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Review of flocking organization strategies for robot swarms
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Robotics promises great benefits for human beings, both at the industrial level and concerning
personal services. This has led to the continuous development and research in different
problems, including control, manipulation, human-machine interaction, and of course,
autonomous navigation. Robot swarm systems promise an alternative solution to the classic
high-performance platforms, particularly in applications that require task distribution. Among
these systems, flocking navigation schemes are currently attracting high attention. To establish
a frame of reference, a general review of the literature to date related to flocking behavior,
in particular, optimized schemes with some guarantee of safety, is presented. In most of
the cases presented, the characteristics of these systems, such as minimal computational and
communication requirements, and event-driven planning, are maintained.
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La robótica promete grandes beneficios para el ser humano, tanto a nivel industrial
como con respecto a servicios personales. Esto ha incidido en el continuo desarrollo e
investigación en diferentes problemas, entre ellos el control, la manipulación, la interacción
hombre-máquina, y por supuesto, la navegación autónoma. Los sistemas de enjambres de
robots prometen una alternativa de solución frente a las clásicas plataformas de alto de
desempeño, particularmente en aplicaciones que requieren distribución de tareas. Entre
estos sistemas, llama la atención los esquemas de navegación en bandada, los cuales tiene
actualmente una alta atención. Para establecer un marco de referencia, se presenta una revisión
general de la literatura a la fecha relacionada con comportamientos en bandada, en particular
esquemas optimizados y con alguna garantía de seguridad. En la mayoría de los casos
presentados se mantienen las características de estos sistemas, como son requisitos mínimos
de computación y comunicación, y la planificación basada en eventos.
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Introduction

It can be stated that the study of swarm behavior in
multi-agent systems started from the three heuristic rules
proposed by Reynolds in 1987 (Reynolds, 1987). This
model is known as Reynolds’ classical behavior and is
based on two measures of the multi-agent swarm, the area
of the group and the polarization. From these measures,
the model proposes the design of applications, and it is
possible to observe the variation in the behavior of the
system by varying the individual values of these parameters.
From these ideas, initially simulated by computer, several
applications of robotic flocking involving coordinated
delivery, reconnaissance, surveillance, and mobile sensor
networks have been proposed (Martínez & Delgado, 2012;
Semnani & Basir, 2017; Xiao et al., 2018; W. Yuan et al.,
2020). These ideas have been able to take advantage of the
most recent advances in processing power and low energy
consumption to implement robotic swarm applications with
high adaptability, scalability, and robustness (Martínez et
al., 2018; Oh et al., 2017). Even so, research in this field
remains an open engineering problem due to the constraints
imposed by a large swarm, both in control and cost. A robot,
or agent, in a multi-agent system, must be endowed with
limited sensing, communication, actuation, memory, and
computational capabilities. Size concerning the environment
and the task is also very important, and everything must fit
together with optimized power consumption schemes.

Flocking behavior emerges as a consequence of specific
rules executed individually by each agent. In this
sense, many researchers have proposed decentralized control
alternatives that lead to flocking behavior (Barve & Nene,
2013; Bayındır, 2016; Zhu et al., 2016). Much of the
early work in this direction was proposed to demonstrate
the functionality of the system, without considering optimal
operating conditions. It was normal at the time to consider
the self-organization problem and the optimal performance
problem as two independent problems (Fine & Shell, 2013).
More recent design approaches consider the two problems
as simultaneous design objectives, thus requiring a single
design scheme (Beaver et al., 2020; Wilson et al., 2020).

If we think of a way to classify the different flock control
schemes, it is correct to refer to the very characteristics
of this behavior in biological systems, the initial source
of inspiration. From this point of view, it is possible to
separate the behavioral models into two categories. The
first category is characterized by group flocking, or cluster
flocking, as observed, for example, in the movement of
sparrows. The second category has different grouping rules
and resembles more the movement on a line, known as line
flocking, for example in the movement of geese (Fig. 1).
This same classification is used in this paper to characterize
the different schemes found in the literature. As in different
groups of birds, different flocking behaviors have different

Figure 1

Flocking strategies according to clustering form (Beaver &

Malikopoulos, 2021).

applications, and of course, different behavioral rules and
implementation. Even so, engineering schemes can be much
richer in options and implementations than those found in
nature.

Our research focuses more on cluster approaches, yet this
review presents the two flocking models as an important
starting background. There are also limitations of technical
content in the compilation due to the restricted space
available. In any case, the details and fundamental concepts
of each case are presented, and the future development of this
field of research is projected.

Problem statement

A robot swarm is a multi-agent system whose behavior
emerges as a consequence of simple rules executed by
each agent in response to events or stimuli detected in the
environment. This system is composed of N ∈ N agents from
a finite population indexed by the set A = {1, 2, 3, · · · ,N}.
Each of these agents is assigned position and velocity
properties in the navigation environment W ⊂R2. The
position of the agent i is defined by the vector pi(t), and
its velocity by the vector vi(t), both parameters defined in
the interval t ∈ R≥0. The environment W is compact and
planar, with a limiting boundary ∂W that restricts the motion
of the agents. The agents are small concerning W, so they
are modeled as points with specific kinematics. The state of
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each agent is defined by the state vector xi (t), so the state of
the system is set by Eq. 1.

x (t) =
[
xT

1 (t) , xT
2 (t) , · · · , xT

N (t)
]T

(1)

The state of each agent is not explicitly controlled, which
is why it is not important to measure its state precisely.
Instead, the coordination of the system is relegated to the
fact that the agents satisfy a trajectory that follows some
high-level property. For any region, R ∈ W it is assumed
that each agent moves on a trajectory according to the
behavior of the neighborhood of robots Ni (t) ⊆ A to
which it belongs. This neighborhood is formed by all
agents near agent i that agent i can sense and/or establish
communication with, including agent i. Consequently, the
neighborhood can be defined in different ways according
to the coordination strategy of the system, which includes
distance between agents, information radiated by the agents,
k-nearest neighbors, geometric partitions of the environment,
or specific landmarks in the environment. The neighborhood
of an agent is in general a fraction of the system but can
encompass all agents depending on the specific topology.

The obstacle set O consists of a finite number of
inaccessible regions in W. These regions are enumerable,
closed, and share the same properties as ∂W in that they
limit the movement of agents. The free space through which
the agents can navigate is defined as E =W−O. The control
of the agent i is developed during the evolution of the system
according to a policy. State feedback is not performed in
general, instead, information feedback is performed using
filters. A filter is a mapping of the form φ : I −→ Y where
I corresponds to the information space that is designed for
the task (Bobadilla et al., 2012), and is defined with each
observation Y of the agent.

Clusters and swarms

In biology, the movement of small birds in groups
is known as cluster flocking (Sankey & Portugal, 2019).
Among the advantages of this type of joint movement, it is
postulated that it facilitates predator avoidance by extending
the sensing range and rapid group communication of the
swarm. It is also believed to serve the system to estimate
population size and coordinate collective actions. These
hypotheses are under investigation, as well as whether or
not this type of navigation requires a leader (hierarchical
flocking). All these cases are considered equally in this
review.

A group of continuously moving agents forms a flocking
cluster if there is a finite distance between any pair of agents
in the swarm for an instant and all agents in the swarm.
The fact that the agents remain within a defined diameter
is what defines the cohesion parameter of the swarm. In
addition, the agents must converge continuously over time,
but without explicit formation. Each agent in the system can

detect some other neighboring agents at a certain instant of
time, according to its sensing and communication capacity
(partial observation). From this information, it must establish
its relative location in the system and its movement strategy.
Consequently, most cluster flocking strategies simulate the
continuous update of the control policies of each agent, while
evaluating the overall cost of the system (energy and task
time) (Martínez et al., 2012).

Undoubtedly, the cluster flocking scheme with the largest
number of implementations in the specialized literature is the
one that seeks to replicate Reynolds’ basic behavioral rules
(Reynolds, 1987): collision avoidance, velocity matching,
and flock centering. The simplest way to implement these
rules is to apply a cost function J to each agent consisting
of two parts, a first one in charge of collision avoidance,
and a second one with the task of guaranteeing the velocity
alignment of the agent. If the relative position between two
agents of the system i, j ∈ A is defined as (Eq. 2):

si j (t) = pi (t) − pj (t) (2)

Then, the cost function for agent i ∈ A with respect to
agent j ∈ Ni (t) (the neighborhood of agent i at instant t), can
be defined in general form as follows (Eq. 3):

Ji = V
(∥∥∥si j (t)

∥∥∥) +
∑

j∈Ni(t)

∥∥∥ ˙si j (t)
∥∥∥2

(3)

Since V is in charge of avoiding collisions, this
function is configured as a potential field that defines local
attraction-repulsion forces for agent i with respect to its
neighborhood Ni (t). Eq. 3 allows defining the motion
strategy of agent i from the instantaneous location of the
neighboring agents (Fig. 2).

One such group behavior scheme is α-lattice
(Olfati-Saber, 2006). In this algorithm it is proposed to
use a distance d that minimizes the potential field defined by
V , and which is set as the distance that any agent i ∈ A must
satisfy concerning its neighbors j ∈ Ni (t), that is (Eq. 4):∥∥∥si j (t)

∥∥∥ = d (4)

Since this definition coincides with the global minimum
of the cost function J, it is widely used in many
schemes to define the flocking rules in multi-agent
systems, differentiating each strategy in the motion planning
algorithms. In this sense, two approaches can be
differentiated, those with reactive behavior without prior
knowledge of the environment, and planning approaches that
use some a priori information from the environment. In the
first group, agents consider local information, including the
behavior of their neighbors, to establish a movement strategy
while respecting the basic rules of flocking (Morihiro et al.,
2006a, 2006b). This local information usually comes from
the state detected in the neighbors, which is continuously
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Figure 2

Definition of the movement strategy of agent i based
on the behavior of its neighboring agents.

updated, but in other schemes predator information is
included as additional populations to force movement or
global references in the environment (C. Wang et al., 2018)
to avoid sub-groups of agents in the system (Camperi et al.,
2012; Fine & Shell, 2013).

In these reactive strategies, considerable work has been
done on the problem of optimal Reynolds rule-following.
In this sense, schemes have been proposed with constraints
on the system states (Qiu & Duan, 2020), estimation of the
possible optimal states of the agents from models based on
neural networks (Navarro et al., 2015), constraints on the
control inputs (Celikkanat, 2008), and constraints on the
environment and the agents (Vásárhelyi et al., 2018). In the
vast majority of these investigations, navigation is ensured
by avoiding collisions based on the computation of potential
field strengths. However, this strategy has widely known
convergence problems, which brings this problem back to
the research field in schemes in which the agent’s motion
is restricted to safe trajectories that minimize its energy
consumption (constraint-driven approach) (Egerstedt et al.,
2018; Ibuki et al., 2020).

As an alternative to reactive strategies, there are also
planning approaches in which each agent plans an optimal
trajectory based on the information it already possesses from
the environment and its neighbors. In general terms, this
type of strategy presents a better behavior of the agent
in terms of performance (convergence and movement), but
at a high computational cost, which poses much higher
requirements for the design of each agent. It is also
important to note that these schemes, by concept, do not

have a central control system, so the update of the system
information along the agents is very complex, opting for state
estimation schemes (Dave & Malikopoulos, 2020; Nayyar
et al., 2013). These problems are solved in some cases
by establishing communication links between nearby agents
(Morgan et al., 2016), limiting planning to only a few agents
in the system among which information is shared (Dave
& Malikopoulos, 2019), and applying predictive models in
which agents recalculate their strategy each time they obtain
new information from the system (Jafari et al., 2020; Xu &
Carrillo, 2017; Q. Yuan et al., 2017; Zhang et al., 2008).

Within optimal control research, the center-of-mass
tracking problem has become popular. This is a general
approach to many engineering problems, but in the specific
case of cluster flocking it seeks to define the center of mass of
the swarm (virtual leader), which must follow the reference
trajectory, and whose state is always known to all agents.
This design concept is addressed by including a term in Eq.
3 that allows for the reference’s state to be followed and thus
can be solved using both reactive and planned schemes. As
a result, the general Reynolds flocking rules hold, i.e., each
agent only handles the information of its neighborhood, so
the virtual leader tracking problem becomes an optimization
problem because no agent handles the state information of
the entire system globally (Hayes & Dormiani-Tabatabaei,
2002; La et al., 2015; La et al., 2009).

Line flocking

Line flocks are behaviors observed in certain birds, such as
geese, in which agents travel in a V-shape, not in an unshaped
cluster of agents. This behavior is observed in some large
birds in migratory processes and has been determined to
have large energy savings for individuals when traveling
long distances (Gatt et al., 2020; Kölzsch et al., 2020).
This energetic characteristic is what makes it interesting
for multi-agent systems in the development of tasks that
require large displacements, and the inability to recharge
along the way. The advantage in birds lies in the possibility
of suspending themselves in the ascending winds caused by
the leading bird, reducing their energy consumption (Fig. 3).
Similar advantages are found in other types of displacements
such as terrestrial and underwater, such as the possibility of
taking advantage of the low-pressure wake that the leading
agent leaves behind it to reduce the force required by the
other agents in the system (Beaumont et al., 2017; Ouvrard
et al., 2018).

To reach line flocking in an artificial system, the shape
of the swarm is more important than the distance to its
neighbors. To achieve this simply, it is common to define
formation points based on the characteristics of the system,
i.e., the wake that each agent produces when moving in
the environment for which it has been designed (Nathan &
Barbosa, 2008). This is a new control problem, in which
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Figure 3

Low-pressure effect on the line flock. The flock leader
induces upwash and downwash in its wake with its wings
and tail, which are used by the other birds to sustain
themselves and reduce energy costs.

the important thing is that each agent reaches its formation
point in the time defined for it (in most cases, the shortest
possible time) (Mirzaeinia et al., 2019). This type of control
is complex to perform autonomously by each agent, which
in general changes the control structure to a centralized one
(W. Wang et al., 2020; Yang et al., 2018). Moreover, in the
biological model, birds consider the particular characteristics
of each agent to establish its position in the flock, such
as age and size, elements that become meaningless in the
artificial approach, since in principle all agents are identical,
so in general their position in the flock is fixed. Schemes of
reconfiguration of the agents in ways other than V-formation
are outside the focus of this research and are therefore not
documented. It is worth noting, however, that there is a
variant of line flocking that also seeks energy savings in agent
displacement while taking into account the aerodynamic and
hydrodynamic interactions between the agents (Bedruz et al.,
2019). This criterion can be used to define an agent’s ideal
distance from its neighbors, and thus a flock structure that
meets the requirements of line flocking.

Interestingly, however, some works show that line
flocking emerges as a consequence of simple rules executed
by each agent, as occurs in cluster flocking (Yang et al.,
2016). For this behavior to emerge, it is necessary to
adjust the direction and velocity of each agent according
to the upwash vectors, while minimizing the occlusion of
the sensing field of each agent by the agents producing the
low pressure. This approach somehow achieves a meeting
point between the cluster and line schemes, showing that
the difference between them lies in the objectives to be
maximized in the self-organization policies of the system.
Following this same principle, it is possible to adjust
the agent’s movement rules to respond to environmental

conditions of wind and turbulence (Song et al., 2017). When
the environment is particularly hostile and changing, moving
against the current results in higher energy consumption,
whereas taking advantage of these flows, even when it
means changing the direction of travel slightly, can result in
considerable energy and time savings in the end (Alam et al.,
2018).

Other cluster flocking

This section is devoted to a set of approaches that have
demonstrated flocking behavior without strictly following
the basic Reynolds behavior rules. We have already
discussed that line flocking can come to be considered a
particular case of cluster flocking, but in the investigations
described here similar behavior to cluster flocking is
achieved (hence its location in Fig. 1) without using the same
design approach. This is the case of a system that uses local
measurements not directly related to neighboring agents to
estimate the movement strategy of each agent to maximize
the speed of the virtual leader (Vatankhah et al., 2009).
Another case with a similar approach worth mentioning uses
the anisotropy in the angle between neighbors as a flock
structure estimation parameter (Makiguchi & Inoue, 2010).

Another approach proposes deriving each agent’s
movement from the ergodic trajectories defined by the
other agents, which is equivalent to a mass vector of the
system over time, and using this information to estimate
which positions in the environment the system has visited
(Veitch et al., 2019). This, however, does not guarantee
flock behavior, which is why they supplement the scheme
by limiting the agents’ positions to the interior of a circle.
There are also approaches in which the force driving the
movement of the agents comes from somewhere other than
the environment or other agents (Genter, 2017).
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Conclusion

The last two decades have shown a great deal of
research activity related to multi-agent systems with flocking
behavior. Much of this work is derived from the basic
control rules postulated by Reynolds, with variations that
seek to improve the behavior of the system throughout a task,
optimize its displacement, energy consumption, and even its
cost through the use of hardware of smaller computational
capacity and size. Although centralized control schemes
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exist, the original idea derived from the biological model
prevails, in which each agent autonomously defines its
movement strategy based on its readings and control rules.
Although it is possible to categorize the different proposals
for flocking schemes, the fact is that they all respond to
specific control rules based on the information that the
agent gathers from its neighborhood, the environment, or
external elements. This is true even for schemes that do not
strictly follow Reynolds’ behaviors. This remains an area of
great research interest, but there are still unsolved problems
regarding the information required for control, its processing,
availability, and performance in terms of time and energy.
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