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INTRODUCTION

The Decision-Theoretic Rough Set (DTRS) model, proposed by Yao et al. (Yao, Wang, & Lingras, 
1990; Yao & Wang, 1992; Yao, 2010) in the early 1990s, is a meaningful and useful generaliza-
tion of the probabilistic rough set model (Pawlak, 1991). In probabilistic rough set models, three 
probabilistic regions are defined by considering the degree of overlap between an equivalence 
class and a set to be approximated. A conditional probability is used to state the degree of over-
lap and a pair of thresholds is used to define the three regions. An equivalence class is in the 
probabilistic positive region if its relative overlap with the set is above or equal to a threshold, 
is in the negative region if its relative overlap is below or equal to another threshold, and is in 
the boundary region if the relative overlap is between the two parameters. DTRS offers a solid 
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foundation for probabilistic rough sets by systematically calculating the pair of thresholds based 
on the well-established Bayesian decision theory. Many real world problems can be solved with 
DTRS. For instance, DTRS provides a three-way decision approach to classification problems 
by allowing the possibility of indecision to suspicious examples, those examples in the boundary 
region must be re-examined by collecting additional information. A fundamental question that 
remains in DTRS is how to determine the classification of these deferred examples.

Cognitive science and cognitive informatics (Wang, 2007; Wang et al., 2009, 2011) study the 
human intelligence and its computational process. As an effective way of thinking, we typically 
focus on a particular level of abstraction and ignore irrelevant details. This not only enables us to 
identify differences between objects in the real world, but also helps us to view different objects 
as being the same, if low-level detail is ignored. Granular computing (GrC) (Bargiela & Pedrycz, 
2002; Liang & Qian, 2008; Qian, Liang, & Dang, 2009; Yao, 2004b, 2007b, 2009) can be seen 
as a formal way of modeling this human thinking process. GrC is an area of study that explores 
different levels of granularity in human-centered perception, problem solving, and information 
processing, as well as their implications and applications in the design and implementation of 
knowledge intensive intelligent systems. Rough set theory is one of the concrete models of GrC 
for knowledge representation and data analysis.

In this paper, an adaptive learning method is introduced that classifies the deferred examples 
by adaptively searching for effective granulization. A decision tree is constructed for classification. 
At each level, we sequentially choose the attributes that provide the most suitable granulization. 
A subtree is added if the conditional probability lies in between of the two thresholds. A branch 
reaches its leaf node when the conditional probability is above or equal to the first threshold, or 
is below or equal to the second threshold.

The rest of the paper is organized as follows. We briefly review the basic ideas of DTRS. 
We introduce the interpretations of concepts based on GrC. A new adaptive learning algorithm 
is introduced for ternary classification. An illustrative example is given. We conclude the paper 
and explain the future work.

BRIEF INTRODUCTION TO DECISION-THEORETIC  
ROUGH SET MODEL

Bayesian decision theory is a fundamental statistical approach that makes decisions under uncer-
tainty based on probabilities and costs associated with decisions. Following the discussions given 
in the book by Duda and Hart (1973), the decision theoretic rough set model is a straightforward 
application of the Bayesian decision theory.

With respect to the set C to be approximated, we have a set of two states Ω = { , }C CC  
indicating that an object is in C or not in C, respectively. We use the same symbol to denote both 
a set C and the corresponding state. With respect to the three regions in the rough set theory, the 
set of actions is given by Α= { , , }a a aP B N , whereaP ,aB  and aN  represent the three actions in 
classifying an object x, namely, deciding xÎPOS(C), deciding xÎBND(C), and deciding xÎ
NEG(C), respectively. The loss function is given by the 3x2 matrix.

In the matrix, lpp , lBP  and lNP  denote the losses incurred for taking actions aP , aB  and 
aN  respectively, when an object belongs to C, and lPN ,lBN , and lNN  denote the losses incurred 
for taking these actions when the object does not belong to C.

We use Pr(C|[x]) to represent the conditional probability of an object belonging to C given 
that the object is described by its equivalence class [x]. The expected losses associated with 
taking different actions for objects in [x] can be expressed as:
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The Bayesian decision procedure suggests the following minimum-risk decision rules:

(P) If:	  R a x R a x R a x R a xP B P N( | [ ]) ( | [ ])& ( | [ ]) ( | [ ]),£ £  decide x POS CÎ ( ); 	
(B) If :	 R a x R a x R a x R a xB P B N( | [ ]) ( | [ ])& ( | [ ]) ( | [ ]),£ £  decide x BND CÎ ( ); 	
(N) If :	 R a x R a x R a x R a xN P N B( | [ ]) ( | [ ])& ( | [ ]) ( | [ ]),£ £  decide x NEG CÎ ( ). 	

Tie-breaking criteria should be added so that each object is put into only one region.
Since Pr(C|[x]) + Pr(CC |[x]) = 1, we can simplify the rules based only on the probabilities 

Pr(C|[x]) and the loss function l . Consider a special kind of loss functions with:

(c0). l l lPP BP NP≤ < , l l lNN BN PN≤ < . 	

That is, the loss of classifying an object x belonging to C into the positive region POS(C) 
is less than or equal to the loss of classifying x into the boundary region BND(C), and both of 
these losses are strictly less than the loss of classifying x into the negative region NEG(C). The 
reverse order of losses is used for classifying an object not in C. Under condition (c0), the deci-
sion rules (P)-(N) can be re-expressed as:

(P) If Pr( | [ ]) & Pr( | [ ]) ,C x C x³ ³α γ  decide x POS CÎ ( ); 	
(B) If Pr( | [ ]) & Pr( | [ ]) ,C x C x≤ ≥α β  decide x BND CÎ ( ); 	
(N) If Pr( | [ ]) & Pr( | [ ]) ,C x C x£ £β γ  decide x NEG CÎ ( ); 	

where the threshold values α β,  and g are given by:

α
λ λ

λ λ λ λ
=

−
− + −
( )

( ) ( )
PN BN

PN BN BP PP

 ,	

β
λ λ

λ λ λ λ
=

−
− + −
( )

( ) ( )
BN NN

BN NN NP BP

 ,	

Matrix 1. 

    C(P) C NC ( )

aP l lPP Pa C= ( | ) l lPN P
Ca C= ( | )

aB l lBP Ba C= ( | ) l lBN B
Ca C= ( | )

aN l lNP Na C= ( | ) l lNN N
Ca C= ( | )
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In other words, from a loss function one can systematically determine the required threshold 
values. When ( )( ) ( )( ),l l l l l l l lPN BN NP BP BP PP BN NN− − > − −  we have α > β, and thus α > γ > β, 
after tie-breaking, we obtain:

P1. If Pr( | [ ]) ,C x ³ a , decide x POS CÎ ( );  
B1. If β α< <Pr( | [ ]) ,C x , decide x BND CÎ ( );  
N1. If Pr( | [ ]) ,C x £ b , decide x NEG CÎ ( );

The threshold value g  is no longer needed. From the rules (P1), (B1), and (N1), the ( , )α β
-probabilistic positive, negative and boundary regions are given, respectively, by:

POS C x U C x( , )( ) { | Pr( | [ ]) },α β α= ∈ ≥ 	
BND C x U C x( , )( ) { | Pr( | [ ]) },α β β α= ∈ < < 	
NEG C x U C x( , )( ) { | Pr( | [ ]) }.α β β= ∈ ≤ 	

They are referred to as the three probabilistic regions (Greco, Matarazzo, & Słowínski, 
2009; Herbert & Yao, 2009; Pawlak, Wang, & Ziarko, 1988; Slezak & Ziarko, 2002, 2005; Yao, 
2007a; Ziarko, 1993). Therefore, the decision-theoretic rough set model provides both a theo-
retical basis and a practical interpretation of the probabilistic rough sets. The threshold values 
can be systematically calculated from a loss function based on the Bayesian decision procedure. 
Other probabilistic rough set models, such as the 0.5-probabilistic rough sets (Pawlak, Wang, 
&Ziarko, 1988), and the variable precision rough set model (Ziarko, 1993), can be derived from 
this approach.

INTERPRETATIONS OF CONCEPTS WITH 
GRANULAR COMPUTING

Granular computing is an emerging field of study that attempts to formalize and explore methods 
and heuristics of human problem solving with multiple levels of granularity and abstraction

(Bargiela & Pedrycz, 2002; Yao, 2004a, 2004b, 2007b; Zadeh, 1997). A fundamental issue 
of granular computing is the representation and utilization of granules and granular structures. 
In this paper, we explore a connection of granules and concepts (Yao, 2009) in classification 
and learning. Concepts are assumed to be the basic units of knowledge, which play an important 
role in the study of psychology, cognitive science, and inductive learning (Mitchell, 1982, 1997; 
Michalski, Carbonell, & Mitchell, 1983; Smith, 1989; Sowa, 1984; van Mechelen, Hampton, 
Michalski, & Theuns, 1993; Wang, 2007). Following the classical interpretation of a concept 
(Demri & Orlowska, 1997; Michalski, Carbonell, & Mitchell, 1983; Wille, 1992), we interpret 
a granule as a pair of a set of objects and a logic formula describing the granule (Zhou &Yao, 
2008). The detailed formulations are introduced as follows.

With respect to a dataset, we can build a model based on an information table, in which a 
set of objects is described by a set of attributes (Pawlak, 1991):
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S U At Va a At Ia a At= ∈ ∈( , ,{ | },{ | }), 	

where U is a finite nonempty set of objects, At is a finite nonempty set of attributes, Va is a 
nonempty set of values of a AtÎ , and Ia U Va: ® is an information function that maps an 
object in U to exactly one value in Va. In classification problems, we consider an information 
table of the forms S U At A D Va Ia= = ∪( , { },{ },{ }),  where A is a set of condition attributes 
describing the objects, and D is a decision attribute that indicates the classes of objects.

With anyA AtÍ , there is an associated equivalence relation IND(A):

IND A x y U U a A Ia x Ia y( ) {( , ) | ( ( ) ( ))}.= ∈ × ∀ ∈ = 	

Two objects in U satisfy IND(A) if and only if they have the same values on all attributes 
in A. The relation IND(A) is called A-indiscernibility relation. The partition of U is a family of 
all equivalence classes of IND(A) and is denoted by U= IND(A) (U/A). The equivalence classes 
of the A-indiscernibility relation are denoted as [ ]x A . Different attribute subsets will give differ-
ent equivalence classes. For example, Table 1 is a simple information table. The column labeled 
by Class denotes an expert’s classification of the objects. In Table 1, if attribute A = {Eyes} is 
chosen, we can obtain the following family of equivalence classes, or a partition of U:

Table 1. An information table 

Object Weight Hair Eyes Class

o1 normal red blue +

o2 Low dark brown +

o3 low grey blue +

o4 high red blue +

o5 low blond brown -

o6 high dark blue -

o7 low red brown +

o8 low blond blue +

o9 low grey brown -

o10 normal dark brown +

o11 high dark brown -
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[ ] {{ , , , , },{ , , , , , }}.{ }x o o o o o o o o o o oEyes = 1 3 4 6 8 2 5 7 9 10 11 	

If we consider attributeA Eyes Weight= { , } , the family of equivalence classes is:

[ ] {{ },{ , , , },{ , },{ , },{ },{ }}.x o o o o o o o o o o o= 1 2 5 7 9 3 8 4 6 10 11 	

If we consider each equivalence class as a granule, by choosing different set of attributes 
from an information table, different granularity can be produced. For certain applications, we 
may only need to look at granularity of certain level.

Traditionally, a concept is interpreted as a pair of intension and extension. The intension of 
a concept is given by a set of properties. In order to formally define intensions of concepts, we 
adopt the decision logic language L used and studied by Pawlak (2010). Formulas of L are con-
structed recursively based on a set of atomic formulas corresponding to some basic concepts. 
An atomic formula is given by a = v, where a AtÎ  andv VaÎ . For each atomic formula a = 
v, an object x satisfies it if Ia(x) = v. Otherwise, it does not satisfy a = v. From atomic formulas, 
we can construct other formulas by applying the logic connectives¬ ∧ ∨ →, , , ,  and« . Each 
formula represents an intension of a concept. For two formulas f  andj , we say that f  is more 
specific thanj , and j  is more general thanf , if and only ifφ ϕ® , namely, j  logically fol-
lows fromf . In other words, the formula φ ϕ®  is satisfied by all objects with respect to any 
universe U and any information function Ia. If f  is more specific thanj , we writeφ ϕ , and 
call f  a sub-concept ofj , and j  a super-concept of f.

In inductive learning and concept formation, extensions of concepts are normally defined 
with respect to a particular training set of examples. If f  is a formula, the set m (f ) is called 
the meaning of the formula f  in M. The meaning of a formula f  is therefore the set of all 
objects having the property expressed by the formulaf . In other words, f  can be viewed as 
the description of the set of objects m(f ). Thus, a connection between formulas and subsets of 

Figure 1. General schema of classification process in search of effective granulization

Classify (examples)
Use the entire set U as the unlabeled root node of a decision tree;

While there is an unlabeled leaf node in the tree

    Choose an unlabeled leaf node;

    If the conditional probability is above or equal to  

        Then change the node to a labeled leaf node with label = “accept”;

    Else if the conditional probability is below or equal to  

        Then change the node to a labeled leaf node with label = “reject”;

    Else if the granule meets certain conditions

        Then change the node to a labeled leaf node with label = “deferment”;

    Else replace the unlabeled node with an attribute with each branch 

        corresponds to an attribute value, divide the granule into unlabeled 

        nonempty sub-granules based on the attribute value

End

Return a ternary classification tree.
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U is established. For example, in Table 1, if attribute A Eyes= { } is chosen, the two equivalence 
classes can be written as:

m Eyes blue o o o o o( ) { , , , , },= = 1 3 4 6 8 	

m Eyes brown o o o o o o( ) { , , , , , },= = 2 5 7 9 10 11 	

where Eyes=blue and Eyes=brown are the intensions of the concepts described by the formulas 
of the language L.

With the introduction of language L, we have a formal description of concepts. A concept 
definable in a model S is a pair (f ,m(f )), where f ÎL. More specifically, f  is a description 
of m(f ) in S, the intension of concept (f ,m(f )), and m(f ) is the set of objects satisfying f, 
the extension of concept (f ,m(f )). A concept (f ,m(f )) is said to be a sub-concept of an-
other concept (f ,m(f )), or (f ,m(f )) a super-concept of (f ,m(f )), in an information table 
if m(f ) Í m(j ). A concept (f ,m(f )) is said to be a smallest non-empty concept in M if there 
does not exist another non-empty proper subconcept of (f ,m(f )).

Concept learning, to a large extent, depends on the structures of concept space and the target 
concepts. In general, one may not be able to obtain an effective and efficient learning algorithm, 
if no restrictions are imposed on the concept space. For this reason, each learning algorithm 
typically focuses on a specific type of concept.

AN ADAPTIVE LEARNING ALGORITHM FOR CLASSIFICATION

For classification problems, ID3 (Quinlan, 1983) is a well-known algorithm used to generate a 
decision tree by sequentially choosing the attribute that gives the most information about the 
class label, the leaf node is added to a branch if the subset of examples for that branch have the 
same classification labels (i.e., Pr(C|[x]) = 1 or Pr(C|[x]) = 0). In this paper, we introduce an 
adaptive learning method to construct a decision tree for classification based on three-way deci-
sions with DTRS (Yao, 2010). A subtree is added recursively if the conditional probability lies 
in between of the two threshold values a  and b  Otherwise, a leaf node is added if the condi-
tional probability Pr(C|[x]) ³ a , or Pr(C|[x]) £ b.

In Search of Effective Granulization

Instead of generating the decision tree based on the information gain, in our approach, the at-
tributes of each inner node of the decision tree are sequentially selected by searching for the 
most suitable granulization at each level. More specifically, we start from the bigger granule at 
the top level, if the classification decisions cannot be made based on this granulization, we then 
search for the smaller granules by adding more attribute as inner nodes, until all the examples 
are correctly classified or certain condition is met. If the granulization at the current level is 
sufficient for classification, a finner granulization may not be needed at all; this ensures the 
generated decision tree to be “almost minimal.” Based on these principles, the general scheme 
of the classification process is shown in Figure 1.
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An Adaptive Learning Algorithm

The actual learning process of building the decision tree is a little bit more complicated. There 
are a few important steps involved in the learning method, which can be described as follows.

Step 1, At the top most level, the attribute has the least attribute values are selected as the root 
node A, which will give us the largest granulation. If there is more than one attribute satis-
fies this condition, we choose the attribute that has the minimum number of objects in its 
deferment area.

Step 2, A new branch is added for each possible value vi  of A. Estimate the conditional prob-
ability of each branch with respect to A, where Pr(C|[x])can be estimated from the frequencies 
of the training data by putting:

Pr( | [ ])
| [ ] |
| [ ] |

,C x
C x
x

=
∩ 	

where [x] = m(vi ). If Pr(C|[x]) ³ a , objects of this branch belong to the positive region, add a 
leaf node labeled as C; if Pr(C|[x]) £ b , objects of this branch belong to the negative region, 
add a leaf node labeled as CC . Otherwise, the classification of this branch cannot be determined, 
we then search for the next suitable granularity.

Step 3, At the next level, choose an attribute Aj  that has the least attribute values from (Attributes 
– {A}) as the child node for the branch. This time, [x] = m(vi Ùvj ), where vj  represents 
the possible values of Aj  . Similarly, if there is more than one attribute satisfies this condi-
tion, we choose the attribute that has the minimum number of objects in its deferment area. 
Repeat Step 2. Until we can find a leaf node for each branch. Figure 2 shows such an algo-
rithm.

AN ILLUSTRATIVE EXAMPLE

We illustrate the classification process introduced in the previous section by using an informa-
tion table as Table 1.

At the top level, attribute Eyes is chosen as the root node since it has the least attribute val-
ues. Two branches are added corresponding to two possible value Eyes=blue and Eyes=brown, 
which divides the data set into two granules:

m Eyes blue o o o o o

m Eyes brown o o o o o

( ) { , , , , },

( ) { , , , ,

= =

= =
1 3 4 6 8

2 5 7 9 110 11, }.o
	

The conditional probability of each equivalence class can be calculated as follows:
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1 3 4
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2
2 5 7 9 10 11 1 2 3 4 7 8

4
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{ }
, , , , , , , , , ,

} |
,
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| { } {

=

=
∩

C o
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, , , , ,

} |

| { } |
.10

2 5 7 9 10 11

1
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Assume the two threshold parameters calculated from the loss functions are a  = 0.6 and 
b  = 0.4. We have Pr( | [ ] ){ }C o Eyes1 ³ a ¸ objects { , , , , }o o o o o1 3 4 6 8  belong to the positive region, 
a leaf node can be added to this branch with the class label = +. We also haveb £ Pr( | [ ] ){ }C o Eyes2

Figure 2. An adaptive learning algorithm in search for effective granulization

ALM (S, Decision Attribute, Attributes)
Input:          a training set of examples S,
Output:       a decision tree that correctly classifies all examples in S.
Procedure: Create a root node for the tree;
    If all examples are positive, Return the single-node tree 
     Root, with label = +; 

    If all examples are negative, Return the single-node tree 

     Root, with label = -; 

    If number of condition attributes is empty, then Return the 

     single node tree Root, with label = most common value of 

     the decision attribute in the examples; 

Otherwise Begin 

  A =The Attribute that has the least number of attribute 

   values; 

  Decision Tree attribute for Root = A;

  For each possible value,vi  of A
   Add a new tree branch below Root, corresponding to the test 

    A =vi ;

   Estimate Pr(C|[x]) using Pr(C|[x]) = Pr( | [ ])
| [ ] |

| [ ] |
;C x

C x
x

=
∩

 

   Let S(vi ), be the subset of examples that have the value vi  
    for A;

   If Pr(C|[x]) ³ a
              Then below this new branch add a leaf node with 

               label = +; 

   Else if Pr(C|[x]) £ b
              Then below this new branch add a leaf node with 

               label = -; 

   Else if S(vi ) is empty
              Then below this new branch add a leaf node with 

               label = most common class value in the examples; 

   Else below this new branch add the subtree ALM (S(vi ), 
    Decision Attribute, Attributes –{A};

End 

Return Root
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£ a , objects { , , , , , }o o o o o o2 5 7 9 10 11  belong to the boundary region and need to be further ana-
lyzed.

At the second level, attribute Weight is chosen since it has less attribute values than attribute 
Hair. A subtree is added to the Eyes=brown branch, with three new branches corresponding to 
three possible values, that is, Weight=normal, Weight=high, and Weight=low, which divides the 
data set into three granules:

m Eyes brown Weight normal o

m Eyes brown Weight high

( ) { },

(

= ∧ = =

= ∧ =
10

)) { },

( ) { , , , }.

=

= ∧ = =

o

m Eyes brown Weight low o o o o
11

2 5 7 9

	

The conditional probability of each equivalence class can be calculated as follows:

Pr( | [ ] )
| { } { } |

| { } |{ , }
, , , , , ,C o

o o

oEyesWeight10
10 1 2 3 4 7 8 10

10

=
∩

= 11

11
11 1 2 3 4 7 8 10

11

,

Pr( | [ ] )
| { } { } |

| {{ , }
, , , , , ,C o

o o

oEyesWeight =
∩

}} |
,

Pr( | [ ] )
| { } {

{ , }
, , , , , , , , ,

=

=
∩

0

2
2 5 7 9 1 2 3 4 7 8 10C o
o o

EyesWeight

}} |

| { } |
.

, , ,o2 5 7 9

1
2

=

	

Assume that we use the same threshold parameters α and β We have Pr(C|[o10]{Eyes,Weight}) 
≥ α, objects {o10} belong to the positive region, a leaf node can be added to this branch with 
the class label = +. We also have Pr(C|[o10]{Eyes,Weight}) ≤ β, objects {o11} belong to the negative 
region, a leaf node can be added to this branch with the class label=-. Finally, β ≤ Pr(C | [o2]{Eyes, 

Weight}) ≤ α, objects {o2,o5,o7,o9} belong to the boundary region and need to be further analyzed.
At the third level, attribute Hair is chosen. A subtree is added to the Eyes=brownÙWeight=low 

branch, with four new branches corresponding to four possible values, that is, Hair=red, Hair=blond, 
Hair=grey and Hair=dark, which divides the data set into four granules:

m Eyes brown Weight low Hair red o

m Eyes brown Weight

( ) { },

(

= ∧ = ∧ = =

= ∧
7

== ∧ = =

= ∧ = ∧ = =

low Hair blond o

m Eyes brown Weight low Hair grey

) { },

( )
5

{{ },

( ) { }.

o

m Eyes brown Weight low Hair dark o
9

2= ∧ = ∧ = =

	

The conditional probability of each equivalence class can be calculated as follows:
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Assume that we use the same threshold parameters a  and b. We have {o7 } and {o2 } in 
the positive region, a leaf node can be added to both of these branches with class label = +. We 
also have {o9 } and {o5 } in the negative region, a leaf node can be added to both of these 
branches with class label = -. Up to this point, all the objects in the data set have been classified, 
the decision tree is complete. This classification process in search for effective granulization 
based on three-way decisions is illustrated in Figure 3.

CONCLUSION AND FUTURE WORK

Decision-theoretic rough set model provides a ternary classification method for classification 
problems. The deferred examples must be reexamined by collecting further information. We 
argue that this process can be done automatically by searching for effective granulization. An 
adaptive learning algorithm is proposed for this purpose, which generates a decision tree by 
sequentially choosing the attributes that give the most appropriated granulization. We start from 
the bigger granule at the top level of the tree, if the classification decisions can be made based on 
this granularity, a finer granularity may not be needed at all, and this ensures the generated tree 
to be “almost minimal.” An illustrative example is given at the end of the paper to demonstrate 
this process. For future work, we will test our proposed method in larger scale real world data 

Figure 3. The classification process in search of effective granulization based on three-way 
decisions
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sets, and compare our results with existing classification algorithms to verify the effectiveness 
of our method.

ACKNOWLEDGMENT

The first author is supported by an NSERC Alexander Graham Bell Canada Graduate Scholar-
ship. The second author is partially supported by an NSERC Canada Discovery grant.

REFERENCES

Bargiela, A., & Pedrycz, W. (2002). Granular computing: An introduction. Boston, MA: Kluwer Academic.

Demri, S., & Orlowska, E. (1997). Logical analysis of indiscernibility. In Orlowska, E. (Ed.), Incomplete 
information: Rough set analysis (pp. 347–380). Heidelberg, Germany: Physica Verlag.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York, NY: John Wiley 
& Sons.

Greco, S., Matarazzo, B., & Słowínski, R. (2009). Parameterized rough set model using rough member-
ship and Bayesian confirmation measures. International Journal of Approximate Reasoning, 49, 285–300. 
doi:10.1016/j.ijar.2007.05.018

Herbert, J. P., & Yao, J. T. (2009). Game-theoretic rough sets. Fundamenta Informaticae, 108(3-4), 267–286.

Liang, J. Y., & Qian, Y. H. (2008). Information granules and entropy theory in information systems. Sci-
ence in China F, 51(9).

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (1983). Machine learning, an artificial intel-
ligence approach. San Francisco, CA: Morgan Kaufmann.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203–226. doi:10.1016/0004-
3702(82)90040-6

Mitchell, T. M. (1997). Machine learning. New York, NY: McGraw-Hill.

Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data. Boston, MA: Kluwer Academic.

Pawlak, Z., Wong, S. K. M., & Ziarko, W. (1988). Rough sets: probabilistic versus deterministic approach. 
International Journal of Man-Machine Studies, 29, 81–95. doi:10.1016/S0020-7373(88)80032-4

Qian, Y. H., Liang, J. Y., & Dang, C. Y. (2009). Knowledge structure, knowledge granulation and knowl-
edge distance in a knowledge base. International Journal of Approximate Reasoning, 50(1), 174–188. 
doi:10.1016/j.ijar.2008.08.004

Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess endgames. 
In Michalski, J. S., Carbonell, J. G., & Michell, T. M. (Eds.), Machine learning: An artificial intelligence 
approach (Vol. 1, pp. 463–482). San Francisco, CA: Morgan Kaufmann.

Slezak, D., & Ziarko, W. (2002, December 9). Bayesian rough set model. In Proceedings of the Conference 
on the Foundation of Data Mining, Maebashi, Japan (pp. 131-135).

Slezak, D., & Ziarko, W. (2005). The investigation of the Bayesian rough set model. International Journal 
of Approximate Reasoning, 40, 81–91. doi:10.1016/j.ijar.2004.11.004

Smith, E. E. (1989). Concepts and induction. In Posner, M. I. (Ed.), Foundations of cognitive science (pp. 
501–526). Cambridge, MA: MIT Press.



International Journal of Cognitive Informatics and Natural Intelligence, 5(3), 47-60, July-September 2011   59

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Sowa, J. F. (1984). Conceptual structures, information processing in mind and machine. Reading, MA: 
Addison-Wesley.

van Mechelen, I., Hampton, J., Michalski, R. S., & Theuns, P. (Eds.). (1993). Categories and concepts, 
theoretical views and inductive data analysis. New York, NY: Academic Press.

Wang, Y. (2007). Cognitive informatics: exploring theoretical foundations for natural intelligence, neural 
Informatics, autonomic computing, and agent systems. International Journal of Cognitive Informatics and 
Natural Intelligence, 1, 1–10. doi:10.4018/jcini.2007040101

Wang, Y., Widrow, B. C., Zhang, B., Kinsner, W., Sugawara, K., & Sun, F. C. (2011). Perspectives on the 
field of cognitive informatics and its future development. International Journal of Cognitive Informatics 
and Natural Intelligence, 5(1), 1–17.

Wang, Y., Zadeh, L. A., & Yao, Y. (2009). On the system algebra foundations for granular computing. 
International Journal of Software Science and Computational Intelligence, 1(1), 64–86. doi:10.4018/
jssci.2009010105

Wille, R. (1992). Concept lattices and conceptual knowledge systems. Computers & Mathematics with 
Applications (Oxford, England), 23, 493–515. doi:10.1016/0898-1221(92)90120-7

Yao, Y. Y. (2004a). A partition model of granular computing. In J. F. Peters, A. Skowron, J. W. Grzymala-
Busse, B. Kostek, R. W. Swiniarski, & M. S. Szczuka (Eds.), Transactions on Rough Sets I (LNCS 3100, 
pp. 232-253).

Yao, Y. Y. (2004b). Granular computing. Computer Science, 31, 1–5.

Yao, Y. Y. (2007a). Decision-theoretic rough set models. In J. T. Yao, P. Lingras, W.-Z. Wu, M. Szczuka, 
N. J. Cercone, & D. Slezak (Eds.), Proceedings of the Second International Conference on Rough Sets and 
Knowledge Technology (LNCS 4481, pp. 1-12).

Yao, Y. Y. (2007b). The art of granular computing. In M. Kryszkiewicz, J. F. Peters, H. Rybinski, & A. 
Skowron (Eds.), Proceeding of the International Conference on Rough Sets and Emerging Intelligent 
Systems Paradigms (LNCS 4585, pp. 101-112).

Yao, Y. Y. (2009). Interpreting concept learning in cognitive informatics and granular computing. IEEE 
Transactions on Systems, Man, and Cybernetics: Part B, Cybernetics, 39(4), 855–866. doi:10.1109/
TSMCB.2009.2013334

Yao, Y. Y. (2010). Three-way decisions with probabilistic rough sets. Information Sciences, 180(3), 341–353. 
doi:10.1016/j.ins.2009.09.021

Yao, Y. Y., & Wong, S. K. M. (1992). A decision theoretic framework for approximating concepts. Inter-
national Journal of Man-Machine Studies, 37, 793–809. doi:10.1016/0020-7373(92)90069-W

Yao, Y. Y., Wong, S. K. M., & Lingras, P. (1990). A decisiontheoretic rough set model. In Ras, Z. W., 
Zemankova, M., & Emrich, M. L. (Eds.), Methodologies for intelligent systems (Vol. 5, pp. 17–24). New 
York, NY: North-Holland.

Zadeh, L. A. (1997). Towards a theory of fuzzy information granulation and its centrality in human reason-
ing and fuzzy logic. Fuzzy Sets and Systems, 19, 111–127. doi:10.1016/S0165-0114(97)00077-8

Zhou, B., & Yao, Y. Y. (2008). A logic approach to granular computing. International Journal of Cognitive 
Informatics and Natural Intelligence, 2(2), 63–79. doi:10.4018/jcini.2008040104

Ziarko, W. (1993). Variable precision rough sets model. Journal of Computer and System Sciences, 46, 
39–59. doi:10.1016/0022-0000(93)90048-2



60   International Journal of Cognitive Informatics and Natural Intelligence, 5(3), 47-60, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Bing Zhou is a PhD candidate in the department of computer science, University of Regina, Canada. 
She received her MS in computer science from the University of Regina in 2008. Her research 
interests include machine learning, data mining, granular computing and formal languages.

Yiyu Yao is a professor with the department of computer science, University of Regina, Canada. 
He received his B.Eng (1983) in computer science from Xi’an Jiaotong University, China, MS 
(1988) and PhD (1991) in computer science from University of Regina, Canada. From 1992 
to 1998, he was an Assistant Professor and an Associate Professor with the Department of 
Mathematical Science, Lakehead University, Canada. Dr. Yao’s research interests include Web 
Intelligence, information retrieval, uncertainty management (fuzzy sets, rough sets, interval 
computing, and granular computing), data mining, and intelligent information systems. He was 
invited to give talks at many international conferences and universities. Dr. Yao is the chair of 
steering committee of the International Rough Set Society, a member Technical Committee of Web 
Intelligence Consortium. He has served, and is serving, as Conference Chair, Program Commit-
tee Chair, member of Advisory and/or Program Committee of many international conferences. 
He is serving as an editorial board member of several international journals.


