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Abstract— In a finite-dimensional Euclidean space, we consider a differential game of two
persons—a pursuer and an evader—described by a nonlinear autonomous controlled system of
differential equations in normal form the right-hand side of which is the sum of two functions,
one of which depends only on the state variable and the pursuer’s control and the other, only
on the state variable and the evader’s control. The set of values of the pursuer’s control is finite,
and the set of values of the evader’s control is compact. The goal of the pursuer is to bring the
trajectory of the system from the initial position to any predetermined neighborhood of zero in
finite time. The pursuer strategy is constructed as a piecewise constant function with values
in a given finite set. To construct the pursuer control, it is allowed to use only information
about the value of the current state coordinates. The evader’s control is a measurable function
for the construction of which there are no constraints on available information. It is shown
that, to transfer the system to any predetermined neighborhood of zero, it is sufficient for the
pursuer to use a strategy with a constant step of partitioning the time interval. The value of
the fixed partitioning step is found in closed form. A class of systems is singled out for which
an estimate of the transfer time from an arbitrary initial position to a given neighborhood of
zero is obtained. The estimate is sharp in some well-defined sense. The solution essentially uses
the notion of a positive basis in a vector space.

DOI: 10.1134/S0012266122020112

INTRODUCTION

Two-person differential games, originally considered by R. Isaacs [1], are now a fairly developed
theory with numerous practical applications [2–7]. It developed methods for solving various classes
of game problems: the Isaacs method based on the analysis of a certain partial differential equation
and its characteristics, the Krasovsky extreme aiming method, the Pontryagin method, and others.
Krasovskii and his scientific school created the theory of positional games, which is based on the
concept of the maximum stable bridge and the extreme aiming rule. However, the efficient construc-
tion of such bridges for real conflict-controlled processes, primarily for nonlinear differential games,
is very difficult or even impossible. It is more convenient to build bridges that are not maximal but
have the property of stability and provide efficiently implemented control procedures for individual
classes of games. Sufficient conditions for the solvability of the pursuit problem in Pontryagin’s
nonlinear example were obtained in [8]. Sufficient conditions for the solvability of the pursuit prob-
lem in a nonlinear differential game are presented in [9] under some additional conditions on the
system’s vectogram and the terminal set. Approximate (in particular, numerical) construction of
stable bridges in nonlinear differential games is considered, e.g., in [10, 11].

The paper [12] introduced the notion of a positive basis of a vector space, which was efficiently
used in the papers [12, 13] to study the controllability property of nonlinear systems described by
differential equations in a finite-dimensional Euclidean space. The properties of a positive basis
were used in the papers [14–16] to study control systems on manifolds and in the papers [17–21]
to study the problem of pursuit by a group of pursuers of one or more evaders in linear differential
games with equal opportunities of players. Sufficient conditions for the solvability of the capture
problem for a two-player differential game described by a first-order nonlinear differential system
under discrete control and with incomplete information were obtained in [22]. It was proved that
there exists a neighborhood of zero from each point of which a capture occurs.
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ESTIMATE OF THE CAPTURE TIME 265

In continuation of the study in [22], the following results are obtained in the present paper. It
is shown that to transfer the system to any predetermined neighborhood of zero, it suffices to use
a strategy with a constant step of partitioning the time interval. A class of systems is distinguished
for which an estimate of the capture time from a given initial position is obtained. This estimate is
sharp in a certain sense described in the paper. The properties of a positive basis of a vector space
play an essential role in what follows.

1. STATEMENT OF THE PROBLEM

In the space Rk (k ≥ 2), we consider a differential game of two persons, a pursuer P and an
evader E. The game dynamics is described by the system of differential equations

ẋ = f(x, u) + g(x, v), u ∈ U, v ∈ V, x(0) = x0, (1)

where x ∈ Rk is the state vector and u and v are the controls. The set U = {u1, . . . , um} is finite,
ui ∈ Rl, i = 1, . . . ,m; the set V ⊂ Rs is a compact set. For each u ∈ U , the function f : Rk×U → Rk

is Lipschitz in x. The function g : Rk × V → Rk is jointly Lipschitz in all the variables; i.e., there
exist positive numbers L1, . . . , Lm and L2 such that∥∥f(x1, ui)− f(x2, ui)

∥∥ ≤ Li∥x1 − x2∥, x1, x2 ∈ Rk, i = 1, . . . ,m,∥∥g(x1, v1)− g(x2, v2)
∥∥ ≤ L2

(
∥x1 − x2∥+ ∥v1 − v2∥

)
, x1, x2 ∈ Rk, v1, v2 ∈ V.

(2)

Here and in the following, the norm is assumed to be Euclidean. Set L1 = max{L1, . . . , Lm}.
By a partition σ of the interval [0, T ] we mean a finite set {τq}ηq=0 of points of this interval such

that 0 = τ0 < τ1 < τ2 < . . . < τη = T .

Definition 1. A piecewise constant strategy W of the pursuer P is a pair (σ,Wσ), where
σ = {τq}nq=0 is a partition of the interval [0, T ] and Wσ is a family of mappings dr, r = 0, . . . , η − 1,
that take pairs (τr, x(τr)) ∈ [0, T ]× Rk to the constant control ur(t) ≡ ur ∈ U , t ∈ [τr, τr+1).

By an evader’s control we mean an arbitrary measurable function v : [0,∞) → V .
Denote this game by Γ(x0).

Definition 2. We say that an ε-capture occurs in the game Γ(x0) if there exists a T > 0 such
that for each ε̂ > 0 there exists a piecewise constant strategy W of the pursuer P such that for each
admissible evader’s control v(·) the inequality ∥x(τ)∥ < ε̂ holds for some τ ∈ [0, T ].

The pursuer’s goal is to perform an ε-capture.
The goal of the evader is to prevent this.

Definition 3 [12]. A set of vectors a1, . . . , an ∈ Rk is called a positive basis in Rk if for each
point ξ ∈ Rk there exist nonnegative numbers µ1, . . . , µn such that ξ =

∑n

i=1 µiai.
We use the following notation: IntA is the interior of a set A; coA is a convex hull of the

set A; Oε(x) is the ε-neighborhood of a point x; Dε(x) is the closed ball of radius ε centered at x.
The following capture theorem holds true [22].

Theorem 1 [22]. Let vectors f(0, u1), . . ., f(0, um) form a positive basis, and let the inclusions
−g(0, V ) ⊂ Int (co {f(0, u1), . . . , f(0, um)}) hold. Then there exists an ε0 > 0 such that for each
point x0 ∈ Oε0(0) an ε-capture occurs in the game Γ(x0).

Remark 1. According to the proof of Theorem 1, the motion generated by the winning strategy
of the pursuer resides inside the ball Dx0

(0). Therefore, it suffices to have functions f( · , · ) and
g( · , · ) defined in some neighborhood of zero in the state space. In this case, these functions can be
locally Lipschitz in the above-indicated sense.

Remark 2. Without loss of generality, we can assume that U = {1, . . . ,m}, because the pursuer’s
control is constant on the partition intervals, i.e., the function f has the form f(x, j) = fj(x), where
fj : Rk → Rk is a function Lipschitz in x. Moreover, the set U can be an arbitrary nonempty subset
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in Rl under the condition that for each u ∈ U the function f is Lipschitz in x. In this case, if there
exists a finite tuple of numbers {u1, . . . , um} ⊂ U satisfying the assumptions of Theorem 1, then
an ε-capture occurs.

2. CAPTURE STRATEGY CONSTRUCTED IN [22]

Let us present the winning strategy of the pursuer found in [22], the accompanying notation,
and some of the results established in the proof of Theorem 1. We assume that the conditions of
this theorem are satisfied. The existence of the parameters indicated in this section was established
in [22] in the proof of Theorem 1.

There exist α > 0 and ε0 > 0 such that for each point x ∈ Dε0(0) and each vector p ∈ Rk,
∥p∥ = 1, there exists an i ∈ {1, . . . ,m} such that for any v ∈ V one has the inequality〈

f(x, ui) + g(x, v), p
〉
≥ α,

where
α = min

x∈Dε0
(0)

min
∥p∥=1

min
v∈V

max
i=1,...,m

〈
f(x, ui) + g(x, v), p

〉
.

There exists a number h > 0 such that for each x0 ∈ Dε0(0) \ {0} and each v ∈ V the inequality〈
f(x, u0) + g(x, v),−x0/∥x0∥

〉
≥ α/2 = α (3)

holds for all x ∈ Dh(x0). Here u0 is found from the following maximum:

max
u∈U

〈
f(x0, u),−x0/∥x0∥

〉
=
〈
f(x0, u0),−x0/∥x0∥

〉
. (4)

In this case, it suffices to take h = α/(2L1 + 2L2).
Let D be a number for which the inequality ∥f(x, ui) + g(x, v)∥ ≤ D holds for all x ∈ Dε0(0),

any v ∈ V , and each i ∈ {1, . . . ,m}.
Denote

∆(ξ) = min
{
α∥ξ∥/D2, h/D

}
. (5)

It was shown in the paper [22] that when realizing the pursuer’s strategy, the interval partition
length [τj, τj+1), j = 0, 1, . . ., is selected using the function ∆(·) defined by relation (5) and is given
by the relation τj+1 − τj = ∆(x(τj)). The control uj is found from the following maximum:

max
u∈U

〈
f
(
x(τj), u

)
,−x(τj)

/∥∥x(τj)∥∥〉 =
〈
f
(
x(τj

)
, uj

)
,−x(τj)

/∥∥x(τj)∥∥〉. (6)

For each j = 0, 1, . . ., one has the estimate

∥∥x(τj+1)
∥∥2 = ∥∥x(τj)∥∥2 +

∥∥∥∥∥∥∥∥
τj+∆

(
x(τj)

)∫
τj

(
f
(
x(s), uj

)
+ g
(
x(s), v(s)

))
ds

∥∥∥∥∥∥∥∥
2

+ 2

τj+∆(x(τj))∫
τj

〈
f
(
x(s), uj

)
+ g
(
x(s), v(s)

)
, x(τj)

〉
ds

≤
∥∥x(τj)∥∥2 +D2

(
∆
(
x(τj)

))2

− 2∆
(
x(τj)

)
α
∥∥x(τj)∥∥

≤
∥∥x(τj)∥∥2 −∆

(
x(τj)

)
α
∥∥x(τj)∥∥.

(7)

Moreover, ∥x(t)∥ < ∥x(τj)∥, t ∈ (τj, τj+1).
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Fig. 1. Geometric meaning of the parameter choice.

An ε-capture occurs when using this strategy. The proof of Theorem 1 (see [22]) gives a general
upper bound (i.e., an upper bound valid for all x0 ∈ Dε0(0) \ {0}) of the ε-capture time.

The geometric meaning of this choice of the parameters for the above-described strategy is as
follows.

Let the initial position be at a point b ∈ Dε0(0) (Fig. 1). The pursuer’s control is chosen
according to the maximum (4), where x0 = b. Then for all t ∈ [0,∆(b)] the inclusion x(t) ∈ Dh(b)
holds (Fig. 1, small circle). Therefore, up to the time ∆(b), inequality (3) for the velocity will hold;
i.e., the velocity vector will be in the convex cone defined by the positive number α. Thus, the
trajectory will also be contained in the convex cone defined by the number α but with a vertex at
the point b (Fig. 1, rays issuing from the point b). By virtue of the definition of the function ∆(·),
by the time ∆(b) the trajectory in the cone will go no further than a certain distance (Fig. 1,
large arc). Moreover, this distance is equal to half the length of an arbitrary chord drawn from
the point b along the cone boundary. Since, by virtue of (3), the inequality ∥ẋ(t)∥ ≥ α is true
for all t ∈ [0,∆(b)], at the moment ∆(b) the point of the trajectory will be located in the cone at
a distance from the point b no closer than α∆(b) (Fig. 1, small arc). It follows from the above that
by the time ∆(b) the trajectory of the system will be in the shaded domain (Fig. 1).

3. GUARANTEED CAPTURE TIME

By S we denote the set of systems satisfying the statement of the problem and Theorem 1. In
other words, by an element s ∈ S we will mean a tuple (f( · , · ), g( · , · ), U, V ) for which the following
conditions are satisfied:

1. k, l, s,m ∈ N, k ≥ 2.
2. The set U = {u1, . . . , um} is finite, ui ∈ Rl, i = 1, . . . ,m.
3. The set V ⊂ Rs is a compact set.
4. The function f :Rk×U→Rk is Lipschitz in x for each u ∈ U , and the function g :Rk×V →Rk

is jointly Lipschitz in all variables; i.e., there exist positive numbers L1 and L2 such that the
estimates (2) hold true.

5. The vectors f(0, u1), . . . , f(0, um) form a positive basis in Rk, and one has the inclusion
−g(0, V ) ⊂ Int (co {f(0, u1), . . . , f(0, um)}).

The differential game (1) corresponding to the quadruple s ∈ S and the initial position x0 will
be denoted by Γ(s, x0).

Let s ∈ S. Define a number ε0(s) by the condition

ε0(s) = sup{r ≥ 0 : −g(x, V ) ⊂ Int (co {f(x, u1), . . . , f(x, um)}), x ∈ Dr(0)}.
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Further, we define the set O(s) ⊂ Rk by the equality

O(s) =

Oε0(s)(0), ε0(s) < +∞

Rk, ε0(s) = +∞.

Note that, according to Theorem 1, for each s ∈ S and any x0 ∈ O(s) an ε-capture occurs in the
game Γ(s, x0).

Set
D(s, r) = max

{∥∥f(x, u) + g(x, v)
∥∥ : x ∈ Dr(0), u ∈ U, v ∈ V

}
,

α(s, x0) = min
x∈D∥x0∥(0)

min
∥p∥=1

min
v∈V

max
i=1,...,m

〈
f(x, ui) + g(x, v), p

〉
.

(8)

For µ ∈ [0, 1], we define the functions

h(s, µ) =
µα(s, x0)

2(L1 + L2)
(9)

and
α(s, µ) = α(s, x0)

(
1− µ

2

)
. (10)

Theorem 2. Let s ∈ S and x0 ∈ O(s), x0 ̸= 0, and let L1 , and L2 be the Lipschitz constants
corresponding to the quadruple s. Then in the game Γ(s, x0) for each δ > 0, δ < ∥x0∥, the system
trajectory can be transferred to the ball Dδ(0) using a piecewise constant pursuer’s strategy with the
fixed partition step ∆ = h(s, µ0)/D(s, ∥x0∥) in time

Tδ ≤
∥x0∥2 − δ2

2α(s, µ0)δ −
(
D
(
s, ∥x0∥

))2

∆
+∆,

where
µ0 = min

{
1, (L1 + L2)δ/D

(
s, ∥x0∥

)}
. (11)

Proof. Since the quadruple s is fixed, we denote D(s, ∥x0∥)=D, α(s, x0)=α(x0), h(s, µ)=h(µ),
and α(s, µ) = α(µ) to simplify the notation.

10. In this part of the proof, we derive the estimates corresponding to the functions α(x0), h(µ),
and α(µ).

Let p ∈ Rk, ∥p∥ = 1, µ ∈ (0, 1], ξ ∈ D∥x0∥(0), and x ∈ Dh(µ)(ξ). Choose a value u ∈ U on which
the following maximum is achieved:

max
u∈U

⟨f(ξ, u), p⟩ = ⟨f(ξ, u), p⟩.

Let us prove that for any v ∈ V one has the inequality

⟨f(x, u) + g(x, v), p⟩ ≥ α(µ). (12)

Using definitions (8), we estimate the inner product in (12),〈
f(x, u) + g(x, v), p

〉
=
〈
f(x, u)− f(ξ, u) + f(ξ, u) + g(x, v)− g(ξ, v) + g(ξ, v), p

〉
=
〈
f(ξ, u) + g(ξ, v), p

〉
+
〈
f(x, u)− f(ξ, u), p

〉
+
〈
g(x, v)− g(ξ, v), p

〉
≥ α(x0)−

∥∥f(x, u)− f(ξ, u)
∥∥− ∥∥g(x, v)− g(ξ, v)

∥∥
≥ α(x0)− L1∥x− ξ∥ − L2∥x− ξ∥ ≥ α(x0)− (L1 + L2)h(µ)

= α(x0)− (L1 + L2)
µα(x0)

2(L1 + L2)
= α(µ).

Thus, inequality (12) has been proved.
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Note that the function h(µ) is strictly increasing, the function α(µ) is strictly decreasing, and
the following double inequalities hold:

0 ≤ h(µ) ≤ α(x0)

2(L1 + L2)
and

α(x0)

2
≤ α(µ) ≤ α(x0), µ ∈ [0, 1]. (13)

20. In this part of the proof, we construct a strategy that sends the system trajectory into the
ball Dδ(0).

By virtue of definitions (9) and (11) and inequalities (13), we have the estimate

h(µ0) ≤ α(µ0)δ/D. (14)

Define a fixed partition step ∆ = h(µ0)/D. We choose a fixed pursuer’s control uj ∈ U on the
interval [τj, τj+1), j = 0, . . . , η, from condition (6).

Let us estimate the squared norm using inequalities (12), (14), and (8). For all t ∈ (0, τ1], we
have ∥∥x(t)∥∥2 =

∥∥∥∥∥∥x0 +

t∫
0

(
f
(
x(s), u0

)
+ g
(
x(s), v(s)

))
ds

∥∥∥∥∥∥
2

= ∥x0∥2 +

∥∥∥∥∥∥
t∫

0

(
f
(
x(s), u0) + g

(
x(s), v(s)

))
ds

∥∥∥∥∥∥
2

+ 2

t∫
0

〈
f
(
x(s), u0

)
+ g
(
x(s), v(s)

)
, x0

〉
ds

≤ ∥x0∥2 +D2t2 − 2tα(µ0)∥x0∥ ≤ ∥x0∥2 +D2t∆− 2tDh(µ0)

= ∥x0∥2 +Dth(µ0)− 2tDh(µ0) < ∥x0∥2.

(15)

Note that under the conditions in question, by virtue of the choice (6) of the pursuer’s control, the
system trajectory never leaves the ball D∥x0∥(0). Therefore, when deriving inequalities (15), it is
correct to estimate the norm of the system velocity by the quantity D = D(s, ∥x0∥).

The following inequality holds by virtue of (15):∥∥x(τ1)∥∥2 ≤ ∥x0∥2 +D2∆2 − 2∆α(µ0)δ < ∥x0∥2. (16)

Let x(τ1), . . . , x(τη−1) /∈ Dδ(0). Then, by analogy with (16), for all j = 1, . . . , η the inequalities
∥x(τj)∥2 ≤ ∥x(τj−1)∥2 +D2∆2 − 2∆α(µ0)δ < ∥x(τj−1)∥2 hold. Consequently,∥∥x(τη)∥∥2 ≤ ∥x0∥2 + ηD2∆2 − 2η∆α(µ0)δ.

Based on this, if ∥x0∥2 + ηD2∆2 − 2η∆α(µ0)δ ≤ δ2, then x(τη) ∈ Dδ(0). Thus,

η ≤
[

∥x0∥2 − δ2

2∆α(µ0)δ −D2∆2

]
+ 1. (17)

Here [·] stands for the integer part of a number. If η is strictly greater than the right-hand side of
inequality (17), then x(τη−1) ∈ Dδ(0); this contradicts the assumption x(τη−1) /∈ Dδ(0).

Let us estimate τη,

τη = η∆ ≤

([
∥x0∥2 − δ2

2∆α(µ0)δ −D2∆2

]
+ 1

)
∆ ≤

(
∥x0∥2 − δ2

2∆α(µ0)δ −D2∆2
+ 1

)
∆ =

∥x0∥2 − δ2

2α(µ0)δ −D2∆
+∆.
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Thus,

Tδ ≤
∥x0∥2 − δ2

2α(µ0)δ −D2∆
+∆,

where µ0 = min{1, (L1 + L2)δ/D} and ∆ = h(µ0)/D. The proof of the theorem is complete.
Denote

T (s, x0) = ∥x0∥/α(s, x0).

Theorem 3. The set S possesses the following properties:
1. For each s ∈ S and any x0 ∈ O(s), an ε-capture occurs in the game Γ(s, x0) in time T (s, x0).
2. There exist c ∈ S and x0 ∈ O(c) for which an ε-capture does not happen within any time

T < T (c, x0) in the game Γ(c, x0).
Proof. Since the quadruple s is fixed, to simplify the notation, we denote D(s, ∥x0∥) = D,

α(s, x0) = α(x0), h(s, µ) = h(µ), α(s, µ) = α(µ), and T (x0) = T (s, x0).

10. In this part of the proof, we construct a capture strategy using Theorem 2.
Fix an arbitrary number ω ∈ (0, 1). Choose a µ1 such that

0 < µ1 ≤ min
{
1, (L1 + L2)ω∥x0∥/D

}
. (18)

Then, by analogy with (14), we have the estimate

h(µ1) ≤ α(µ1)ω∥x0∥/D. (19)

Denote ∆1 = h(µ1)/D. By analogy with 20 in the proof of Theorem 2, using a fixed partition
step ∆1, it can be shown that the system trajectory is transferred into the ball Dω∥x0∥(0) in time T1,
where

T1 ≤
∥x0∥2(1− ω2)

2α(µ1)ω∥x0∥ −D2∆1

+∆1.

Further, let µ2 = ωµ1. Then h(µ2) = ωh(µ1). Consequently, since α(·) is a strictly decreasing
function, by virtue of (19), we have the estimate

h(µ2) ≤ α(µ1)ω
2∥x0∥/D ≤ α(µ2)ω

2∥x0∥/D. (20)

Set ∆2 = h(µ2)/D. Thus, using a fixed partition step ∆2, it can be seen that the system
trajectory is sent into the ball Dω2∥x0∥(0) from the position x(T1) in time T2. Since ∥x(T1)∥ ≤ ω∥x0∥,
we have

T2 ≤
∥x(T1)∥2 − ω4∥x0∥2

2α(µ2)ω2∥x0∥ −D2∆2

+∆2 ≤
ω2∥x0∥2(1− ω2)

2α(µ2)ω2∥x0∥ −D2∆2

+∆2. (21)

Then we repeat this procedure. Set µ3 = ωµ2; then h(µ3) = ωh(µ2) and the inequality

h(µ3) ≤ α(µ2)ω
3∥x0∥/D ≤ α(µ3)ω

3∥x0∥/D

holds by virtue of (20). The fixed step is ∆3 = h(µ3)/D. By analogy with (21), we estimate T3 as

T3 ≤
ω4∥x0∥2(1− ω2)

2α(µ3)ω3∥x0∥ −D2∆3

+∆3.

And so on for each q ∈ N. As a result, we obtain

µq = ωq−1µ1, h(µq) = ωq−1h(µ1), ∆q = ωq−1∆1,

Tq ≤
ω2(q−1)∥x0∥2(1− ω2)

2α(µq)ωq∥x0∥ −D2∆q

+∆q.
(22)
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By virtue of the construction of this procedure, we have the inequality

x(T1 + . . .+ Tq) ≤ ωq∥x0∥.

Thus, we can transfer the system trajectory into any predetermined neighborhood of zero. Con-
sequently, for an ε-capture to occur when using this procedure, it remains to show that the quan-
tity

∑∞
q=1 Tq is bounded above.

Using inequalities (22), let us transform the estimate for Tq as follows:

Tq ≤
ω2(q−1)∥x0∥2(1− ω2)

2α(µq)ωq∥x0∥ −D2∆q

+∆q =
ω2(q−1)∥x0∥2(1− ω2)

2α(µq)ωq∥x0∥ −D2ωq−1∆1

+ ωq−1∆1

=
∥x0∥2(1− ω2)

2α(µq)ω∥x0∥ −Dh(µ1)
ωq−1 + ωq−1∆1 ≤

∥x0∥2(1− ω2)

2α(µ1)ω∥x0∥ −Dh(µ1)
ωq−1 + ωq−1∆1.

(23)

Now, using (23), we estimate the sum

∞∑
q=1

Tq ≤
∞∑
q=1

∥x0∥2(1− ω2)

2α(µ1)ω∥x0∥ −Dh(µ1)
ωq−1 +

∞∑
q=1

ωq−1∆1

=
∥x0∥2(1− ω2)

2α(µ1)ω∥x0∥ −Dh(µ1)

1

1− ω
+

1

1− ω
∆1 =

∥x0∥2(1 + ω)

2α(µ1)ω∥x0∥ −Dh(µ1)
+

h(µ1)

D(1− ω)
.

Thus, an ε-capture from the initial position x0 occurs in finite time T (ω, µ1) determined by the
relation

T (ω, µ1) =
∥x0∥2(1 + ω)

2α(µ1)ω∥x0∥ −Dh(µ1)
+

h(µ1)

D(1− ω)
. (24)

20. In this part of the proof, we estimate the capture time using relation (24). Based on the
construction of this estimate, let us show that the properties in the condition of the theorem are
satisfied.

Set
µ = min

{
1, (L1 + L2)ω∥x0∥/D

}
.

Note that the number T (ω, µ1) is defined for each µ1 ∈ (0, µ] by virtue of (18). Since the function
h(·) is strictly increasing and α(·) is strictly decreasing, we have

inf
µ1∈(0,µ]

T (ω, µ1) = lim
µ1→0+

T (ω, µ1).

Using definitions (9) and (10), let us find the value of the last limit, which we will denote by T (ω, 0);
i.e.,

lim
µ1→0+

T (ω, µ1) = lim
µ1→0+

(
∥x0∥2(1 + ω)

2α(µ1)ω∥x0∥ −Dh(µ1)
+

h(µ1)

D(1− ω)

)
=

∥x0∥2(1 + ω)

2α(x0)ω∥x0∥
.

Thus, for each ω ∈ (0, 1) an ε-capture occurs in any time T > T (ω, 0).
The function T (ω, 0) is strictly decreasing for ω ∈ (0, 1). Therefore,

inf
ω∈(0,1)

T (ω, 0) = lim
ω→1−

T (ω, 0) = lim
ω→1−

∥x0∥2(1 + ω)

2α(x0)ω∥x0∥
=

∥x0∥
α(x0)

= T (x0).

Let us show that an ε-capture occurs in time T (x0). By construction, an ε-capture occurs
in any time T > T (x0). Let δ > 0 and T = T (x0) + δ/(2D). Then, in time T , an ε-capture
occurs. Consequently, there exists a piecewise constant pursuer strategy such that ∥x(τ)∥ < δ/2 for
some τ ∈ [0, T ]. By virtue of definitions (8), the inequality∣∣∣∣∥∥x(τ)∥∥− ∥∥∥x(τ − δ/(2D)

)∥∥∥∣∣∣∣ ≤ Dδ/(2D) = δ/2
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holds. Therefore, ∥x(τ − δ/(2D))∥ ≤ ∥x(τ)∥ + δ/2 < δ. Moreover, τ − δ/(2D) ≤ T (x0). Thus,
it has been proved that an ε-capture occurs in time T (x0). Consequently, property 1 holds in the
statement of the theorem.

Let us provide an example for which property 2 in the statement of the theorem holds true. In
the case of k = s = 2, consider the system

ẋ1 = u1 + v1, ẋ2 = u2 + v2,

f(x, u) =

(
u1

u2

)
, g(x, v) =

(
v1

v2

)
, x0 =

(
0

1

)
,

U =

{(
1.5

1.5

)
,

(
−1.5

1.5

)
,

(
−1.5

−1.5

)
,

(
1.5

−1.5

)}
, V = [−1, 1]× [−1, 1], v(t) ≡

(
0

1

)
, t ≥ 0.

Note that here, according to Theorem 1, an ε-capture will occur from any initial position x0 ∈ R2.
For this example, α(x0) = 0.5 and T (x0) = 2.

Let us estimate x2(t),

x2(t) = 1 +

t∫
0

(u2(s) + 1) ds ≥ 1 +

t∫
0

(−1.5 + 1) ds = 1− 0.5t.

Based on this, if T ∈ [0, 2), then x(T ) /∈ O1−0.5T (0). Consequently, an ε-capture does not occur in
time T < 2 = T (x0). Thus, property 2 in the statement of the theorem does not occur. The proof
of the theorem is complete.

4. COMPUTER MODELING

Consider a differential game in R2. The system (2) of differential equations has the form

ẋ1 = u1 cos
(
|x1|+ |x2|

)
− u2 sin

(
|x1|+ |x2|

)
+ v1 cos

(
π

2
− |x1| − |x2|

)
− v2 sin

(
π

2
− |x1| − |x2|

)
,

ẋ2 = u1 sin
(
|x1|+ |x2|

)
+ u2 cos

(
|x1|+ |x2|

)
+ v1 sin

(
π

2
− |x1| − |x2|

)
+ v2 cos

(
π

2
− |x1| − |x2|

)
,

u(t) =
(
u1(t), u2(t)

)
∈ U =

{(
1

1

)
,

(
−1

1

)
,

(
−1

−1

)
,

(
1

−1

)}
,

v(t) =
(
v1(t), v2(t)

)
∈ V = co

{(
0.5

0.5

)
,

(
−0.5

0.5

)
,

(
−0.5

−0.5

)
,

(
0.5

−0.5

)}

with the initial condition

x0 =

(
x01

x02

)
=

(
0.2

3

)
.

Thus,

f(x, u) = A
(
|x1|+ |x2|

)
u, g(x, v) = A

(
π

2
− |x1| − |x2|

)
v,

where A(·) is the rotation matrix, u = (u1, u2)
T, and v = (v1, v2)

T.
This system satisfies the assumptions of Theorem 1 with an ε-capture occurring for each x0 ∈ R2.

The system has the following parameters:

α(x0) = 1− 0.5
√
2, L1 = 2

√
2, L2 =

√
2, D = 1.5

√
2.
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Fig. 2. Resulting trajectory (x1(t), x2(t)). Fig. 3. Resulting solution (x1(t), x2(t), t).

Take δ = 0.1. Then, according to Theorem 2, to transfer the system trajectory into the ball Dδ(0),
it suffices to use a fixed partition step ∆ ≤ (1− 0.5

√
2)/18. Choose ∆ = 0.0162.

An approximate solution of this system will be found by the third-order Runge–Kutta method
with step 10−4. The evader’s control at each step of the method is constant; it is chosen based
on the following maximum: max

v∈V
⟨g(x̂, v), x̂/∥x̂∥⟩ = ⟨g(x̂, v̂), x̂/∥x̂∥⟩, where x̂ is the position at the

beginning of a method step.
The simulation result is as follows: the time of reaching the ball Dδ(0) is equal to Tδ = 6.9187;

the system trajectory and the resulting solution are presented in Figs. 2 and 3. Note that
Tδ < T ((1− δ/∥x0∥)x0) ≈ 9.9239.

CONCLUSIONS

For one class of nonlinear differential pursuit games, it is shown that it is possible to use the
pursuer’s strategy with a constant step of partitioning the time interval. An estimate of the capture
time from a given initial position is obtained, which is sharp in a certain sense.
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