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ABSTRACT  

Baker, Stephanie Anne, The quantitative analysis of coronal suture separation due to 
cranial trauma. Master of Science (Biology), May, 2022, Sam Houston State University, 
Huntsville, Texas. 

 
Morphometric analysis of cranial sutures can provide evidence of microfractures, 

diastasis, and early sutural closure. Recently, mCT has allowed for morphometric 

analyses on much smaller scales and has been used to differentiate normal cranial sutures 

from early sutural synostosis. Therefore, microscopic assessment of cranial sutures may 

provide additional data to forensic trauma analyses. Utilizing six adult human cranial 

trauma cases and three control specimens, I tested for asymmetrical separation in coronal 

sutures to determine if significant differences are detectable. Trauma cases included three 

intraoral gunshot wound and three blunt force trauma specimens. Cranial specimens were 

mCT scanned with Type-1 landmarks placed at their origin at sphenion and terminating 

at bregma. Due to the tortuous nature of the coronal suture, a comb-based approach was 

used to standardize sampling sites. Using Avizo segmenting software (Thermo Fisher 

Scientific), a chord line between bregma and sphenion was first defined and measured, 

which allowed for the placement of 20 and 50 equidistant sampling sites along the suture 

at orthogonal angles. ImageJ was used to calculate the total area of separation for 

individual scan slices at each sampling site. Asymmetry was determined by comparing 

differences in coronal suture separation between the sides delineated by bregma. 

Additionally, Avizo was used to segment total sutural volume using in program 

measuring tools. Bilateral asymmetry of coronal diastasis per specimen was determined 

using a paired t-tests. A one-way ANOVA was then used to test total coronal sutural 

separation by group. One-way ANOVAs were also used to test average control group 
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diastasis with diastasis on the side of trauma groups both with and without damage. 

Finally, a two-way repeated measures ANOVA was used to determine if significant 

differences occur both within and between traumatized specimens. Results from paired t-

tests showed significant differences between sides in individual crania using different 

numbers of landmarks. Alternately, no significant differences were found for overall 

coronal diastasis, side specific separation, or within trauma type using repeated measures. 

Ultimately, these data could potentially provide forensics with another method to assess 

injury and may lead to a more thorough understanding of sutural diastasis in human 

crania. 

 
KEY WORDS:  Cranial suture, Coronal suture, Micro-computed tomography, Avizo, 
Forensic anthropology, Cranial trauma, Ballistic trauma, Blunt force trauma 
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CHAPTER I 

Introduction 

Following traumatic or suspicious deaths, it is the job of pathologists and forensic 

anthropologists to evaluate macroscopic and microscopic changes to both soft and hard 

tissues (Blau, 2016). However, when remains are in advanced decomposition or 

skeletonized, pathologists can no longer rely on soft tissue damage to identify trauma but 

must look to the expertise of forensic anthropologists (Fenton et al., 2005; Moraitis et al., 

2008). A forensic anthropologist uses skeletal trauma to reconstruct peri- and post-

mortem events that caused injury or death of an individual (Hart, 2005; Kranioti, 2015; 

Poikines and Symes, 2013; Sorg et al., 2017). 

In addition to the biological profile (e.g., ancestry, sex, age, stature), bones 

provide information regarding the type of trauma inflicted (Poikines and Symes, 2014; 

Sorg et al., 2017). Skeletal trauma is an alteration and ultimate failure of bone at the 

macro- and/or microscopic level in cortical and/or trabecular bone caused by a slow 

and/or rapid load impact with an object (Blau, 2016). The cranial region is commonly 

affected by trauma and is one of the most complicated to understand (Mortiz, 1954). In 

particular, when trauma to the skull occurs, fracture lines follow areas of weakness and 

terminate at areas of interruption in the bones, such as another fracture line or a cranial 

suture (Byers, 2017; Fenton et al., 2005). Current methods rely predominantly on 

macroscopic observation of the trauma. While macroscopic examination can reveal 

valuable information, it can also be inconclusive or misrepresentative. However, with the 

development of imaging techniques such as microcomputed tomography (mCT) 

technology, trauma that may not be observed macroscopically can be assessed.  
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Cranial sutures are synarthrodial joints that form fibrous articulations between the 

margins of adjacent bones in the vertebrate crania while providing mechanical support 

and flexibility (Chopra, 1957; Liu et al., 2017; Maloul et al., 2013). Twenty-three sutures 

are recognized in the average adult human skull: 10 are located in the calvarium, and the 

other 13 articulate bones of the face (Baker, 1984). The first documented descriptions of 

cranial sutures are from the Edwin Smith Surgical Papyrus of ancient Egyptians, written 

around 1600 B.C. (Serageldin, 2013). Since then, much of the forensic literature has 

focused on using cranial sutures to estimate age at death. However, little research has 

been done to examine how trauma affects the sutures of the skull. Therefore, 

understanding how trauma affects the crania on a microscopic level through the use of 

mCT scans may provide additional information about the individual’s death.  

Macroscopic Anatomy of Sutures 

The bones of the cranial vault have a unique diploic construction, where 

trabecular bone is sandwiched between two layers of cortical bone and function to protect 

the brain from trauma while also reducing the weight of the skull (Wood, 1971; 

Goldsmith, 1972; Meschan, 1974; Akkas, 1975). The outer table forms the ectocranial 

surface while the inner layer forms the endocranial surface. The endocranial layer is 

usually thinner than the outer table (Miroue, 1975).  

The main sutures of the skull are the coronal, sagittal, lambdoid and squamosal 

sutures (Figure 1). The coronal suture is located on the anterior aspect of the skull at the 

junction of the frontal and parietal bones (White et al., 2012). The sagittal suture is 

located between the two parietal bones and extends from bregma (intersection of the 

coronal and sagittal sutures) to lambda (intersection of the sagittal and lambdoid sutures) 
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(White et al., 2012). The squamosal suture separates the parietal from the temporal bone 

on the lateral aspects of the cranium. The lambdoid suture is located posteriorly on the 

cranium and connects the two parietal bones to the occipital bone. Another prominent 

suture found on the anterior aspect of the skull is the metopic or frontal suture (sutura 

interfrontalis). The metopic suture is present in individuals less than two years of age but 

generally fuses completely and obliterates. However, this suture remains patent in some 

individuals until adulthood and throughout life and can be used in ancestry determination 

(Krogman and Iscan, 1986). Similarly, other cranial vault sutures include the 

sphenofrontal, sphenotemporal, sphenoparietal, and occipitomastoid sutures. Non-cranial 

vault sutures that connect the facial region to the base of the skull include the 

zygomaticomaxillary, frontonasal, and frontomaxillary sutures (White et al., 2012). 
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Figure 1  

Cranial Suture Anatomy of The Adult Skull 
 

 

 

 Classification of sutures is generally based on their articulation between the edges 

of bone; however, sutures can also be classified based on their degree or complexity 

(Herring, 1972). In classification by articulation, sutures are described as simple or 

overlapping based on the orientation of the bone surfaces (Saladin, 2018). Therefore, 

simple sutures have both bone surfaces in the same or similar plane while overlapping 

sutures have two surfaces articulating in different planes. Simple sutures, or end-to-end, 

butt, flat, or plane sutures, are typically found in the sagittal plane (Cohen, 1993; De 

Coster et al., 2007; Saladin, 2018). An example of a simple suture is the palatine suture 

(Mann et al., 1991; Gruspier and Mullen, 1991; Ginter, 2005). An overlapping or beveled 
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suture can be analogously compared to overlapping tiles on a roof, thereby increasing the 

articulating surface area and offering greater resistance at the sutural edge (Herring, 

1972). The squamous suture, found between the parietal and temporal bones, is an 

example of an overlapping suture.  

Sutures are also classified based on the number of interdigitations found in the 

suture pattern (Herring, 1972). Specifically, a simple suture has fewer interdigitations 

than a serrated suture which have greater interdigitations and a jagged appearance. 

Serrated sutures appear as wavy lines that interlock the adjoining bones of the cranium by 

their serrated margins (Figure 2). Examples include the coronal, sagittal and lambdoid 

sutures. However, a single suture may be classified differently along its length as they 

traverse large areas on the skull (Krogman and Iscan, 1986). Initially, it was believed that 

all sutures originate as a simple suture in development and then become interdigitated 

(Wagemans et al., 1988; Cohen, 1993). Wu and colleagues (2007) demonstrated that the 

sagittal suture increases in irregularly and complexity with age; however, this complexity 

only occurs until the age of 10 years.  

Ectocranial and endocranial sutures also differ in their patterns and complexities. 

Ectocranial sutures have generally diverse suture patterns with simple and complex 

interdigitations. Endocranial sutures, found on the inner aspect of the skull, are simple 

and homogenous in their arrangements (Hauser and De Stefano, 1989).  
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Figure 2  

Examples of a Serrated Sagittal Suture Interlocking the Left and Right Parietal Bones 

Microscopic Anatomy of Sutures 

Cranial sutures undergo the most growth during early development, from simple 

flat joints to interdigitating and interlocking projections in adulthood (Maloul et al., 2010; 

Maloul et al., 2013; Liu et al., 2017). Cranial sutures are composed of stiffer skeletal 

components than the cranial bones and connect via soft tissue (Liu et al., 2017). 

Specifically, bones forming the sutures are linked through fibrous mesenchymal tissue 

referred to as the sutural ligament. Pritchard et al. (1956) defined five layers of the sutural 

ligament. The cambial layers are located on both sides of the bone’s sutural aspect and 
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contain osteogenic cells. Fibrous capsular layers are located on the medial aspects of the 

cambial layers. Lastly, the middle layer is highly vascular and contains the blood vessels 

and nerves that supply the joint. The blood vessels in the middle layer of the suture also 

link the diploic veins, intracranial venous sinuses, and external veins of the scalp 

(Pritchard et al., 1956; Cohen, 1993; Proff et al., 2006); however, the cambial and fibrous 

capsular layers are continuous with the periosteum both internally and externally along 

the sutural margins (Prichard et al., 1956; Moss, 1960).  

Embryology of Suture Formation 

In fetal development, the vault of the skull forms part of the membranous 

neurocranium and is derived from the primitive meninx of the mesoderm found around 

the developing neural tube. Specifically, the primitive meninx is divided into the 

ectomeninx (located externally) and the endomeninx (located internally) (Harrison, 

1978). The endomeninx gives rise to the pia and arachnoid mater, and the ectomeninx 

will form the bones of the cranial vault and dura mater of the brain. The ectomeninx 

forms a membrane that undergoes intramembranous ossification to form the frontal, 

parietal, parts of the occipital, and the squamous portion of the temporal bone.  

At the eighth embryonic week, ossification centers of the skull start to appear. 

The ossification centers allow bone to grow from the center towards the margin of the 

adjacent bone (Harrison, 1978; Hauser and De Stefano, 1989). Initially, the bones are 

connected by a dense layer of connective tissue, which ultimately gives rise to the 

sutures. However, the edges of the cranial vault bones do not fuse but overlap each other 

to allow the large skull of the fetus to pass through the birth canal (Cohen, 1993).   
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At birth, certain regions of the skull have fontanelles, which are large areas that 

separate the bones from one another where ossification is not complete (Dryden, 1978; 

Langman, 1981). The anterior fontanelle is located between the frontal and parietal bones 

and is the last fontanelle to close around two years of age, while the other fontanelles 

close at the end of the first year (Kirmi et al., 2009). These fontanelles close at different 

times, allowing the cranial vault to expand and grow during the first year of life (Kirmi et 

al., 2009). Cranial vault bone growth is directed by the growth of the brain and other 

factors such as tissue interactions at sutural sites, signaling of the dura mater by specific 

cells, and physical forces produced by the expansion of the skull (Ogle et al., 2004). As 

the bones of the cranial vault grow, the fontanelles will decrease in size and form into the 

sites for the sutures of the skull.  

At birth, the bones of the skull are unilamellar and have not yet differentiated into 

the two layers of compact bone separated by cancellous bone. Suture formation occurs 

during the first and second years of extra-uterine life and do not change significantly in 

appearance until adulthood. The bones of the skull interlock at the sutures by tongue-

shaped processes called “lingulae,” with the internal and external lingulae developing 

differently (Oudhof, 1982; Hauser and De Stefano, 1989).  

Cranial Suture Closure 

The process of cranial suture closure is contingent upon numerous interactions 

and varies considerably across adults (Furuya et al., 2009). With the exception of the 

metopic suture, sutures generally fuse from back-to-front and laterally-to-medially (Kirmi 

et al., 2009). There are varying reports of age and sutural closure reported in the 

literature. Dwight (1890) reported open or patent cranial vault sutures at 80 years of age, 
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while the same sutures in other individuals may be completely obliterated before 50 years 

of age. Kirmi and colleagues (2009) noted that the coronal, lambdoid, and sagittal sutures 

will remain patent until the fourth decade of life whereas Furuya (1984) reported that 

sutures could be identified into the seventh decade. Despite the erratic patterns of 

ectocranial suture fusion, endocranial sutures close earlier than ectocranial sutures 

(Christensen et al., 2014).  

In some New World monkeys, the circum-mental (parieto-squamosal, parieto-

mastoid, occipito-mastoid, spheno-temporal, spheno-frontal, and spheno-parietal) sutures 

remain patent throughout life (Chopra, 1957). However, cranial sutures in peccaries 

(Tayassuidae) fuse early due to the animals using their snout to root for food at a very 

early age (Herring, 1974).  

In biological anthropology, cranial sutures have been used to determine age at 

time of death despite the erratic patterns of suture fusion (Todd and Lyon, 1924; Todd 

and Lyon, 1925a; Todd and Lyon, 1925b; Todd and Lyon, 1925c; Acsadi and Nemeskeri, 

1970; Meindl and Lovejoy, 1985; Krogman and Iscan, 1986) and ancestry determination 

by specific sutural patterns among individuals (Sekharan, 1985; Rogers and Allard, 

2004). Specifically, the sutures most commonly used for age estimation are located in the 

vault of the skull. The three most prominent vault sutures are the coronal, sagittal, and 

lambdoid suture.  

Sutures were once considered to close and obliterate when the growth and 

development of the skull ceased (Kokich, 1986). However, the study of the fusion of the 

cranial sutures has been dominated by the investigation of craniosynostosis or the 

premature fusion of one or more sutures of the skull, usually occurring in the first year of 
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life (Bolk, 1917; Cohen, 1993; Kimonis et al., 2007; Slater et al., 2008; Kirmi et al., 2009; 

Iyengar et al., 2015). The most common suture to exhibit craniosynostosis is the sagittal 

suture, followed by the unilateral coronal and/or bilateral coronal, metopic, and lambdoid 

sutures.  

Facial sutures demonstrate greater connectivity than those of the cranial vault, 

which will undergo considerable yield and plastic deformation before failure (Maloul et 

al., 2010). Craniofacial sutures often fail at the separation through the suture or exhibit a 

fracture extending away from the sutural site, indicating that the sutures were weaker than 

the adjacent cranial bones (Maloul et al., 2013). However, in trauma cases involving 

children, diastasis of cranial sutures is common due to the lack of cranial bone 

ossification, unfused sutures, and exposed fontanelles (Compobasso et al., 2019). The 

malleability of juvenile skulls allows for increased resistance to fracture (Byers, 2017; 

Campobasso et al., 2019). Campobasso et al. (2019) presented a case of an undetected 

traumatic diastasis of the coronal and sagittal sutures of a 7-year-old boy, noting that 

cranial diastasis can be wrongly interpreted due to the unfused bones of the juvenile skull. 

Consequently, traumatic head injuries can be easily misinterpreted due to unique features 

related to the age of the individual and the type of imaging used (Campobasso et al., 

2019).  

Macroscopic assessment of cranial suture ossification has been widely viewed as 

unreliable and highly variable, shifting current examinations to alternate imaging 

techniques such as mCT technology (Furuya et al., 1984; Sherick et al., 2000; Harth et 

al., 2009; Corega et al., 2010). Imaging technologies such as SEM and mCT scans have 

increased the ability of forensic investigators to analyze trauma nondestructively (Becker, 
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2002; Li et al., 2013). While these images are typically created in 3D, any 2D slice of the 

scan can be extracted, viewed, and analyzed (Li et al., 2013). Computed tomography 

scans are often used to evaluate areas of complex trauma (Myers, 1999), are non-

destructive and can provide an additional method to assess trauma (Myers, 1999; Li et al., 

2013). 

Considerable research has been dedicated to the analysis of cranial suture closure 

or synostosis. For example, Harth et al. (2009) examined the internal structural segments 

of the sagittal, coronal, and lambdoid sutures to determine if there was a correlation 

between age and stages of sutural closure using mCT technology. Sherick et al. (2000) 

examined and assessed the ability of a mCT scanner to view normal and synostosed 

cranial sutures. Similarly, Corega et al. (2010) evaluated normal and synostosed cranial 

suture morphology at the microscopic level using samples from the coronal suture of two 

children aged 1.3 and 1.5 years old.  

While various studies have been conducted using mCT in the analysis of cranial 

suture synostosis (Furuya et al., 1984; Sherick et al., 2000; Harth et al., 2009; Corega et 

al., 2010), no peer reviewed mCT-based studies of suture area in traumatized adult 

human crania could be found. Due to the tortuous nature of the sutures of the human 

crania, this study presents a novel mCT comb-based approach to standardize sampling 

sites along the coronal suture. This analysis may be applicable to other complex sutures 

of the skull where sampling site standardization may be difficult. Furthermore, this study 

seeks to establish a protocol for standardization of sampling sites of the coronal suture 

using mCT segmenting software, Avizo (Thermo Scientific).  
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CHAPTER II 

Mechanical Properties of Bone 

In the skeleton, the geometry, composition, and relative thickness of bones dictate 

their mechanical properties, thereby determining the extent of potential deformation 

during trauma (Wedel and Galloway, 2014; Lillie, 2015). Before describing the 

mechanical properties of bone, the terminology of mechanics is briefly discussed.  

Introduction to Mechanics 

Mechanics, the science that studies the effects of forces upon the form or motion 

of bodies, can be divided into two groups, statics and dynamics (Rogers, 2010). Statics is 

the study of bodies at rest or in equilibrium as a result of forces acted upon them and 

dynamics is the study of moving bodies. Most materials are usually studied under static 

conditions that easily permit the observation of the applied forces or load.  

A force is anything that changes the state of a body or object with respect to its 

motion or position (Rogers, 2010). There are three primary types of forces: compressive 

or pushing forces, tensile or pulling apart forces, and shearing or sliding forces that make 

one part of the body slide with respect to an adjacent part (Martin et al., 1998). If a force 

is applied to a body, it produces stresses and strains within the body (Martin et al., 1998). 

Stress is defined as a ratio between the force and the area upon in which the force is 

acting, indicated in terms of pounds of force or kilograms of force per unit area (Hart et 

al., 2017). Strain is defined as a change in the linear dimension of a body as a result of the 

application of the force (Rogers, 2010; Hart et al., 2017).  

The maximum stress and strain a material can sustain are designated as the 

ultimate strength and ultimate strain. The relationship between the stress and strain is 
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denoted by a stress-strain curve (Martin et al., 1998). The slope of the stress-strain curve 

within the elastic region is called the modulus of elasticity, or Young’s modulus (Martin 

et al., 1998; Byers, 2017). Young’s modulus is a measure of the stiffness of a material, 

not its elasticity which is the property of a material that allows it to return to its original 

dimension upon removal of the force or load (Turner, 2006). The area under the stress-

strain curve is a measure of the amount of energy needed to induce failure (Byers, 2017).  

The elastic strain region of a material describes the deformation as being 

reversible and the plastic strain region of a material is irreversible deformation before 

failure (Turner, 2006; Hart et al., 2017). Young’s modulus is separated by the yield point, 

which represents a gradual transition in which the stresses begin to cause irreversible 

permanent damage to the material (Figure 3). The yield point is also that point where the 

stress-strain curve becomes nonlinear. The post-yield strain is inversely proportional to 

the brittleness of bone (Turner, 2006; Currey, 2012). A material is determined to be 

brittle when it breaks without presenting any irreversible post-yield deformation (Turner 

2006). Determining if a material is brittle does not provide any direct information about 

how much stress it can tolerate; however, the presence or absence of post-yield 

deformation is a crucial feature of the mechanical properties of a material. Materials that 

exhibit a reasonable amount of post-yield deformation are often tough (Turner, 2006). A 

tough material is one that is resistant to cracking and is usually able to absorb a great deal 

of energy before breaking (Currey, 2012). 
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Figure 3 

Stress-Strain Curve (Young’s Modulus) 
 

 

 

An isotropic material is described as having properties that are the same in all 

directions while anisotropic materials vary in different directions (Currey, 2012). Bone is 

described as being an anisotropic material and will vary under the different kinds of 

mechanical behavior according to the direction of the applied force or load (Martin et al., 

1998; Currey, 2012; Hart et al., 2017).  
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Biomechanics of Bone Tissue 

Bone tissue is a two-phase porous anisotropic material composed primarily of 

tough collagen packed with rigid calcium phosphate mineral. Mechanical properties of 

bone are largely determined by the amount, spatial arrangement, molecular structure, and 

quality of these components (Turner, 2006; Currey, 2012).  

The stiffness of bone is primarily associated with mineral content; however, if too 

much mineralization occurs bone becomes brittle and requires less energy to fail and 

fracture (Turner, 2006). The collagen matrix associated with the toughness of bone 

making it less brittle and more resistant to fracturing (Turner, 2006). The ratio of mineral 

content to collagen affects bone’s strength and brittleness (Hart et al., 2017). If bone has 

excessive mineral content or undergoes changes in mineral quality, brittleness increases. 

Excessive collagen, however, improves the overall bone toughness but has little influence 

on the strength and stiffness of bone (Hart et al., 2017).  

The mechanical properties of bone are governed by the same principles as those 

described above. Strength and stiffness of a bone is a product of its shape, size, and 

strength of materials within that bone (Turner, 2006). Similarly, the mechanical 

properties of bone require the balance of many demands placed upon them. The skeleton 

provides a support system for muscles that work against each other in order to create 

motion and maintain posture. The stiffer the bone, the more efficient the action of the 

muscles are at producing movement. If the bone is less stiff, part of the mechanical 

output of the muscles is used in the bone deformation process rather than in creating 

motion (Martin et al., 1998). 
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Another consideration is the weight of bone, since the stronger the bone the more 

weight it can support and carry around (Currey, 2012). The overall mechanical properties 

of bone represent a compromise between the need for stiffness to make muscle action 

efficient and the need for compliance to absorb the energy placed upon them without 

fracturing, all while minimizing skeletal weight (Martin et al., 1998; Turner, 2006). 

There are a number of biomechanical parameters that can be applied to describe 

the integrity of bone. The load-displacement curve is a relationship between the applied 

load and displacement response (Figure 4; Turner, 2006). The slope of the elastic region 

of the curve (S) denotes the extrinsic stiffness or rigidity of the overall bone structure. A 

number of other biomechanical properties can be derived from the curve, including 

ultimate force (Fu), work to failure (U), and ultimate displacement (du). 

 Each of the parameters reflect a different bone property. The ultimate force (Fu) 

signifies the general integrity of the overall bone structure. The work to failure parameter 

(U) is the amount of energy needed in order to break a bone and the ultimate 

displacement (du) is inversely proportional to the brittleness of a bone (Turner, 2006).  

Mechanical Properties of Cortical Bone  

Human cortical bone is anisotropic and therefore has many differences in 

mechanical properties. For example, cortical bone in long bones is stronger and stiffer 

when loaded longitudinally along the sagittal plane compared to the transverse plane, 

indicating that cortical bone can be treated as transversely isotropic. Also, cortical bone is 

stronger in compressional forces than compared to a tensile force (Turner, 

2006). Similarly, the stiff flat bones of the cranium have anisotropic properties 

comparable to those from the diaphyses of long bones (Peterson and Dechow, 2002).  
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Figure 4 

Bone’s Load-Displacement Curve. See the Text above for an Explanation of the Curve 
 

 

 
The Mechanical Effects of Loading on Bone 

Loading rate has a significant effect on the damage accumulation within cortical 

bone. The mechanical effects of loading on the microscopic morphology of bone 

significantly impacts resorption and deposition of bone’s functional requirements. 

Specifically, once strain has reached a maximum threshold, new bone must be deposited 

to counteract the effects of the imposed strain (Currey, 2012). For example, in cortical 

bone, this process involves deposition or resorption on the periosteal surface. Also, 

changes in cross-sectional geometry will occur when the strain is high in order to bring 

the bone back to its optimal strain threshold (Ruimerman et al., 2005). Strains on 

trabecular bone will also affect changes in the trabecular configuration in order to orient 
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themselves to best resist the applied forces placed upon them. Generally, bone cells are 

responsive to mechanical stimuli in the short term. However, if repeated and continuous 

stimuli ensue it will have a decreasing osteogenic effect over time (Robling and Turner, 

2009).  

Overuse in loading initiates small microcracks in bone that causes remodeling in 

the areas experiencing the strain. Generally, two types of discontinuity are observed: 

diffuse damage at the collagen fibril level and linear microcracks. The two types of 

discontinuities are possibly due to different mechanical stressors. Diffuse damage is 

generally observed in tensile forces and microcracks are usually seen in compressive 

forces. Correspondingly, the repair mechanisms are different with diffuse damage healed 

through direct mineral deposition and microcracks healed by remodeling (Currey, 2012).  

If a strain increases to the point where a microcrack forms, it will proliferate in 

the bone’s matrix and a complex process is initiated. Generally, many microcracks will 

be deferred into the cement line or sheath surrounding the osteon. The cement line is an 

area where minimal mineralization occurs and thus promotes the deflection of cracks by 

providing a less stiff boundary for crack propagation. When the microfracture encounters 

the cement line around the osteon, it stops the crack. However, in order for a 

microfracture to continue in length, more surface energy is required when it encounters 

the cement line. Therefore, in order for crack propagation, more force is required to 

sustain a crack than if it had not been halted by the cement line. When enough energy is 

applied, the microcrack will disrupt the structure of the osteon (Kakar and Einhorn, 2009; 

Mishinski and Ural, 2011). Crack resistance is higher in planes perpendicular to the 

osteon (Mishinski and Ural, 2011).  
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CHAPTER III 

Trauma Types, Timing of Injuries, and Fractures 

This chapter presents terms and concepts used in describing and discussing 

trauma analysis. The timing and mechanism of injuries, as well as fracture types and 

patterns of injury, are also discussed. Bone trauma can be classified into categories based 

on unique fracture characteristics associated with each trauma type.   

Timing of Injuries 

Timing of injury is important in trauma analysis. Villa and Mahieu (1991) 

established guidelines for determining appropriate standards for identifying each 

category. Antemortem injuries are characterized by an osteogenic response where the 

body attempts to heal an injury prior to death. Perimortem injuries are identified by 

fracture outlines having obtuse or acute fracture angles, smooth fracture edges, and 

evidence of peeling or flaking. Postmortem damage is characterized by differences in 

color among the fracture edges, transverse fracture outlines, right angle fractures, and 

fracture edges with jagged blunted ends (Villa and Mahieu, 1991).  

On a microscopic level, Pechnikova and colleagues (2011) observed that osteon 

breaks could indicate perimortem and postmortem trauma or postmortem alteration. 

Pechnikova et al. (2011) found that, in both perimortem and postmortem events, fractures 

were twice as likely to extend through the osteon as compared to the cement lines and 

thus were not a basis for determining perimortem from postmortem trauma based on 

osteon fracture patterns alone.  

To identify antemortem and perimortem injuries, a more in-depth discussion on 

the healing process is beneficial. In the first 24 hours after a fracture, a hematoma forms 
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at the site of the break. Osteoclasts and osteoblasts proliferate at the injury site and 

initiate the inflammation response. The first sign of an osteogenic response is porosity at 

the ends of the fracture due to the activity of osteoclasts resorbing the bone. Osteoblasts 

then begin to directly deposit woven bone by intramembranous ossification (McKinley et 

al., 2003). The callus, which forms at the fracture site, will continue to form until the 

ends reach pre-fracture stability in approximately three to six months. The remodeling 

process where woven bone is replaced by trabeculae bone, can continue for up to seven 

years. The specific presence of the resorption and hard callus denotes the injury as 

antemortem. However, if early resorption is noted, the injury may be identified as 

occurring close to the time of death, but a definitive time frame cannot be given as 

individual response to injury can vary depending upon age, location of the fracture, 

overall health, and activity level (Martin et al., 2004).   

Perimortem injuries occur at, near, or around the time of death and do not show 

any evidence of healing (Wheatley, 2008; Wendel and Galloway, 2014). A common 

characteristic of perimortem bone fractures are sharp edges, butterfly fractures, and 

diagonal fracture angles along the Z-axis (Villa and Mahieu 1991; Wheatley, 2008; 

Byers, 2017).  

Similarly, postmortem trauma manifests as damage unlike the previously 

discussed antemortem and perimortem trauma. Quatrehome and Iscan (1997) noted 

features of the external environment, such as soil moisture, sunlight, and animal activity, 

that can influence the appearance of skeletal material. Weathering can produce 

longitudinal cracks in the bone parallel to osteon orientation and thus differ from oblique 

or transverse fractures seen in some trauma cases. Dry bones are much more brittle than 
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fresh bone and will splinter and break in jagged patterns with break angles that appear to 

be at 90-degree angles (Villa and Mahieu, 1991).  

Blunt Force Trauma 

Bone trauma can be classified into categories based on unique fracture 

characteristics associated with each trauma type. Blunt force trauma is characterized as 

an injury or wound resulting from a blow from a broad or blunt instrument (Byers, 2017). 

For example, blunt instruments may include a baseball bat, hammer, fist, or pipe. The 

forces present in this type of trauma can be characterized as direct, crushing, 

acceleration-deceleration, or sharp blunt impact. The loads experienced in blunt force 

trauma range from low or high. The mechanical properties of blunt force trauma will vary 

due to the size and shape of the weapon, the amount of force, and age of the individual. 

Determining the location, length, width, shape, and fracture type are key characteristics in 

analyzing blunt force trauma (Kimmerle and Baraybar, 2008).  

Cranial blunt force trauma may be represented by depressed, radiating, 

comminuted, blowout, or basilar fractures (Wedel and Galloway, 2014; Byers, 2017). 

Depressed fractures cause inward bending of the bone away from the direction of the 

applied force of impact. These fractures may also be observed as peripheral out-bending 

depending on the force applied. Radiating fractures occur at the point of impact and move 

through areas of thinner bone that have less skeletal buttressing. Similarly, if increased 

force is applied to the skull, concentric fractures may circumscribe the impact site (Hart, 

2005; Blau, 2017; Byers, 2017). 

Fracture tolerance in cranial bone varies across the skull due to different 

composition among the bones (Fenton et al., 2005). In general, skull fractures follow 
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areas of weakness and terminates at areas of interruption in the bones, such as another 

fracture or a cranial suture (Fenton et al., 2005). While cranial fractures may occur in any 

portion of the cranial vault, LeCount and Apfelbach (1920) described six regions of 

greater cranial thicknesses and vertical arches in the skull where the bones are thicker and 

stronger compared to other areas. The buttresses are located in the midfrontal, 

midoccipital, paritosphenoidal, and parietopetrous portion of the skull (Wendel and 

Galloway, 2014). Similarly, a study by Berryman and Symes (1998), in an attempt to 

identify areas prone to fracturing, identified four areas of the cranial vault that were 

structurally stronger. These four areas, depicted in Figure 5, are the midfrontal, 

midoccipital, posterior temporal, and anterior temporal (Byers, 2017). Bone located 

between these regions can bend more easily in a vertical manner (Wendel and Galloway, 

2014).  
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Figure 5 

Buttresses of the Cranial Vault 
 

 

 

Similarly, Le Fort (1901) described facial buttressing located along the alveolar 

processes, the malar or zygomatic eminences, and the nasofrontal process of the maxilla 

(Figure 6). These locations on the facial region are anatomically stronger and resist 

fracturing. Le Fort identified three types of patterns of facial fracturing based upon the 

facial buttressing (Figure 7). Specifically, Le Fort I fractures are described as fractures 

that separate the alveolar portion of the maxilla from the rest of the face. Le Fort II facial 

fracture pattern is separation of the maxilla with fractures through the maxilla, orbits and 

bridge of the nose. Le Fort III fractures are described as separation of the skull at the 

supraorbital margins and zygomatic tripod fractures. Le Fort III fractures are generally 

associated with fractures occurring on the side of the injury, while Le Fort II type 

fractures are associated with the opposite side of the injury (Figure 6; Fenton et al., 2005; 

Wendel and Galloway, 2014).  
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Figure 6 

Buttresses of the Face 
 

 

Figure 7 

Le Fort Fracture Types of the Face. See the Text for a Description of each Fracture Type 
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Typically, the bones of the face can withstand considerable forces when the load 

is distributed over a wide area. The facial region is supported horizontal and vertical 

struts. Horizontal struts pass above and below the eye and the hard palate. Vertical struts 

pass midsagittally along the side of the nose and diagonally from the lateral edge of the 

hard palate to the lateral edge of the orbit then continues vertically along the orbit. The 

location of these struts offer resistance to fracturing while the remaining bone tends to 

crumple upon impact (Wendel and Galloway, 2014).  

Ballistic Trauma 

Ballistic trauma results from gunfire projectiles coming into contact with skeletal 

elements. Projectiles subject bone to sudden, dynamic high-speed stress at a single locus 

in a bending direction and release a considerable amount of energy within the body (Di 

Maio, 1999). The compressive force of the bullet often creates a permanent cavity in the 

bonethat can form a variety of morphological shapes such as circular, keyhole, gutter, 

tangential, or irregular (Di Maio, 1999; Byers, 2017). Wound morphologies and fracture 

patterns are affected by the size and shape of the projectile, the trajectory of the bullet, 

velocity, distance of fire, and properties of the affected tissue (Di Maio, 1999). However, 

in order for a bullet to penetrate bone, the minimum velocity of 60 m/sec is required (Di 

Maio, 1999).  

In gunshot wounds, the deceleration of the bullet when striking the skull causes 

increased pressure inside the cranial cavity. In the case of close contact gunshot wounds, 

the skull undergoes an additional source of intracranial pressure, resulting in widespread 

fracturing of the cranial elements (Di Maio, 1999; Taylor and Kranioti, 2017). When the 

bullet is discharged from the muzzle of a gun, gasses are expelled that normally dissipate 
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into the atmosphere; however, in close contact gunshot wounds the gasses are expelled 

into the cranial vault, resulting in fractures that generally radiate away from the entrance 

and exit wounds (Gurdjian et al., 1949; Fenton et al., 2005). Radiating fractures, as seen 

in Figure 8, radiate or extend away from the entrance location (Di Maio, 1999; Taylor 

and Kranioti, 2017). In the cranial vault, these lines typically terminate when they 

encounter a suture or a previous fracture line (Byers, 2017). Similarly, concentric 

fractures develop perpendicular to the radiating fractures and are produced when the bone 

is elevated or “heaved” out of the cranial vault from the endocranial pressure (Figure 8; 

Smith et al., 1987; Berryman and Symes, 1998; Kimmerle and Baraybar, 2008). 

Figure 8 

Depictions of Radiating and Concentric Fractures on the Cranium Resulting from a 

Gunshot Wound 

 

Note. The round circle represents the bullet hole in the cranium, while the black lines 

represent radiating fractures and the red dotted lines denote concentric fractures.  
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Bullets capable of entering the skull typically have enough remaining energy to 

perforate through the opposite side of the cranium or become arrested without exiting (Di 

Maio, 1999). Perforating wounds are described as having both an entrance wound and an 

exit wound, with the exit wound typically larger than the entrance. Penetrating wounds 

are described as those that enter the body but do not exit (Di Maio, 1999). This is 

commonly associated with early destabilization of the bullet and is dependent upon the 

caliber of the bullet, location of the entrance wound, and distance of the gun when fired 

(Stephanopoulos et al., 2015).  

Using mCT techniques, I tested the null hypothesis (H0) that suture separation will 

not differ between trauma types and control specimens on six human bone trauma cases 

(three ballistic, three blunt force) and three control specimens. Specifically, I tested for 

the presence and distribution of diastatic fractures along the coronal suture in each case of 

skeletal trauma to determine if abnormalities in these structures exist. I predicted that 

sutural separation and diastatic fracture distributions would only be present in the cranial 

sutures in closest proximity to the trauma site. Also, I tested for asymmetrical separation 

in the coronal sutures to determine if significant differences could be detected between 

the sides that received traumatic forces versus the contralateral regions. The occurrence 

of abnormalities may relate to the direction and distance of the force that caused the 

trauma. The purpose of this study was to determine how different types of trauma 

affected adult cranial sutures. This research could provide additional evidence to 

reconstruct death histories of relatively incomplete skulls with suspected ballistic trauma 

or blunt force trauma when wounds are not present due to inadequate recovery from a 

crime scene or animal scavengers.  
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Research Hypothesis / Objectives 

H0: Hypothesis  

Suture separation in crania that have incurred trauma will not vary from those that 

have not incurred trauma. 

HA: Hypothesis 

Suture separation in crania that have incurred trauma vary from skulls that have 

not incurred trauma.  

HA1: Hypothesis 

Sutural separation and diastatic fracture distributions would be statistically greater 

in skulls that have incurred ballistic trauma than skulls that incurred blunt force trauma.  

HA2: Hypothesis 

Asymmetrical separation would be statistically greater on the side that received 

traumatic forces versus the contralateral. 
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CHAPTER IV 

Materials and Methods 

Cranial sutures were examined and compared among six human bone trauma 

cases and three control specimens housed at Southeast Texas Applied Forensic Science 

Facility (STAFS) in Huntsville, Texas and the Forensic Anthropology Center at Texas 

State (FACTS) in San Marcos, Texas. STAFS and FACTS are willed body donation 

facilities where human cadavers are studied as they decompose outside under natural 

conditions in an environment comprised of pine trees, herbaceous plants, and a humid 

subtropical climate for teaching and scientific purposes (Hyde et al., 2013). Cadavers 

used in this study were placed in a supine position on the ground without clothing and a 

½” x ½” galvanized wire mesh “cage” was placed over the bodies to protect them from 

scavengers. Cadavers were allowed to decompose naturally until they reached the 

skeletonization stage when 50% of the skeleton had been exposed (Langley and Tersigni-

Tarrant, 2017). Specimens were then carefully recovered and macerated to remove any 

remaining soft tissue from the skeletal elements. The maceration process entailed soaking 

the fleshed bones in water at a constant temperature of 100°C for two 12-hour shifts. 

Forceps and a hand brush were used to remove any remaining soft tissue. The bones were 

placed on a metal tray and allowed to dry for two weeks. Each specimen included in this 

study was identified by their respectively assigned STAFS or FACTS case number to 

insure the privacy and confidentiality of the individual.  

The bones and trauma examined were three crania with intra-oral gunshot 

wounds, three crania with blunt force trauma, and three crania with no trauma that served 

as negative controls (Figures 9-17).  
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Figure 9 

Control Specimen, STAFS 2011-005 
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Figure 10 

Control Specimen, FACTS 2013-016 
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Figure 11 

Control Specimen, FACTS 2015-007 
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Figure 12 

Blunt Force Trauma Specimen, STAFS 2014-012 
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Figure 13 

Blunt Force Trauma Specimen, FACTS 2011-022 
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Figure 14 

Blunt Force Trauma Specimen, FACTS 2013-057 
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Figure 15 

Intra-Oral Gunshot Wound Specimen, STAFS 2017-017 
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Figure 16 

Intra-Oral Gunshot Wound Specimen, FACTS 2013-046 
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Figure 17 

Intra-Oral Gunshot Wound Specimen, FACTS 2013-019 
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All specimens were males of European ancestry and >53 years of age. All cranial 

injuries were located on one side of the skull and did not directly impact the coronal 

suture (Table 1). 

Table 1 

Age of Specimens, Manner of Death, and Side of Trauma for Cranial Examined in this 

Study  

Specimen Age Manner of Death Side of Cranial Trauma 
Control    

STAFS 2011-005 53 n/a n/a 
FACTS 2013-016 57 n/a n/a 
FACTS 2015-007 56 n/a n/a 

BFT*    

STAFS 2014-012 59 Accidental Right 
FACTS 2011-022 56 Accidental Right 
FACTS 2013-057 54 Homicide Left 

GSW*    

STAFS 2017-017 53 Suicide Left 
FACTS 2013-046 55 Suicide Right 
FACTS 2013-019 60 Suicide Left 

Note. *BFT = Blunt Force Trauma; GSW = Gunshot Wound. 

Cranial specimens were scanned at the University of Texas at Austin High-

Resolution X-ray Computed Tomography Facility and Texas State University’s Forensic 

Anthropology Center using NorthStar High-Resolution X-ray CT with voxel size 

dimensions of 49.4 µm. For standardization of data collection, Type-1 landmarks were 

used with imaging of the coronal sutures beginning at their origin at the anterior margin 

of the sphenoparietal suture (sphenion) and terminating at the intersection with the 

sagittal suture (bregma) (Figure 18).  
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Figure 18 

Imaging of the Right and Left Sides of the Coronal Suture 
 

 

 

Due to the tortuous nature of the coronal suture, a comb-based approach was used 

to standardize sampling sites. Utilizing Avizo (v. 9.7.0, Thermo Scientific) segmenting 

software, a chord line between the bregma and sphenion landmarks was first defined and 

measured, which allowed for the placement of 20 and 50 equidistant sampling sites along 

the suture at orthogonal angles from the chord (Table 2; Figure 19). The 20 and 50 

equidistant sampling sites were then down-sampled to include an additional 10 and 25 

equidistant sampling sites along the coronal suture.  
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Table 2 

Left And Right Chord Lengths from Bregma to Sphenion and Distance between 

Landmarks for each of the Crania Scanned 

Specimen 
Bregma to 
Sphenion 

Chord Length 

Landmarks 

10 20 25 50 
 mm 

Control       
2011-005 Left 95.64 9.56 4.75 3.83 1.91 

2011-005 Right 95.71 9.57 4.77 3.83 1.91 
2013-016 Left 97.65 9.77 4.88 3.91 1.95 

2013-016 Right 100.59 10.06 5.03 4.02 2.01 
2015-007 Left 100.91 10.09 5.05 4.04 2.02 

2015-007 Right 98.86 9.89 4.94 3.95 1.98 
BFT      

2014-012 Left 100.25 10.03 5.01 4.01 2.01 
2014-012 Right 107.81 10.78 5.39 4.31 2.16 
2011-022 Left 94.31 9.43 4.72 3.77 1.89 

2011-022 Right 91.49 9.15 4.57 3.66 1.83 
2013-057 Left 97.37 9.74 4.87 3.89 1.95 

2013-057 Right 89.54 8.95 4.48 3.58 1.79 
GSW      

2017-017 Left 95.51 9.55 4.78 3.82 1.91 
2017-017 Right 96.45 9.65 4.82 3.86 1.93 
2013-046 Left 94.90 9.49 4.75 3.80 1.90 

2013-046 Right 85.23 8.52 4.26 3.41 1.70 
2013-019 Right 100.50 10.05 5.03 4.02 2.01 
2013-019 Left 100.42 10.04 5.02 4.02 2.01 
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Figure 19 

Comb-Based Sampling Approach to Standardize Sampling Sites 
 

 

Note. a) chord and orthogonal CT slice planes; b) comb-based sampling approach; c) total 

chord length and orthogonal equidistant sampling sites along the coronal suture. 

 
ImageJ was then used to calculate the total area of separation for individual scan 

slices at each sampling site and asymmetry was determined by comparing the mean 

differences in coronal suture separation between sides delineated by bregma (Figure 20). 

The total coronal sutural areas were calculated and compared between the right and left 

sides (Table 3, Table 4).  
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Figure 20 

Total Sutural Area at Sampling Site 
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Table 3 

Summed Total Area of Complete Coronal Suture Separation using 10, 20, 25, and 50 

Landmarks 

Specimen Landmarks 
10 20 25 50 

 Summed total area (mm2) 
Control     

STAFS 2011-005 51.120 105.036 94.770 197.535 
FACTS 2013-016 39.567 74.829 151.829 290.371 
FACTS 2015-007 52.408 109.541 101.160 207.536 

BFT     
STAFS 2014-012 75.123 153.003 171.484 343.299 
FACTS 2011-022 29.830 62.238 56.002 106.785 
FACTS 2013-057 33.615 59.302 63.866 132.780 

GSW     
STAFS 2017-017 29.575 62.056 68.975 142.563 
FACTS 2013-046 17.809 39.339 64.521 135.213 
FACTS 2013-019 10.308 21.571 12.191 24.045 
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Table 4 

Total Area of Left and Right Coronal Suture Separation Per Specimen 

Specimen Landmarks 
10 20 25 50 

 Total area sum (mm2) 
Control     

2011-005 Left 23.73 47.40 43.25 91.96 
2011-005 Right 27.39 57.64 51.516 105.579 
2013-016 Left 17.78 33.67 72.41 139.37 

2013-016 Right 21.79 41.16 79.421 151.003 
2015-007 Left 22.07 48.14 48.62 97.57 

2015-007 Right 30.34 61.40 52.544 109.968 
BFT     

2014-012 Left 31.840 78.225 63.381 127.039 
2014-012 Right 43.283 74.778 108.103 216.260 
2011-022 Left 16.125 33.196 30.433 57.968 

2011-022 Right 13.705 29.042 25.569 48.817 
2013-057 Left 16.207 28.284 26.005 58.596 

2013-057 Right 17.408 31.018 37.861 74.184 
GSW     

2017-017 Left 15.973 30.548 41.512 89.487 
2017-017 Right 13.602 31.508 27.463 53.076 
2013-046 Left 10.405 21.577 31.368 66.572 

2013-046 Right 7.404 17.762 33.153 68.641 
2013-019 Left 2.577 6.330 4.971 10.895 

2013-019 Right 10.405 21.577 31.368 66.572 
 
 
Additionally, Avizo segmenting software was used to segment the complete cranial 

suture and total sutural volume was calculated using in program measuring tools for each 

specimen (Figure 21). 
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Figure 21 

View of Segmented Suture 
 

 

Note. a) Ectocranial view of segmented suture with crania; b) Ectocranial view of 

segmented suture with transparent crania; c) Segmented suture without crania; d) view of 

complete segmented suture. 

Bilateral asymmetry in individual specimens was first determined by comparing 

the total suture area diastasis per slice using a paired t-test. Next, A one-way ANOVA 

was used to determine if there are significant differences between the traumatized and 

control crania using the summed total open sutural area. Following this, the average of 
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the left and right control specimen’s sutural diastasis was calculated and tested against 

the sides with and without trauma using one-way ANOVAs. Finally, a two-way repeated 

measures ANOVA was used to compare trauma types and side with trauma versus no 

trauma. All tests were run using the 10, 20, 25, and 50 landmark sampling strategies.  
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CHAPTER V 

Results 

 
The total open sutural areas of the 10, 20, 25, and 50 landmarks were calculated, 

and a paired t-test was applied to compare differences between the left and right sides of 

each crania (Table 5-8).  

Table 5 

Total Left and Right Sutural Areas with 10 Landmarks 

Specimen Left 
Suture 

Left 
Sutural 
Range 

Right 
Suture 

Right 
Sutural 
Range 

T-value 
(Paired) P-value 

Area (mm2) 
Control       
STAFS 2011-005 2.373 4.194 2.739 4.452 -0.685 0.510 
FACTS 2013-016 1.778 3.626 2.179 4.555 -3.007 0.014 
FACTS 2015-007 2.207 6.018 3.034 8.020 -1.213 0.256 

BFT       
STAFS 2014-012 3.184 8.124 4.328 8.162 -1.412 0.192 
FACTS 2011-022 1.613 3.667 1.371 2.486 0.677 0.516 
FACTS 2013-057 1.621 3.097 1.741 4.541 -0.300 0.771 

GSW       
STAFS 2017-017 1.597 4.283 1.360 3.638 0.512 0.621 
FACTS 2013-046 1.041 1.901 0.740 1.899 1.865 0.095 
FACTS 2013-019 0.773 2.695 0.258 1.008 2.235 0.052 

Note. Significant results are indicated in bold italics. 
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Table 6 

Total Left and Right Sutural Areas with 20 Landmarks 

Specimen Left 
Suture 

Left 
Sutural 
Range 

Right 
Suture 

Right 
Sutural 
Range 

T-value 
(Paired) P-value 

Area (mm2) 
Control       
STAFS 2011-005 2.370 5.415 2.882 4.642 -1.430 0.169 
FACTS 2013-016 1.683 3.626 2.058 4.606 -4.320 <0.001 
FACTS 2015-007 2.400 7.503 3.032 8.020 -1.519 0.144 

BFT       
STAFS 2014-012 3.911 9.060 3.739 8.182 0.283 0.780 
FACTS 2011-022 1.660 3.667 1.452 3.030 0.922 0.368 
FACTS 2013-057 1.414 3.097 1.551 4.541 -0.566 0.578 

GSW       
STAFS 2017-017 1.527 4.283 1.575 7.024 -0.141 0.889 
FACTS 2013-046 1.079 2.309 0.889 3.012 1.323 0.202 
FACTS 2013-019 0.762 3.583 0.317 1.118 2.196 0.041 

Note. Significant results are indicated in bold italics. 
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Table 7 

Total Left and Right Sutural Areas with 25 Landmarks 

Specimen Left 
Suture 

Left 
Sutural 
Range 

Right 
Suture 

Right 
Sutural 
Range 

T-value 
(Paired) P-value 

Area (mm2) 
Control       
STAFS 2011-005 1.730 4.400 2.016 4.202 -1.591 0.125 
FACTS 2013-016 2.896 7.558 3.177 5.928 -1.102 0.281 
FACTS 2015-007 1.945 4.857 2.102 4.096 -0.805 0.429 

BFT       
STAFS 2014-012 2.535 5.537 4.324 9.921 -3.595 0.001 
FACTS 2011-022 1.217 2.310 1.023 2.592 1.374 0.182 
FACTS 2013-057 1.040 2.338 1.514 3.739 -2.292 0.031 

GSW       
STAFS 2017-017 1.660 3.487 1.099 3.279 2.666 0.014 
FACTS 2013-046 1.254 2.494 1.326 4.136 -0.361 0.722 
FACTS 2013-019 0.289 1.002 0.199 0.567 1.633 0.116 

Note. Significant results are indicated in bold italics. 
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Table 8 

Total Left and Right Sutural Areas with 50 Landmarks 

Specimen Left 
Suture 

Left 
Sutural 
Range 

Right 
Suture 

Right 
Sutural 
Range 

T-value 
(Paired) P-value 

Area (mm2) 
Control       
STAFS 2011-005 1.839 4.981 2.111 4.215 -1.904 0.063 
FACTS 2013-016 2.787 7.632 3.020 5.851 -1.258 0.214 
FACTS 2015-007 1.951 4.890 2.200 4.033 -1.965 0.055 

BFT       
STAFS 2014-012 2.541 6.061 4.325 9.921 -4.679 <0.001 
FACTS 2011-022 1.159 2.179 0.976 2.539 2.070 0.044 
FACTS 2013-057 1.172 2.304 1.484 3.688 -2.403 0.020 

GSW       
STAFS 2017-017 1.790 3.756 1.062 3.297 5.075 <0.001 
FACTS 2013-046 1.331 3.240 1.372 5.859 -0.286 0.776 
FACTS 2013-019 0.263 1.002 0.218 0.873 1.246 0.219 

Note. Significant results are indicated in bold italics. 
 

The results for paired t-test using the 10 landmarks sampling sites of the crania 

indicate that only control specimen 2013-016 had significant differences (p<0.05) 

between the right and left sides (Table 5). The right coronal suture sum area was 2.179 

mm2 and the left side mean sutural area was 1.778 mm2. 

Results for the 20 landmark sampling sites indicate that only GSW 2013-019 

specimen had a statistically significant difference between the right and left sides of the 

coronal suture in the intraoral gunshot wound and blunt force trauma specimens (Table 

6). The right coronal suture sum area was 0.317 mm2 and the left side sum sutural area 

was 0.762 mm2. One control cranium (2013-016) exhibited significant differences 

between the right and left sides.  
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The results for the 25 landmark sampling sites revealed that three trauma crania, 

BFT 2014-012, BFT 2013-057, and GSW 2017-017, exhibited significant differences 

between the right and left sides for the coronal suture (Table 7). The BFT 2014-012 right 

coronal suture sum area was 4.324 mm2 and the left sum sutural area was 2.535 mm2; the 

BFT 2013-057 right coronal suture sum area was 1.514 mm2 and the left sum sutural area 

was 1.040 mm2; and the GSW 2017-017 GSW right coronal suture sum was 1.099 mm2 

while the left sutural sum was 1.660 mm2.  

The 50 landmark sampling site results indicated that four crania had significant 

differences between the right and left sides of the suture (Table 8). All three BFT 

specimens (2014-012, 2011-022, 2013-057) and one intraoral GSW specimen (2017-017) 

exhibited differences in the sum sutural area between the sides of the coronal suture. BFT 

2014-012 exhibited highly significant differences between sides (p<0.001) with the right 

sutural sum of 4.325 mm2, while the left sutural sum was 2.541 mm2; BFT 2011-022’s 

right sutural sum area was 0.976 mm2, while the left sum area was 1.159 mm2; and BFT 

2013-057’s right sutural sum area was 1.484 mm2 and the left was 1.172 mm2. Lastly, 

GSW specimen 2017-017 exhibited highly significant differences between sides 

(p<0.001), with the right sutural sum 1.373 mm2 and left sutural sum 1.331 mm2, 

respectively. 

A one-way ANOVA was then performed to compare total coronal sutural 

diastasis among groups using 10, 20, 25 and 50 landmarks (Table 9). 
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Table 9 

One-Way Anova Comparing Total Sum of Sutural Separation among Groups 

# of Landmarks SS df F P-value 
Kruskal-Wallace 

H (chi2) p-value 
10 Landmarks       

Between Groups 1539.450 2 2.977 0.127 5.600 0.061 
Within Groups 1551.550 6     

20 Landmarks       

Between Groups 5655.420 2 2.353 0.176 4.622 0.099 
Within Groups 7211.750 6     

25 Landmarks       

Between Groups 7248.110 2 1.771 0.249 2.756 0.252 
Within Groups 12275.400 6     

50 Landmarks       

Between Groups 27399.600 2 1.725 0.256 2.756 0.252 
Within Groups 47657.300 6         

 

The results of the one-way ANOVA comparing total sum of sutural separation 

among groups did not reveal any statistically significant results.  

One-way ANOVAs were performed to compare total sutural area averages of the 

control specimens with the areas of the side with trauma (Table 10) and side without 

trauma (Table 11).   
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Table 10 

One-Way Anova with Total Average Sum of Control Specimens and Total Area of Side 

with Trauma 

# of Landmarks SS df Mean 
Square F P-

value 
Kruskal-Wallace 
H (chi2) p-value 

10 Landmarks        

Between Groups 378.825 2 189.412 1.862 0.235 4.622 0.099 
Within Groups 610.229 6 101.705     

 
20 Landmarks 

       

Between Groups 1271.54 2 635.772 2.204 0.192 3.822 0.148 
Within Groups 1730.89 6 288.481     

 
25 Landmarks 

       

Between Groups 1635.12 2 817.558 0.869 0.466 2.756 0.252 
Within Groups 5645.45 6 940.909     

 
50 Landmarks 

       

Between Groups 6103.97 2 3051.99 0.830 0.481 2.756 0.252 
Within Groups 22075.7 6 3679.29         
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Table 11 

One-Way Anova with Total Average Sum of Control Specimens and Total Area of 

Contralateral Side of Trauma 

# of Landmarks SS df Mean 
Square F P-

value 
Kruskal-Wallace 
H (chi2) p-value 

10 Landmarks        
Between Groups 396.053 2 198.027 4.917 0.054 5.600 0.061 

Within Groups 241.644 6 40.274     

 
20 Landmarks 

       

Between Groups 1574.680 2 787.342 2.460 0.166 4.622 0.099 
Within Groups 1920.120 6 320.020     

 
25 Landmarks 

       

Between Groups 2056.130 2 1028.070 4.134 0.074 5.067 0.079 
Within Groups 1491.990 6 248.665     

 
50 Landmarks 

       

Between Groups 7950.530 2 3975.260 4.263 0.070 5.067 0.079 
Within Groups 5594.600 6 932.433         

 

Results of the one-way ANOVAs comparing total sutural area averages of the 

control specimens with the areas of the side with trauma and side without trauma total did 

not reveal any statistically significant results.  

Finally, a two-way repeated measures ANOVA was performed comparing trauma 

type sutural separation areas and side using the 10, 20, 25, and 50 landmarks (Table 12).  
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Table 12 

Two-Way Repeated Measures Anova Comparing Trauma Types and Side 

# of Landmarks SS df Mean 
square F p-value 

10 Landmarks      
Trauma Type 272.539 1 272.539 0.693 0.443 
Side 6.35099 1 6.351 0.825 0.406 
Trauma Type x Side 0.4532 1 0.453 0.051 0.830 

      
20 Landmarks      
Trauma Type 957.316 1 957.316 0.583 0.480 
Side 1.60115 1 1.601 0.256 0.634 
Trauma Type x Side 8.72541 1 8.725 1.807 0.237 

      
25 Landmarks      
Trauma Type 884.092 1 884.092 0.420 0.546 
Side 88.4973 1 88.497 0.878 0.392 
Trauma Type x Side 4.09847 1 4.098 0.035 0.859 

      
50 Landmarks      
Trauma Type 3291.07 1 3291.070 0.381 0.564 
Side 461.267 1 461.267 1.186 0.326 
Trauma Type x Side 23.4986 1 23.499 0.049 0.833 

 

The results of the two-way repeated measures ANOVA comparing trauma types 

and side did not reveal any statistically significant results using 10, 20, 25, or 50 

landmarks.  

A one-way ANOVA was then performed to compare total coronal sutural 

diastasis among groups using total sutural volumes (Table 13). 
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Table 13 

One-Way Anova Results Comparing Total Volume among Specimens 

Total Sutural 
Volume SS df Mean 

Square F P-
value 

Kruskal-Wallace 
H (chi2) p-value 

Between Groups 226569 2 113284 2.788 2.788 5.6 0.061 
Within Groups 243805 6 40634.1     

 

The results of the one-way ANOVA comparing total volume of sutural separation 

among groups did not reveal any statistically significant results.  

Next, one-way ANOVAs were performed to compare total sutural volumes of the 

control specimens with the areas of the side with trauma (Table 14) and side without 

trauma (Table 15).   

Table 14 

One-Way Anova with Average Sum of Control Specimen Volume and Side of Trauma 

Total Sutural 
Volume SS df Mean 

Square F P-
value 

Kruskal-Wallace 
H (chi2) p-value 

Between Groups 58743.2 2 29372 1.889 0.231 3.2 0.202 
Within Groups 93306.2 6 15551  

  
 

 

Table 15 

One-Way Anova with Average Sum of Control Specimen Volume and Side of No Trauma 

Total Sutural 
Volume SS df Mean 

Square F P-
value 

Kruskal-Wallace 
H (chi2) p-value 

Between Groups 56366.3 2 28183 4.511 0.064 3.2 0.202 
Within Groups 37486.8 6 6248   
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Results of the one-way ANOVAs comparing total sutural volumes of the control 

specimens with the areas of the side with trauma and side without trauma total did not 

reveal any statistically significant results.  

Lastly, a two-way repeated measures ANOVA was performed comparing trauma 

type and side using the sutural volumes (Table 16).  

Table 16 

Two-Way Repeated Measures Anova Comparing Trauma Type and Side Volumes 

Trauma Specimens SS df Mean 
square F p-value 

Trauma Type 25676.4 1 25676.4 0.5365 0.4967 
Side 821.756 1 821.756 0.7879 0.4154 
Trauma Type x Side 1120.34 1 1120.34 1.139 0.3346 

      
The results of the two-way repeated measures ANOVA comparing trauma types 

and side using the sutural volumes did not reveal any statistically significant results.
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CHAPTER VII 

Discussion and Conclusion 

From the reported results, the paired t-test showed that side of trauma can be 

detected in individual specimens. Blunt force trauma specimens 2011-022 and 2013-057 

both exhibited smaller total sutural separation on the side that received the trauma 

whereas specimen 2014-012 exhibited larger total sutural separation on the trauma 

inflicted side. Both BFT specimens 2014-012 and 2011-022 had similar injuries: trauma 

was inflicted to the right zygomatic region in BFT specimen 2014-012 and BFT 

specimen 2011-022 exhibited trauma to the medial aspect of the right zygomatic and 

nasal bones. However, these two specimens displayed differing sides of sutural 

separation. These results may be due to the instrument and direction of force used to 

inflict the trauma. Similarly, it may be due to the individual specimens’ degree of sutural 

closure or individual fracture patterns that were able to dissipate the force of the blow. 

When trauma to the skull occurs, fracture lines follow areas of weakness and 

terminate at areas of interruption in the bones, such as another fracture line or a cranial 

suture (Byers, 2017; Fenton et al., 2005). Specimen 2011-022 displayed a large radiating 

fracture on the right superior supraciliary arch that extended to the right frontal eminence. 

This could be a reason why the sutural separation was smaller on the trauma inflicted side 

due to the radiating fracture dissipating the energy of the blow. Similarly, direction of 

trauma for BFT 2013-057 was from the posterior aspect of the left temporal bone and had 

greater coronal suture separation on the left side with a radiating fracture extending 

through the left coronal suture. The differences between BFT specimens 2013-057 and 

2011-022 the radiating fractures is that 2011-022’s fracture terminated before it reached 
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the coronal suture indicating there may not have been enough energy remaining to cause 

a pronounced effect on the suture. While specimen 2013-057 radiating fracture extended 

through the coronal suture potentially resulting in increased energy on the suture.  

The results of the paired t-test for the GSW specimens indicated that only 

specimen 2017-017 exhibited statistically significant differences. The exit wound was 

located on the anterior portion of the left parietal and displayed greater sutural separation 

on the trauma inflicted side. GSW specimens 2013-046 and 2013-019 did not exhibit 

statistically significant differences between sides for the coronal suture but did display 

larger total sutural separation on the trauma inflicted side. These results may be due to the 

location of the exit wound and distance from the coronal suture in specimen 2013-019. 

The exit wound was located on the occipital bone near the foramen magnum and may 

have be too far from the coronal suture to caused significant sutural diastasis. However, 

the exit wound 2017-017 was in close proximity to the left coronal suture, which 

produced highly significant sutural separation (p<0.0001). Similarly, 2013-019 had the 

lowest total sutural separation on both sides: the coronal and sagittal sutures were 

completely obliterated on the majority of the ectocranial portion of the cranium. This 

could also be another reason as to why the results from the paired t-test were not 

significant. For GSW specimen 2013-046, the cranium was severely fractured into seven 

fragments with several areas, such as the hard palate, entirely missing. The exit wound 

was determined to be on the middle aspect of the right parietal. A large radiating fracture 

posterior to the coronal suture traversed the length of the suture and fractured the frontal 

bone away from the parietals. It is possible that this large radiating fracture distributed 
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the energy across the complete suture that resulted in no significant differences between 

the sides of the cranium.  

All three blunt force trauma specimens exhibited significant differences in sutural 

separation between the sides compared to one intraoral gunshot wound specimen. This 

may be due to the different amount of loading placed upon the bone from the different 

trauma types. In blunt force trauma, the loading is considered slow while in ballistic 

trauma the loading is rapid or fast. In slow loading, the bone takes longer to fail or 

fracture and will display a greater amount of plastic deformation (Kroman and Symes, 

2013). In slow loading, the bone is able to deform to a particular point and at a certain 

level of force, ultimately returning to its original shape once the load is removed (Iscan 

and Steyn, 2013). However, if the load is great enough to surpass elastic deformation, the 

bone will enter plastic deformation resulting in failure or fracture. Due to rapid loading to 

the cranium in gunshot wounds, bone will experience explosive failure with little to no 

plastic deformation and will shatter (Berryman and Symes 1998). Therefore, the blunt 

force trauma specimens displayed a greater amount of plastic deformation, which may be 

the reason why all three specimens exhibited significant differences in sutural separation. 

Alternately, the gunshot wound specimens experienced no plastic deformation and the 

energy from the bullet possibly dissipated in the radiating fractures. Cohen and 

colleagues (2016) have shown that energy dissipates at fractures using controlled 

experiments. Again, the location of the injury and age of the individual effects how bone 

will respond to a particular load (Symes et al., 2012; Galloway, 1999). All the specimens 

were between the ages of 50 – 60 years of age; however, the age at which the coronal 

suture begins to fuse or obliterate varies greatly among individuals. Similarly, every 
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bone, and different areas located in the same bone, will react differently to the stress and 

strains of loading (Iscan and Steyn, 2013).  

Data analyses in this study verified that greater numbers of landmarks used in the 

comb-based approach provided a more comprehensive analysis of sutural separation in 

crania. Analyses with 10 and 20 landmarks did yield significant results between the sides 

of the cranium for control specimen 2013-016; however, differences between sides for 

2013-016 were not statistically significant as the number of landmarks increased to 25 

and 50. Therefore, increasing the number of landmarks has shown to be a better and more 

inclusive indicator of sutural separation.  

The results from the one-way ANOVA comparing the total sum area of sutural 

separation among specimens did not yield statistically significant results for the 10, 20, 

25, and 50 landmarks or the total sutural volumes (Table 9; Table 13). Therefore, total 

sutural separation cannot be used to quantify trauma between specimen types examined 

in this study. Similarly, one-way ANOVAs using the total average sum of the control 

specimens and analyzing the side of trauma and the contralateral in the specimens were 

not significant (Tables 10-11) and total sutural volumes (Tables 14-15). Finally, there 

were no significant results from the two-way repeated measures ANOVA comparing 

trauma type, side, and both trauma type and side for the specimens examined in this study 

(Table 12; Table 16).  Consequently, the results from these analyses fail to reject my null 

hypothesis that suture separation in crania that have incurred trauma will not vary from 

those that have not incurred trauma.  

Due to these unexpected results, I further hypothesize that the varying degrees of 

trauma are difficult to quantify due to the amount of variation and variables exhibited by 
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the specimens used in this analysis. Specifically, the varying degrees of sutural patency 

and obliteration, locations of the trauma on the crania, distance of trauma from the 

coronal suture and unknown ballistic data, and the amount of force used to inflict the 

blunt force trauma. It should be noted that this study used specimens with real life trauma 

and thus could not control for most variables.  

Future studies with additional intraoral gunshot wound and blunt force trauma 

specimens are needed to increase the sample size before any generalizations should be 

made. If possible, these studies should also incorporate data on the projectile itself 

including the type of weapon used, the caliber of bullet, and composition of the round. 

Similarly, in blunt force trauma specimens, data on the type of instrument used to inflict 

the trauma should also be noted. Ideally, controlled trauma experiments should be 

performed to limit the number of variables associated with this study. Cadaver crania 

should be mCT scanned before and after the trauma is inflicted to determine the extent of 

suture separation. While many methods in forensic anthropology rely predominantly on 

macroscopic observation of the trauma, the methods presented here still have the 

potential to provide valuable microscopic trauma analyses.  
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