

Diagnostic value of cone beam computed tomography in complex and compound odontomas: a systematic review and open classification matrix

2	Authors:
3	Dubron K MD,MM,DDS ^{1,2} ,
4	Gurniak A DDS ³ ,
5	Gurniak E DDS ³ ,
6	Politis C MD,DDS,MM,MHA,PhD,Prof ^{1,4}
7	Olszewski R DDS,MD,PhD,DrSc,Prof ^{2,5,*}
8	

9 Affiliations:

10	¹ Department of Oral and Maxillofacial Surgery, University Hospitals Leuven,
11	Kapucijnenvoer 33, 3000 Leuven, Belgium
12	² Department of oral and maxillofacial surgery, Cliniques universitaires saint Luc,
13	UCLouvain, Av. Hippocrate 10, 1200 Brussels, Belgium
14	³ Diagdent, ul. Brazylijska 13, Warszawa, Poland
15	⁴ OMFS IMPATH Research Group, Department of Imaging & Pathology,
16	University Hospitals Leuven, Belgium
17	⁵ Oral and maxillofacial surgery research lab (OMFS Lab), NMSK, Institut de
18	recherche expérimentale et Clinique (IREC), SSS, UCLouvain, Brussels, Belgium

19	*Corresponding author: Prof R. Olszewski, Department of oral and maxillofacial
20	surgery, Cliniques universitaires saint Luc, UCLouvain, Av. Hippocrate 10, 1200
21	Brussels, Belgium, phone+3227645718; fax: +3227645876; ORCID
22	iD:orcid.org/0000-0002-2211-7731
23	
24	Disclaimer: the views expressed in the submitted article are our own and not an
25	official position of the institution or funder.
26	

Abstract

Objective: Firstly, this review aims to analyse the recent literature about threedimensional (3D) diagnostic imaging in complex and compound odontomas and compare it to two-dimensional (2D) imaging. Panoramic radiographs help to evaluate the vertical position of odontomas, and occlusal radiographs are used to evaluate the proximity to adjacent teeth. However, cone beam computed tomography (CBCT) can offer volumetric images, and therefore, a more accurate three-dimensional analysis. Secondly, this research aims to construct an open classification matrix for complex and compound odontomas for dentomaxillof a cial CBCT radiology protocols based on a systematic literature review.

Material and methods: Two systematic literature searches were conducted in PubMed (Medline), on 2 February 2022 concerning classification systems, and on 5 February 2022 concerning CBCT images.

Results: In total, these searches revealed 391 papers by reviewing the databases mentioned above. Six articles were selected for inclusion on classification of odontomas and 13 articles were found on CBCT imaging. Consequently, the construction of an open classification matrix for compound and complex odontomas for dentomaxillofacial CBCT radiology protocols was performed using these 19 articles.

Conclusions: CBCT offers a more precise position and accurate diagnosis of complex and compound odontomas compared to 2D imaging. Consequently, it enhances the detailed view of the site (multiple or unique), location (intraosseous, partially or completely extragnathic), size, extension (bony expansion, thinning or perforation cortical bone), density and type (denticulo type, particle type, denticulo-particle type, denticulo-amorphous type, amorphous tissue), relationship (with the crown or root of the definitive tooth), adjacent teeth resorption (deciduous or definitive), adjacent teeth (retention or impaction), and distance with adjacent structures (inferior alveolar nerve, sinus maxillaris), as well as adequate surgical planning. Moreover, this research presents an open classification matrix for the most complete description of compound and complex odontomas when analysing CBCT imaging.

Keywords: cone beam computed tomography, CBCT, complex odontoma, compound odontoma, odontogenic tumour

67

Introduction

4

68 Odontomas are the most common odontogenic tumours, according to the World Health Organization's (WHO) International Classification of Tumours. Odontomas 69 are defined as malformations or hamartomas in which both epithelial and 70 mesenchymal cells present complete differentiation with enamel formation and 71 dentin [1]. However, all different tooth components can be found in an odontoma 72 (enamel, dentine, cementum, dental follicle, and pulp elements). This odontogenic 73 74 tumour can occur in two forms: a complex odontoma or a compound odontoma. Mostly these tumours occur at a young age and are usually discovered by 75 coincidence or as tooth eruption is compromised. The diagnosis is therefore usually 76 made around or shortly after tooth eruption, and at that time, calcification of any 77 78 odontoma is already complete. Odontomas are mostly intraosseous lesions, rarely 79 found in soft tissues, and mostly associated with the permanent dentition. 80 Histologically, the diagnosis is made when enamel and dentine are present [2]. 81 Radiologically, an orthopantomogram (OPG) or panoramic radiographs may help to 82 evaluate the vertical position, level of calcification of odontomas, and impaction of 83 deciduous or permanent teeth, and detailed occlusal radiographs can evaluate their 84 relation to adjacent teeth. However, diagnosis on a two-dimensional image is not 85 always straightforward. Consequently, cone beam computed tomography (CBCT) 86 can reveal a more precise positioning, both vertically and horizontally, the 87 composition of odontomas, root resorption, and closer relations to the adjacent teeth 88 and cortical border [2]. CBCT is used in oral and maxillofacial surgery for its low 89 cost, easy accessibility, and low radiation compared with multi-slice computerized 90 tomography [3]. Therefore, the relevance of CBCT on diagnosis, the value of a classification matrix, and appropriate surgical planning of complex and compound 91 odontomas will be discussed in this review. 92

93

94

Materials and methods

Search strategy

95Two systematic search strings on computerized database were conducted on 296February 2022 (classification) and 5 February 2022 (CBCT figures). The database97PubMed (Medline) was used, and a search string was conducted by one observer to98identify studies that included two concepts: odontomas and diagnostic imaging. Two99search equations were used to build an open classification matrix for compound and100complex odontoma for dentomaxillofacial CBCT radiologists. [4-22] Only full free101articles accessible were included.

102

103To find already existing classifications on odontoma, the first search equation was104used: (("odontoma"[MeSH Terms] OR "odontoma"[All Fields] OR "odontomas"[All

~

105	Fields]) AND ("classification"[MeSH Terms] OR "classification"[All Fields] OR
106	"classifications"[All Fields] OR "classification"[MeSH Subheading] OR
107	"classification s"[All Fields] OR "classificator"[All Fields] OR "classificators"[All
108	Fields])) AND ((ffrft[Filter]) AND (2003:2022[pdat])). The search was performed
109	on 2 February 2022. The exclusion criteria were articles without CBCT figures of
110	complex and/or compound odontoma, no free access to the pdf of the article,
111	retracted articles, and articles written in other language than English or French. We
112	included only articles with available figures of odontomausing CBCT.
113	
114	To find CBCT figures of compound or complex odontoma, a second search
115	equation was used: ("odontoma"[MeSH Terms] OR "odontoma"[All Fields] OR
116	"odontomas"[All Fields]) AND ((ffrft[Filter]) AND (2003:2022[pdat])). The search
117	was performed on 5 February 2022. The exclusion criteria were articles without
118	CBCT figures of complex and/or compound odontoma, no free access to the pdf of
119	the article, retracted articles, and articles written in other language than English or
120	French. Only articles with available figures of odontoma using CBCT were
121	included.

Article selection

124 The time period was limited from 2003 (first CBCT device accessible for dentists) 125 to 2022. The selected languages were English and French. The inclusion criteria 126 were free full text articles on central compound and/or complex odontoma. The 127 exclusion criteria were experimental studies, animal studies, studies not specifically 128 related to compound o complex odontoma. Moreover, available figures on odontoma 129 were searched using CBCT in all selected articles.

Results

122

123

130

131 This search revealed 391 papers by reviewing the databases mentioned above. 132 Consequently, 47 articles were found for the first search string on classification. Six 133 articles were selected [4-9], and 41 articles were excluded. However, these 6 selected articles gave no figures of odontoma when using CBCT. 134 For the second search string regarding CBCT figures, 344 articles were found. After 135 application of inclusion/exclusion criteria 13 articles were selected. Six articles (and 136 7 CBCT figures) were found on complex odontomas [10-15]. Seven articles (and 14 137 CBCT figures) were found on compound odontomas [16-22]. 138 139 140 Finally, the construction of the open classification matrix for compound and 141 complex odontoma for dentomaxillofacial CBCT radiologists (Table 1) was

performed using 19 articles [4-22]. Both figures from literature as from our patients
were included. All figures can be found as 'FIG' in this study under the subtitle
'clinical case presentation', or as 'figure' referring to an open access article with the
number of the figure found in the article. Already existing classifications were used,

as well as new classifications. The new classifications from this study ar	re marked as
'[add]'. The FDI World Dental Federation (ISO) notation was used for to	eeth
numbering.	

Table 1. Open classification matrix for compound and complex

odontoma for dentomaxillofacial CBCT radiologists. Open classification matrix using 19 articles for complex and compound odontomas describing: 1) Giant odontoma; 2) Quantity; 3) Location within the arch; 4) Location in relation with adjacent teeth; 5) Maxilla location; 6) Mandible location; 7) Type; 8) Complications.

	Compound odontoma	Complex odontoma
Giant odontoma (>3cm)		(figure 3) [14]
		(This study FIG 37-FIG 50)
Quantity		
Unique site	(figure 2, figure 5) [7]; (figure 3) [16]; (figure 1) [17]; (figure 6A, 6C, 6D) [18]; (figures 3-8) [20]; (figure 1) [21]; (figure 4C) [22] (This study FIG 1-FIG 25)	(figure 1, maxillary tuberosity)[10]; (figures 1, 2) [11]; (figure 1) [12]; (figure 3) [14]; (figure 1) [15]; (figure 6B) [18] (This study FIG 26-FIG 32)
Multiple sites	(This study FIG 33-FIG 35)	(figure 3) [13]
Location within the arch [4]		
Intraosseous [9]	(figure 3) [16]; (figure 1) [17]; (figure 6A, 6C, 6D) [18]; (figure 2, figure 5) [19]; (figures 3-8) [20]; (figure 1) [21]; (figure 4C) [22] (This study EIG 1-EIG	(figure 1, maxillary tuberosity)[10]; (figures 1, 2) [11]; (figure 1) [12]; (figure 1) [15]; (figure 6B) [18] (This study FIG 26-FIG 32)
	19, FIG 21-FIG 25, FIG 33-FIG 36)	32)
[add] Pre-erupted state (perforation of alveolar bone on the dental arch)	(This study FIG 20, FIG 33, FIG 34, FIG 36)	
Erupted [9]		(figure 3) [13]; (figure 3) [14]
		(This study FIG 38-FIG 40, FIG 42, FIG 45-FIG 48)
Extragnathic		(This study FIG 37-FIG

		50)
[add] Partially extragnathic	(This study FIG 33, FIG 34, FIG 36)	(This study FIG 26, FIG 27)
Location in relation with ad- jacent teeth		· · · ·
Inside and/or[add] between deciduous tooth roots and above definitive tooth [23]	(figure 3) [16]; (figure 1) [17]; (figure 6A) [18]; (fi- gure 1, figure 4C) [22]	
	(This study FIG 1, FIG 3, FIG 4, FIG 15, FIG 16, FIG 18)	
Lateral to deciduous tooth [23]		
In dentigerous cyst which is occlusal to deciduous tooth [23]	(figures 3-8) [20]	
Inside follicle surrounding deciduous tooth [23]		
Around the root/roots of the deciduous tooth [23]	(This study FIG 15)	
[add] Occlusal to the defini- tive teeth	(figure 1) [21]	(figures 1, 2) [11]; (figure 3) [13]
	FIG 4, FIG 15, FIG 16, FIG 22, FIG 25, FIG 33- FIG 35)	
[add] Around the crown of the definitive tooth	(This study FIG 34)	(figure 1) [12]; (figure 6B) [18]
[add] Around the root of the definitive tooth	(figure 6C, 6D) [18]	(figure 1) [15]
	(This study FIG 11-FIG 14, FIG 33-FIG 35	(This study FIG 30)
[add] Lateral to definitive teeth	(figure 2, figure 5) [19]	
	(This study FIG 2-FIG 6, FIG 8-FIG 10, FIG 17, FIG 21-FIG 25, FIG 33- FIG 35)	
[add] Replacement of definitive teeth	(This study FIG 19, FIG 20, FIG 22-FIG 24)	(figure 3) [14]
[add] Distal to last tooth on the arch		(figure 1, maxillary tuberosity) [10]
[add] Apical to apices of teeth		(This study FIG 26, FIG 28, FIG 29)
[add] Maxilla location		
Anterior (teeth 13-23) [5-7, 9]	(figure 3) [16]; (figure 6A, 6C) [18]; (figure 1) [21]; (figure 4C) [22]	(figure 1) [15]; (figure 6B) [18]

	(This study FIG 1-FIG 4)	
Premolar (teeth 15-13, 25- 23)	(figure 1) [17]; (figure 6D) [18]; (figures 3-8) [20]	(This study FIG 26, FIG 42, FIG 45-FIG 48)
	(This study FIG 5-FIG 7, FIG 33-FIG 35)	
Molars (teeth 18-16, 28-26)	(This study FIG 33-FIG 35)	(figure 1, maxillary tuberosity) [10]; (figures 1, 2) [11]; (figure 1) [12]
		(This study FIG 42, FIG 45-FIG 48)
[add] Mandible location		
Anterior (teeth 43-33)	(This study FIG 8-FIG 25)	(figure 6B) [18]
	,	(This study FIG 28, FIG 29)
Premolar (teeth 45-43, 35- 33)	(figure 2, figure 5) [19]	(figure 3) [14]
Molar (teeth 48-46, 38-36) [5-7, 9]		(figure 3) [13]; (figure 3) [14]
Tupo [4]		(This study FIG 30)
Type [4]		
Denticulo- type [4, 6]	(figure 1) [17]; (figure 2, figure 5) [19]; (figure 4C) [22]	
	(This study FIG 1-FIG 4, FIG 19-FIG 21, FIG 33- FIG 36)	
Particle type [4]	(figures 3-8) [20]; (figure 1) [21]	
	(This study FIG 5-FIG 7, FIG 11-FIG 14)	
Denticulo-particle type [4]	(figure 3) [16]	
	(This study FIG 8-FIG 10)	
[add] denticulo-amorphous type	(This study FIG 15, FIG 18, FIG 22-FIG 25)	(This study FIG 42, FIG 43, FIG 45-FIG 48, FIG 50)
Amorphous tissue [4]	(This study FIG 15, FIG 17, FIG 25)	(figure 1, maxillary tuberosity) [10]; (figures 1, 2) [11]; (figure 1) [12]; (figure 3) [14]; (figure 3)

		[13]; (figure 1) [15]
		(This study FIG 26-FIG 30, FIG 32, FIG 37-FIG 44, FIG 49)
Complications		
[add] Adjacent deciduous teeth resorption	(This study FIG 1, FIG 3, FIG 4)	
[add] Adjacent definitive teeth resorption	(This study FIG 5, FIG 6, FIG 16, FIG 21, FIG 33, FIG 34)	(figure 1) [15] (This study FIG 30, FIG 45)
[add] Relationship with inferior alveolar nerve or with other cranial nerves		(This study FIG 31, FIG 32, FIG 38-FIG 41, FIG 46, FIG 47)
Deciduous teeth retention [4, 6, 7, 9]	(figures 3-8) [20]	
Definitive teeth retention/impaction [6, 7, 9]	(figure 3) [16]; (figures 3- 8) [20]; (figure 1) [21] (This study FIG 1, FIG 3, FIG 4, FIG 15, FIG 16, FIG 18, FIG 19, FIG 22, FIG 25, FIG 33-FIG 35)	Displacement of tooth 18 (figures 1, 2) [11]
Displacement of teeth/malposition [4, 9]/[add] rotation/diastema between teeth	(figure 1) [17]; (figures 3- 8) [20] (This study FIG 11, FIG 12, FIG 14)	Displacement of tooth 18 (figures 1, 2) [11]; Displacement of tooth 45 (figure 3) [14]
Transmigration of teeth	(This study FIG 15, FIG 16, FIG 18, FIG 22, FIG 25)	
Bony expansion [4, 6]	(This study FIG 16, FIG 17, FIG 24)	
[add] thinning of vestibu- lar/buccal cortical bone related to the odontoma	(This study FIG 1, FIG 16, FIG 20, FIG 21, FIG 24)	(This study FIG 29, FIG 31)
[add] perforation of vestibular/buccal cortical bone related to the odontoma		
[add] thinning of lingual/palatine cortical bone related to the odontoma	(This study FIG 6, FIG 7, FIG 16, FIG 20, FIG 24, FIG 34)	(This study FIG 32)
[add] perforation of lingual/palatine cortical bone related to the odontoma	(This study FIG 9)	(figure 1)[10]
would opening inflitation [10]		

Delayed root formation [12]		(figure 1) [12]
[add] Fusion between	(This study FIG 1, FIG	
odontoma and follicular sac	2)	
of adjacent impacted tooth		
[add] Oro-antral		(This study FIG 39, FIG
fistula/communication		45-FIG 48)
[add] Maxillary sinus		(This study FIG 40)
expansion		
[add] Hyperostosis of		(This study FIG 39, FIG
maxillary sinus walls		40, FIG 43-FIG 48)
[add] Thinning/erosion of		(This study FIG 41, FIG
maxillary sinus walls		43)
[add] Perforation of maxillary		(This study FIG 42, FIG
sinus walls		44, FIG 46-FIG 48)

156

157

Clinical cases presentation for compound odontoma

158

Maxilla, denticulo-type in canine area

159	
160	Fig. 1. Patient n°1. (Patient 14 years-old). Carestream 9600 CBCT. A-E:
161	Multi-reformatted coronal view. * Impacted tooth n°13. A-E: small arrow:
162	denticulo-type compound odontoma situated between deciduous tooth n°53
163	and impacted tooth n°13. C-E: thick arrow: external resorption of the tooth
164	n°83 by the odontoma. B-D: association of the odontoma with the follicular
165	sac surrounding the crown of the tooth n°13. C, D: thinning of the vestibular
166	cortical bone by the odontoma.
167	

Fig. 2. Patient n°1. (Patient 14 years-old). Carestream 9600 CBCT. Axial view. Thick arrows: denticulo-type compound odontoma thinning the vestibular cortical bone. Dotted arrow: fusion between the odontoma and the follicular sac of the tooth n°13. Thin arrow: close contact between the odontoma and the root of the tooth n°12, without external resorption.

Fig. 3. Patient n°1. (Patient 14 years-old). Carestream 9600 CBCT.
Multi-reformatted sagittal view. Arrows: denticulo-type compound odontoma
between tooth n°53 and tooth n°13 (*). Discontinuous arrow: external
resorption of the tooth n°53 by the odontoma. Tooth n°13(*) has a hooked
apex and is surrounded by the right maxillary sinus.

182 183

186

Fig. 4. Patient n°1. (Patient 14 years-old). Carestream 9600 CBCT. 3D 184 reconstruction view. Arrows: denticulo-type compound odontoma between 185 tooth n°53 and tooth n°13.

Maxilla, particle-type in premolar area

- Fig. 5. Patient n°2. (Patient 20 years-old). Carestream 9600 CBCT. Multi-reformatted sagittal view. Arrow: particle-type compound odontoma 189
- between the roots of teeth n°13 and n°14. Discontinuous arrow: discrete 190
- 191 external resorption of the apical and mesial side of the root of the tooth n°14.
- Diastema between crowns of teeth n°13 and n°14. 192

Fig. 6. Patient n°2. (Patient 20 years-old). Carestream 9600 CBCT. Axial view. Thin arrows: particle-type compound odontoma situated between roots of teeth n°13 and n°14. Thick arrow: thinning of the palatine cortical bone by the odontoma. Thin discontinuous arrow: discrete external resorption of the distal side of the root of the tooth n°13.

Fig. 7. Patient n°2. (Patient 20 years-old). Carestream 9600 CBCT. Coronal view. Arrows: particle-type compound odontoma. Thick arrow: thinning of the palatine cortical bone by the odontoma.

Mandible, denticulo-particle type in anterior area

Fig. 8. Patient n°3. (Patient 39 years-old). Carestream 9600 CBCT. Multireformatted coronal view. A-E: denticulo-particle type compound odontoma positioned between roots of teeth n°32 and n°33. A-C, E: Thin arrows: particle-type component. C, D: thick arrows: denticulo-type component.

Fig. 9. Patient n°3. (Patient 39 years-old). Carestream 9600 CBCT. Axial 214 view. Compound odontoma between teeth n°32 and n°33. Thin 215 discontinuous arrow: close contact without external resorption between the odontoma and the distal side of the root of the tooth n°32. Thin arrow: close 216 contact without external resorption between the odontoma and the mesial 217 side of the root of the tooth n°33. Thick arrow: perforation of the lingual 218 219 cortical bone by the odontoma.

205

Fig. 10. Patient n°3. (Patient 39 years-old). Carestream 9600 CBCT.
Multi-reformatted sagittal view. Arrow: compound odontoma between teeth
n°32 and 33. Discontinuous arrow: close contact between the odontoma
(denticulo-particle type compound), and the distal side of the root of the
tooth n°32.

Mandible, particle-type in anterior area, lingual to canine

Fig. 11. Patient n°4. (Patient 14 years-old). Planmeca 3D Mid. Axial view.
Arrow: particle-type compound odontoma on the lingual and distal side of the
root of the tooth n°43. Tooth n°43 is in rotation with its mesial face turned
toward vestibular side.

Fig. 12. Patient n°4. (Patient 14 years-old). Planmeca 3D Mid. Axial view. Arrow: particle-type compound odontoma on the lingual side of the root of the tooth n°43. Tooth n°43 presents with two roots: vestibular and lingual. Close contact without external resorption between the odontoma and the lingual root of the tooth n°43.

Fig. 13. Patient n°4. (Patient 14 years-old). Planmeca 3D Mid. Axial view. Dotted arrow: particle-type odontoma between the lingual and the vestibular root of the tooth n°43.

Fig. 14. Patient n°4. (Patient 14 years-old). Planmeca 3D Mid. 3D reconstruction view. Arrows: particle-type compound odontoma on the lingual side of the root of the tooth n°43. Rotation of the tooth n°43 with its mesial side turned toward vestibular side. Diastema between the crowns of teeth n°42 and n°43.

Mandible, denticulo-amorphous type in anterior area

Fig. 15. Patient n°5. (Patient 19 years-old). Carestream 9600 CBCT.
Pseudopanoramic reformatted view. Arrow: denticulo-amorphous type
odontoma between the tooth n°83 and impacted tooth n°43. The tooth n°43 is in transmigration under the apices of roots of teeth n°41 and n°31.

Fig. 16. Patient n°5. (Patient 19 years-old). Carestream 9600 CBCT. Multireformatted coronal view through the odontoma. A. Arrow: denticule content of the odontoma. Discontinued arrow: amorphous content of the odontoma. Tooth n°43 is situated close to the basilar cortex of the mandible. B. Thick arrow: denticule content of the odontoma with malformed crown directed inferiorly. Discontinuous thick arrow: amorphous content of the odontoma. Thin arrow: bony expansion and thinning of the vestibular cortex. Thin discontinuous arrow: external resorption of the root of the tooth n°83 by the odontoma. Presence of thinning of the lingual cortical bone by the odontoma lingual to the tooth n°83.

259 260

261

262 263

264

265 266

Fig. 17. Patient n°5. (Patient 19 years-old). Carestream 9600 CBCT. Axial view. Discontinuous arrow: amorphous content of the odontoma. Thin arrow: vestibular bony expansion and thinning of the vestibular cortex. Thin discontinuous arrow: odontoma surrounding the root of the tooth n°42 without its external root resorption.

Fig. 18. Patient n°5. (Patient 19 years-old). Carestream 9600 CBCT. Multi-reformatted coronal view. Thick arrow: denticulo-amorphous type odontoma between the roots of the teeth n°83 and n°42. Thin arrow: close relationship between the odontoma and the distal side of the root of the tooth n°42. Impacted tooth n°43 in transmigration, without ankylosis, and at a distance from the apex of the root of the tooth n°41.

Mandible, denticulo-type in anterior area, impaction of canine

Fig. 19. Patient n°6. (Patient 64 years-old). Carestream 9600 CBCT. Pseudopanoramic reformatted view. Arrow: Denticulo-type odontoma between the roots of the teeth n°44 and n°42. Tooth n°43 impacted and vertical without transmigration.

Fig. 20. Patient n°6. (Patient 64 years-old). Carestream 9600 CBCT. Multireformatted coronal view. Thin arrow: thinning of the vestibular cortical bone by the odontoma. Discontinuous arrow: thinning of the lingual cortical bone by the odontoma. Thick arrow: perforation of the alveolar bone, and preerupted state of the odontoma.

Fig. 21. Patient n°6. (Patient 64 years-old). Carestream 9600 CBCT. Axial view. Denticulo-type odontoma with multiple denticules (*). Discontinuous arrow: external resorption of the mesial side of the tooth n°44 by the odontoma. Thick arrow: advanced periodontitis around the tooth n°34.

Mandible, denticulo-amorphous type in anterior area, transmigration of canine

Fig. 22. Patient n°7. (Patient 23 years-old). Planmeca 3D mid. 3D reconstruction right lateral view of the mandible with threshold selecting dental tissue. Denticulo-amorphous type odontoma (*) between the teeth n°42 and n°44. Tooth n°43 in transmigration along the basilar cortical bone, and with the crown directed toward posterior. Tooth n°43 is replaced on the dental arch by the metallic prosthetic element.

Fig. 23. Patient n°7. (Patient 23 years-old). Planmeca 3D mid. 3D reconstruction right lateral view of the mandible. Denticulo-amorphous type odontoma (*) with one of the denticules in inverted position with the crown 319 directed inferiorly. 320

Fig. 24. Patient n°7. (Patient 23 years-old). Planmeca 3D mid. A-F: sagittal view. A, B. Arrows: inverted and horizontal denticule. C, D. Thick arrow: bone expansion of the odontoma to the lingual side. E. Thinning of the vestibular cortical bone by the odontoma, and extension of the odontoma inferiorly. F. Close relationship between the odontoma and the apex of the root of the tooth n°44.

316 317 318

321

322 323

324

325

326

327

329 Fig. 25. Patient n°7. (Patient 23 years-old). Planmeca 3D mid. A-G: para-330 sagittal multi-reformatted view from vestibular (A) to lingual (G) side of the 331 right mandible. (*) The tooth n°43 in transmigration along the basilar cortical 332 333 bone. A, B. Arrows: odontoma. B, C. Discontinuous arrow: close relationship 334 between the root of the tooth n°44 and the odonoma, and without external resorption. D, E. Discontinuous arrow: close relationship between the root of 335 the tooth n°42 and the odontoma. D. Thick arrow: close relationship between 336 follicular sac of the tooth n°43 and the apex of the tooth n°45. E. Presence of 337 massive enamel component of the odontoma. F. Arrow: inferior extension of 338 339 the odontoma. G. Arrow: amorphous component of the odontoma.

Clinical cases presentation for complex odontoma

341

340

Anterior maxilla

342 343

Fig. 26. Patient n°8. (Patient 64 years-old). Carestream 9600 CBCT. Multireformatted sagittal view. Complex odontoma in the palatine process of the 344 right maxilla. The odontoma is situated apical to the tooth n°13. Partial 345 extension of the complex odontoma in right maxillary sinus (partial 346 347 extragnathic type).

Fig. 27. Patient n°8. (Patient 64 years-old). Carestream 9600 CBCT. Axial view. Arrow: complex odontoma. Thin arrow: extension of the complex 351 352 odontoma in right maxillary sinus.

353 Anterior mandible

358

Fig. 28. Patient n°9. (Patient 43 years-old). Carestream 9600 CBCT. Multireformatted coronal view. Arrow: complex odontoma with close relationship with the apices of the teeth n°41, and n°42.

348

Fig. 29. Patient n°9. (Patient 43 years-old). Carestream 9600 CBCT. Axial view. Thick arrow: complex odontoma between the lingual and vestibular cortical bone in the midsagittal mandibular area. Thin arrow: amorphous component of the complex odontoma. Discontinuous arrow: thinning of the vestibular bone by the odontoma.

Posterior mandible

Fig. 30. Patient n°10. (Patient 27 years-old). Carestream 9600 CBCT. Multi-reformatted sagittal view. Thick arrow: complex odontoma close to the apex of the root of the tooth n°37. Thin arrow: external resorption of the root of the tooth n°37 by the odontoma.

Fig. 31. Patient n°10. (Patient 27 years-old). Carestream 9600 CBCT. Multi-reformatted coronal view. A-E. Thick arrow: intra-osseous complex odontoma superior to the left inferior alveolar nerve canal (segmented with orange circle). B-D. Thin arrow: thinning of the vestibular cortical bone by the odontoma.

Fig. 32. Patient n°10. (Patient 27 years-old). Carestream 9600 CBCT. Axial view. Thick arrow: complex odontoma positioned close to the lingual side. Thin arrow: thinning of the lingual cortical bone by the odontoma.

Clinical cases presentation in specific situations

Multiple compound odontoma

200	
386	Fig. 33. Patient n°11. (Patient 43 years-old). Planmeca 3D Mid. Sagittal
388	view of the right maxilla. A, B. 1. Upper situated denticulo-type compound
389	odontoma between the teeth n°15 and n°16. 2. Lower situated denticulo-type
390	compound odontoma between the teeth n°15 and n°16. Thick arrow:
391	external resorption of the distal side of the tooth n°15. Discontinuous arrow:
392	denticulo-type compound odontoma distal to the tooth n°17 in pre-erupted
393	state. B. Discontinuous arrow: denticulo-type compound odontoma distal to
394	the tooth n°17 in erupted state, and presence of impacted tooth n°18 with its
395	root surrounded by the right maxillary sinus. C. Upper denticulo-type
396	compound odontoma at the floor of the right maxillary sinus. Thick arrow:
397	external resorption of the distal side of the tooth n°15 by the upper situated
398	odontoma.
399	
400	
401	
402	
403	

400	
407	Fig. 34. Patient n°11. (Patient 43 years-old). Planmeca 3D Mid. Axial view.
408	A. Arrow: lower situated denticulo-type compound odontoma between the
409	teeth n°15 and n°16. Discontinuous arrow: external resorption of the mesio-
410	vestibular root of the tooth n°16 by the lower situated denticulo-type
411	compound odontoma. Thick arrow: denticulo-type compound odontoma
412	distal and palatine to the tooth n°17, and in pre-erupted state. B. Arrow:
413	Upper situated denticulo-type compound odontoma between the teeth n°15
414	and n°16. Discontinuous arrow: external resorption of the distal side of the
415	root of the tooth n°15 by the upper situated denticulo-type compound
416	odontoma. Thick arrow: denticulo-type compound odontoma distal and
417	palatine to the tooth n°17, and palatine to the crown of the tooth n°18. C.
418	Arrow: upper situated denticulo-type compound odontoma with close
419	relationship with the right maxillary sinus.

Fig. 35. Patient n°11. (Patient 43 years-old). Planmeca 3D Mid. 3D reconstruction view of the right lateral maxilla. (*) lower situated denticulo-type compound odontoma, (**) upper situated denticulo-type compound odontoma. Arrow: denticulo-type compound odontoma distal to the roots of the tooth n°17, and apical to the crown of the tooth n°18.

Fig. 36. Patient n°11. (Patient 43 years-old). Planmeca 3D Mid. Coronal view. (*) lower situated denticulo-type compound odontoma, (**) upper situated denticulo-type compound odontoma. Arrow: lower situated denticulo-type compound odontoma is in pre-eruptive state. Thick arrow: (**) upper situated denticulo-type compound odontoma at the floor of the right maxillary sinus.

Double extragnathic complex odontoma

Fig. 37. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Coronal view of the anterior maxillary sinus. (*) Anterior complex odontoma inside the left maxillary sinus. Arrow: amorphous tissue component of the complex odontoma. Discontinuous arrow: denticule tissue component of the complex odontoma.

450 Fig. 38. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Coronal 451 view of the midsection of the anterior complex odontoma (*). Thick arrow: 452 amorphous tissue component of the complex odontoma. Arrow: denticule 453 tissue component of the complex odontoma in the palatine process of the 454 left maxilla. Red arrows: perforations of the lateral wall of the left maxilla by 455 the expansion and eruption of the odontoma. 1. Left suborbital nerve canal 456 457 surrounded by the complex odontoma. 2. Close relationship between 458 complex odontoma and the left nasolacrimal duct. 3. Thickening of the 459 mucosa around the left middle turbinate and in the left ethmoid sinus cells. 4. 460 Paradoxal left inferior turbinate. 5. Bone spur from nasal septum directed toward left, and in contact with the left inferior turbinate. 6. Discrete thickening 461 of the mucosa in the right maxillary sinus. 7. Right zygomatico-maxillary 462 suture.

- 463 464 465 466
- 467

Fig. 39. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Coronal view of the intermediate area between anterior and posterior complex odontoma (**). Red discontinuous arrow: perforation at the level of the left alveolar bone, and presence of major oro-sinusal fistula. 1. Right unicinate process. 2. Right infundibulum. 3. Right ostium. 4. Absence of left unicinate process, of left infundibulum, and of left ostium. 5. Thickening of the mucosa around the left middle turbinate and in the left ethmoid sinus cells. 6. Hyperostosis of the left zygomaticomaxillary process. Left suborbital nerve canal surrounded by the complex odontoma.

Fig. 41. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Coronal view of the posterior area of the posterior complex odontoma. Arrows: amorphous tissue belonging to the posterior complex odontoma. 1. Upper nasal wall missing on the left maxillary sinus. (*) thickening of the mucosa around the left middle turbinate. 2. Thickening of the mucosa in the posterior cells of the left ethmoid sinus. 3. Thinning of the lateral wall of the left maxillary sinus.

Fig. 42. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Axial view of complex odontoma at the level of the floor of the left maxillary sinus. (*) Denticules component of the anterior complex odontoma. (**) Amorphous component of the posterior complex odontoma. Red discontinuous arrows: absence of left lateral wall of the left maxillary sinus with the complex odontoma in eruptive state.

Fig. 43. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Axial view at the midsection of the anterior (*) and posterior (**) complex odontoma. Amorphous and denticule content of the anterior complex odontoma (*). Amorphous only content of the posterior complex odontoma (**). 1. Erosion of the left zygomaticomaxillary process. 2. Hyperostosis of the left zygomaticomaxillary process.

Fig. 44. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Axial view
at the upper level of the complex odontoma. (**) Posterior complex
odontoma. 1. Left suborbital nerve canal with posterior contact with the
posterior complex odontoma (**). 2. Absence of the nasal wall of the left
maxillary sinus. 3. Thinckening of the mucosa of the left middle turbinate, and
obstruction of the left nasal fossa. 4. Hyperostosis of the left lateral wall of
the left maxillary sinus. 5. Hyperostosis of the left zygomaticomaxillary
process.

Fig. 45. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Sagittal view close to the nasal wall of the left maxillary sinus. Anterior (*) and posterior (**) complex odontoma. Red discontinuous arrow: perforation of the palatine bone and oro-antral communication. 1. External resorption of the tooth n° 15 by the anterior complex odontoma. 2. Hyperostosis of the posterior wall of the left maxillary sinus. 3. Left great palatine canal.

Fig. 46. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Sagittal view through the midline of both odontoma. (*) Anterior complex odontoma. (**) Posterior complex odontoma. Red discontinuous arrows: perforation of the alveolar bone of the left maxilla, and posterior complex odontoma in eruptive state. 1. Left suborbital nerve foramen and canal surrounded by the anterior complex odontoma. 2. Hyperostosis of the floor of the left orbit. 3. P-Left pterygopalatine fossa.

Fig. 47. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Sagittal view through the lateral wall of the left maxillary sinus. (*) Anterior complex odontoma. (**) Posterior complex odontoma. Red discontinuous arrows: perforation of the lateral wall of the left maxillary sinus, and posterior 546 547 complex odontoma in eruptive state. 1. Left suborbital nerve canal surround-548 549 ed by hyperostotic bone. 2. Hyperostosis of the posterior wall of the left 550 maxillary sinus. 551

Fig. 48. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. Multireformatted sagittal view through both the anterior and posterior complex 555 odontoma. Anterior complex odontoma (*) and posterior complex odontoma (*). Red discontinuous arrow: perforation of the alveolar bone of the left 556 maxilla, and left oro-antral communication. Thick arrows: amorphous content 557 558 of the complex odontoma. Thin arrows: denticule content of the complex 559 odontoma.

552 553 554

Fig. 49. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. 3D reconstruction of the posterior complex odontoma (**) with its limits underlined with thick arrows. Thin arrows: border between both odontomas.

569

Fig. 50. Patient n°12. (Patient 69 years-old). Planmeca 3D Mid. 3D reconstruction of the anterior complex odontoma (*) with its limits underlined with thick arrows. 1. Denticule component of the complex odontoma.

570 Discussion

571 Odontomas are the most common benign odontogenic tumours with a histologically high degree of differentiation and an excellent biological behaviour. 572 They may occur in two forms: a complex odontoma or a compound odontoma [24]. 573 574 A complex odontoma looks like an irregular and disorganized mass of tooth tissue 575 and occurs mainly in the premolar-molar region of the upper and lower jaw. On the other hand, a compound odontoma is a conglomerate of numerous small fragments. 576 577 Many of these fragments are real miniature teeth in which a crown and a root, 578 covered by enamel and cementum, can be clearly distinguished. The number of 579 these tooth-like configurations can vary from a few individuals to several hundred 580 [25]. In this discussion, the radiological features of odontomas will firstly be 581 discussed, followed by the difficulties of diagnosis and why a CBCT classification 582 matrix is of great value. Lastly, the role of CBCT in treatment and treatment 583 planning will be discussed.

584

Radiologic features

586 587

610

611 612 613

614

615

616

617 618

619

620

621 622

623 624

Radiologically, this odontogenic tumour is initially lucent, but with time, it 588 589 develops small calcifications, which eventually coalesce to form a radio-dense 590 lesion with a lucent rim [26]. Compound odontomas usually contain a radio-opaque 591 mass with irregular margins and tooth-like structure. Compound odontomas present 592 radio-lucid peripheral borders, whereas complex odontomas exhibit unique radio-593 opacity, sometimes surrounded by a thin radiolucent area [1, 25, 27]. According to 594 the degree of odontoma calcification, three stages of development can be identified: 595 1) radio-lucid stage lacking calcification of dental tissues, 2) stage with partial calcifications, and 3) radio-opaque stage surrounded by a radio-lucid halo [25, 28]. 596 Orthopantomogram, periapical, and occlusal radiographs are conventional dental 597 598 radiography techniques which are commonly used for diagnostic purpose. But, CBCT provides several advantages regarding diagnostic and treatment planning 599 because it provides a three-dimensional image of the structural relationships. Images 600 in three planes of sections (axial, sagittal, coronal) make evaluation of anatomical 601 structures more accurate, and 3D reconstruction can play a critical role in diagnosis 602 and surgical panning [1, 2]. Moreover, it provides the determination of the tumour 603 604 size, density, presence of root resorption, cortical bone expansion, and perforation, 605 in addition to the relationship with adjacent anatomic structures such as the inferior 606 alveolar nerve and adjacent teeth [29]. Both the extent of the lesion and its effects on 607 adjacent structures are better delineated with CBCT. Additionally, the presence of 608 calcifications and cortical perforation are more visible on CBCT versus a panoramic image [2]. 609

Diagnosis

Problems concerning the diagnosis are related to the site (multiple or unique), size and location of the odontoma. The location can be intraosseous, extraosseous (partially or completely) and rarely in soft tissues. [1, 2, 10-12, 15-22] Furthermore, extension of the lesion can be bony expansion, thinning or perforation of the cortical bone. These extensions are better visible on CBCT [4, 6, 30]. Lastly, the relationship between the odontoma and adjacent teeth and adjacent structures are of importance for the diagnosis [2, 30]. Since CBCT offers a precise position and accurate diagnosis of complex and compound odontomas this research constructed a classification matrix for complex and compound odontomas [1, 4, 6].

Classification matrix

625This open classification matrix for compound and complex odontomas on Table 1626contains 102 boxes. The descriptions for our classification matrix were composed627of: 1) Giant odontoma; 2) Quantity; 3) Location within the arch; 4) Location in628relation with adjacent teeth; 5) Maxilla location; 6) Mandible location; 7) Type; and6298) Complications. According to our clinical findings (Figures 20, 33, 34, 36) we630added two new sub-classifications for "location within in arch": Pre-erupted state

631 632	(perforation of alveolar bone on the dental arch), and partially extragnathic position of odoptoma. The "location is relation with a discont definitive teath" was also
032	of odomonia. The location in relation with adjacent definitive teeth was also
633	added, based on the same scheme as the location in relation with adjacent deciduous
634	teeth from Terunisa et al. [23]. Furthermore, we added / new subclassifications for
635	description of the position of the odontoma in relation with the definitive tooth. We
636	added mandible and maxilla location separated into anterior, premolar, and molar
637	area that were not present in previous classifications. We added the denticulo-
638	amorphous type according to our clinical findings (Figures 15, 18, 22-25, 42, 43, 45-
639	48, 50). Finally, we added 12 new sub-classifications on complications related to
640	odontomas.
641	The content of the presented matrix is based on descriptions of odontomas in open-
642	access literature, from authors' interpretation of figures and illustrations in the open-
643	access selected articles and from own presented cases. The 36 boxes were already
644	illustrated by 23 figures available in open-access literature in Pubmed [7, 10-22].
645	This article freely provided 50 figures. The open access figures from literature and
646	from this research illustrated 23 boxes. With this pictorial review, this research was
647	able to illustrate itself 30 boxes. In the future, other authors could complete 30
648	empty boxes, add more types in the same classification or add new
649	(sub)classifications below or inside the existing ones presented in this research.
650	Analogically, new research could be published in open-access.
651	Therefore, this pictorial review was able to freely provide the readership with a more
652	complete description of complex odontomas compound odontomas multiple
653	compound odontomas and double extra gnathic complex odontomas on CBCT data
654	in comparison to earlier published studies
655	in companison to carnet published studies.
000	Tractment and tractment planning
656	rreatment and treatment planning
657	
658	After surgical removal of odontoma, there is no tendency of recurrence.
659	Nevertheless, it is advisable to always have the surgical specimen examined
660	anatomically because of the rare possibility of an odonto-ameloblastoma. This rare
661	lesion combines the characteristics of an odontoma with those of an ameloblastoma.
660	Treatment is identical to that of an amalable stome According to WHO (2017)

Treatment is identical to that of an ameloblastoma. According to WHO (2017),
odonto-ameloblastoma no longer forms a separate entity but is included in
ameloblastoma.

When odontomas extend beyond the alveolar process into the fascial planes, nasal
fossae, paranasal sinuses, and orbits, a CBCT can more precisely demonstrate the
extent and boundaries of the lesions. For example, a compound odontoma can cause
a slight bone expansion that is noticeably different from the more significant bone
expansion caused by complex odontoma [31]. Moreover, CBCT imaging allows a
3D visualization that, besides showing the association between lesions, also

demonstrates the margins of the connected lesions and their internal architecture,
and provides a precise follow-up after surgical removal [2, 32]. A prompt follow-up
is essential for evaluation of further development of the permanent dentition at the
removal location [2]. Additionally, CBCT imaging provides a detailed assessment of

675 odontomas and impacted teeth regarding position, distance to associated teeth and adjacent cortex, and occurrence of root resorption. Moreover, in patients with 676 skeletal malocclusion caused by odontoma, the prioritization of treatment is of great 677 importance. If surgical removal of odontoma is postponed, the probability of 678 679 adjacent teeth impaction, and therefore malocclusion, increases. Also, it can compromise facial growth and cause facial asymmetry [33, 34]. Therefore, early 680 diagnosis regarding impacted tooth is necessary in order to treat the impacted tooth 681 with for example an orthodontic appliance [35]. 682

Conclusion

In conclusion, CBCT offers precise position and accurate diagnosis of complex 686 and compound odontomas, while providing important information on treatment 687 management and follow-up that isn't apparent on 2D imaging. Therefore, this 688 review presents a CBCT classification matrix for odontomas describing 1) Giant 689 odontoma; 2) Quantity; 3) Location within the arch; 4) Location in relation with 690 691 adjacent teeth; 5) Maxilla location; 6) Mandible location; 7) Type; 8) Complications. 692 Consequently, this pictorial review can freely provide the readers a classification 693 matrix with a more complete description of complex and compound odontomas 694 using CBCT data published in earlier studies together with our own clinical cases. 695

696

683

698	•	Acknowledgements: none
699	•	Funding sources statement: the study does not receive any funding.
700	•	Competing interests: Prof R. Olszewski is Editor-in-Chief of NEMESIS. The
701		other authors declare no conflicts of interest.
702	•	Ethical approval: we obtained the approval from our University and Hospital
703		Ethical Committee for this study (B403/2019/03DEC/542)
704	•	Informed consent: Patients n°4, 7, 11, 12 were exempted from the informed
705		consent according to the ethical committee approval. There was no need for the
706		informed consent for patients n°1-3, 5, 6, 8-10 as all the images were
707		anonymized and no private data were provided allowing the patient's
708		identification.

709 Authors contribution:

Author	Contributor role	
Dubron Kathia	Conceptualization, Investigation, Methodology, Data curation, Validation, Writing original draft preparation, Writing review and editing	
Gurniak Anna	Data curation, Validation, Writing review and editing	
Gurniak Eliza	Data curation, Validation, Writing review and editing	
Politis Constantinus	Validation, Writing review and editing	
Olszewski Raphael	Conceptualization, Investigation, Methodology, Data curation, Resources, Validation, Writing original draft prepara- tion, Supervision, Writing review and editing	

711

719

730

734 735

736

737

738

742

746

References

712	1. Millan JPD, Gutinik, BC, Lima LLM. de Teles AKG, Martins TA, Tempest LM.
713	Odontomas and imaging diagnosis: the concise systematic review. MedNEXT J
714	Med Health Sci 2021;2. https://doi.org/10.54448/mdnt21504.
715	

2. Iatrou I, Vardas E, Theologie-Lygidakis N,Minas Leventis M. A retrospective analysis of the characteristics, treatment and follow-up of 26 odontomas in Greek children. J Oral Sci 2010;52:439-447. https://doi.org/10.2334/josnusd.52.439.

3. De Vos W, Casselman J, Swennen GR, Cone-beam computerized tomography
(CBCT) imaging of the oral and maxillofacial region: a systematic review of the
literature. Int J Oral Maxillofac Surg 2009;38:609-625.
https://doi.org/10.1016/j.ijom.2009.02.028.

- 4. Satish V, Prabhadevi MC, Sharma R. Odontome: A brief overview. Int J Clin
 Pediatr Dent 2011;4:177-185. https://doi.org/10.5005/jp-journals-10005-1106.
- 5. Wright JM, Soluk Tekkesin M. Odontogenic tumors: where are we in 2017? J
 Istanb Univ Fac Dent 2017;51:S10-S30. https://doi.org/10.17096/jiufd.52886.
- 6. Pacifici A, Carbone D, Marini R, Pacifici L. Surgical management of compound
 odontoma associated with unerupted tooth. Case Rep Dent 2015;2015:902618.
 https://doiorg/10.1155/2015/902618.
 - 7. Amado Cuesta S, Gargallo Albiol J, Berini Aytés L, Gay Escoda C. Review of 61 cases of odontoma. Presentation of an erupted complex odontoma. Med Oral 2003;8:366-373.
- 8. Kara, M.I, Ay S, Aktan AM, Sener I, Bereket C, Ezirganli S, Demirkol M.
 Analysis of different type of transmigrant mandibular teeth. Med Oral Patol Oral Cir
 Bucal2011;16:e335-e340.https://doi.org/10.4317/medoral.16.e335.
- 9. Mortazavi H, Baharvand M, Rahmani S, Jafari S, Parvaei P. Radiolucent rim as a
 possible diagnostic aid for differentiating jaw lesions. Imaging Sci Dent
 2015;45:253-261.https://doi.org/10.5624/isd.2015.45.4.253.
- 747 10. Augusto-Neto RT, Marinheiro BH, Silveira HA, Polanco XBJ, León JE,
 748 Trivellato AE, Sverzut CE. Complex odontoma restricting mouth opening: an
 runusual clinical presentation and surgical management. Int J Health Sci (Qassim)
 2021;15:60-63.
- 751

752	
753	11. Santos LA, Lopes LJ, Roque-Torres GD, Oliveira VF, Freitas DO, Complex
754	odontoma: A case report with micro-computed tomography findings. Case Rep Dent
755	2016:2016:3584751. https://doi.org/10.1155/2016/3584751.
756	
757	12. Miura K. Miyashin M. Kanao T. Oishi A. Eruption disturbance caused by an
758	odontoma that was partially attached to the crown of the adjacent maxillary first
759	molar, and step lesion excavation for the tooth preservation: A case report. Clin
760	Case Rep 2019:7:2462-2465 https://doi.org/10.1002/ccr3.2523
761	Custrep 2017,7.2 102 2 103.11(ps)//doilorg 1011002/cell5.2020.
762	13. Ćabov T. Fuchs PN, Zulijani A. Ćabov Ercegović L. Marelić S. Odontomas:
763	nediatric case report and review of the litterature. Acta Clin Croat 2021:60:146-152
764	https://doi.org/10.20471/acc.2021.60.01.22
765	https://doi.org/10.2017/1/doi.2021.00.01.22.
766	14 Bagewadi SB Kukreja R Suma GN Yaday B Sharma H Unusually large
767	erunted complex odontoma: A rare case report Imaging Sci Dent 2015:45:49-54
768	https://doi.org/10.5624/isd.2015.45.1.49
769	111ps.//doi.org/10.502//15d.2015.15.1119.
700	15 Flores Orozco El Abu Hasna A Teotonio de Santos Junior M Flores Orozco
771	FI Falchete Do Prado R Rocha Campos G Carneiro Valera M Case report: Inter-
772	disciplinary management of a complex odoptoma with a periapical involvement of
773	superior anterior teeth F1000Res 2019.8:1531
774	https://doi.org/10.12688/f1000research 20337.1
775	https://doi.org/10.12000/1100010500101.20557.1
776	16 Kannan KS Prabhakar R Sarayanan R Karthikeyan Raiyikram Composite
777	compound odontoma-a case report I Clin Diagn Res 2013:7:2406-2407
778	https://doi.org/10.7860/JCDR/2013/7432.3540.
779	
780	17. Poli PP. Creminelli L. Grecchi E. Pieriboni S. Menozzi G. Maiorana C.
781	Anxiolysis in the surgical management of a compound odontoma in a pediatric
782	natient Case Rep Den 2019:2019:1385150 https://doi.org/10.1155/2019/1385150
783	
784	18. Oda M. Nishida I. Habu M. Takahashi O. Tsurushima H. Otani T. Yoshiga D.
785	Saeki K. Tanaka T. Wakasugi-Sato N. Matsumoto-Takeda S. Nagasaki Y
786	Miyamoto I Kito S Sasaguri M Morimoto Y Overview of radiological studies on
787	visualization of gubernaculum tracts of permanent teeth I Clin Med 2021:10:3051
788	https://doi.org/10.3390/icm10143051
789	nups.//doi.org/10.5590/jem101/5051.
790	19 Borghesi A Tonni I Pezzotti S Maroldi R Perinheral osteoma compound
791	odontoma focal cemento-osseous dysplasia and cemento-ossifying fibroma in the
792	same hemimandible: CBCT findings of an unusual case Radiol Case Ren
793	2017.12.756-759 https://doi.org/10.1016/irader 2017.08.011
794	2017,12.750 757.https://doi.org/10.1010/j.iudoi.2017.00.011.
795	20 Hashim HA Al-Oahtani AA Taha SM Thanuneedikayil S Ahmed MF
100	20. Hushim H., An Quitan A., Tana Siri, Thatapoolika Jib, Allinou MI.

796	Management of complete impacted maxillary second deciduous molar with the aid
797	of cone-beam computed tomography: Case report and a review of the literature. J
798	Orthod Sci 2013;2:130-135.https://doi.org/10.4103/2278-0203.123201.
799	
800	21. Janarthanan K, Thangavelu A, Adalarasan S, Selvakumar R, Murugan R, Reddy
801	SV. Impacted upper lateral incisor in a 16-year-old female-"Compound Odontome"
802	the culprit-A case report. J Pharm Bioallied Sci. 2019;11:S488-S490.
803	https://doi.org/10.4103/JPBS.JPBS_3_19.
804	
805	22. Jung YH, Kim JY, Cho BH. The effects of impacted premaxillary
806	supernumerary teeth on permanent incisors. Imaging Sci Dent 2016;46:251-258.
807	https://doi.org/10.5624/isd.2016.46.4.251.
808	
809	23. Teruhisa U, Murakami J, Hisatomi M, Yanagi Y, Asaumi J. A case of unerupted
810	lower primary second molar associated with compound odontoma. Open Dent J
811	2009;3:173-176.https://doi.org/10.2174/1874210600903010173.
812	
813	24. Tsiklakis K, Spyropoulos ND. [Radiographic study of odontomas].
814	Odontostomatol Proodos 1990;44:117-123.
815	
816	25. ThistleBarba L, Muela Campos D, Nevárez Rascón MN, Ríos Barrera VA,
817	Nevárez Rascón A. Descriptive aspects of odontoma: literature review. Revista
818	Odontológica Mexicana 2016;20:e265-e269.
819	https://doi.org/10.1016/j.rodmex.2016.11.018
820	
821	26. Gervasoni C, Tronchet A, Spotti S, Valsecchi S, Palazzolo V, Riccio S, Aiuto
822	AD, Azzi L, Di Francesco A. Odontomas: review of the literature and case reports. J
823	Biol Regul Homeost Agents 2017;31:119-125.
824	· · · · · · · · · · · · · · · · · · ·
825	27. Soluk Tekkesin M, Pehlivan S, Olgac V, Aksakalli N, Alatli C. Clinical and
826	histopathological investigation of odontomas; review of the literature and
827	presentation of 160 cases. J Oral Maxillofac Surg 2012:70:1358-1361.
828	https://doi.org/10.1016/i.joms.2011.05.024
829	
830	28. Hisatomi M. Asaumi JI. Konouchi H. Honda Y. Wakasa T. Kishi K. A case of
831	complex odontoma associated with an impacted lower deciduous second molar and
832	analysis of the 107 odontomas Oral Dis 2002.8.100-105
833	https://doi.org/10.1034/i.1601_0825.2002.1c778 x
834	парыласыонд 10.105 н.ј.1001 0025/2002.10770.х
835	29 Dhont K. Bernaerts A. Vanhoenacker Ch. Vanhoenacker FM. De Foer B
836	Imaging anatomy of the jaw and dentition with cone hear computed tomography
837	Semin Musculoskelet Radiol 2020:24:488-408 https://doi.org/10.1055/c.0040
838	1701/0/
839	1/017)7.
000	

840	30. Indermun S, Shaik S, Opperman J. A bunch of grapes with a bag of marbles: The
841	concurrence of the botryoid odontogenic cyst with a compound odontoma. Oral
842	Surgery 2021;14:349-357.https://doi.org/10.1111/ors.12581.
843	
844	31. Sikes Jr JW, Ghali GE, Troulis MJ. Expansile intraosseous lesion of the maxilla.
845	J Oral Maxillofac Surg 2000;58:1395-1400.
846	https://doi.org/10.1053/joms.2000.18274.
847	
848	32. Marques YM, Botelho TD, Xavier FC, Rangel AL, Rege IC, Mantesso A.
849	Importance of cone beam computed tomography for diagnosis of calcifying cystic
850	odontogenic tumour associated to odontoma. Report of a case. Med Oral Patol Oral
851	Cir Bucal 2010;15:e490-493. https://doi.org/10.4317/medoral.15.e490.
852	
853	33. Kadlub N, Kreindel T, Mbou VB, Amélie Coudert A, Edward Ansari E,
854	Descroix V, Ruhin-Poncet B, Coulomb L'hermine A, Berdal A, Vazquez MP, Ducou
855	Lepointe H, Picard A. Specificity of paediatric jawbone lesions: tumours and
856	pseudotumours. J Craniomaxillofac Surg 2014;42:125-131. https://doi.org/
857	10.1016/j.jcms.2013.03.007.
858	
859	34. Pithon MM. Nonsurgical treatment of severe Class II malocclusion with anterior
860	open bite using mini-implants and maxillary lateral incisor and mandibular first
861	molar extractions. Am J Orthod Dentofacial Orthop 2017;151:964-977.
862	https://doi.org/10.1016/j.ajodo.2016.04.035.
863	
864	35. Cozza P, Gatto R, Marino A, Mucedero M. Case report: two nasal floor com-
865	pound odontomas associated with impacted maxillary incisor. Eur J Paediatr Dent
866	2003;4:99-102.
867	
868	
869	
870	
871	