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The development of inhibitors for SARS-CoV-2 ORF8

Anna (My) Nguyen

The College of Saint Benedict and Saint John’s University

mnguyen001@csbsju.edu

Abstract

An unexpected outbreak of SARS-CoV-2 caused a worldwide pan-
demic in 2020. Many repurposed drugs were tested, but there are
currently only three FDA approved antivirals (Merck’s antiviral Mol-
nupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the
antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent
RNA polymerase. However, it is important to explore different drug
targets of SARS-CoV-2 to prepare for the virus mutations of the fu-
ture. This research looks at an alternative approach in which SARS-
CoV-2 Open Reading Frame 8 (ORF8), which has been shown to be
a rapidly evolving hypervariable gene, was chosen to be the protein of
interest. A series of computational strategies were developed to gen-
erate pharmacophores and identify lead compounds. In addition to
the lead compound identification pipeline, this thesis also presents an
automated method for generating pharmacophore models from molec-
ular docking output. The pharmacophore-based models resulted in
four potential FDA-approved compounds. This thesis focuses on the
binding activity of one of the four compounds, novobiocin. To collect
data on the binding activity, the ORF8 protein was expressed and pu-
rified. Results suggest that novobiocin binds to ORF8, and it might
be a potential inhibitor for further developments of an antiviral for
SARS-CoV-2.
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1 Background

1.1 SARS-CoV-2 and currently available antivirals

As of March of 2022, the pandemic caused by severe acute respiratory
syndrome coronavirus (SARS-CoV-2) has resulted in more than four hun-
dred and forty-six million infected cases worldwide, six million deaths, and
these numbers are still increasing.2 The substantial number of infected cases
demands an effective antiviral medication to fight the virus, but there is a
shortage of therapeutic methods for severe cases of COVID-19.

The SARS-CoV-2 genome is one of the largest among RNA viruses. It
encodes for 29 proteins: 4 structural, 16 nonstructural, and 9 accessory pro-
teins. The structural proteins include the spike, envelope, membrane, and
nucleocapsid proteins. The envelope and membrane proteins are involved in
virus packaging and assembly, and the spike protein interacts with human
ACE2 receptors on the host cell surface and helps the virus enter the cell
during viral infection.3 All the structural proteins as well as the protease
are great drug targets due to their known structures and their vital role in
virus replication.

At the time of writing, there are three antiviral pills that are approved by
the FDA to treat SARS-CoV-2 under emergency use authorization. Specif-
ically, Pfizer’s novel oral antiviral, ritonavir, targets the SARS-CoV-2 main
protease (Mpro).4 Merck’s drug, molnupiravir, aims to create multiple dele-
terious errors in the viral genome and to terminate the replication of the
virus.5 Molnupiravir achieves this by targeting the RNA-dependent RNA
polymerase (RdRp) of the virus. Similarly, remdesivir also targets the virus
polymerase RdRp.1 There are many other in-progress antiviral drugs also
targeting the SARS-CoV-2 Mpro and RdRp.1 Even though there is an avail-
able antiviral drug for SARS-CoV-2, it is crucial to expand the drug targets
of the virus. This will offer an opportunity to fight back against SARS-CoV-
2 when key structural viral targets mutate, which can potentially cause the
current antivirals to become ineffective.

1.2 Current understanding of SARS-CoV-2 ORF8 protein

The ORF8 protein is a unique accessory protein to SARS-CoV-2. It is
one of the proteins encoded by nine open reading frames (ORFs) of SARS-
CoV-2. The crystal structure of ORF8 reveals a dimer structure, with an
Ig-like (immunoglobulin) fold (Figure 1). Additionally, it also reveals the
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overall similarity of the core fold to ORF7a.6 Even though ORF8 is not nec-
essary for protein replication, it plays a role in viral infections.6 In Young et
al., the authors emphasize the correlation of ORF8 and the severity of viral
symptoms.7 The expression of ORF8 is high in infected patients, and it is
used as a marker for SARS-CoV-2 diagnostics.8 Due to the multiple func-
tionalities of ORF8 in the viral infection process, it presents as a promising
drug target. Specifically, ORF8 is suspected to weaken immune surveillance
by down-regulating the expression of class I major histocompatibility com-
plex (MHC-I).9 Additionally, ORF8 is reported to form intracellular aggre-
gates in human lung cells and weaken the host’s innate immune response.10

It is also believed that ORF8 contributes to the cytokine storm during in-
fection,11and disrupts the host cell response to infection.12 In Kee et al.,
they discuss the function of the ORF8 protein as a chromatin disruptor in
early infection. This is achieved by ORF8’s association with chromatin and
its binding to a histone-associated protein which disrupts multiple histone
post-translational modifications.12 Specifically, there is a linkage between
the high level of histone H3 and the severity of SARS-CoV-2 symptoms.13

This mechanism of mimicking critical regions of human histones is also iden-
tified in other viral proteins because histone regulation is important for cells
to control transcription and respond to viral threats.12 However, there is still
a lack of understanding of the specific working mechanism of ORF8, so this
research does help shed light on the mechanism and the general function of
ORF8. The development of ORF8’s inhibitors will aim to recover the host’s
innate immune response, relieve the cytokine storm, and decrease the viral
infection.
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Figure 1: ORF8 (7jtl) visualized in UCSF Chimera

1.3 Current understanding of pharmacophores and virtual
screening

Computer-aided drug design (CADD) has strongly contributed to iden-
tifying lead compounds and speeding up the drug discovery process. CADD
includes several methods such as cheminformatics, bioinformatics, molecu-
lar docking, artificial intelligence, structure-based pharmacophore modeling,
and virtual screening.14 Molecular docking tools are used to predict the bind-
ing orientation of the ligand with a protein in a three-dimensional structure,
which aids in the process of developing pharmacophore models.15 Pharma-
cophore models describe the three-dimensional arrangement of generalized
features such as intermolecular forces (IMFs): hydrogen bonding, hydropho-
bic interactions, and ionic interactions.16 Pharmacophore generation is cru-
cial to the process of finding similar small molecules that share the same
molecular characteristics to yield similar IMFs. The purpose of using molec-
ular docking and virtual screening is to reduce the number of compounds to
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test in vitro. These two methods take advantage of powerful computational
technologies which aid in the process of predicting the best matching pair
of a ligand to a macromolecule.14 Virtual screening has proven to be an
effective tool to discover lead compounds by searching large databases for
chemical structures.17 Pharmacophore-based virtual screening uses a set of
desired features received from molecular docking to search for the lead com-
pounds. In this thesis, both molecular docking and pharmacophore-based
virtual screening methods were utilized to search for optimal lead inhibitors
of ORF8.

1.4 Limitation of current early drug discovery pipeline

During this research, various cheminformatic tools were utilized to an-
alyze information and visualize results between different software programs
which created a significant barrier to the early drug discovery pipeline. Even
though the different software programs speed up the process of finding lead
compounds, the shifting between software programs/libraries/packages is
time consuming and might lead to a loss of information. It is crucial to
investigate the automation between different cheminformatics tools such
as molecular docking and virtual screening. The generation of a pharma-
cophore from molecular docking is usually a manual process. Consequently,
visualizing the molecular docking results and identifying intermolecular in-
teractions delays the discovery of lead compounds. Many studies work on
automated approaches from the starting target PDB compelxes,18 or ligand
poses.19,20 However, most of these tools still require complex manual steps,
difficult input file preparation, and they are not open-source tools, which
means that the program’s code is not public to modify. Herein a Python
script was created to automate the process of identifying IMF interactions
from molecular docking results. Additionally, the Python script takes input
as the molecular docking’s output and produces potential pharmacophores.

1.5 Current understanding of lead compounds

This research focuses on the potential to repurpose novobiocin as an
inhibitor of SARS-CoV-2 ORF8. Novobiocin acts as an anti-bacterial agent,
but it is also shown that it has antiviral activity in vitro and in vivo against
Zika and vaccinia viruses.21,.22 Novobiocin is also known as an inhibitor
of prokaryotic DNA gyrase and eukaryotic type II topoisomerase enzymes.
It interacts with histones which disrupt histone-histone associations which
cause histones to precipitate from both nucleoplasmin-histone and histone-
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DNA complexes.23

2 Methods and Results

2.1 Computational studies

2.1.1 Computational methods summary

Computational methods were utilized to identify lead compounds and
validate their binding in silico. The general outline of the computational
method is presented in Figure 2. POCASA24 was used to identify the bind-
ing pocket. Molecular docking was carried out using Autodock Vina,25 and
LigandScout 4.420 was used to generate structure-based pharmacophores.
Virtual screening was performed through ZINCPharmer.26 Open Babel27

was used to convert data file types from protein data bank (PDB) to pro-
tein data bank, partial charge, and atom type (PDBQT). PDBQT file type
is mostly used by Autodock Vina, and it provides more information about an
atom’s properties compare to the PDB file type. Visualization software such
as UCSF Chimera28 was also utilized. Additionally, an automated pharma-
cophore generation was written to facilitate this work, and the code is pub-
lic on GitHub https://github.com/annanguyen99/ThesisDockingAnalysis,
which is available for anyone who wants to continue to improve the code.
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Figure 2: Computational methods used to generate pharmacophores

2.1.2 Structure-based pharmacophore modeling and virtual screen-
ing

Since ORF8 has 16% sequence identity with the SARS-CoV ORF7a pro-
tein and it is also believed to originate from ORF7a, the best docking score
ligands of ORF7a from Virtual Flow were used to dock to ORF8.29 The
binding pocket in ORF8 was identified by POCASA24 and was utilized to
set up docking parameters by AutoDock Vina. The center was set at the
center of the binding pocket (center x = 51.512, center y = 22.11, center z
= 104.839), and the grid box size of (x = 38, y = 48, z = 34) was enough to
capture the whole binding pocket. All the ligands and the receptors had hy-
drogen at pH = 7.4. UCSF Chimera was used to visual docking results and
identify intermolecular force interactions. After performing semi-flexible
docking of the best score ORF7a’s ligands to ORF8 through AutoDock
Vina, three pharmacophores were generated (Table 1). In all the pharma-
cophores, the strongest interactions were conserved to maximize the inter-
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molecular forces of ligand to the receptor. However, the weaker interactions
such as hydrophobic interaction were different between all pharmacophores
to maximize the number of hit compounds.

Features Pharmacophore
1

Pharmacophore
2

Pharmacophore
3

Hydrophobic with
ILE 76A

No Yes Yes

Hydrophobic with
TYR 73A

No Yes No

Hydrogen bond-
ing acceptor with
ILE 74A (back-
bone)

Yes Yes Yes

Hydrogen bond-
ing donor with
ASP 75A

Yes Yes Yes

Hydrogen bond-
ing acceptor with
LYS 94A

Yes Yes Yes

Hydrogen bond-
ing acceptor with
LEU 95A (back-
bone)

Yes No No

Table 1: Chemical features of the three pharmacophores generated from
molecular docking.

All of the pharmacophores were used to perform virtual screening against
the ZINC drug database through ZINCPharmer.26 The result of virtual
screening is included in supplemental information (Supplemental Table
3). All hit compounds were validated by docking with AutoDock Vina
to confirm virtual binding to ORF8. Four compounds from those identified
were purchased to test for binding activity. Specifically, the four compounds
include kaempferol 7-O-glucoside which is a flavonoid,30 lercanidipine hy-
drochloride which is a calcium channel blocker,31 lohexol which is known as
a radioopaque medium,32 and novobiocin which is an anti-bacterial agent.22

As seen in Figure 3, all four compounds have relatively similar sizes and
similar functional groups which include multiple aromatics rings, and hy-
drogen bond donors and acceptors. The in silico binding analysis and ex-
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perimental binding activity of novobiocin are the focus of this thesis.

Figure 3: Structure of lohexol, kaempferol 7-O-glucoside, novobiocin, ler-
canidipine hydrochloride (computationally generated lead compounds)

2.1.3 Automated molecular docking output analysis

To speed up the process of analyzing molecular docking output and phar-
macophore generation, an automated molecular docking analysis program
was designed. The goal of this program was to speed up the process of
identifying ligand-receptor interactions and automate the process of phar-
macophore generation. The general flowchart of the program is included in
Figure 4.
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Figure 4: Python automated analysis program

The input of the program is the molecular docking output in the Protein
Data Bank, Partial Charge Atom Type (PDBQT) file type, and the recep-
tor is also in the PDBQT file. The input is required to be in the PDBQT file
because that is the file type of Autodock Vina’s molecular docking output.
The interactions between the ligands and the receptor were identified and
categorized into four different types of interactions: ion-dipole, hydrogen
bonding, dipole-dipole, and hydrophobic interactions. Due to a large num-
ber of repetitive IMF interactions from all the docking poses, only unique
interactions are kept. Unique interactions are identified by the unique re-
ceptor’s atom and ligand’s atom pair. If a similar receptor atom and ligand
pair is encountered, the pair with a smaller interaction distance is kept, and
the old pair is removed. To minimize the unique interactions even further,
only one hydrophobic interaction per receptor residue is kept. Then, com-
binations of pharmacophore attributes were randomly generated based on
the unique interactions and scored. The combination of pharmacophores is
generated by utilizing the permutation method from Python. Reducing the
number of unique interactions by eliminate repetition interactions improves
the run time of the program.

Generated pharmacophores were scored on the strength of interactions.
The scoring of each interaction was purely based on the strength of the
interactions as seen in Algorithm 1. Specifically, the strongest bond is
ion-dipole which has the highest score (4), and the weakest interaction is
hydrophobic which has the lowest score (1). The score of a pharmacophore
is equal to the total score of all the interactions in the pharmacophore. Then,
all the generated pharmacophores were sorted based on their score. The top
ten scoring pharmacophores were returned as output. The output of the
program was an xlsx (Excel) file. The program returns two outputs: an xlsx
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file that includes all the interactions from all the poses of the ligand with
the target protein, and another xlsx file that includes the generated phar-
macophores. The program was used to generate all the interactions of novo-
biocin with ORF8 and potential pharmacophores. The program identified
seventy-five interactions between novobiocin and ORF8. Additionally, the
program produced ten potential pharmacophores with three attributions for
each pharmacophore (Table 2). There are normally three to five attributes
in a pharmacophore. The number of attributes was arbitrary chosen to
achieve an ideal number of hit compounds. For this automated program,
three attributes were chosen to minimize the number of permutations and
the total run time of the program.

Algorithm 1 The scoring function of each attribute of a pharmacophore

Input: A1 . . . AN ▷ The list of pharmacophore interactions
Output: score (the total score of the pharmacophore)

function scoring function(A[ ])
score ← 0
for k ← 0 to N do

if A[N ] is ion-dipole then
score ← score+ 4

else if A[N ] is hydrogen bonding then
score ← score+ 3

else if A[N ] is dipole-dipole then
score ← score+ 2

else if A[N ] is hydrophobic then
score ← score+ 1

end if
end for
return score

end function

14



PharmacophoreID Pharmacophore’s

score

Receptor

side chain

Receptor

atom

Ligand atom Ligand atom se-

rial number

Pose ID Interaction

1 10 HIS28 NE2 H17 28 4 hydrogen bonding

GLY50 HN O10 36 8 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

2 10 HIS28 NE2 H17 28 4 hydrogen bonding

ARG52 HH1 O9 2 8 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

3 10 HIS28 NE2 H17 28 4 hydrogen bonding

GLU59 O H23 33 6 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

4 10 HIS28 NE2 H17 28 4 hydrogen bonding

CYS61 HN O7 1 2 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

5 10 HIS28 NE2 H17 28 4 hydrogen bonding

VAL62 HN O9 2 2 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

6 10 HIS28 NE2 H17 28 4 hydrogen bonding

GLU64 HN O2 22 1 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

7 10 HIS28 NE2 H17 28 4 hydrogen bonding

SER67 HN3 O6 26 1 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

8 10 HIS28 NE2 H17 28 4 hydrogen bonding

ILE71 N H17 28 7 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

9 10 HIS28 NE2 H17 28 4 hydrogen bonding

TYR73 N H23 33 7 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

10 10 HIS28 NE2 H17 28 4 hydrogen bonding

ILE74 N H23 33 1 hydrogen bonding

ASP75 OD1 H30 50 9 neg ion - pos par

Table 2: Output of the Python automated program with novobiocin and
ORF8. The receptor side chain includes the IUPAC abbreviation of amino
acid side chains33 and the residue ID number. The ligand’s atom includes
the IUPAC abbreviation of the atom and its ID number.

The interactions in the generated pharmacophore can be verified by vi-
sualizing each ligand pose in UCSF Chimera. For example, the first pharma-
cophore includes three interactions: nitrogen (NE2) from histidine (HIS28)
hydrogen bonding with hydrogen (H17) of novobiocin (pose 4), nitrogen
(NH) from glycine (GLY50) hydrogen bonding with oxygen (O10) (pose 8),
and oxygen (OD1) from aspartic acid (APS75) ion-dipole interactions with
hydrogen (H30) (Table 2). The success in visualizing three interactions
of the proposed pharmacophore 1 in UCSF Chimera confirms the ability
of the program to identify IMF interactions (Figure 5). Additionally, the
first pharmacophore is also visualized in ZINCPharmer (Figure 6). All
the pharmacophores produced from the automated Python program can
be used to perform virtual screening with free computational tools such as
ZINCPharmer.

15



(a) Interaction of ligand atom H17 to receptor residue HIS28

(b) Interaction of ligand atom O10 to receptor residue GLY50

(c) Interaction of ligand atom H30 to receptor residue ASP75

Figure 5: Interactions of pharmacophore 1 are visualized in UCSF Chimera
(the receptor carbon chain is colored in yellow, and the ligand carbon chain
is colored in blue)
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Figure 6: Visualization of the first pharmacophore in ZINCPharmer. ORF8
is colored in gray. Hydrogen donor atom (H17 atom) is colored white, hy-
drogen acceptor (O10 atom) is colored yellow, and partial positive dipole
atom (H30) is colored dark blue)
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2.2 In vitro studies

The in silico binding results were validated by in vitro binding experi-
ments.

2.2.1 Protein expression and purification

Protein expression and purification were carried out following a proce-
dure similar to Flower et al.6 The gene for wild-type SARS-CoV-2 ORF8
in DH5-α cells was obtained from Addgene. The plasmid was isolated and
transferred to RosettaTM (DE3) pLysS competent cells. A single colony
was selected and expressed overnight at 37oC in 15 mL of Luria broth (LB)
containing ampicillin. The next day, the overnight solution was added into
235 mL of similar LB solution. When the OD600 was approximately at 1
and 1mM of IPTG was added. The solution was moved to room temper-
ate and grown overnight at 20oC. The cells were pelleted and resuspended
in lysis buffer (50 mM Tris pH 8.0, 2 mM EDTA, 100 mM NaCl, 1 mM
DTT, 0.5% Triton-X100) and lysed by sonication. Then, the cells were clar-
ified by centrifugation for 20 minutes at 5oC and at 10000 rpm. The cells
were resuspended in lysis buffer, sonicated, and centrifuged again as above.
The pellet was resuspended in solubilization buffer (100 mM Tris pH 8.5,
6M guanidine hydrochloride, 10 mM reduced glutathione) and incubated at
20oC with rocking for one hour. The pellet was centrifuged again for 20
minutes at 5oC and at 10000 rpm to remove insoluble material. The super-
natant was applied to a nickel-charged IMAC (immobilized metal affinity
chromatography) column which was preequilibrated in solubilization buffer.
The resin was washed with solubilization buffer with a pump at the rate of
1 mL/minute. The resin and the supernatant were incubated at 4oC with
rocking overnight. The bound His-tagged ORF8 was eluted with elution
buffer (100 mM Tris pH 8.5, 6M guanidine hydrochloride, 10 mM reduced
glutathione, 350 mM imidazole) with a pump at the rate of 1 mL/ minute.
The elution solution was added to the refolding buffer dropwise at the rate
of 1 mL/minute for a two-hour period with stirring. Then, the refolding
solution was incubated with stirring at 4oC overnight.

2.2.2 Protein size, purity, aggregation state

SDS-PAGE

The refolded protein was concentrated and run on SDS-PAGE. ORF8
protein molecular weight is 12,212 Da, cytochrome c ’s molecular weight is
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12,327 Da (cytochrome c was used as protein markers) Figure 7.

Figure 7: SDS-PAGE of ORF8 (12,212 Da) and marker cytochrome c (12,327
Da)

Size exclusion chromatography

Size exclusion chromatography was performed to confirm that the pro-
tein was not aggregated. The size exclusion chromatography was carried
out with 5 ml of Superdex 75 resin. The flow rate was 0.3 mL/ minute.
Carbonic anhydrase was used as a molecular weight marker (carbonic anhy-
drase’s molecular weight is 29,200 Da). The molecular weight of a monomer
of ORF8 protein is 12,212 Da, so its aggregation would be 24,424 Da which
is around the molecular weight of carbonic anhydrase. Fractions of 200 µL
of carbonic anhydrase were collected in a 96-well plate and absorbance at
280 nm was collected using Molecular Devices Spectramax M2. Similarly,
fractions of 200 µL of ORF8 were collected in a 96-well plate and excited
at 295 nm and the fluorescence emission at 332 nm was collected using the
same instrument.

The absorbance for carbonic anhydrase showed up at 600 µL, and the
absorbance for ORF8 showed up at 1,200 µL. This indicates that the reten-
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tion time of ORF8 was longer than the retention time of carbonic anhydrase
(Figure 8). Since the size exclusion chromatography separates molecule by
size, the data indicates that ORF8 has a smaller size than carbonic anhy-
drase. This confirms the prediction that ORF8 is a monomer.

Figure 8: Size exclusion chromatography of ORF8. Absorbance of carbonic
anhydrase excited at 280 nm versus its retention volume from size exclusion
chromatography, and the fluorescence emission of ORF8 at 332 nm which
was excited at 295 nm versus its retention volume from size exclusion chro-
matography

2.2.3 Binding activity assay for Novobiocin

Ligand preparation. Novobiocin was purchased from Sigma Aldrich.
It was dissolved in H2O (pH = 7.0). Different concentration of novobiocin
were prepared (1.29 mM, 0.796 mM, 0.573 mM, 0.369 mM, 0.215 mM, 0.117
mM).

In vitro binding assay. In a 96-well plate, 12 µL of the ligand solu-
tion was added to 120 µL of ORF8 (1.17 × 10−5 M in its refolding buffer).
The solution was excited at 295 nm and fluorescence absorbance was col-
lected from 305 nm to 500 nm using Molecular Devices Spectramax M2.
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The fluorescence emission of tryptophan was recorded.

Dissociation constant (Kd) determination. The dissociation con-
stant (Kd) was determined through plotting a double reciprocal plot derived
from the Benesi-Hildebrand relationship.34 F is the fluorescence intensity at
some particular ligand concentration. The value ∆F is (F – Fo) where
Fo is the fluorescence intensity in the absence of ligand. The equation
1

∆F = 1
(F∞−Fo)∗Kd∗[L] +

1
F∞−Fo

was used to determine Kd. The intercept

on the x-axis is −1
Kd

.

The fluorescence emission of the one tryptophan amino acid in ORF8
protein decreased when the concentration of novobiocin increased (Figure
9). There is only one tryptophan amino acid in ORF8 which is located in
the binding pocket, so the decrease in fluorescence emission could indicate
that either the ligand bound directly to the tryptophan or that there was
a conformational change by binding. Additionally, the λmax of emission
(332 nm) slightly shifted to longer wavelength and lower intensity as the
concentration of the novobiocin increases. Both of the observations could
indicate that there is an increase in polarity around the ORF8 tryptophan.
The dissociation constant (Kd) of novobiocin was calculated to be 91 µM ±
26 µM based on the double reciprocal plot (Figure 9).
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(a) ORF8 fluorescence with increasing novobiocin concentration (concen-
tration of novobiocin from top to bottom: no ligand, 1.95 x 10e-5 M, 3.35 x
10e-5 M, 5.21 x 10e-5 M, 7.23 x 10e-5 M, 1.2 x 10e-4 M). The concentration
of ORF8 was 1.17 x 10-5 M

(b) The double reciprocal plot of 1/ F and 1/[L]

Figure 9: ORF8 fluorescence and Kd determination
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3 Discussion and Conclusions

In the process of COVID-19 drug discovery, all the structural proteins
have gained attention as novel antiviral or vaccine targets.29 This thesis fo-
cuses on an unpopular SARS-CoV-2 protein, ORF8. The research had two
main goals which were to develop an automated program to generate a phar-
macophore from molecular docking results and to utilize the combination of
computational and in vitro techniques to identify potential SARS-CoV-2
ORF8 inhibitors.

Firstly, the automated program offers the ability to automate the process
of identifying IMF interactions from Autodock Vina output. This feature
has not been included in any popular docking visualization tools such as
UCSF Chimera or LigandScout. This new program will provide chemists
with a tool to speed up the process of analyzing docking visualization and
the ability to evaluate a large number of molecular docking outputs. In this
thesis, the program was used to analyze the molecular docking output of
ORF8’s potential inhibitor, novobiocin, and generate ten pharmacophores
from the molecular docking outputs. In future studies, this program could
be expanded to generate pharmacophores from multiple molecular docking
output. The program could also incorporate a multi-threaded implementa-
tion to score the pharmacophore, and this could improve the run time of
the program. Additionally, this feature could potentially be incorporated
into molecular docking visualization tools to aid in the process of generating
pharmacophores.

Secondly, this thesis presented a potential inhibitor for the SARS-CoV-2
ORF8 protein, novobiocin. Novobiocin was one of the hit compounds from
the computational studies, and its binding activity was validated by an in
vitro binding assay. Novobiocin could act as a great start to perform lead
optimization to improve its binding to ORF8 protein. The dissociation con-
stant, 91 mM ± 26 mM, only shows there is interaction between novobiocin
and ORF8, but it does not indicate tight binding. Modification of the func-
tional groups of novobiocin to improve the IMF interactions could be the
potential next step to strengthen the inhibition ability of novobiocin. The
binding of novobiocin to ORF8 in vitro is interesting considering its mech-
anism of binding to histone or histone-like molecules. A recent study shows
that SARS-CoV-2 ORF8 functions as a histone mimic of the ARKS motif in
histone 3.12 Histone proteins are essential for the cell to control gene expres-
sion and they achieve that by wrapping DNA into complex structures which
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are modified by post-translation modifications. By mimicking histones, the
virus may disrupt the host cell’s regulation of gene expression and weaken
the cell response to infection.12 Aiming to repurpose novobiocin to target
ORF8 could potentially block its binding to histone-associated proteins and
improve host cell virus regulation. In future studies, in vivo test could be
performed to test the ability of novobiocin to cross cell membrane as well
as its cytotoxicity.

4 Supplemental information

Pharmacophore 1 Pharmacophore 2 Pharmacophore 3

ZINC40368514 ZINC14879999 ZINC03830945

ZINC04096097 ZINC03830407

ZINC05742780 ZINC03830396

ZINC03977952 ZINC03830426

ZINC04262249 ZINC03977816

ZINC38664850 ZINC03830489

ZINC38664850 ZINC03830633

ZINC38664850 ZINC03830429

ZINC36046230 ZINC03830430

ZINC04348951 ZINC14879999

ZINC12494320 ZINC03831159

ZINC19685788

ZINC03830946

ZINC03831506

ZINC0383043

Table 3: The virtual screening hits and the hit compounds ZINC ID
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