 of 0.155 ±
0.104. Fitting of the nicotine concentration-response curve
gave a KR,nicotine,α4:β2 of 0.08 ± 0.05 μM, a cnicotine,α4:β2 of
0.421 ± 0.043, a KR,nicotine,α4:α4 of 19 ± 2 μM, and a cnicotine,α4:α4
of 0.065 ± 0.013. Thus, at the α4:β2 sites, ACh and cytisine
have similar low μM affinities, whereas the affinity of nicotine
is nearly ten-fold higher. At the α4:α4 site, all three agonists
have significantly lower affinity. All three agonists act more
efficaciously via the α4:α4 than a single α4:β2 site. The
concentration-response curves are given in Figure 7, and the
fitting results are summarized in Table 2.

TC-2559 only interacts with the agonist-binding sites at the
α4:β2 interface (30, 34). The concentration-response curve for
TC-2559 was fitted to Equation 3, which describes a model
with a single class of binding sites. The fitting yielded a KR,TC-

2559,α4:β2 of 0.33 ± 0.05 μM and a cTC-2559,α4:β2 of 0.371 ± 0.006.
Thus, TC-2559 has similar to ACh affinity and efficacy at the
α4:β2 sites, and its overall lower gating efficacy (Fig. 7) is
explained by its inability to contribute to channel activation via
the α4:α4 site.

CMPI, which binds only to the α4:α4 interface, is a very
weak direct activator of the α4β2 receptor (28). We therefore

Figure 6. Effect of coapplication of CMPI with TC-2559 on (α4H116A)3(β2)2 nAChR. The whole-cell currents elicited by 10 s applications of TC-2559
alone or in combination with CMPI or NS9283 from (α4)3(β2)2 nAChR containing α4H116A mutation. A, peak current was normalized to the peak current
elicited by 1 μM TC-2559. B, peak current was normalized to the peak current elicited by 100 μM TC-2559. Each data point shown are the mean ± SD of data
obtained from at least three oocytes. The data were fit to a single site model using Equation 1. CMPI, 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-
1H-pyrrazol-4-yl)isoxazole; nAChR, nicotinic acetylcholine receptor.
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estimated the affinity and gating parameters for CMPI by
measuring its effect on the background of activity elicited by a
low concentration of TC-2559. Because TC-2559 only in-
teracts with the agonist-binding sites at the α4:β2 interface (30,
34), its activating effect was reflected in a reduced value of L in
Equation 3, calculated as (1 − PA,TC-2559)/PA,TC-2559. Using a
dataset obtained in the presence of 1 μM TC-2559 and 0.01 to
3 μM CMPI, we estimate a KR,CMPI,α4:α4 of 0.17 ± 0.03 μM and
a cCMPI,α4:α4 of 0.090 ± 0.004. The binding of CMPI to the
α4:α4 interface contributes −1.42 kcal/mol of free energy
change toward stabilization of the active state. CMPI is thus as
efficacious as ACh at the α4:α4 site, and its overall low efficacy
is accounted for by its single binding site.

Additional estimates of the properties of CMPI were ob-
tained by measuring receptor activation by CMPI on the
background of activity elicited by 10 μM TC-2559, 10 μM
ACh, 1 μM cytisine, or 1 μM nicotine. Fitting the CMPI
concentration-response data obtained in the presence of
10 μM TC-2559 to Equation 2 yielded a KR,CMPI,α4:α4 of 0.09 ±
0.02 μM and a cCMPI,α4:α4 of 0.129 ± 0.009. The data for the
combinations of CMPI with ACh, cytisine, or nicotine were
analyzed using Equation 4, which describes a model in which
CMPI competes with ACh, cytisine, or nicotine, respectively,
at the α4:α4 site. Fitting the 10 μM ACh + CMPI data to
Equation 4 gave a KR,CMPI,α4:α4 of 0.29 ± 0.06 μM and a
cCMPI,α4:α4 of 0.145 ± 0.008, and the combination of 1 μM

Figure 7. Mechanistic analysis of receptor activity. Peak current responses of WT (α4)3(β2)2 nAChR (A and B) and (α4)3(β2)2 nAChR containing α4H116A
mutation (C and D) induced by applications of agonists (±CMPI) were converted to units of probability of being in the active state (PA) and analyzed using
Equations 2–4, as described under Experimental procedures. The fitting parameters are listed in Table 2. ACh, acetylcholine; CMPI, 3-(2-chlorophenyl)-5-(5-
methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole; nAChR, nicotinic acetylcholine receptor.
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cytisine + CMPI yielded a KR,CMPI,α4:α4 of 0.43 ± 0.17 μM and a
cCMPI,α4:α4 of 0.074 ± 0.009. From the combination of 1 μM
nicotine + CMPI, we estimate a KR,CMPI,α4:α4 of 0.40 ± 0.10 μM
and a cCMPI,α4:α4 of 0.065 ± 0.007.

Thus, the five approaches generated estimates that were
within a factor of �5 for KR,CMPI,α4:α4 (range: 0.09–0.43 μM)
and �2 for cCMPI,α4:α4 (range: 0.065–0.145). We do not know
the reason for the rather large range of estimates for
KR,CMPI,α4:α4, but allosteric coupling between the α4:β2 and
α4:α4 sites and additional effects through as yet unidentified
sites are some possibilities to be tested in future work. From
the five approaches, the calculated mean KR,CMPI,α4:α4 is 0.28 ±
0.15 μM and the mean cCMPI,α4:α4 0.101 ± 0.035.

Discussion

Prior pharmacological studies have identified multiple
ligand-recognition sites within the extracellular and trans-
membrane domains of the (α4)3(β2)2 nAChR including the
“canonical” α4:β2 and the “noncanonical” α4:α4 ABS. The
functional response (i.e., channel gating) to ligand occupancy
at these recognition sites depends on which site(s) is occupied,
the number of site(s) occupied, the allosteric coupling of the
occupied site with channel gating, and the intrinsic activity of
the ligand at the site(s) it occupies. The small molecule ago-
nists including ACh, nicotine, and cytisine bind with high af-
finity to the α4:β2 ABS and with a much lower affinity to the
α4:α4 ACh binding (11, 34). In contrast, larger agonists with a
maximum length of >7.5 Å and an accessible surface area of
>300 Å (e.g., TC-2559) only bind to the α4:β2 ABS (30, 34).
Compounds that bind with high affinity at the α4:α4 ACh-
binding site (e.g., CMPI and NS9283) have been identified.
CMPI was introduced as the PAM of (α4)3(β2)2 nAChR as it
enhanced channel responses when coapplied with ACh (12,
28). Here, we have characterized the effect of coapplication of
CMPI with a series of agonists with different intrinsic activities
at the (α4)3(β2)2 nAChR and different binding properties at
the α4:α4 ACh-binding site. CMPI potentiated (α4)3(β2)2
nAChR responses to subsaturating concentrations of all tested
agonists, independent of their intrinsic activity or α4:α4
binding properties. In contrast, CMPI potentiation of (α4)
3(β2)2 nAChR responses induced by a saturating agonist was
dependent on the ability of the agonist to bind at the α4:α4

ACh-binding site. CMPI enhanced the response to saturating
TC-2559 in the WT receptor where TC-2559 only binds to the
α4:β2 ACh-binding site, but not in the receptor containing the
α4H116A mutation that enables the binding of TC-2559 to
the α4:α4 ACh-binding site. Analysis of the findings in the
framework of the MWC model indicates that CMPI binds at
the α4:α4 interface with higher affinity than ACh, cytisine, or
nicotine whereas its gating efficacy at the α4:α4 site is equiv-
alent to that of ACh, cytisine, or nicotine. Therefore, the weak
direct activating effect of CMPI is accounted for by a single-
binding site mediating its action.

We estimated the binding and gating properties of CMPI
in the presence of TC-2259 (applied at two concentrations),
ACh, cytisine, or nicotine. The different approaches yielded
estimates that were within a factor of �5 for KR,CMPI and �2
for cCMPI. One potential explanation to this relatively large
range of estimates is allosteric coupling between the α4:β2
and α4:α4 sites. This possibility could be tested by comparing
receptor activation, individually and in combination, by
agents selectively interacting with the α4:β2 and α4:α4 sites.
At present, however, we lack the tools to independently
measure activation produced by selective occupation of the
α4:α4 site.

Another possible explanation is that one or more of the
drugs act through other sites or mechanisms that are not
incorporated into the MWC model. Several orthosteric ago-
nists including nicotine show reduced peak response at high
agonist concentrations, possibly a result of open-channel
blocking mechanism (37). This inhibitory effect, which is not
accounted for by our model, may be expected to predomi-
nantly affect the fitted KR and c at the low-affinity α4:α4 site.
The inhibitory effect is, however, minimized when CMPI-
elicited currents are recorded in the presence of low concen-
tration (1 μM) of nicotine. Finally and, what we consider, most
plausible is that the differences in estimated KR,CMPI and cCMPI

reflect simple experimental imprecision and variability in re-
ceptor behavior. This is supported by the finding that a change
in the concentration of background TC-2559 from 1 to 10 μM
generates an almost two-fold change in estimated KR,CMPI.

The estimated activation parameters presented here are
dependent on the accurate measurement of the constitutive PA
of the α4β2 receptor and its peak PA in the presence of ACh.

Table 2
Summary of mechanistic analyses

Receptor Ligand Site KR (μM) c KR,CMPI (μM) cCMPI

(α4)3(β2)2 WT ACh α4:β2 1.32 ± 0.35 0.239 ± 0.014 - -
α4:α4 244 ± 25 0.117 ± 0.013 0.29 ± 0.06 0.145 ± 0.008

Cytisine α4:β2 0.63 ± 1.24 0.875 ± 0.029 - -
α4:α4 8.3 ± 0.5 0.155 ± 0.104 0.43 ± 0.17 0.074 ± 0.009

Nicotine α4:β2 0.08 ± 0.05 0.421 ± 0.043 - -
α4:α4 19 ± 2 0.065 ± 0.013 0.40 ± 0.10 0.065 ± 0.007

TC-2559 α4:β2 0.33 ± 0.05 0.371 ± 0.006 - -
α4:α4 - - 0.17 ± 0.03 0.090 ± 0.004

(α4H116A)3(β2)2 ACh α4:β2 0.86 ± 0.24 0.365 ± 0.014 - -
α4:α4 1006 ± 116 0.076 ± 0.005 0.44 ± 0.12 0.082 ± 0.007

TC-2559 α4:β2 0.21 ± 0.05 0.337 ± 0.013 - -
α4:α4 70 ± 3 0.046 ± 0.003 0.23 ± 0.08 0.099 ± 0.009

The table gives the fitted equilibrium dissociation constants for ACh, cytisine, nicotine, and TC-2559 in the resting receptor (KR) and the ratios of the equilibrium dissociation
constants for the agonist in the active receptor to that in the resting receptor (c), at the α4:β2 and α4:α4 sites, for WT and α4(H116A) mutant receptors. The KR, CMPI, and cCMPI

show the same for the PAM CMPI at the α4:α4 site, measured on the background of activity elicited by ACh, cytisine, nicotine, or TC-2559.
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We used mecamylamine to block constitutively active re-
ceptors and reveal the current level corresponding to a PA of 0.
Mecamylamine is a nonselective, allosteric antagonist of the
nAChR with IC50s in the submicromolar range (38). It acts by
blocking open receptors (39). We measured the effect of
100 μM mecamylamine on holding current to estimate the
current level at PA of 0. Underestimation of the effect of
mecamylamine on holding current would lead to under-
estimated PA,constitutive and an overestimated L (Equation 2).
This would introduce an error in the estimated values of c for
ACh, cytisine, TC-2559, and nicotine. The extent of error can
be calculated from the relationship Ltrue × ctrue

2 =
Lestimated × cestimated

2. An underestimated PA,constitutive is not
expected to lead to a meaningful error in the activation pa-
rameters for CMPI or the peak PA,ACh values.

The peak PA,ACh (0.36) was estimated by normalizing the
peak response to 1 mM ACh to that in the presence of 1 mM
ACh + 3 μM dFBr. dFBr is a brominated alkaloid, originally
isolated from the marine bryozoan Flustra foliacea (40) that
selectively and allosterically potentiates the α4β2 nAChR (41).
In our hands, 3 μM dFBr almost tripled the peak response to
1 mM ACh. We have assumed that the response to ACh +
dFBr has a peak PA indistinguishable from 1. An under-
estimated potentiating effect of dFBr would lead to over-
estimated peak PA for ACh. This, in turn, would lead to
proportional errors in estimated c for each of the tested li-
gands. However, the estimated relative contributions made by
α4:β2 and α4:α4 sites would remain unaffected. The previous
studies have reported a peak PA,ACh of 0.5 to >0.8 in the (α4)
3(β2)2 nAChR (30, 42). Indurthi et al. (30) used an approach
similar to ours, observing doubling of the peak response to
1 mM ACh in the presence of the allosteric modulator NS206,
whereas Li and Steinbach (42) employed nonstationary noise
analysis on human embryonic kidney cells stably expressing
the α4β2 receptor.

A previous study reported that pharmacological elimination
of the α4:α4 site in the (α4)3(β2)2 nAChR reduced the sub-
sequent response to saturating ACh to �40% of the control
response (34). The fraction of the high-affinity component in
the ACh concentration-response relationship remains at �15%
even when the α4 subunit is expressed in excess (11), indi-
cating that occupation of the α4:β2 sites by ACh generates a
functional response that is 15 to 40% of the response to
saturating ACh in the (α4)3(β2)2 receptor. This is in good
agreement with the data presented here. Using the KR,ACh and
cACh values in Table 2, we calculate, using Equation 2, that
occupation of the two α4:β2 sites in the (α4)3(β2)2 receptor
with ACh generates a peak PA of 0.072, whereas occupation of
the two α4:β2 sites and the single α4:α4 site with ACh gen-
erates a peak PA of 0.36. We emphasize that in either case,
ACh should be considered a partial agonist of the (α4)3(β2)2
nAChR given its relatively low maximal PA.

In sum, we report here that ACh binds with high affinity
(KR,ACh,α4:β2 = 1.32 μM) to the α4:β2 agonist-binding sites
where it acts with relatively low efficacy (cACh,α4:β2 = 0.239;
ΔGgating,total = −1.69 kcal/mol or −0.84 kcal/mol per site). ACh
binds with low affinity (KR,ACh,α4:α4 = 244 μM) to the α4:α4 site

where it acts with relatively high efficacy (cACh, α4:α4= 0.117;
ΔGgating = −1.27 kcal/mol). The nicotinic receptor PAM CMPI
has high affinity to the α4:α4 site (KR,CMPI,α4:α4 = 0.28 μM) and
efficacy comparable to that of ACh (cCMPI,α4:α4 0.101;
ΔGgating = −1.35 kcal/mol). CMPI enhances channel-gating
activation triggered by ACh occupancy at the α4:β2 agonist-
binding sites by binding to the α4:α4 subunit interface which
becomes occupied by ACh only at high concentrations.
Overall, these results indicate that exposure to agonists tar-
geting the α4:α4 binding site in the (α4)3(β2)2 nAChR is ex-
pected to increase the efficacy of the transmitter ACh, that
may be therapeutically beneficial in conditions associated with
decline in the output of nAChR in the brain.

Experimental procedures

Materials

Acetylcholine chloride was purchased from Sigma-Aldrich.
Other ligands of the nAChR (CMPI, NS9283, dFBr, TC-
2559, cytisine, and mecamylamine) were from Tocris Biosci-
ence R&D. Collagenase type 2 was from Worthington
Biomedical. The stock solutions were prepared for ACh (1 M
in water) and other nAChR ligands (10 mM in water or
DMSO) and stored in aliquots at −20 �C until used. The final
working solutions were prepared in recording buffer on the
day of experiments.

Expression of (α4)3(β2)2 and (α4)2(β2)3 nAChRs in Xenopus
oocytes

Oocytes-positive female Xenopus laevis were purchased
from NASCO, and all procedures were performed according to
an animal use protocol approved by the Institutional Animals
Care and Use Committee of The University of Texas Health
Science Center at Tyler. Ovarian lobules were surgically har-
vested, treated with collagenase type 2, and Stage V and VI
oocytes were visually selected and maintained at 18 �C in
modified ND96-gentamicin buffer (96 mM NaCl, 2 mM KCl,
1.8 mM CaCl2, 1 mM MgCl2, 5 mM Hepes, and 50 μg/ml
gentamicin, pH 7.6).

pSP64 Poly(A) plasmids with cDNA encoding for human α4
or β2 nAChR subunit were used to prepare cRNA transcripts
suitable for oocyte expression. The plasmids were linearized
with AseI (hα4) and PvuII (hβ2), then cRNA transcripts were
prepared in vitro using mMESSAGE mMACHINE high yield-
capped RNA transcription kits (Ambion, Thermo Fisher Sci-
entific), purified on NucAway Spin column (Invitrogen,
Thermo Fisher Scientific), and stored at −80 �C until used.
Point mutations within the plasmid encoding the α4 nAChR
subunit were introduced using QuikChange II Site-Directed
Mutagenesis Kit (Agilent Technologies), as described previ-
ously (28). To generate amino acid substitutions (K64T, E66I,
H116V, H116L, and H116A), two custom-designed comple-
mentary oligos containing the desired mutation were used
(Integrated DNA Technologies). The forward primers were as
the following with the codon for mutated amino acids are
underlined and nucleotide(s) changes are bolded and italicized:
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α4K64T, 50-G AAC GTA TGG GTG ACA CAG GAG TGG
CAC-30; α4E66I, 50- C GTA TGG GTG AAG CAG ATC TGG
CAC GAC-30; α4H116V, 50-CAC CTG ACC AAG GCC GTA
CTG TTC CAT G-30; α4H116L, 50-CTG ACC AAG GCC
CTC CTG TTC CAT GAC-30; and α4H116A, 50-CTG ACC
AAG GCC GCC CTG TTC CAT GAC-30.

The oocytes were injected with 10 to 50 ng of a cRNA mix
containing α4 (WT or mutant) and β2 RNAs at ratios of
8:1(α4:β) or 1:8 (α4:β2) to bias expression toward (α4)3(β2)2 or
(α4)2(β2)3 nAChRs, respectively. The injection of oocytes with
RNAs mixture containing four folds or higher α4 RNA than β2
RNA have been established to express receptor population that
is made up of three α4 and two β2 subunits (9, 12, 28, 43–45).

Two-electrode voltage-clamp recordings

Two-electrode voltage-clamp recordings of ACh- or TC-
2559 induced responses of Xenopus oocytes were performed,
as described in (28). 24 to 72 h after cRNA injection, Xenopus
oocytes were placed in a custom-made recording chamber that
is connected to an eight-channel automated perfusion system
(Warner Instruments) and perfused with recording buffer
(100 mM NaCl, 2 mM KCl, 1 mM CaCl2, 0.8 mM MgCl2,
1 mM EGTA, and 10 mM Hepes, pH 7.5). Unless otherwise
specified in figure legends, each recording run included several
drug applications (10 s of an agonist with or without CMPI or
NS9283) separated by 3 to 4 min buffer wash intervals. Be-
tween recording runs, the oocytes were washed with recording
buffer for at last 5 min. The oocytes were voltage-clamped
at −50 mV using Oocyte Clamp OC-725B (Warner In-
struments). The currents were digitized using Digidata 1550A
(Axon Instruments, Molecular Devices), and the peak currents
were quantified using pCLAMP 10 (Axon Instruments), then
normalized and analyzed using Excel 2010 (Microsoft) and
SigmaPlot 11.0 (Systat Software). For NS9283 and CMPI
potentiation of agonist-induced responses, the peak currents
were normalized to current elicited by agonist alone applied
within the same recording run. For the effect of coapplication

of 1 μM NS9283 or CMPI on agonist concentration-response
curve, the peak currents were normalized to current elicited by
saturating concentration of agonist applied within the same
recording run. Mean ± SD of N oocytes were plotted and fit to
the following equation:

IX ¼ I0þ Imax

1þ
�

EC50
X

�h (1)

where Ix is the normalized agonist-induced current in the
presence of NS9283 or CMPI at concentration x, Imax is the

maximum potentiation of current, h is the Hill coefficient, and
EC50 is the of NS9283 or CMPI concentration producing 50%
of maximal potentiation. I0 = 100 for NS9283 and CMPI
potentiation of agonist-induced responses and I0 = 0 for
agonist concentration-response experiments. The best-fit
values for Imax and EC50 ± SD are presented.

For the enhancement of agonist-induced currents by 1 μM
CMPI or NS9283 (data in Figs. 1C and 5D), the probability (P)
that the calculated potentiation fold differ from no potentia-
tion (potentiation fold = 1) or from WT (α4)3(β2)2 nAChR
(potentiation fold of 6.21 and 5.05 for CMPI or NS9283,
respectively) was analyzed using one-way analysis of variance
with Holm–Sidak post hoc test (SigmaPlot, Systat Software
Inc) and reported in the legend for Figure 1C and Table 1.

Mechanistic analysis

Further analysis of electrophysiological data was conducted
in the framework of the two-state concerted transition model,
adapted from the MWC cyclic model originally used to
describe enzyme function (31–33). The raw peak amplitudes of
current responses were converted to units of probability of
being in the active state (PA). We used a multi-step approach
where the peak PA to 1 mM ACh was estimated through
normalization to the peak response to 1 mM ACh +3 μM
dFBr. Additional normalization was carried out by comparing
responses to various agonists or agonist combinations to the
peak response to 1 mM ACh in the same set of cells. The PA of
constitutive activity (PA,constitutive) was estimated by comparing
the effects of 100 μM mecamylamine and 1 mM ACh on the
holding current.

The (α4)3(β2)2 receptor contains two binding sites for ACh
at the α4:β2 intersubunit interface and one site at the α4:α4
interface (11). The same set of sites has also been shown to
mediate receptor activation by the alkaloid cytisine (34). The
concentration-response curves for ACh, cytisine, and nicotine
were fitted to the state function:

where L indicates the level of background activity in the
absence of agonist and is calculated as (1 − PA,constitutive)/
PA,constitutive, [agonist] is the concentration of ACh, cytisine, or
nicotine, KR,agonist,α4:β2 and KR,agonist,α4:α4 are the equilibrium
dissociation constant for the agonist in the resting receptor at
the α4-β2 or α4-α4 sites, respectively, and cagonist,α4:β2 and
cagonist,α4:α4 are the ratios of the equilibrium dissociation con-
stants for the agonist in the active receptor to that in the
resting receptor. The numbers of α4:β2 and α4:α4 binding sites
(Nα4:β2 and Nα4:α4) were constrained to 2 and 1, respectively.

TC-2559 activates the (α4)3(β2)2 receptor by binding to
the two sites at the α4:β2 interface. The concentration-

PA ¼ 1

1þL

"
1þ½agonist�=KR;agonist;α4:β2

1þ½agonist�=ðKR;agonist;α4:β2cagonist;α4:β2Þ

#Nα4:β2
"

1þ½agonist�=KR;agonist;α4:α4

1þ½agonist�=ðKR;agonist;α4:α4cagonist;α4:α4Þ

#Nα4:α4
(2)
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response curve for TC-2559 was fitted to the following
equation:

PA ¼ 1

1þL

"
1þ½TC�2559�=KR;TC�2559;α4:β2

1þ½TC�2559�=ðKR;TC�2559;α4:β2cTC�2559;α4:β2Þ

#Nα4:β2
(3)

The terms are as described above.
CMPI interacts with the agonist-binding site at the α4-α4

interface. Because it is a weak agonist, its affinity and gating
properties at the α4-α4 site were estimated by coapplying
CMPI with a fixed, low concentration of TC-2559. The
concentration-response data were analyzed using Equation 3,
with the value of L modified to reflect receptor activation by
TC-2559, and the affinity and efficacy terms in the equation
reflecting the values for CMPI. The number of binding sites for
CMPI in Equation 3 was constrained to 1.

For the combinations of ACh, cytisine or nicotine, and
CMPI we assumed that ACh, cytisine, and nicotine are the sole
ligands at the two α4:β2 sites, whereas CMPI competes with
ACh, cytisine, or nicotine at the α4-α4 site. The concentration-
response curves for the combinations of ACh, cytisine or
nicotine, plus CMPI were fitted to the following equation:

where KR,CMPI is the equilibrium dissociation constant for
CMPI in the resting receptor at the α4:α4 site, cCMPI is the
ratio of the equilibrium dissociation constants for CMPI in the
active receptor to KR,CMPI, and other terms are as described
above.

Curve fitting was done using Origin 2020 (OriginLab Corp).
The results are reported as best-fit parameter ±SD of the fit.
All data are included in the analysis.
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