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Abstract 

Rechargeable lithium-ion batteries (LIBs) are widely used in consumer electronics and 

electric vehicles. In terms of environmental restrictions and circular economy, proper 

treatment of spent LIBs is of great significance for achieving sustainable development. 

mailto:tangyy@sustech.edu.cn


In this study, organic p-toluene sulfonic acid (PTSA) was employed to recycle valuable 

Li and Co elements from the spent LIBs for production of battery raw materials. 

Operation parameters such as PTSA concentration, hydrogen peroxide (H2O2) 

concentration, solid-to-liquid ratio, leaching temperature and time, were systematically 

investigated. Under the optimal conditions (0.9 vol% H2O2, 1.5 mol L-1 PTSA, 30 g L-

1 solid-to-liquid ratio, 80 °C, and 60 min), while the leaching efficiencies of spent 

LiCoO2 for Li and Co was 95 and 93% respectively, the leaching efficiencies of 

commercial LiCoO2 was nearly quantitative. In addition, the selective precipitation of 

Co-rich compounds in cooled leachate allowed an effective separation of Co from the 

mixture. The high recovery yield of Co3O4 and Li2CO3 demonstrated the great potential 

of the PTSA-assisted leaching method in metal recovery of the spent LIBs for practical 

applications. Overall, this proposed recovery process is simple, efficient, and 

environmentally friendly and is of vital importance for rational treatment of spent LIBs. 

 

Keywords: Lithium cobalt oxide; Recovery; p-toluene sulfonic acid; Spent lithium-ion 

battery; Kinetics; Leaching 

 

1. Introduction 

 

Rechargeable lithium-ion batteries (LIBs) can be found in almost every corner of our 

daily lives, owing to their excellent electrochemical performances. With the wide 

application of rechargeable LIBs, massive amounts spent LIBs have been generated, 



thus causing significant environmental pollution and poses serious health risks on 

account of their toxic contents, i.e., toxic electrolytes, heavy metals, plastic diaphragms, 

etc (Xiao et al., 2020; Zhang et al., 2018). It was previously predicted that the 

worldwide generation of spent LIBs would reach 2 million metric tons per year by 2030 

(Jacoby, 2019). There is no doubt that the large amounts of spent LIBs would cause 

immeasurable damages to the surrounding environment, if they were not treated 

properly. Furthermore, valuable lithium (Li) and cobalt (Co) resources are insufficient 

in China, due to the limitations of mining difficulties and other factors. As the circular 

economy of LIBs was widely recognized, recycling strategies with high feasibility and 

efficiency have been extensively investigated.  

 

So far, the main recovery strategies of lithium-ion battery wastes are based on 

pyrometallurgy, hydrometallurgy and biohydrometallurgy (Golmohammadzadeh et al., 

2018) processes. The pyrometallurgy process is simple, but has an obvious 

disadvantage. Particularly, the pyrometallurgy process requires relatively high 

temperatures (500 -1000 °C), indicating a large energy consumption and the generation 

of excessive amounts of toxic gases during the recycling process. Besides the 

generation of environmental pollutants, metal containing compounds recovered from 

the pyrometallurgy process were often low-grade compounds, which requires further 

processing and purifications. Obviously, this pyrometallurgy process could result in 

high cost and operation difficulty (Garcia et al., 2008; Joulié et al., 2017; Xu et al., 

2008). The main step for the biohydrometallurgy process is to utilize the biological 



interactions between battery materials and microorganisms to reduce and reuse metals. 

Again, the biohydrometallurgy process has its own obvious disadvantages. The 

technical challenges include microbial cultivation and quantity control, bacterial 

pollution, difficulty in the operation of reaction processes as well as lengthy treatment 

times. Therefore, such strategy needs to be further improved for potential practical 

applications (Nayaka et al., 2016; Zhang et al., 2014; Zhao et al., 2008).  

 

In contrast, the hydrometallurgy treatment of spent battery materials has multiple 

advantages, including high feasibility, appropriate reaction speed, environmental 

protection (no air pollution), less energy consumption, and high purity of recovered 

metal containing compounds (Garcia et al., 2008; Ku et al., 2016; Sun and Qiu, 2011; 

Sun et al., 2017). Previous studies have reported many different acids, alkalis and 

reducing agents to leach such valuable metals (Wang et al., 2016). Strong acids, such 

as HNO3 (Lee and Rhee, 2003), H2SO4 (Yang et al., 2017) and HCl (Guzolu et al., 

2017), were viewed as representatives of inorganic acid leaching agents, but can bring 

environmental problems due to wastewater production, soil pollution, as well as the 

emission of chlorine and sulfur and nitrogen oxides (Golmohammadzadeh et al., 2017; 

Gupta et al., 2012; Li et al., 2013). To address the above concerns, considerable 

attention has been brought to organic acid-assisted leaching technologies. It has been 

reported that utilizing organic acids as leaching agents could reduce the degree of 

corrosion of equipment, minimize harm to operators and achieve higher metal recovery 

selectivity (Chen et al., 2015; Horeh et al., 2016; Li et al., 2013; Zafar and Ashraf, 2007). 



Besides, the organic reagents do not produce harmful gases during the leaching 

processes (He et al., 2016; Li et al., 2018). However, there are indeed some drawbacks 

in using organic acids for metal leaching from cathode materials, among which the 

relatively low leaching efficiency is a critical one. Typically, the leaching assisted by 

organic acids had low efficiencies caused by their weak acidity, such as tartaric acid 

(He et al., 2016), aspartic acid (Li et al., 2013), succinic acid (Li et al., 2015), citric acid 

(Li et al., 2010b), malic acid (Li et al., 2013), formic acid (Gao et al., 2017), ascorbic 

acid (Li et al., 2012), and oxalic acid (Zeng et al., 2015), etc. As a result, a low solid-

to-liquid ratio, which was typically lower than 20 g L-1, was usually adopted for 

effective leaching (Li et al., 2013; Li et al., 2015). Moreover, the hydrometallurgical 

process was complicated, because of a series of separation and purification processes 

of Co and Li, which would also lead to product yield loss and extra consumption of 

chemicals. Therefore, continuous efforts need to be made to solve the technical 

challenges, including seeking for more effective organic acids and simplifying the 

subsequent procedures for the separation and recovery of Co and Li. p-toluene sulfonic 

acid (PTSA) is a strong organic acid (pKa = -2.8) and has a good solubility in water (67 

g/100 mL). PTSA has been reported as an economical and sustainable agent to dissolve 

wood lignin (Chen et al., 2017) and a high leaching efficiency (95%) was found when 

using PTSA to leach LiFePO4 (Yadav et al., 2020). Therefore, it is hypothesized that 

PTSA can be applied as a cost-effective and efficient organic acid to recycle Li and Co 

from the spent LiCoO2 cathode materials. 

 



In this study, effective recovery of Li and Co from LiCoO2 powder was conducted to 

address the existing technical challenges by using hydrometallurgical leaching with 

PTSA, followed by pyrometallurgical treatment. By a combination of PTSA and 

hydrogen peroxide (H2O2), the effects of operation parameters, including time, 

temperature, concentrations of PTSA and H2O2, solid-to-liquid ratio, were 

systematically investigated and optimized. Moreover, the leaching kinetics were 

studied by observing the leaching of Li and Co from the spent LIBs to further explicate 

the metal leaching mechanisms. Then, through a simply cooling process of the obtained 

leachate, the Co-containing compounds precipitated as a powder while the Li-

containing compounds remained dissolved in the supernatant. Finally, the Li and Co 

were successfully separated and recovered by the formation of Co3O4 and Li2CO3 after 

follow-up treatments. 

 

2. Materials and Methods 

 

2.1. Sample preparation 

 

Two types of LIBs samples were used in this study: the first one being the powder 

obtained from the spent LIBs (Samsang company) and the second one being 

commercial LiCoO2 (KeHeng®). The LiCoO2 powder from the spent LIBs was 

prepared according to the following steps. First, the spent LIBs were immersed in   

Na2SO4 solution (10 w/v%) for 24 h to fully discharge. Then, the spent LIBs were 



cleaned with deionized water and dried for 12 h in an oven at 80 ℃ to completely 

discharge the remaining energy. After that, nozzle pliers were used to disassemble the 

battery into parts (e.g. aluminum plastic packaging film, insulator, diaphragm, anode 

and cathode etc.). The packaging film, diaphragm and negative electrode were 

classified and recycled, and the LiCoO2 cathode was cut into 2×2 cm pieces for 

stripping of active materials. The cathode materials obtained in the above steps were 

composed of aluminum foil and coating material, wherein the coating material was 

mainly composed of LiCoO2, polyvinylidene fluoride (PVDF) binder and electrolyte. 

To obtain the spent LiCoO2 powder, the electrode was placed in muffle furnace and 

calcined at 550 ℃ for 2 h. As a result, the PVDF and electrolyte were decomposed and 

removed, thus allowing the easy separation of LiCoO2 powder and aluminum foil. 

Finally, the spent LiCoO2 sample was manually ground into smaller particles (5-25 µm), 

which was beneficial for the subsequent organic acid-assisted leaching process. 

Additionally, p-toluene sulfonic acid (98.5%, Aladdin®) was used as the leaching agent, 

and hydrogen peroxide (35%, LingFeng®) was employed as the reducing agent. 

Succinic acid (99.5%, Aladdin®), citric acid (99.5%, Aladdin®), malonic acid (99.5%, 

Aladdin®), and oxalic acid (98%, Aladdin®) were also used for leaching performance 

comparison. For elemental quantification, nitric acid (65%, LingFeng®) and 

hydrochloric acid (30%, LingFeng®) were used for sample digestion to measure the 

content of Li and Co in the spent and commercial LiCoO2 samples. All solutions were 

prepared by deionized water with specific concentrations and all these chemicals were 

of analytical grade. 



2.2. Leaching experiments 

The leaching experiments were performed in 250 mL three-neck round-bottom flasks . 

A glass condenser was connected to one of the three ports to minimize water 

evaporation during the leaching experiments. The flask was placed in a heating mantle, 

equipped with magnetic stirring (800 rpm) and a temperature sensor. An appropriate 

amount of LiCoO2 powder was carefully dispersed in the acidic solution containing 

PTSA and H2O2 to initiate the leaching experiments. For liquid sampling, about 1 mL 

of leaching solution was sampled regularly with a pipette, followed by syringe filtration 

for solid-liquid separation. The optimization of leaching conditions was based on 

operation parameters, including PTSA concentration, H2O2 concentration, leaching 

temperature and solid-to-liquid ratio. The effects of the above operation parameters 

were systematically investigated for a leaching period of 150 min. To determine the 

optimal PTSA concentration for leaching, variables such as temperature, solid-to-liquid 

ratio and the concentration of H2O2 were held constant at 80 ℃, 30 g L−1 and 0.9 vol% 

respectively. Next, the optimal H2O2 concentration was determined by holding the 

concentration of PTSA at 1.5 mol L-1, whilst holding other variables constant as before. 

Analogously, the solid-to-liquid ratio was optimized by altering the ratio from 5 to 60 

g L-1 and the leaching temperature was optimized in the range of 25 to 100 ℃. 

Optimized operation parameters were as follows: H2O2 concentration (0.9 vol%), PTSA 

concentration (1.5 mol L-1) and solid-liquid ratio (30 g L-1). For comparison, the 

leaching performance of other organic acids (oxalic acid, malonic acid, citric acid, 

succinic acid) were also investigated as references. (Leaching conditions: 0.9 vol% 



H2O2, 1.5 mol L-1 organic acid concentration, 30 g L-1 solid-to-liquid ratio, 80 °C, and 

150 min). 

 

2.3. Separation and recovery of Li and Co 

 

The acid leaching was carried out under the optimal conditions obtained from the 

experimental procedures above to obtain the leachate. Then, a direct crystallization 

process was involved in this study to achieve effective Li and Co separation. After 1 h 

of acid leaching, the solid-liquid mixture in the three-neck flask was immediately 

separated by a filter paper, and the hot leachate (about 80 ℃) was directly placed in a 

4 ℃ refrigerator for 12 h. Then, a pink precipitate was obtained via filtration. After that, 

the crystalline samples were dried at 60 ℃ for 48 h, and weighed for the calculation of 

crystallization rate. The pink solid was heated to 800 ℃ under an oxygen atmosphere 

for 3 h, with an obvious color change of the solid from pink to black. The supernatant 

from filtration was allowed to cool to 60°C and then saturated NaOH solution was 

added to remove the remaining Co from the solution by precipitation. Next, saturated 

Na2CO3 solution (90°C) was added for the subsequent precipitation of Li2CO3. Finally, 

pure solid-phase Li2CO3 was obtained and purified with alcohol and hot water. For 

comparison, the hot leachate was also treated at room temperature for direct 

crystallization. 

 

2.4. Analytical procedure and material characterization 



 

The concentrations of metal elements (Li, Co, Ni, Mn, Fe, Cu) were measured by ICP-

OES (PerkinElmer Optima 3300 DV). The leaching efficiency (X) was calculated by 

the equation as below:             

𝑿𝑿 =  𝑪𝑪𝟎𝟎𝑽𝑽𝟎𝟎
𝒎𝒎𝒎𝒎%

∗ 𝟏𝟏𝟎𝟎𝟎𝟎%                         (1) 

where X represents the leaching efficiency; C0 as the concentration of Co or Li in the 

leachate (g L-1), V0 as the volume of the leaching solution (L), m as the mass of initial 

LiCoO2 (g) and w% as the percent by mass of Co or Li in the LiCoO2 samples.  

 

According to ICP-OES analyses, the content of LiCoO2 samples powder was shown in 

Table S1. The crystal phases of all powder samples were characterized by an X-ray 

diffractometer (XRD, Rigaku) with high-intensity Cu-Kα radiation (45kV 200mA). The 

surface morphologies were investigated by scanning electron microscopy (SEM, 

TESCAM MIRA3) analysis. Fig.S1 shows the XRD pattern and SEM image of the 

spent LiCoO2 sample. The major 2θ diffraction peaks at 19.0, 37.4, 38.4 and 45.3° 

correspond well to the crystal planes of (003), (101), (006) and (104), respectively. 

Therefore, the crystal phase was identified as LiCoO2 (PDF 50–0653). Meanwhile, two 

2θ diffraction peaks located at 31.2 and 36.8° matched the crystal planes of Co3O4 (220) 

and (311), implying that the powder obtained from the spent LIBs contained a small 

amount of Co3O4. 

 

3. Results and Discussion 



 

3.1. Optimization of leaching operation parameters  

 

Figs.1a and b illustrate the effect of PTSA concentration on Li and Co leaching 

efficiencies, respectively. A positive correlation was observed between the acid 

concentration and the leaching efficiencies, suggesting that the elevated acid 

concentration from 0.5 to 2.0 mol L-1 could  improve leaching efficiency from 52 to 

100% for Li and 50 to 99% for Co. The improvement in the leaching performance was 

resulted from the higher concentration of hydrogen ions (H+) provided by the increased 

PTSA concentration. Moreover, the Li and Co leaching efficiency had already reached 

100 and 99%, when the PTSA concentration was 1.5 mol L-1. The above results 

confirmed that PTSA of 1.5 mol L-1 should be considered as the optimal acid 

concentration for LiCoO2 leaching. Thus, the PTSA concentration of 1.5 mol L-1 was 

used as the optimal condition to investigate the effects of other operation parameters in 

the subsequent experiments. 

 

Owing to the strong chemical bonds between Co and O in the lattice structure of LiCoO2, 

proper use of reducing agents can significantly improve the leaching efficiency 

(Meshram et al., 2014; Pinna et al., 2017). Meanwhile, due to the better solubility of 

Co2+ over Co3+, the participation of H2O2 as reducing agent could probably promote the 

effective leaching of Li and Co. Thus, H2O2 was viewed as one of the most commonly-

used reducing agents in the effective recycling of Li and Co from spent LIBs 



(Golmohammadzadeh et al., 2018). Furthermore, applying H2O2 as reducing agent in 

the leaching system would introduce no impurities (Setiawan et al., 2019). Chemical 

reduction was the major reaction mechanism involved in this process, implying the 

reduction of Co3+ in the lattice structure of LiCoO2 to Co2+ with good solubility in the 

solution. The oxidation-reduction potential of H2O2 and Co3+ can be expressed as below: 

 

H2O2 + 2H+ + 2e- → 2H2O E0 = +1.78V          (2) 

Co3+ + e- → Co2+   E0 = +1.8V          (3) 

 

By comparing the potential values given in Eq. (2) and Eq. (3), it was inferred that H2O2 

could be employed to reduce Co3+ to Co2+. However, based on the Nernst equation, 

when the H2O2 amount exceeded the required amount, rather than a reducing agent, it 

would act as an oxidant, or be potentially decomposed into H2O and O2 

(Golmohammadzadeh et al., 2017; Skoog, 1982). Therefore, the optimization of H2O2 

concentration should be determined via the leaching experiments with various H2O2 

concentrations. From Figs.1c and d, it could be seen that when the concentration of 

H2O2 was increased from 0 to 0.9 vol%, the leaching efficiencies correspondingly 

increased from 83 to 100% and 64 to 99% for Li and Co, respectively. However, further 

increase of the H2O2 concentration could not further improve the leaching efficiency. 

Similar phenomenon was also observed in previous studies, when citric acid was used 

as leaching reagent, the optimal concentration of H2O2 was determined to be 1.0 vol% 

(Li et al., 2010b). Therefore, H2O2 concentration of 0.9 vol% was chosen to be the 



optimized parameter. It should be mentioned that the possible leaching reaction 

involved in the leaching process was suggested as follows: 

 

2LiCoO2 + 6C7H8O3S + H2O2 → 2C7H7O3SLi + 2(C7H7O3S)2Co + 4H2O+ O2(g) (4) 

 

In addition, as shown in Figs.1e and f, the effects of solid-to-liquid ratio on PTSA’s 

leaching efficiency were studied. The Li leaching efficiency was maintained at 100% 

when the solid-to-liquid ratio was increased from 5 to 45 g L-1, but such a value was 

substantially decreased to 85%, when the solid-to-liquid ratio was controlled at 60 g L-

1. For Co element, the leaching efficiency reached 99%, when the solid-to-liquid ratio 

was increased from 5 to 30 g L-1. The leaching performance was also decreased to 85 

and 74%, when the solid-to-liquid ratios were controlled at 45 and 60 g L-1, respectively. 

Therefore, solid-to-liquid ratio of 30 g L-1 was considered as the optimal condition for 

the leaching LiCoO2. 

 

Furthermore, the leaching performances of Li and Co were examined with PTSA in the 

temperature range of 25 to 100 ℃. As shown in Figs. 1g and h, when the temperature 

was increased from 25 to 80 ℃, the leaching efficiency of Li was correspondingly 

increased from 95 to 100%, and Co efficiency increased from 90 to 99%. Previous 

studies suggested that the dissociation of organic acid was endothermic in nature (Li et 

al., 2013; Li et al., 2012), and the leaching of Li and Co from LiCoO2 was also 

endothermic (Li et al., 2013). Thus, the increase of leaching temperature could facilitate 



the metal extraction by the dissociated acid. Although the increase of the leaching 

temperature from 80 to 100 ℃ could slightly improve the leaching efficiencies, from 

the viewpoint of energy conservation, the optimal temperature condition was 

determined to be 80 ℃ in this study. 

 



 

Fig. 1 The effect of (a, b) PTSA concentration, (c, d) H2O2 concentration, (e, f) solid-

to-liquid ratio, and (g, h) temperature on leaching efficiencies of Li and Co. 



3.2. Leaching performance comparison  

 

Table. 1 Comparison of the leaching performance of PTSA with the other previously 

reported organic acids for LiCoO2 cathode materials. 

No

. 

Acid name H2O2 

Concentration 

(vol.%) 

Acid 

Concentration 

(mol L-1) 

Solid-to-

liquid 

ratio (g L-

1) 

Temperature 

(°C) 

Leaching 

time (min) 

Leaching 

efficiency 

(%) 

References 

1# DL-malic acid 

(C4H5O6) 

2.00 1.5 20 90 40 Co: 93 
Li: 94 

(Li et al., 2010a) 

2# Citric acid 

(C6H8O7) 

1.25 2.0 30 60 120 Co: 81 
Li: ~92 

(Golmohammadza

deh et al., 2017) 

3# Oxalic acid 

(C2H2O4) 

N.A. 1.0 15 95 150 Co: 98 
Li: 97 

(Zeng et al., 2015) 

4# Acetoacetic acid 

(C4H6O4) 

1.50 1.5 10 70 60 Co: 98 
Li: 99 

(Liu et al., 2019) 

5# Succinic acid 

(CH2)2(CO2H)2 

4.00 1.5 15 70 40 Co: 100 
Li: 98 

(Li et al., 2015) 

6# Aspartic acid 

(C4H7NO4) 

4.00 1.5 10 90 120 Co: ~60 
Li: ~60 

(Li et al., 2013) 

7# PTSA 0.90 1.5 30 80 60 Co: ~99 
Li: ~100 

This work 

 

 

Fig. 2 Comparison of PTSA leaching performance for (a) Li and (b) Co with malonic 

acid, succinic acid, citric acid and oxalic acid.  

 



Table 1 summarized the previously reported results of the organic acid-assisted LiCoO2 

leaching in published studies, which confirmed the superior leaching performance of 

PTSA. For example, the requirement of H2O2 concentration by the PTSA leaching was 

only 0.9 vol%, which was lower than previous studies using succinic acid (4 vol%) and 

aspartic acid (4 vol%). Moreover, the optimal solid-to-liquid ratio for effective leaching 

with PTSA was 30 g L-1, which was much higher than previous studies using DL-malic 

acid (20 g L-1), aspartic acid (10 g L-1) and oxalic acid (15 g L-1). Furthermore, to 

highlight the superior leaching performance of PTSA, a series of organic acids reported 

in previous studies, including oxalic acid, citric acid, succinic acid and malonic acid, 

were employed to compare leaching performance with PTSA. The experiment was 

conducted with acid concentration of 1.5 mol L-1, a solid-to-liquid ratio of 30 g L-1, 

H2O2 concentration of 0.9 vol%, at 80 ℃ and for 150 min. As shown in Figs.2a and b, 

when PTSA was applied to leach LiCoO2, the leaching efficiencies of Li and Co reached 

100 and 99%, respectively. In addition, the leaching efficiency of 90% could be 

achieved for both Li and Co with PTSA, even within a very short leaching time (5 min), 

while the efficiencies were generally lower than 72% by using the other acids 

(Figs.2a&b). Therefore, it can be concluded that a higher leaching performance was 

observed by using PTSA as the leaching agent, in terms of leaching rate and leaching 

efficiency. From the comparison of the pKa value (-2.8 for PTSA while 1.24-4.2 for 

other organic acids), it can be concluded that the high acidity of leaching agents played 

a crucial role in the leaching of LiCoO2. Strong acidity of PTSA originated from the 

sulfonyl group (-SO₃H) of its molecular, which are more likely to ionize in aqueous 



solution to produce hydrogen ions (H+) than the functional groups from other leaching 

agents, such as carboxyl group (-COOH) from malonic acid, succinic acid, oxalic acid 

and citric acid (Serjeant and Dempsey, 1979).  

 

3.3. Kinetics study based on the leaching of spent LiCoO2 

 

 

Fig. 3 Application of PTSA for leaching of spent LiCoO2 at different leaching 

temperatures.  

 

To confirm the feasibility of PTSA for practical application, the PTSA was further used 

to leach LiCoO2 samples from spent LIBs with leaching temperatures ranging from 25 

to 80 ℃. The concentration of H2O2 was controlled at 0.9 vol%, the solid-to-liquid ratio 

was kept at 30 g L-1, and the PTSA concentration was maintained at 1.5 mol L-1 for this 

experiment. As illustrated in Figs. 3a and b, when leaching temperature was 80 ℃,   

the leaching efficiencies of 95 and 93% can be achieved for Li and Co, respectively. 

Then, the leaching data obtained after this experiment were employed for the 

investigation of leaching kinetics. Previous studies have implied that the leaching 



kinetics of LiCoO2 were composed of two stages (Jha et al., 2013; Yang et al., 2014). 

Mathematical fitting of shrinking core model was adopted to determine the leaching 

mechanism of spent LiCoO2 (Levenspiel, 1998), detailed equations were given as 

following:  

 

Chemical reaction control:      𝟏𝟏 − (𝟏𝟏 − 𝑿𝑿)
𝟏𝟏
𝟑𝟑 = 𝒌𝒌𝒌𝒌        (5) 

Diffusion control:          𝟏𝟏 − 𝟐𝟐
𝟑𝟑
𝑿𝑿 − (𝟏𝟏 − 𝑿𝑿)

𝟐𝟐
𝟑𝟑 = 𝒌𝒌𝒌𝒌       (6) 

 

In equations (5) and (6), X represents the leaching efficiency of Li (or Co), k is the 

reaction rate constant (min-1) and t is the reaction time (min).  

 

 

Fig. 4. (a) Diffusion model fitting of Li at room temperature (25 ℃), (b) chemical 



reaction model fitting of Co (25 ℃), second-order fitting of (c) Li and (d) Co (40-80 ℃) 

 

Table S2 summarized the fitting results of leaching kinetics at different temperatures 

by the shrinking core model, which clearly indicated that the leaching of Li was 

controlled by diffusion (R2 = 0.98427) model and that of Co was controlled by chemical 

reaction (R2 = 0.99365). As displayed in Fig.4a and b, the plots of 1-(1-X)1/3 versus t 

and 1- 2/3X- (1-X)2/3 versus t were further given for the leaching models of Li and Co, 

respectively. Poor linear fittings with low correlation coefficients (Li: R2 < 0.79; Co: R2 

< 0.82) were obtained for the leaching data between 40 and 80 °C, suggesting that the 

shrinking core model could not account for the leaching kinetics at higher temperatures. 

In addition, a second-order rate law (Equation (7)) was further adopted to fit the 

leaching kinetics. The fitting results according to Equation (8) were also summarized 

in Table S2, which showed good correlation fitting (Li: R2 > 0.99; Co: R2 > 0.96) at 

leaching temperatures between 40 and 80 ℃ but poor results for the data at 25 °C (Li: 

R2 ~ 0.95; Co: R2 ~ 0.84). The fittings of t/Ct versus t for the leaching of Li and Co were 

depicted in Figs.4c and d, respectively. This confirmed that the leaching process 

followed the second-order rate law between 40 to 80 ℃. 

 

𝒅𝒅𝑪𝑪𝒌𝒌
𝒅𝒅𝒌𝒌

= 𝒌𝒌(𝑪𝑪𝒆𝒆 − 𝑪𝑪𝒌𝒌)𝟐𝟐                                  (7) 

where k is the second-order leaching rate constant (L g-1 min-1), Ce is the saturated 

concentration of soluble Li (or Co) (g L-1), and t is the leaching time (min). Ct is the 

concentration of leached Li (or Co) in the suspension at any time. As Ct varies from 0 



to Ct while t is extended from 0 to t, the function can be integrated to: 

               𝒌𝒌
𝑪𝑪𝒌𝒌

= 𝟏𝟏
𝒌𝒌𝑪𝑪𝒆𝒆𝟐𝟐

+ 𝒌𝒌
𝑪𝑪𝒆𝒆

                                       (8) 

As shown in Equation (4), the reaction products (e.g. C7H7O3SLi and (C7H7O3S)2Co) 

were unable to diffuse into the solution immediately, due to energy limitation at room 

temperature. As a result, the solid products might precipitate on the surface of the 

unreacted LiCoO2 sample and could slow down the chemical interaction between the 

PTSA and the core LiCoO2. The different rate-determining mechanism of Li and Co is 

probably due to stronger Co-O chemical bond in the crystal structure of LiCoO2. 

Therefore, the chemical reaction was more likely to be the rate-determining step for Co 

leaching kinetics. As temperature increased (≥ 40 ℃), the leaching rate of Li and Co 

might be controlled by the sample dissolution after complete suspension, and the 

chemical reactions involved in the dissolution of leaching products may be described 

as follows: 

 

C7H7O3SLi (s) → C7H7O3S- (aq) + Li+ (aq)         (9) 

 

(C7H7O3S)2Co (s) → 2C7H7O3S- (aq) + Co2+ (aq)        (10) 

 

3.4. Recycling and regeneration 

 

3.4.1. Separation of Li+ and Co2+ by direct crystallization 

 



 

Fig. 5 (a) Li concentration in the leachate before and after crystallization (b) Co 

concentration in the leachate before and after crystallization (c) cooling and (d) drying 

process of precursor A 

 

Interestingly, as depicted in Figs.5c&d, when the high-temperature leachate (80 ℃) was 

placed in a low-temperature environment (i.e. room temperature or lower), pink crystals 

were spontaneously formed and precipitated at the bottom. This phenomenon could be 

observed for every leachate obtained from the leaching processes with different solid-

to-liquid ratios. Figs.5a&b illustrated the changes of Li+ and Co2+ concentrations in the 

leachate before and after the direct crystallization process, implying that the 

concentration of Co2+ in the solution was decreased dramatically after direct 

crystallization with only a slight drop in the concentration of Li+. Therefore, it was 

inferred that the pink crystal precipitated from the leachate after cooling was a Co-rich 



compound (hereinafter referred to as precursor A). A small amount of Li+ was adsorbed 

on the surface of precursor A, resulting in a slight decrease of Li+ concentration after 

crystallization (Fig.5a). The mass contents of Co and Li in Fig.S2 further confirmed the 

predominance of Co in the precipitation. Therefore, after treated with alcohol to remove 

possible impurities on the solid surface, the as-obtained crystal was further 

characterized by XRD. The pattern in Fig.S3 indicated that the predominant crystalline 

phase was well attributed to cobalt toluene sulfonate hexahydrate (C14H14CoO6S2·6H2O, 

PDF 48-2314). From the results above, this direct crystallization process proved to be 

an effective method for the separation of Li and Co, thus making the recycling strategy 

environmentally and economically proficient, especially in comparison with 

complicated separation treatments in previous studies (e.g. chemical precipitation, 

solvent extraction). For example, after leaching of the spent LiCoO2 by methane 

sulfonic acid, Li and Co ions in the leachate were separated by the addition of 

precipitating agents (e.g. ammonia and urea) for the formation of precipitations. (Wang 

et al., 2019).  

 

3.4.2. Metal recovery and material regeneration 

 



 

Fig.6 (a) The flowchart of the recovery process of spent LIBs. (b) XRD pattern and 

(c) SEM image of the regenerated Co3O4 under optimized condition. 

 

To understand the direct crystallization process for the formation of 

C14H14CoO6S2·6H2O, crystallization treatment temperature and time were also 

optimized in this study. As shown in Fig S4, after transferring the hot leachate (~80 ℃) 

to a cooler environment, the crystallization efficiency of Co increased quickly, with the 

decrease of the treatment temperature for the leaching solution. When the leaching 

sample was directly treated at room temperature, the complete crystallization of Co 

could be achieved in about 3 h, and the final crystallization rate was about 84%. When 

treated at 4 ℃, the crystallization efficiency was significantly increased to 89% in the 



first 3 h, and reached about 92% at 12 h. Obviously, this is higher than that of room 

temperature crystallization. This phenomenon was consistent with the change trend of 

(C7H7O3S)2Co·6H2O’s solubility at different temperatures (Yu et al., 2016). Here, 

Although direct crystallization at 4 ℃ for 12 h could achieve higher crystallization 

efficiency, it is recommended that direct crystallization at room temperature for element 

separation was highly preferred, due to energy saving process. The schematic diagram 

in Fig.6 (a) demonstrated the entire procedure for the recovery and regeneration of Li 

and Co in this study. After previous leaching steps, the as-obtained pink crystal was 

employed to regenerate Co3O4, which was considered as one of the critical raw 

materials for industrial production of LiCoO2. When heat treatment was performed on 

the pink crystals, it would transform into Co3O4 materials. It is worth noting that Li is 

volatile at high temperatures (Lundblad et al., 2000; Tennakoon et al., 1997), hence the 

low Li content in precursor A, as shown in Fig.S2, and therefore would be evaporated 

during the heat treatment. As a result, Co3O4 with high purity was obtained as the final 

recovered product (Table S3). Fig.6b illustrated the XRD pattern of the pink crystal 

treated at 800 ℃ for 3 h. The crystal phase of thermal treated sample in black color 

could be identified as Co3O4 (PDF 43–1003). Fig.S5 further showed the formation of 

well-crystallized Co3O4 from the leaching processes with different solid-to-liquid ratios. 

The SEM image in Fig.6c revealed that particle size of the regenerated Co3O4 sample 

was between 1 to 2 µm. 

 

The recovery yield of Co, as the mass ratio of recovered Co to the total Co in the original 



LiCoO2, is one critical criterion to evaluate the effectiveness of the method. Thus, Fig.7 

demonstrated the calculated Co recovery yield (solid-to-liquid ratio ranging from 5 - 60 

g L-1) after every step in this study, including leaching by PTSA, Co-rich crystal 

precipitation, and heat treatment (800 ℃, 3 h). The results implied that Co recovery 

yield was increased with the increasing of solid-to-liquid ratio up to 30 g L-1. Low solid-

to-liquid ratio (< 30 g L-1) suggested a relatively low Co concentration in the leachate 

(Figs.5a&b), which could subsequently result in less Co precipitation. However, when 

the solid-to-liquid ratio was larger than 30 g L-1, an obvious decrease in Co recovery 

yield was observed, which was resulted from the decreased leaching efficiency, as 

shown in Fig.1f. It can been seen from Fig.7 that very little loss of Co was observed for 

the conversion from Co-rich crystal to Co3O4 during heat treatment process. Overall, in 

terms of Co recovery yield during these three steps, 30 g L-1 was confirmed to be the 

optimal solid-to-liquid ratio, and the total Co recovery yield could reach as high as 94%.  

 

Once 30 g L-1 was identified as a practical condition for the whole recovery pathway, 

the Li-containing supernatant was then utilized to regenerate Li2CO3, which was 

viewed as one of the indispensable raw materials in the production of LIB cathodes. 

The Li-containing solution was firstly purified with NaOH solution to remove a small 

amount of Co2+, followed by the treatment of Na2CO3 solution (Barik et al., 2016) and 

finally leading to the formation of Li2CO3, which was further confirmed by the XRD 

pattern (Fig.S6). The obtained Li2CO3 was then washed by alcohol to remove possible 

organic impurities and the final recovery yield of Li was able to reach up to 80%. The 



regenerated Co3O4 and Li2CO3 can react together at high temperatures to regenerate 

active cathode materials LiCoO2 (Shi et al., 2018). Overall, the proposed recovery 

strategy is highly recommended, owing to concise flow path and high recovery yield. 

 

 

Fig.7. Effects of solid-to-liquid ratios on Co recovery yields 

 

4. Conclusions 

 

In conclusion, p-toluene sulfonic acid (PTSA) was proved to be an effective leaching 

agent for battery recycling applications. Under the optimized leaching conditions (H2O2 

amount: 0.9 vol%, PTSA concentration: 1.5 mol L-1, temperature: 80 °C, solid-to-liquid 

ratio: 30 g L-1), nearly 100% of Li and 99% of Co can be successfully extracted out in 

1 h. Detailed kinetic studies demonstrated that leaching temperature could obviously 

affect the leaching mechanisms of Li and Co from the spent LiCoO2. By cooling the 



leachate, Co ions can be easily and directly separated from Li ions via direct 

crystallization of C14H14CoO6S2·6H2O at low temperatures (e.g. 4 °C or room 

temperature). Afterwards, the well-crystallized Co3O4 materials were regenerated after 

heat treatment while the Li2CO3 was recovered from the supernatant with a final 

recovery yield of 94 and 80% for Co and Li, respectively. Owing to the superiority in 

Co and Li recovery from the LiCoO2, PTSA might have great potentials to be applied 

for the recovery of other cathode materials, such as NCA and NCM, etc. Overall, this 

study successfully confirmed that PTSA-assisted recycling strategy could be regarded 

as one of the potential processes to achieve green, sustainable and effective regeneration 

of Co3O4 and Li2CO3 materials, thus achieving circular economy of rechargeable LIBs 

industry. 
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Elements Li Co Al Cu Fe Mn 

Contents (wt. %) 7.56 60.32 0.27 0.06 0.16 0.12 

Table S1. Chemical composition of the LiCoO2 cathode material recovered from LIBs waste. 
 
 

Fitting 

model 

Shrinking core model Second-order 

model Chemical reaction 
control 

Diffusion control 

Temperature 
(℃) 

R2(Li) R2(Co) R2(Li) R2(Co) R2(Li) R2(Co) 

Room 
temperature 

0.96388 0.99365 0.98427 0.96043 0.79229 0.61205 

40 0.69180 0.74716 0.78164 0.81993 0.98958 0.95586 
60 0.44493 0.47280 0.50778 0.56497 0.99951 0.99918 
80 0.54771 0.51068 0.61629 0.59410 0.99956 0.99943 

Table S2. Parameters of acid leaching kinetics models. 
 
 

 
 

Fig. S1. (a) XRD pattern and (b) SEM image of the spent cathode material 
(LiCoO2) after pre-treatment. 
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Fig. S2. The content of Li and Co in the pink crystal precipitated from the leachate of 

LiCoO2 with different solid-to-liquid ratios 
 

 
 

Fig. S3. XRD pattern of the purified Co-rich compound (pink crystal, precursor A) 
precipitated from the leachate 
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Fig.S4 The effect of temperature on the crystallization efficiency of Co 

 
 

 
 

Fig. S5. Typical XRD patterns of the regenerated Co3O4 after heating the pink crystal 
precipitated from the leachate of different solid-to-liquid ratios (5 g L-1 to 60 g L-1) 

 
 



5 
 

Solid-to-liquid ratio 
(g L-1) 5 15 30 45 60 

Purity (%) >99 >99 >99 >99 >98 

Table S3 Purities of the regenerated Co3O4 after heating the pink crystal precipitated 
from the leachate of different solid-to-liquid ratios (5 to 60 g L-1) 

   

 
Fig. S6. XRD pattern of the regenerated Li2CO3 
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