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Abstract

In 2020, COVID-19 became a global pandemic and has been nega-
tively impacting the world ever since. One of the ways to help control
the spread of disease is to forecast its growth. Forecasting the spread of
disease, though a daunting task, is necessary when a pandemic happens
as it could help create social policies that could potentially mitigate the
effects of the disease. This research aims to provide two disease predic-
tion methods: the R0-based method and the gradient-descent method.
The R0-based method produces short-term predictions by simulating
the mobility of residents and utilizing the R0 coefficient. The gradient-
descent method maps the linear regression model onto non-linear model
in order to fit the exponential growth of the disease. Experimental re-
sults show that the R0-based method is accurate at forecasting during
pandemic outbreaks. The gradient-descent method is able to study the
spread of epidemics on a city-to-city scale through transport network,
but with less accuracy than the R0-based technique. 1

1I offer my sincerest gratitude to my advisor, Dr. Heather Amthauer, and my committee
member, Dr. Peter Ohmann and Dr. Ann Sinko, for their mentorship as well as their
invaluable ideas and feedbacks. Special thanks to Lindsey Gutsch and the Undergraduate
Research Department for funding me through the Summer Thesis Fellowship.
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1 Introduction

Despite numerous efforts to mitigate its effect, infectious disease remains
one of the most serious causes of death in human history. One of the fastest
ways for infectious disease to spread around the world is through traveling.
Research shows strong correlations between traveling, both internationally
and domestically, and the spread of disease [1]–[5]. Infectious diseases such as
H1N1 swine influenza and severe acute respiratory symptoms (SARS) were
shown to infect many people around the world within only weeks. For the
past two years, the coronavirus disease, otherwise known as COVID-19 or
SARS-CoV-2, started in Wuhan, China, has spread to 216 countries, infect-
ing over 38 million people and killing over 1 million [2]. Aside from the health
effects, a pandemic could also take a toll on the economy. The 1994 bubonic
plague in Inida recorded 52 deaths in total but resulted in over 1 billion
USD economic loss [4]. As a result of the death toll and economic upheaval,
there has been growing in epidemiological studies and modeling. Analyz-
ing and predicting the impact of infectious diseases can assist in contact
tracing, creating intervention policies, and developing prevention strategies.
This research focuses on the coronavirus disease specifically.

COVID-19 is an infectious disease caused by the coronavirus named
SARS-CoV-2, first appeared in China at the end of 2019 and soon became a
global pandemic. Predicting the spread of disease is important in developing
prevention strategies to counter the disease. However, like weather predic-
tion, predicting the spread of disease is an incredibly difficult task due to
the non-linear dependent nature of the pathogens as well as multifarious
factors that affect the spread of disease. Spread of disease is the result of
interactions between pathogens, humans, and surrounding environment. In
fact, pathogens exist and evolve in ideal environments like any other organ-
ism. If the human body provides favorable conditions, pathogens will be able
to reproduce exponentially. Though complicated, it is necessary to develop
mathematical models to understand and produce prediction regarding the
disease in order to develop long-term or short term prevention strategies and
policies for effective control.

1.1 SEIR Model

The Susceptible-Exposed-Infected-Recovered model, otherwise known as
SEIR model, has been used to model after the spread of disease in past
research [6], [7] and recently used to predict the spread of COVID-19 in
community [8].
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The SEIR model is based on the assumption that population of the
community, denoted as N , never changes throughout the entire pandemic
period and consists of the following groups:

• S: people who are susceptible to COVID-19;

• E: people who are exposed to COVID-19;

• I: people who are infected by COVID-19 and can spread the disease;

• R: people who have recovered from COVID-19 or died because of it.

Since N is a constant, without loss of generality, we can write

S + E + I +R = N. (1)

Suppose:

• Ratio of birth and death is the same and is µ.

• Average incubation time is α−1.

• Average infecting period is γ−1.

• An infected individual who has recovered can’t get infected anymore.

• Interaction coefficient β is a time related function.

From this, we have the following system of differential equations:

dS

dt
= µ− β(t)SI − µS (2a)

dE

dt
= β(t)SI − (µ+ α)E (2b)

dI

dt
= αE − (µ+ γ)I. (2c)

R is calculated using equation 1.
Using the Euler method, we will approximate S(t), E(t), I(t), and R(t)

at time t > 0 when we know the values in the beginning.
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1.2 R0 Value

R0, otherwise known as R-naught, is the reproductive value of an in-
fectious disease. It can also be used to approximate how many people can
get infected from an infected individual. This value is important because
law-makers and politicians use it to determine timeline for the pandemic as
well as policies.

The reproductive value R0 is the average number of people getting in-
fected from an infected person. High R0 means that there will be a lot
of people getting infected during the pandemic period. Conversely, low R0

means that less people will get infected over time. However, infection will
continue if there is no vaccine to counter the disease.

The concept of R0 was first introduced in anthropology [9]. In epidemiol-
ogy, R0 is used to count the number of infected individuals. For experts, R0

can be a valuable asset. However, the process of approximating, calculating,
explaining as well as applying R0 is a complicated task. The simplicity of R0

and its corresponding interpretation in relation to infectivity hide the com-
plexity of this value. During the pandemic period, R0 is used in complex
mathematical models and is developed using different set of assumptions
[10].

1.3 Research Motivation

SARS-CoV-2 has appeared in Vietnam since late 2019, but only became
a deadly pandemic in Viet Nam in May 2021. Information about SARS-CoV-
2 positive cases for each district in Ho Chi Minh city is updated everyday
on the website of the Center for Application of Geographical Information
Systems. Additionally, Ho Chi Minh city Department of Science and Tech-
nology also provides information regarding COVID-19 in each wards of Thu
Duc, Ho Chi Minh City [11]. Moreover, COVID-19 infection has been getting
worse in California.

This research aims to provide short-term prediction for SARS-CoV-2
positive cases in Thu Duc city, an industrial-concentrated area in Viet Nam,
and in counties of Southern California.

1.4 Data availability

All datasets regarding Thu Duc’s population, district population, and
COVID-19 infection in 2021 as well as California’s COVID-19 positive cases
used in this research is available on this GitHub page or this following url:
https://github.com/ndsongan/undergraduate-thesis-2022.
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2 Short-term prediction of SARS-CoV-2 positive
cases based on reproductive value R0

In this research, we will build appropriate mathematical models that
allow short-term predictions of infected cases caused by SARS-CoV-2 using
real data collected daily. The inputs for the models are the data regarding
positive cases in each ward of Thu Duc district. The outputs of the model
are the number of positive cases for each ward of Thu Duc in each day.
Models can also be adapted and applied to predictions in other geographical
regions and cities if provided proper data.

2.1 Methodology

Data regarding the COVID-19 pandemic that is uploaded daily on the
website of the Center for Application of Geographical Information Systems
as well as well as Thu Duc’s official website is the main datasource that
we will use to construct mathematical models to predict COVID-19 status
in Thu Duc. However, because the websites only provided daily update of
COVID-19 positive cases without any other information, except for Thu
Duc’s official website which has data regarding people who have recovered
from SARS-CoV-2 but no data regarding people who have died from it, the
SEIR model is inapplicable for Thu Duc.

In order to predict COVID-19 cases in the short term, we will use the
reproductive value R0. The difference between this method compared to
other prediction methods is that R0 is not a constant, but rather it evolves
throughout time based on each ward in Thu Duc. Additionally, in order
to determine whether the time period is fit for short-term predictions, a
Markov chain model was built based on the daily collected data.

2.2 Appropriate R0 value

In the past 2 years, ever since the COVID-19 pandemic first appeared
in Wuhan, China, researchers suggested that R0 ranges between 2.2 to 2.7
depending on the region [12]. This means that a person who has COVID-19
will be able to transmit the disease to an average of 2.2 to 2.7 other people.

Approximating the R0 value is a complicated task. In this research, we
supposed that R0 has different values based on each region, and changes
over time during the pandemic period. The R0 coefficient depends on many
factors. We considered the following factors for our research:
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• The first factor is population density, denoted as Dd, is the density of
region d. The higher the density, the more people living within the 1
km2 area, which makes the risk of spreading the disease higher.

• The second factor is population, denoted as Pd, is the population of
area "d". We supposed that under the condition of social distancing,
the number of residents who moves from area d to area d′ is 1

1000 of
the population of the area. Ωd is the set of these moving residents.
Since we do not need to specify which resident is which, ωd is just an
arbitrary representation in order to perform equations calculating R0

and F0.

• The third factor is the number of people infected by COVID-19, de-
noted as F0, which was provided since social distancing policies began.

From this, R0 of each region d is a function over time, with day as the
unit, and depends on the original value of R0, R(t = 0) or R(0). This is a
recursive function that will be discussed in details in the next section.

2.3 Markov Chain Model for Predicting the Stopping Point

Definition (Discrete-time Markov chain): Let S be a finite set.
Random sequence {X0, X1, . . . } takes values from S is called a Markov chain
if

Pr(Xn+1 = j|X0 = x0, X1 = x1, . . . , Xn = i) = Pr(Xn+1 = j|Xn = i)

= Pr(X1 = j|X0 = i) = pij

for all x0, x1, . . . , i, j ∈ S and n ∈ N.
(3)

S is index set or state space of the chain. When Xn = i, we often say
chain is at state i at time n. Markov chain is defined like above is called
discrete-time Markov chain, homogeneous and finite state space.

Definition (Transitional matrix): Let Markov chain {X0, X1, . . . }
have finite state S, for |S| = k. Matrix P ∈ Rk×k is the transitional matrix
of chain if

Pij = pij = Pr(X1 = j|X0 = i). (4)

The sum of of all elements in each column of matrix P is 1:

Σk
i=1pij , ∀1 ≤ i ≤ k. (5)
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Definition (Distribution vector): Let random variable X from set of
finite states S = {1, 2, . . . , k}. Vector π ∈ Rk, with

πi = Pr(X = i),∀1 ≤ i ≤ k, (6)

is the distribution of X.
Let there be a Markov chain {X0, X1, . . . }. Distribution of Xn is called

distribution of Markov chain at time n, and distribution of X0 is called
initial distribution of Markov chain.

In this section, we only provide the main concepts of Markov chain with-
out proving them. Details about proofs regarding Markov chain can be re-
viewed in linear algebra or statistics textbooks [13].

Proposition Let there be Markov chain {X0, X1, . . . } with transitional
matrix P and πt is the distribution of chain at time n. Distribution of X0 is
also called initial distribution of chain.

πt+n = Pnπt, ∀t, n ∈ N. (7)

In other words, we have

πn = Pnπ0, ∀n ∈ N. (8)

Definition (Limiting distribution): Let there be Markov chain {X0, X1, . . . }
with transitional matrix P and distribution π with the property

lim
x→∞

Pn
ij = πj ,∀1 ≤ i, j ≤ k. (9)

is called the distribution limit of a chain.
Proposition Let π be the distribution limit of chain {X0, X1, . . . }. The

following statements are true:

(i) For all initial distribution and states j, lim
n→∞

Pr(Xn = j) = πj .

(ii) For all initial distribution α, lim
n→∞

Pnα = π.

(iii) lim
x→∞

P (Xn = j) = πj .

Note:

• A chain may not have limiting distribution, but if it does, it only has
one limiting distribution.
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• When a chain has limiting distribution π, we can think of πj as the
long-term probability of chain at state j, meaning the probability of
chain at state j after a long time does not depend on initial distribu-
tion.

Definition (Stationary distribution): Let there be Markov chain
{X0, X1, . . . } with transitional matrix P . If distribution π has the property

π = Pπ (10)

then π is called the stationary distribution of chain.
Note:

• A Markov chain may or may not have one or many stationary distri-
bution.

• When a chain falls into a stationary distribution, it will stop at that
distribution, meaning if there exists an n such that πn = π is the
stationary distribution, then πt = π,∀t ≥ n.

• The limit distribution, if there is any, is a stationary distribution.

Definition (Regular Matrix): Matrix P ∈ [0, 1]k×k is called regular
if there exists an n ∈ Z such that Pn consists of all positive element,

Pn
ij > 0,∀i, j|1 ≤ i, j ≤ k. (11)

Proposition A chain {X0, X1, . . . } has transitional matrix P . If P is
regular, then chain has limiting distribution.

3 COVID-19 short-term prediction formula

3.1 Formula for predicting COVID-19 infection

F0 is the notation for people who was tested positive for COVID-19.
Given F0 value of area d, our task is to find F0 in area d for the next day.

In the case of Thu Duc, each ward is considered an independent unit.
Therefore, we denote area d as ward d of Thu Duc. The formula to calculate
F0d on day t is the following:

F0d(t) = F0d(t− 1)(1 + α+R0d(t)). (12)

In which

8



• α is the interaction coefficient. This coefficient is approximated based
on economic and cultural significance of the place where infection hap-
pens. With the cultural circumstance of Vietnam, usually 2 to 3 gen-
erations of family live together. We supposed this coefficient is 0.001,
meaning a person on average will interact with 1

1000 of residents in the
area in which they live.

• R0d(t) is the coefficient for risk of infection spreading in ward d. The
formula for this coefficient will be established in the next section.

3.2 R0 Formula

We will create formula for risk coefficient in area d. This coefficient is
the highest at R0d of district d. We also suppose that each resident of ward
d will carry the risk coefficient R0d when they leave their ward.

• If ward d’s resident goes to ward d′ and the risk coefficient R0d′ < R0d ,
then this resident will have an effect on coefficient R0d′ of ward d

′ and
α times the difference R0d −R0d′ .

• Conversely, if R0d′ > R0d , then the risk of resident from ward d in-
creases and when they will affect R0d coefficient once they return. So,
R0d of ward d will be updated, taking into account the average risk of
infection of the residents who go to other wards and return.

α denotes the interaction coefficient, which is the probability of a resident
from one ward interact with residents from other wards within the surveyed
area.

We have the formula for R0 as follow:

1. First, R0d is set for day 0, x = 0:

R0d(x = 0) = R0min +
Dd −Dmin

Dmax −Dmin
(R0max −R0min). (13)

In which R0min = 2.2, R0max = 2.7, and D0max , D0min are the greatest
and smallest population density of Thu Duc.

2. For x ≥ 0, R0 is updated with the following formula:

2.1. A person i the risk value of Rdi = R0d′ (x − 1) goes from region
d′ to region d. If the risk value of region d, R0d(x− 1) is less than
R0d′ (x−1), then region d will be affected by person i. Conversely,
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if risk value of region d is greater, then region d will not be affected
at all, but person i will be affected by the risk factor from region
d. We have the following formula:

R0d(x) = R0d(x−1)+α(R0d′ (x−1)−R0d(x−1)), if R0d(x−1) < Rdi ,
(14)

and

Rdi = Rdi + β(R0d(x− 1)−Rdi), if R0d(x− 1) > Rdi . (15)

2.2. Let Rdi be the cumulative risk value of person i ∈ |Ωd| after they
travel to nearby regions. Once |Ωd| people return to region d, the
R0 coefficient of region d is updated with the following formula:

R0d(x) = R0d(x− 1) + α(
1

|Ωd|
Σi∈Ωd

(Rdi −R0d(x))). (16)

3. From equations 13, 14, 15, and 16, we have the following formula for
R0:

R0d(x+1) =


R0min + Dd−Dmin

Dmax−Dmin
· (R0max −R0min), if x = 0.

R0d(x) + α(R0d′ (x)−R0d(x)), if R0d(x) < R0d′ (x).

R0d(x) + α( 1
|Ωd|Σi∈Ωd

(Rdi(x)−R0d(x)), otherwise.
(17)

We define α as the interaction coefficient of the person and the districts
that they visit. We set α = 0.001. We also define β as the interaction
coefficient of the district and the people that visit that district. We
set β = 0.01. The α and β coefficients are established through experi-
mentation.

4. Lastly, the number of infected people in each region d is updated using
the following equation:

F0d(x) = F0d(x− 1)(1 + αR0d(x)). (18)

3.3 COVID-19 Predicting Algorithm Using Random Walk
on Graph

In order to predict the total COVID-19 cases using the R0 coefficient,
we will apply some ideas from the random walks on graphs method [14].
In this algorithm, we will represent each ward of Thu Duc as a vertex in
a completed, undirected, and unweighted graph G = (V,E) in which, each
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vertex v ∈ V is a ward of Thu Duc, and (v, v′) ∈ E is a bird-flight path
from district v to district v′, and vice versa. We represented the city as
a complete graph because even though districts can be adjacent, residents
can use vehicle to travel without making any stop, meaning they do not
interact with the intermediate districts as much. The algorithm predicting
total COVID-19 cases is showed in algorithm 1.

Algorithm 1 Prediction Algorithm (Part 1)

1: Input
2: G = (V,E) graph represented area of infection
3: D = {D(v), v ∈ V } list of population density of ward v ∈ V
4: P = {P (v), v ∈ V } list of population of ward v ∈ V
5: days number of days that needs to be predicted
6: R0min lower bound of R0 coefficient
7: R0max upper bound of R0 coefficient
8: Output
9: F0 = {F0v(t)} matrix of number of COVID-19 positive cases

in ward v ∈ V from day 1 ≤ t ≤ days.
10: maxx←Max(D)
11: minn←Min(D)
12: Initialize R0(v), ∀v ∈ V using equation 13.
13: X[v]← P [v]/100,∀v ∈ V . suppose only 1% of population in ward

v ∈ V will travel out of v.
14: t← 1
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Algorithm 2 Prediction Algorithm (Part 2)

15: for p← 0 to length(X(v) do
16: for v ← 0 to length(V ) do . Suppose p is the 0.1% of the

population that is infected.
17: if random < 1/1000 then
18: R(p) = 1
19: else
20: R(p) = R0(v)
21: end if
22: visit_nodes = random(1, 5). . nodes to be visited
23: path = {random(vi) ∈ V, 1 ≤ i ≤ visit_nodes
24: Update R0[v′], v′ ∈ path using equation 14.
25: Update R0(p) using equation 15.
26: end for
27: Update R0(v) using equation 16.
28: Recalculate F0v(t) using equation 18.
29: t← t+ 1
30: end for

3.4 Regular Markov Chain and Forecasting Period

Formula predicting COVID-19 positive patients, F0d , is an increasing
function because R0d ≥ 0. Therefore, a regular Markov chain is used to
calculate meaningful forecasting period.

Base on figure 1, we define the 4 states S = {S1, S2, S3, S4} for:

• S1: Number of cases decreases. It is considered decreasing when the
percentage of new cases increases less than 2%, S1 ≤ 0.02ΣdF0d ;

• S2: Number of cases is stable, 0.02 < S2 ≤ 0.08ΣdF0d ;

• S3: Number of cases increases, 0.08 < S3 ≤ 0.11ΣdF0d ;

• S4: Number of cases strongly increases, 0.11ΣdF0d < S4.

During the period from July 24th to August 16th, we created the transi-
tional matrix as showed in table 1.
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Figure 1: Rising percentage of new F0 cases from July 23th to August 16th.
The percent of new COVID-19 positive cases rise 5% on average.

P0 S1 S2 S3 S4

S1 0.16667 0.83 0 0

S2 0.42857 0.42857 0.07143 0.07143

S3 0 0.5 0 0.5

S4 0 0.5 0.5 0

Table 1: Transitional Matrix S = {S1, S2, S3, S4} created by using infection
data from July 23th to August 16th.
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0.07
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Figure 2: Another representation of the Markov chain in table 1. An arrow
from state S1 to state S2 represents the probability of state S1 transitioning
to state S2.

P S1 S2 S3 S4

S1 0.16667 0.8333 0.000001 0.000001

S2 0.42857 0.42857 0.07143 0.07143

S3 0.000001 0.499999 0.000001 0.499999

S4 0.000001 0.499999 0.499999 0.000001

Table 2: Regular Matrix S = {S1, S2, S3, S4} after one iteration.

P S1 S2 S3 S4

S1 0.276329 0.59149 0.064761 0.064761

S2 0.303911 0.539402 0.076304 0.076304

S3 0.23433 0.539402 0.050694 0.175694

S4 0.23433 0.539402 0.175694 0.050593

Table 3: Regular Matrix S = {S1, S2, S3, S4} after 3 iterations.
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(a) α = (0.1, 0.6, 0.2, 0.1) (b) α = (0, 1, 0, 0)

Figure 3: Distribution vector (a) α = (0.1, 0.6, 0.2, 0.1) and (b) α =
(0, 1, 0, 0) in 10 days.

Figure 3 shows the states of the distribution vectors α = (0.1, 0.6, 0.2, 0.1)
and α = (0, 1, 0, 0) in 10 days. Notice in figure 3b, there are only 3 lines rep-
resents S1, S2, and S4. The line for S3 is not missing, but rather, it locates
under S4 because S3 increases at the same amount as S4. As seen in both
cases, the states begin to converge after 3 days of the Markov process. There-
fore, in order to get the most optimal and accurate prediction, we should
only predict within a 3 days period. New data must be updated after 1 to 3
days.

3.5 Example

In regards to how the R0 based method works, consider the following
scenario.

Suppose we have a complete graph of a city with five nodes representing
five districts as shown in figure 4. For this example, we make the following
assumptions:

• There are 2 people traveling from district 1. One person travels to
district 4 and 5, and the other travels to district 2 and 3. At the end
of the iteration, they return to their original district.

• Each district is assigned an R0 value.

• α = 0.05

• β = 0.01
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4

R0 = 2.5
5

R0 = 1.0

1

R0 = 1.5

2
R0 = 1.5

3
R0 = 2.0

Figure 4: Two people travel from district 1 to other districts. First person’s
travel path is {1, 5, 4}, denoted in red. Second person’s travel path is {1, 2, 3},
denoted in green. The R0 values of each district are indicated next to the
nodes.

When a person travels from district 1 to district 5, since district 1’s R0

value, denoted as R01 is greater than that of district 5’s, R01 remains the
same but R05 will increase at the end of the iteration. However, when that
person travel to district 4, since R01 < R04 , R04 will remains the same but
R01 will increase. The R01 is calculated using equation 17.

R01 > R05 : R01 = R01 + 0

R01 < R04 : R01 = R01 + α(R04 −R01)

= 1.5 + 0.05(2.5− 1.5) = 1.55

Similarly, when the other person travel from district 1 to district 2 and
3, the R01 is calculated using equation 17.

R01 = R02 : R01 = R01 + 0

R01 < R03 : R01 = R01 + α(R03 −R01)

= 1.5 + 0.05(2.0− 1.5) = 1.525

When both persons return to district 1, the total R01 is calculated using
equation 16:

R01 = R01 + α((1.55− 1.5) + (1.525− 1.5))

= 1.5 + 0.05(0.05 + 0.025) = 1.50375

16



At district 5, since R01 > R05 when district 1’s resident visit district 5,
district 5’s R0 value is computed using equation 15:

R05 = R05 + β(1.5− 1.0) = 1.0 + 0.01(1.5− 1.0) = 1.005

4

R0 = 2.5
5

R0 = 1.0→ 1.005

1

R0 = 1.5→ 1.5038

2
R0 = 1.5

3
R0 = 2.0

Figure 5: The updated graph after 1 iteration. The R0 values of district 1
and district 5 are increased due to the travel and the interaction of district
1’s residents.

4 Gradient-Descent Prediction

In addition to theR0 based prediction method, we also developed another
prediction method that combines

4.1 Linear Regression

Regression is one of the most popular tools to analyze epidemiology due
to its accessibility and simplicity, though it can get complicated as need be.
Linear regression used to explicate the relationships between explanatory
and response variables in diseases, thus analyzing the risks factors that the
variables might have [15], [16]. Binomial regression such as logistic regression
is used as a classification method [17], [18]. Regression is also used to fore-
cast the growth of diseases by combining multiple variables [19]. Regression
methods is an universal tool that can be applied to any epidemic, depend-
ing on the goals of the study. In this research, we will focus specifically on
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linear regression and multiple linear regression and utilize them to forecast
the growth of COVID-19.

Regression refers to the task of predicting a continuous quantity. The
goal of regression is to find a general model that fits the given data. Linear
regression is a stochastic model that assumes the relationship between the
input variable (x) and the output variable (y) to be linear. When there are
more than one input variable, the model is called multiple linear regression.
Linear regression assumes the form of equation 19.

y = w0 + w1x. (19)

In equation 19, y is the dependent variable while x is the independent vari-
able with w0, w1 ∈ R.

Definition (Independent variable): In function f(x), the indepen-
dent variable, denoted as x, is the variable that does not depend on other
variables. It is used as input value for a function.

Definition (Dependent variable): In function f(x), the dependent
variable, denoted as y = f(x), is the variable that depends on other variables,
in this case, the independent variables. It is called the output of a function.

For multiple linear regression, we will have n independent variables and 1
dependent variable, e.g. multiple inputs and one output. Then, our regression
equation will be like equation 20.

y = w0 + w1x1 + w2x2 + · · ·+ wnxn. (20)

4.2 Gradient-Descent

Gradient-descent is defined as the following:
Definition (Gradient-Descent): an algorithm to find the local min-

imum or local maximum of a function. It is used to minimize the cost of a
loss function [20].

4.2.1 Notations

Let

• x1(t): number of infected of ward 1 on day tth.

• x2(t): number of infected of ward 2 on day tth.

• . . .

• xn(t): number of infected of ward n on day tth.
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4.2.2 Prediction equations

Let there vector x(t) = {x1(t), x2(t), . . . , xn(t)} be the vector of infec-
tions in the city on day tth. Suppose we have a weight matrix W = [wij ]
with 1 ≤ i, j ≤ n and B = [bi] for 1 ≤ i ≤ n. We predict infection rate for
day (t+ 1)th by computing the following equations:

yj = w1jx1(t) + w2jx2(t) + · · ·+ wnjxn(t). (21a)

xj(t+ 1) = (h(yj) + bj)xj(t) (21b)

In which h(x) is a tangent hyperbolic logistic equation:

h(u) =
eu − e−u

eu + e−u
. (22a)

h′(u) = 1− h(x)2. (22b)

4.2.3 Methodology

We established some learning definitions for the prediction algorithm.

• st = x(t) and st1 = x(t+ 1) be the vectors of infections at day tth and
(t+ 1)th, respectively.

• z = (z1, . . . , zn) is the prediction of the model.

• e = 1
2Σn

k=1(zi − st1i)2 is the total error of predictions.

• ∆ = de
dwij

is the derivative of the error function.

Then we calculated the weight wij using the formula:

wij = wij + α∆. (23)

From the definitions, we have the following derivative equations:

∆ =
de

dwj
=

de

dzj

dzj
dyj

dyj
dwj

. (24a)

de

dzj
= zj − stj . (24b)
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dzj
dyj

= h′(yj)sti. (24c)

dyj
dwj

= stj . (24d)

From equations 22, we have

∆ = (zj − stj)h′(yj)(stj)2. (25)

4.3 Linear prediction functions

Let x(t) = {x1(t), x2(t), . . . , xn(t)} be the infection vector of n states
or cities on day tth for t ≥ 0. Suppose we have matrix W = [wij ] with
1 ≤ i, j ≤ n and matrix B = [bi] for 1 ≤ i ≤ n. Then, we can prediction
infection rate for day (t+ 1)th by computing the following equations:

x(t+ 1) = x(t)W +B (26a)

or
xi(t+ 1) = w1ix1(t) + · · ·+ wnixn(t) + bi (26b)

Each element in W = {wij} can be determined using multi-variable re-
gression analysis with vector x(t) = (x1(t), . . . , xn(t)) being the independent
variable and vector xi(t+ 1), a part of vector x(t+ 1), being the dependent
variable. Therefore, we need to perform multi-variable regression n times.

Suppose for the ith regression iteration, we have

xi(t+ 1) = a0i + a1ix1(t) + · · ·+ anixn(t), (27)

with

w1i = a1i, a2i, a3i, . . . , ani = ani,

bi = a0i.
(28)

Then, we have matrix Wi =

a1i
...
ani

 is the ith column of matrix W and

W =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 , B =

 a01
...

a0n.

 (29)
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4.4 Non-linear prediction functions

The functions in the previous section will perform well with linear data.
However, epidemic data tends to be non-linear. We can non-linearize the
predictions by using the following equations:

yj = w1jx1(t) + w2jx2(t) + · · ·+ wnjxn(t). (30a)

xj(t+ 1) = (h(yj) + bj)xj(t) (30b)

In which h(x) is a type of logistic function called the tangent hyperbolic
function, defined by function 31.

h(u) =
eu − e−u

eu + e−u
. (31a)

h′(u) = 1− h(x)2. (31b)

x1(t)

x2(t)

...

xn(t)

x1(t+ 1)

x2(t+ 1)

...

xn(t+ 1)

ω1,1

ω1,2

ω1,n

ω2,1

ω2,2

ω2,n

ωn,1

ωn,2

ωn,n

ω1,0

ω2,0

ωn,0

W = [ωij ]

Figure 6: Non-linear prediction model. The method uses x(t) to predict
x(t+1) using the weight matrixW determined by applying gradient-descent
method.

After determining the weights, we can compute the infection prediction
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for day t+1 using infection data from day t with a system of linear regression

x1(t+ 1) = ω1,1x1(t) + ω1,2x2(t) + · · ·+ ω1,nxn(t) + ω1,0.

x2(t+ 1) = ω2,1x1(t) + ω2,2x2(t) + · · ·+ ω2,nxn(t) + ω2,0.

...
xn(t+ 1) = ωn,1x1(t) + ωn,2x2(t) + · · ·+ ωn,nxn(t) + ωn,0. (32)

Equations 32 can also be rewritten as matrix calculation

x(t+ 1) = Wx(t) +B (33)
x1(t+ 1)
x2(t+ 1)

...
xn(t+ 1)

 =


ω1,1 ω1,2 . . . ω1,n

ω2,1 ω2,2 . . . ω2,n
...

. . .
...

ωn,1 ωn,2 . . . ωn,n



x1(t)
x2(t)
...

xn(t)

 +


ω1,0

ω2,0
...

ωn,0


Figure 6 is the visual representation of how the system of equations (32)

and the matrix calculation 33 works. Infection from county x1 on day t will
have some effects (i.e. weight) on infection from county x1 itself as well as
counties x2, x3, and so on.

4.5 Gradient-Descent prediction algorithm

Having established the prediction equation and the learning rules, we
have the algorithm 3 for COVID-19 prediction using gradient-descent.

22



Algorithm 3 Weight matrix gradient training algorithm

Input: Dataset Ω = {x(t) = (x1(t), . . . , xn(t)), 1 ≤ t ≤ n}
Output: Weight matrix W and column vector B

1: for i, j ← 0 to n do
2: Wij ← Random(−1, 1).
3: end for
4: for epoch← 0 to 1000 do
5: for t← 0 to N − 1 do
6: st← x(t)
7: st1← x(t+ 1)
8: for j ← 1 to n do
9: yj ← 0

10: for i← 0 to n do
11: yj ← yj + w[i][j] · st[i]
12: end for
13: zj ← (h(yj) + b[j] · st(j)
14: end for
15: ∆← α · (yj − st1[j]) · st[j] · h′[j]
16: for i← 0 to n do
17: w[i][j]← w[i][j] + ∆
18: end for
19: b[j]← b[j] + ∆
20: end for
21: end for
22: return W,B

4.6 Example

For example, consider 3 counties with the following infection data

• x1(t) = 14155.

• x2(t) = 2792.

• x3(t) = 3074.

We then randomly assigned the weights for each county. The weight
represents the effects that one county has on another. In this example, the
effect that x1(t) has on x1(t+ 1), x2(t+ 1), x3(t+ 1) are 0.623, 0.918, 0.9652,
respectively. Similarly, the weights of x2(t) are 0.239, 0.3732, 0.645 and the
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weights of x3(t) are 0.742, 0.196, 0.24585. The intercepts assigned to x1(t+
1), x2(t+ 1), x3(t+ 1) are 0.302, 0.947, 0.3273, respectively. Figure 7a shows
how the weights work on each county.

From figure 7a, we can form the following system of linear regression
equations

x1(t+ 1) = 0.623x1(t) + 0.239x2(t) + 0.742x3(t) + 0.302

x2(t+ 1) = 0.918x1(t) + 0.3732x2(t) + 0.196x3(t) + 0.947

x3(t+ 1) = 0.9652x1(t) + 0.645x2(t) + 0.24585x3(t) + 0.3273

The weights in figure 7a are not going to produce a very accurate results
as they are generated randomly and linear regression tends to be linear
instead of logarithmic or exponential, which is the usual rate of change for
the spread of disease. In order to minimize the errors that those weight
produce, we apply the gradient descent method shown previously in section
4.4. After one iteration, we obtain the following system of linear equations

x1(t+ 1) = 0.622x1(t) + 0.238x2(t) + 0.742x3(t) + 0.301 = 15960

x2(t+ 1) = 0.917x1(t) + 0.3731x2(t) + 0.196x3(t) + 0.945 = 5158

x3(t+ 1) = 0.9651x1(t) + 0.645x2(t) + 0.24583x3(t) + 0.327 = 3848

Similarly, after two iterations, we have the following system linear re-
gression equations

x1(t+ 2) = 0.6219x1(t+ 1) + 0.239x2(t+ 1) + 0.7419x3(t+ 1) + 0.299 = 15934

x2(t+ 2) = 0.9175x1(t+ 1) + 0.373x2(t+ 1) + 0.6457x3(t+ 1) + 0.944 = 5145

x3(t+ 3) = 0.719x1(t+ 1) + 0.1963x2(t+ 1) + 0.2458x3(t+ 1) + 0.3273 = 3847

5 Prediction Experimentation in Thu Duc City

Having established the calculation system for R0 and the estimation
algorithm, we will now predict the rise of COVID-19 in Thu Duc, Ho Chi
Minh City.

Thu Duc is a municipal city, covering approximately 211.56 km2, under
the administration of Ho Chi Minh City, Vietnam. It was formed near the
end of 2020 by combining three districts together: District 2, District 9, and
Thu Duc District. It is an industrial concentrated area and comprises of
many important businesses of Ho Chi Minh City. This research, supported
by the GIS Center of the Science and Technology Department of Ho Chi
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Figure 7: Two iterations of gradient-descent. After each iteration ,the weights
as well as the infection rate changes slightly.
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3074
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(a) Representation of how
much effect infection of
one county on day t
has on infection of other
counties, including itself,
on day t+ 1.
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5148
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0.742 ↓
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0.945 ↓
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(b) After applying one
iteration of gradient de-
scent, the weights of each
county changes slightly.
In this example, all the
weights decrease slightly
after one iteration, how-
ever, infection from each
county increases.
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Minh City, aims to predict the total number of COVID-19 positive cases in
each ward of Thu Duc.

Thu Duc consists of 34 wards: An Khanh, An Loi Dong, Thao Dien, An
Phu, Binh Trung Tay, Binh Trung Dong, Cat Lai, Thu Thiem, Thanh My
Loi, Hiep Phu, Long Binh, Long Phuoc, Long Truong, Long Thanh My, Phu
Huu, Phuoc Binh, Phuoc Long A, Phuoc Long B, Tang Nhon Phu A, Tang
Nhon Phu B, Truong Thanh, Tan Phu, Binh Chieu, Binh Tho, Hiep Binh
Chanh, Hiep Binh Phuoc, Linh Chieu, Linh Dong, Linh Tay, Linh Trung,
Linh Xuan, Tam Binh, Tam Phu, and Truong Tho. In this research, An Loi
Dong and Thu Thiem were not considered because the number of COVID-19
cases in those two wards became stable before the observed period.

5.1 Data Collection

Data regarding the daily total COVID-19 positive cases in Thu Duc
was published on Thu Duc’s website: https://thuduc-covid.hcmgis.vn.
Figure 8 shows an excerpt of the website and how it works.
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Figure 8: An excerpt of Thu Duc’s GIS website https://thuduc-covid.
hcmgis.vn. On the right is the map of Thu Duc. The red dots represent
places that have COVID-19 positive residents. On the left is the data of
total COVID-19 positive cases in each ward.

5.2 Results from using R0 method

5.2.1 Results Based on Daily Prediction

Using the population density of the wards in Thu Duc, the reproductive
value R0 of each ward is initialized using equation 15 with the range [1.2, 2.7].
This range is based on the reported R0 values of COVID-19 from other
studies [21], [22]. After that, R0 is updated by replicating the activities of
residents in the ward of Thu Duc, with the current total number of cases in
each ward being the inputs, and using equation 16, 17, 18 and the interaction
coefficients α = 0.0001 and β = 0.1α. Figure 9 is the detailed comparison
between predicted data and confirmed number of COVID-19 cases from each
ward of Thu Duc on August 10, 2021. Figure 10 compares the total number
of cases in Thu Duc from July 24, 2021, the day when the city’s officials
implemented social distancing policy, to August 10, 2021, roughly a week
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before Thu Duc locked down.

Figure 9: Comparison of predicted and real data for each ward of Thu Duc
on August 10th, 2021.

Figure 10: Comparison of predicted and real data for all of Thu Duc from
July 24th to August 10th, 2021.
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5.2.2 Optimal Forecasting Period using on Markov Chain

In order to perform long-term, daily prediction as in Section 5.2.1, we
need to determine the most optimal time frame for prediction, meaning after
how many days do we need to update the data again to continue predicting.
For this reason, we implemented a simple Markov Chain to determine the
optimal time frame.

6 COVID-19 Prediction for California Counties

6.1 Data Collection

Data regarding COVID-19 cases in each county and city of California
is provided on the official website of California Health and Human Services
Open Database [23]. We study and predict the infection data from January
1, 2021 to March 31, 2021 of the following counties: Imperial, Kern, Los
Angeles, Orange, Riverside, San Bernadino, San Diego, San Luis Obispo,
Santa Barbara, Ventura, and Yuba.

Figure 11: Daily recorded cases in counties in Southern California from
1/2/2021 to 9/4/2021.
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Figure 12: Difference between old and new cases in counties in Southern
California from 1/2/2021 to 9/4/2021.

6.2 Prediction results from Gradient-Descent method

From using the gradient-descent method with 5000 iterations and applied
it on the infection data of Southern California counties, achieve the results
of

• R2 = 0.2235384078469438

• RMSE = 110.25295618541874
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Figure 13: The difference between real infection data and predicted infection
data for counties in Southern California from March 14, 2021 to March 31,
2021 when using the gradient-descent method.

Using the standard linear regression method, we were able to achieve the
following results

• R2 = −13.830695590520959

• RMSE = 368.9376798609871

7 Discussion

7.1 Result significance

This thesis aims to develops two prediction methods: a method uses R0

coefficient to prediction infection rate and the other uses gradient-descent
and multiple linear regression to determine infection. We have not compared
the two methods on the same dataset, but that is because of the nature
of the methods. R0 method is intended traveling from district to district,
and gradient-descent method is intended for bigger distance traveling, i.e.
moving from county to county. Though both methods are shown to achieve
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significant results, there are some advantages and disadvantages of each
methods that need to be discusses.

7.1.1 R0-based prediction

One of the biggest advantages of this predicting method is that it is able
to produce relatively significant results with only minimal data. The only
data necessary for the R0-based method to work is the R0 value of the dis-
ease, the population and the population density of the nodes or studied area.
Additionally, the method is able to compensate for what two popular disease
forecasting methods, mathematical modeling and agent-base modeling, lack
in.

Firstly, Mathematical modeling, while simplistic and easy to produce,
is too general and too homogeneous while diseases are much more complex
and complicated [2]. Mathematical modeling may provide a general outline
of the disease, but will be inaccurate once the behavior of disease changes
(e.g. each variant of COVID-19 has a greater R0 value than its predecessor
[24], [25]).

Secondly, Agent-based modeling (ABM) tries to simulate the hetero-
geneous behaviors of human and diseases, however, it requires too much
calculation because ABM has to keep track of every single interaction that
an agent makes [2]. Furthermore, ABM cannot incorporate real-time data
which makes it difficult to predict the spread of disease in short-term.

The R0-based method is not only simplistic and easy to produce as it only
needs the daily infection rate to perform short-term prediction for spread
of disease, it also applies the "random walk on graph" method, thus taking
into account the mobility and movements of each agent. In addition, it can
perform well with real-time data.

However, one of the main disadvantage that this method has is that it
can only perform prediction in a short period of time. As previously shown
in section 3.4, the R0-based method can only produce effective results up
to 3 days period. After 1 or 3 days, it needs to update with the real data.
Furthermore, this method also has high time complexity, which can be trou-
blesome when applied to larger dataset.

7.1.2 Gradient-Descent prediction

The gradient-descent method is created based on the interaction of each
county within a big state. Similar to the R0-based method, this method
assumes that residents will travel from one county to another and infect or
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get infected by one another. Because of this assumption, this method could
potentially be applied for contact-tracing and forecasting spread of disease
in a travel network such as a train network or an airline network.

The accuracy scores of the gradient-descent method when applied to
infection data of Southern California counties is not as good as the R0

method when applied to Thu Duc’s infection data. This is because infection
is more likely to occur and spread much faster in urban areas such as a
city, not big, expanded areas like a county [26]. Furthermore, infection data
shows only Los Angeles county, Sand Diego, San Bernardino, and Orange
county are active in spreading infection. Furthermore, as shown in figure 11
and figure 12, cases in Los Angeles county are significantly higher than cases
in other counties. The other counties either spreads infection so slowly that
infection data from those counties become insignificant. This heavily affects
the weight matrix when training the data, which leads to inaccuracies in
prediction result.

Although the prediction results are not perfect and the time complexity
is high, the gradient-descent method is found to be a better predictor for
spread of disease than the normal linear regression method as infection rate
tends to be non-linear.

7.2 Future work

A graph is one of the most important data structures in computer science
because it is incredibly useful in modeling abstractions and solving problems.
Graphs play an important role in studying social networks, transportation
networks, biological networks, etc [27].

Graph partitioning is defined as a problem in which we take a large
graph and cut its edges, thus dividing it into several small sub-graphs. In
the era of big data, large and complex graph structures are created, and
graph partitioning becomes a more important problems as it reduces the
level of complexity of such big structure and allows scientists to study the
graph more closely. In 2017, a graph partitioning framework developed by
Nazi et al. to generalize and partition big graph structure in a fast manner,
even on unseen graph [28].

On the other hand, there is proof-of-concept about graph partitioning
being applied to study the spread of disease and epidemiology [29]. In the
future, we would like to turn the United States into a big graph network,
with each state is represented by a node and any transportation connection
between the states is represented by an edge. We would like to then apply
graph partitioning, and lastly apply the 2 proposed methods to predict the
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spread of disease on a sub-graph. We would like to see how the proposed
methods perform on sub-graph structure as well as how each sub-graph
interact to one another.

8 Conclusion

We propose two methods of COVID-19 prediction method: the R0-based
method and the gradient-descent method.

Firstly, for the R0-based prediction method, we represented the studied
city as a complete, undirected graph structure with each node represents a
district. We applied the random walk on graph to simulate the mobility of
the district’s residents and how disease can transmit from one resident to
another based on the R0 value. We achieve accurate results in short-term
prediction of COVID-19 cases in Thu Duc city using the R0-based method.

Lastly, for the gradient-descent method, we used gradient-descent to de-
termine the weight matrix and utilized the current infection data to predict
future infection data. We applied this method to the counties of Southern
California and were able to achieve relative success. Our gradient-descent
method produced higher accuracy in short-term prediction than the stan-
dard linear regression method.
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