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Abstract—In a finite-dimensional Euclidean space, we consider a differential game of two
persons—a pursuer and an evader—described by a nonlinear autonomous controlled system of
differential equations in normal form the right-hand side of which is the sum of two functions,
one of which depends only on the state variable and the pursuer’s control and the other, only
on the state variable and the evader’s control. The set of values of the pursuer’s control is finite,
and the set of values of the evader’s control is compact. The goal of the pursuer is to bring the
trajectory of the system from the initial position to any predetermined neighborhood of zero in
finite time. The pursuer strategy is constructed as a piecewise constant function with values
in a given finite set. To construct the pursuer control, it is allowed to use only information
about the value of the current state coordinates. The evader’s control is a measurable function
for the construction of which there are no constraints on available information. It is shown
that, to transfer the system to any predetermined neighborhood of zero, it is sufficient for the
pursuer to use a strategy with a constant step of partitioning the time interval. The value of
the fixed partitioning step is found in closed form. A class of systems is singled out for which
an estimate of the transfer time from an arbitrary initial position to a given neighborhood of
zero is obtained. The estimate is sharp in some well-defined sense. The solution essentially uses
the notion of a positive basis in a vector space.

DOI: 10.1134/S0012266122020112

INTRODUCTION

Two-person differential games, originally considered by R. Isaacs [1], are now a fairly developed
theory with numerous practical applications [2-7|. It developed methods for solving various classes
of game problems: the Isaacs method based on the analysis of a certain partial differential equation
and its characteristics, the Krasovsky extreme aiming method, the Pontryagin method, and others.
Krasovskii and his scientific school created the theory of positional games, which is based on the
concept of the maximum stable bridge and the extreme aiming rule. However, the efficient construc-
tion of such bridges for real conflict-controlled processes, primarily for nonlinear differential games,
is very difficult or even impossible. It is more convenient to build bridges that are not maximal but
have the property of stability and provide efficiently implemented control procedures for individual
classes of games. Sufficient conditions for the solvability of the pursuit problem in Pontryagin’s
nonlinear example were obtained in [8]. Sufficient conditions for the solvability of the pursuit prob-
lem in a nonlinear differential game are presented in [9] under some additional conditions on the
system’s vectogram and the terminal set. Approximate (in particular, numerical) construction of
stable bridges in nonlinear differential games is considered, e.g., in [10, 11].

The paper [12] introduced the notion of a positive basis of a vector space, which was efficiently
used in the papers [12, 13| to study the controllability property of nonlinear systems described by
differential equations in a finite-dimensional Euclidean space. The properties of a positive basis
were used in the papers [14-16] to study control systems on manifolds and in the papers [17-21]
to study the problem of pursuit by a group of pursuers of one or more evaders in linear differential
games with equal opportunities of players. Sufficient conditions for the solvability of the capture
problem for a two-player differential game described by a first-order nonlinear differential system
under discrete control and with incomplete information were obtained in [22]. It was proved that
there exists a neighborhood of zero from each point of which a capture occurs.
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ESTIMATE OF THE CAPTURE TIME 265

In continuation of the study in [22], the following results are obtained in the present paper. It
is shown that to transfer the system to any predetermined neighborhood of zero, it suffices to use
a strategy with a constant step of partitioning the time interval. A class of systems is distinguished
for which an estimate of the capture time from a given initial position is obtained. This estimate is
sharp in a certain sense described in the paper. The properties of a positive basis of a vector space
play an essential role in what follows.

1. STATEMENT OF THE PROBLEM

In the space R* (k > 2), we consider a differential game of two persons, a pursuer P and an
evader F. The game dynamics is described by the system of differential equations

= f(x,u)+g(z,v), wel, veV, z(0)=umx, (1)

where x € R¥ is the state vector and u and v are the controls. The set U = {u1,...,u,,} is finite,
u; €ERY 4 =1,...,m; theset V C R®is a compact set. For each u € U, the function f : RExU — R*
is Lipschitz in z. The function g : R* x V — R" is jointly Lipschitz in all the variables; i.e., there

exist positive numbers L1, ..., L,, and L, such that
Hf(xlaui>_f(x27ui) ‘ SZinl_[E2H’ $17x2€Rk7 7::17"'am7 (2)
Hg(ml,vl) —g($2,v2)H < L2(||9U1 — 22| + ||t - UQH), el 2?2 e RF, ol o? eV

Here and in the following, the norm is assumed to be Euclidean. Set L; = max{Ly,..., L,,}.

By a partition o of the interval [0,7] we mean a finite set {7,}7_, of points of this interval such
that 0 =1o < <m<...<7,=T.

Definition 1. A piecewise constant strategy W of the pursuer P is a pair (o, W, ), where
o = {7,}4—o s a partition of the interval [0, 7] and W, is a family of mappings d,., r =0,...,7 -1,
that take pairs (7., z(7.)) € [0,T] X R* to the constant control u,(t) =u, € U, t € [1,,Try1)-

By an evader’s control we mean an arbitrary measurable function v : [0,00) — V.

Denote this game by I'(zg).

Definition 2. We say that an e-capture occurs in the game I'(x() if there exists a 7' > 0 such
that for each € > 0 there exists a piecewise constant strategy W of the pursuer P such that for each
admissible evader’s control v(-) the inequality ||z(7)|| < € holds for some 7 € [0, T].

The pursuer’s goal is to perform an e-capture.

The goal of the evader is to prevent this.

Definition 3 [12]. A set of vectors ay,...,a, € R¥ is called a positive basis in R* if for each
point £ € R* there exist nonnegative numbers p, ..., p, such that £ =37 | u;a;.

We use the following notation: Int A is the interior of a set A; co A is a convex hull of the
set A; O.(z) is the e-neighborhood of a point z; D.(x) is the closed ball of radius € centered at x.

The following capture theorem holds true [22].

Theorem 1 [22]. Let vectors f(0,u1), ..., f(0,u,) form a positive basis, and let the inclusions
—g(0,V) C Int (co{f(0,u1),..., f(0,uy)}) hold. Then there exists an €9 > 0 such that for each
point xo € O, (0) an e-capture occurs in the game I'(xz).

Remark 1. According to the proof of Theorem 1, the motion generated by the winning strategy

of the pursuer resides inside the ball D, (0). Therefore, it suffices to have functions f(-,-) and
g(+,+) defined in some neighborhood of zero in the state space. In this case, these functions can be
locally Lipschitz in the above-indicated sense.

Remark 2. Without loss of generality, we can assume that U = {1, ..., m}, because the pursuer’s
control is constant on the partition intervals, i.e., the function f has the form f(z, j) = f;(z), where
f;: R¥ — R is a function Lipschitz in z. Moreover, the set U can be an arbitrary nonempty subset
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266 SHCHELCHKOV

in R! under the condition that for each v € U the function f is Lipschitz in x. In this case, if there
exists a finite tuple of numbers {uy,...,u,,} C U satisfying the assumptions of Theorem 1, then
an e-capture occurs.

2. CAPTURE STRATEGY CONSTRUCTED IN |[22]

Let us present the winning strategy of the pursuer found in [22], the accompanying notation,
and some of the results established in the proof of Theorem 1. We assume that the conditions of
this theorem are satisfied. The existence of the parameters indicated in this section was established
in [22] in the proof of Theorem 1.

There exist « > 0 and g, > 0 such that for each point * € D,,(0) and each vector p € R¥,
|lpll = 1, there exists an ¢ € {1,...,m} such that for any v € V one has the inequality

<f(m u;) + g(x,v) >>a

where

a= ze%l:?(o) ”]ghm1 1;1161‘1/1z max (f(z,w;) + g(z,v),p).

There exists a number h > 0 such that for each zq € D, (0)\ {0} and each v € V the inequality

(f(@,0) + g(@,v), —z0/||20]l) > /2 =7 3)

holds for all z € Dy, (z(). Here Uy is found from the following maximum:
max ( f (w0, w), w0/ [[woll) = (f (@0, W), =20/ |lo])- (4)

In this case, it suffices to take h = /(2L + 2L,).

Let D be a number for which the inequality ||f(x,u;) + g(x,v)|| < D holds for all z € D, (0),
any v € V, and each i € {1,...,m}.

Denote

A(¢) = min {@l¢[|/D? h/D}. (5)

It was shown in the paper [22] that when realizing the pursuer’s strategy, the interval partition
length [7;,7;41), 7 =0,1,..., is selected using the function A(-) defined by relation (5) and is given
by the relation 7,41 — 7; = A(z(7;)). The control @, is found from the following maximum:

max (f(2(r;), ), ~2(7))/ |a()]|) = ((2(). %), ~()/|l2(z)])). (©)

uelU
For each 7 =0,1,..., one has the estimate

Ti+A (I(TJ))

el = o)+ | [ (s m) + 9(a(6),0(s) ) ds

Ti+A(@(7;))

+2 / <f(a:(s),ﬁj) +g(m(s),v(s)),x(7j)>ds

Ti

Moreover, [lz(t)[| < [[z(7))]], t € (75, Tj11)-
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]

Fig. 1. Geometric meaning of the parameter choice.

An e-capture occurs when using this strategy. The proof of Theorem 1 (see [22]) gives a general
upper bound (i.e., an upper bound valid for all zy € D, (0) \ {0}) of the e-capture time.

The geometric meaning of this choice of the parameters for the above-described strategy is as
follows.

Let the initial position be at a point b € D, (0) (Fig. 1). The pursuer’s control is chosen
according to the maximum (4), where xq = b. Then for all ¢ € [0, A(b)] the inclusion z(t) € Dj(b)
holds (Fig. 1, small circle). Therefore, up to the time A(b), inequality (3) for the velocity will hold;
i.e., the velocity vector will be in the convex cone defined by the positive number @. Thus, the
trajectory will also be contained in the convex cone defined by the number @ but with a vertex at
the point b (Fig. 1, rays issuing from the point b). By virtue of the definition of the function A(-),
by the time A(b) the trajectory in the cone will go no further than a certain distance (Fig. 1,
large arc). Moreover, this distance is equal to half the length of an arbitrary chord drawn from
the point b along the cone boundary. Since, by virtue of (3), the inequality [|Z(¢)|| > @ is true
for all ¢ € [0, A(b)], at the moment A(b) the point of the trajectory will be located in the cone at
a distance from the point b no closer than @A(b) (Fig. 1, small arc). It follows from the above that
by the time A(b) the trajectory of the system will be in the shaded domain (Fig. 1).

3. GUARANTEED CAPTURE TIME

By & we denote the set of systems satisfying the statement of the problem and Theorem 1. In
other words, by an element s € & we will mean a tuple (f(-,-),g(-,-),U, V) for which the following
conditions are satisfied:
k,l,s,meN, k>2.

The set U = {uy,...,u,} is finite, u; e R, i =1,...,m.
The set V C R? is a compact set.

The function f:R*¥xU —R* is Lipschitz in  for each u € U, and the function g:R*xV — Rk
is jointly Lipschitz in all variables; i.e., there exist positive numbers L; and L, such that the
estimates (2) hold true.

5. The vectors f(0,u;), ..., f(0,u,,) form a positive basis in R¥, and one has the inclusion
—g(0,V) C Int (co{f(0,uy),..., f(0O,um)}).

The differential game (1) corresponding to the quadruple s € & and the initial position z, will
be denoted by I'(s, x).

Let s € &. Define a number e¢(s) by the condition

==

go(s) =sup{r >0: —g(z,V) C Int (co{f(z,u1),..., f(z,un)}), =€ D,.(0)}.
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268 SHCHELCHKOV

Further, we define the set O(s) C R¥ by the equality

O(s) = 4 Qo (0): €0(8) < +oo

Rk, 60(5) = 400.

Note that, according to Theorem 1, for each s € & and any z, € O(s) an e-capture occurs in the
game I'(s, ).

Set
D(s,r) = max{”f(x,u) —i—g(ac,v)H cx € D(0),ueUwve V},
. L (8)
a(s,ro) = min min min max x,u;) + g(x,v),p).
( 0) wED”mO”(O) Ipl|l=1 veV i=1,....m <f( ) g( ) p>
For p € [0, 1], we define the functions
,U,O{(ﬁ, $0)
his,p) = ——-—— 9
and
ale.) = as. o) (1- 4 ) (10)

Theorem 2. Let s € & and xq € O(s), ©y # 0, and let Ly, and Ly be the Lipschitz constants
corresponding to the quadruple s. Then in the game T'(s,xzq) for each 6 > 0, 6 < ||xo||, the system
tragectory can be transferred to the ball Ds(0) using a piecewise constant pursuer’s strategy with the
fized partition step A = h(s, uo)/D(s, ||zol|) in time

[0 — 62

20(s,10)5 — (D(s. onu)>2A

Tég +A7

where
o = min {1, (Ly + L)5/D(s, |oll) }. (11)
Proof. Since the quadruple s is fixed, we denote D(s, ||zo||) =D, a(s,zo) =a(zo), h(s, u) =h(p),
and @(s, u) = @(p) to simplify the notation.

1°. In this part of the proof, we derive the estimates corresponding to the functions a(xg), h(u),

and @(p).

Let pe R*, |Ip|| =1, p € (0,1], £ € Dyjzy(0), and T € Dy(,,)(§). Choose a value @ € U on which
the following maximum is achieved:

max(f(&, u), p) = (f(&,u),p).

uclU
Let us prove that for any v € V' one has the inequality
(f(@w) +g(,v),p) = a(p). (12)

Using definitions (8), we estimate the inner product in (12

),
(f@, )+ g(x,v),p) = (f(@,0) — f(&) + f(&u) + 9(T,v) — g(&0) + g(&,v),p)
= (f(& )+ g(&0),p) + (f(@,u) — f(&,7),p) + (9(T,v) — g(&,v),p)
> a(zo) — || f(@, @) — f(& )| — ||l9(@,v) — g(&,0)||
> a(xo) = Li|[T = &]| = Lo||T — €| > alxo) — (L1 + Lo)h(p)

alzo) — (In +L2>2(§f(j’°£2) — ().

Thus, inequality (12) has been proved.
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Note that the function A(u) is strictly increasing, the function @(u) is strictly decreasing, and
the following double inequalities hold:

(o) a(z)
0<h(u) < N+ L) and 5

<a(p) < alx), pelo,1]. (13)

29, In this part of the proof, we construct a strategy that sends the system trajectory into the
By virtue of definitions (9) and (11) and inequalities (13), we have the estimate

h(ko) < @(110)5/D. (14)

Define a fixed partition step A = h(uy)/D. We choose a fixed pursuer’s control u; € U on the
interval [7;,7;41), 7 =0,...,n, from condition (6).
Let us estimate the squared norm using inequalities (12), (14), and (8). For all t € (0, 7], we

have

¢ 2

xo + / (f(:v(s),ﬂo) + g(z(s), v(s))) ds

0

I

lz(2)

t 2

= ||lzo|)® + / (f(x(s),ﬂo) + g(x(s),v(s))) ds
0 (15)
t
+ 2/ (F((5), ) + g(w(s), v(5)), w0 ) ds
0
< Jlwol|” + D** — 2ta(po) l|lwo || < ||wol* + D*A — 2t Dh(po)
= ||wol|* 4+ Dth(po) — 2tDh(po) < [|zoll*.
Note that under the conditions in question, by virtue of the choice (6) of the pursuer’s control, the
system trajectory never leaves the ball D, (0). Therefore, when deriving inequalities (15), it is
correct to estimate the norm of the system velocity by the quantity D = D(s, ||zo]|)-
The following inequality holds by virtue of (15):

[2()|” < llwol® + DA% = 2Aa(10)5 < [lzo]*. (16)

Let 2(71),...,2(7;-1) ¢ Ds(0). Then, by analogy with (16), for all j = 1,...,7n the inequalities
lz(m)1? < l|lz(15-1)|1* + D*A? — 2Aa(uo)d < ||(7j-1)]|* hold. Consequently,

2 _
[z (m)[|” < llwol* +nD?*A? — 2nAa(po)d.
Based on this, if ||zo||* + nD?A? — 2nAa(ue)d < 62, then z(7,) € D;s(0). Thus,

ye [ ol =
= | 2Aa ()6 — D2A2

} +1. (17)

Here [-] stands for the integer part of a number. If 7 is strictly greater than the right-hand side of
inequality (17), then x(7,_1) € Ds(0); this contradicts the assumption z(7,—1) ¢ Ds(0).
Let us estimate 7,

[[zo]* — &7 [[zo|* — 6° [zo|* — 62
1)a< 1A= A.
28a(o)s — 022 | )2 =\ 2aa(u)s - peaz T %a(10)5 — D°A

T,,:r]Ag(
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270 SHCHELCHKOV

Thus,
[[o]|* — &2

A
()5 — D?A

where pg = min{1, (L; + L2)d/D} and A = h(pg)/D. The proof of the theorem is complete.

Denote

Ts <
*=9om

T'(s,20) = |lzoll/ax(s, xo).

Theorem 3. The set © possesses the following properties:

1. For each s € & and any xo € O(s), an e-capture occurs in the game I'(s, xq) in time T(s, zo).
2. There exist ¢ € & and xq € O(c) for which an e-capture does not happen within any time

T < T(c,x0) in the game T'(c, xq).
Proof. Since the quadruple s is fixed, to simplify the notation, we denote D(s, ||zq||) = D,
a(5,20) = (), h(s, 1) = h(p), @(s,1) = (), and T(ay) = T(s, o).
1°. In this part of the proof, we construct a capture strategy using Theorem 2.
Fix an arbitrary number w € (0,1). Choose a p; such that

0 < gy <min {1, (Ly + Lo)wl|zol|/ D} (18)
Then, by analogy with (14), we have the estimate
h(pr) < @(pr)wl|zoll/D- (19)

Denote A; = h(u1)/D. By analogy with 2° in the proof of Theorem 2, using a fixed partition
step Ay, it can be shown that the system trajectory is transferred into the ball Dy, (0) in time 77,

where
[[20]?(1 — w?)

T, <
P 2a(mwzo]| — DA,

+ Ay

Further, let po = wpy. Then h(ps) = wh(py). Consequently, since @(-) is a strictly decreasing
function, by virtue of (19), we have the estimate

h(p2) < @(pa)w?|lol|/D < @(pa)w?||zo ||/ D- (20)

Set Ay = h(uz)/D. Thus, using a fixed partition step Ay, it can be seen that the system
trajectory is sent into the ball Dz, (0) from the position x(77) in time T5. Since ||z(T1)|| < wlzo]|,
we have

W21 - w?)

(m2)w?|[zo]| = D2As

T < 2(T1)|]* — w? [z
~ 2a(p2)w?||zo|| — DAz

Then we repeat this procedure. Set p3 = wps; then h(us) = wh(pz) and the inequality
h(ps) < @(p2)w? 2ol /D < @(ps)w? |20l /D
holds by virtue of (20). The fixed step is A3 = h(uz)/D. By analogy with (21), we estimate T3 as

wlzo]*(1 = w?)

+ As.
(ps)w?||zol| — D2As ’

T, <
= 9a

And so on for each ¢ € N. As a result, we obtain

fg =Wy, h(pg) = w (), Ay = wiTHA,

2(q—1) 2(1 _ 2 29
T, < nlllze) | 5 #2)
2a(pq)wt|[zol| — D24,
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ESTIMATE OF THE CAPTURE TIME 271

By virtue of the construction of this procedure, we have the inequality
(T +...+T,) < wizol-

Thus, we can transfer the system trajectory into any predetermined neighborhood of zero. Con-
sequently, for an e-capture to occur when using this procedure, it remains to show that the quan-
tity Y., T, is bounded above.

Using inequalities (22), let us transform the estimate for T, as follows:

w? @Vl [*(1 — w?)
2a(pag)wt||zo|| = D2wi=t Ay

[[zo]l*(1 — w?)
(a)wl|zoll = Dh(p1)

7, < Ll =)

2a(p ez — D?A,
P - w?)

26y )20 — Dhjur)

Now, using (23), we estimate the sum

+ wq71A1

+Aq:

(23)

w4 wITIA < 5= Wit 4 WITIAL
a

2

ZT Z |2o(1 —w i 1+qu A,
~ = 2a(p)wl|zo|| - Dh (k1)

_ lzoll*(1 — w?) L 1 _ [[zol*(1 + w) h(pa)
2a(m)wllzol = Dh(im) 1 —w  1T—w™"  2a(u)wlwo] — Dh(pr) ~ D(1 —w)’

Thus, an e-capture from the initial position zy occurs in finite time 7'(w, 1) determined by the

relation )
[[2ol[*(1 + w) h(p)
2a(p)wllwol| = Dh(py)  D(1 - w)

T(w, 1) = (24)

29, In this part of the proof, we estimate the capture time using relation (24). Based on the
construction of this estimate, let us show that the properties in the condition of the theorem are
satisfied.

Set
i =min {1, (L 4+ Ly)w|zol|/D}.

Note that the number T'(w, p1;) is defined for each u; € (0, 7] by virtue of (18). Since the function
h(-) is strictly increasing and @(-) is strictly decreasing, we have

inf T(w,pu)= lim T(w, ).

11 €(0,1] 1 —0+

Using definitions (9) and (10), let us find the value of the last limit, which we will denote by T'(w, 0);

- lzoll*(1 +w) (i) ):H%WG+W)
26 (j)w|woll — Dh(n) * D —w)) ~ 2a(zo)wfzol

1 —0+4 w1 —0+

lim T(w,p) = lim (

Thus, for each w € (0,1) an e-capture occurs in any time 7" > T'(w, 0).
The function T'(w, 0) is strictly decreasing for w € (0, 1). Therefore,

2
1
we(0,1) w—1— w—)l— 2a(x0)wa0H CV(.’EO)

= T (zo).

Let us show that an e-capture occurs in time T'(xy). By construction, an e-capture occurs
in any time T > T(zy). Let § > 0 and T = T(x) + §/(2D). Then, in time T, an e-capture
occurs. Consequently, there exists a piecewise constant pursuer strategy such that ||z(7)| < §/2 for
some 7 € [0,T]. By virtue of definitions (8), the inequality

(r)|| - Hx(T — 5/(2D)) H‘ < D§/(2D) = 6/2
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272 SHCHELCHKOV

holds. Therefore, [|z(r —6/(2D))|| < [[=(7)|| + 6/2 < §. Moreover, 7 — 6/(2D) < T'(zo). Thus,
it has been proved that an e- capture occurs in time T'(xg). Consequently, property 1 holds in the
statement of the theorem.

Let us provide an example for which property 2 in the statement of the theorem holds true. In
the case of kK = s = 2, consider the system

f(:):,u) = (Zl)7 g(:v,v) = (Zl>a To = (?)7
v {(1.5)’ (—1.5)’ (—1.5>, ( 1.5 )} VL1 -1, ()= (0)7 >0,
15)°\ 15 ) \215) \“15 1

Note that here, according to Theorem 1, an e-capture will occur from any initial position z, € R?.
For this example, a(zo) = 0.5 and T'(zo) = 2.
Let us estimate x(t),

t t

xo(t) =1+ / (ua(s) +1)ds > 1+ / (—1.5+4+1)ds =1—0.5¢.
0 0
Based on this, if T € [0,2), then z(T") ¢ O;_¢57(0). Consequently, an e-capture does not occur in

time 7' < 2 = T'(z). Thus, property 2 in the statement of the theorem does not occur. The proof
of the theorem is complete.

4. COMPUTER MODELING

Consider a differential game in R%. The system (2) of differential equations has the form

. . ™ &

i1 = uy cos (|z1] + [@2]) — uosin (Jo1] + |22]) + vy cos<2 |z1| — |:c2|> — Uy s1n<2 — |xy| — |x2|>,
. . ™

xg:u1s1n(]:c1|+|1:2|)+u2cos (|x1|+|932 4 vy sin <

"l bl )+ vscon(§ el =l ),
e )
v(t) = (vi(t),v2(t)) €V =co {< ) (

with the initial condition
Ty = To1 _ 0.2 '
To2 3

Thus,
o) = Allanl + ), o) = 4(F = el = loal )

where A(-) is the rotation matrix, u = (u;,u2)", and v = (vy, vy)T.
This system satisfies the assumptions of Theorem 1 with an e-capture occurring for each z, € R
The system has the following parameters:

alzg) =1-05vV2, L1 =2v2, L,=+2, D=15/2
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Fig. 2. Resulting trajectory (z1(t),z2(t)). Fig. 3. Resulting solution (z1(t), z2(t),1).

Take § = 0.1. Then, according to Theorem 2, to transfer the system trajectory into the ball D;(0),
it suffices to use a fixed partition step A < (1 — 0.5v/2)/18. Choose A = 0.0162.
An approximate solution of this system will be found by the third-order Runge-Kutta method

with step 107*. The evader’s control at each step of the method is constant; it is chosen based
on the following maximum: ma‘i((g(ic, v),z/||z||) = (g(&,0),&/|z]]), where Z is the position at the
ve

beginning of a method step.

The simulation result is as follows: the time of reaching the ball D;s(0) is equal to T5 = 6.9187;
the system trajectory and the resulting solution are presented in Figs. 2 and 3. Note that
Ts <T((1—06/||xol])zo) ~ 9.9239.

CONCLUSIONS

For one class of nonlinear differential pursuit games, it is shown that it is possible to use the
pursuer’s strategy with a constant step of partitioning the time interval. An estimate of the capture
time from a given initial position is obtained, which is sharp in a certain sense.

FUNDING

This work was supported by the Ministry of Education and Science of the Russian Federation
within the framework of state order no. 075-01265-22-00 (project no. FEWS-2020-0010) and the
Russian Foundation for Basic Research, project no. 20-01-00293. The computing resources of the
shared use center “Supercomputer Center of IMM UB RAS” of the Institute of Mathematics and
Mechanics of the Ural Branch of the Russian Academy of Sciences were used when performing
research.

REFERENCES

1. Isaacs, R., Differential Games, New York: Wiley, 1965.

2. Blaquiere, A., Gerard, F., and Leitmann, G., Quantitative and Qualitative Differential Games, New
York: Academic Press, 1969.

3. Krasovskii, N.N., Igrovye zadachi o vstreche dvizhenii (Game Problems about Motion Encounter),
Moscow: Fizmatlit, 1970.

4. Friedman, A., Differential Games, New York: Dover, 1971.
5. Héjek O., Pursuit Games, New York: Academic Press, 1975.

6. Leitmann, G., Cooperative and Noncooperative Many-Player Differential Games, Vienna: Springer-
Verlag, 1974.

7. Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games),
Moscow: Fizmatlit, 1974.

8. Nikol’skii, M.S., One nonlinear pursuit game, Kibernetika, 1973, no. 2, pp. 92-94.

9. Pshenichnyi, B.N. and Shishkina, N.B., Sufficient conditions for finiteness of pursuit time, Prikl. Mat.
Mekh., 1985, vol. 49, no. 4, pp. 517-523.

DIFFERENTIAL EQUATIONS  Vol. 58 No. 2 2022



274

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

SHCHELCHKOV

Dvurechenskii, P.E. and Ivanov, G.E., Algorithms for computing Minkowski operators and their appli-
cation in differential games, Comput. Math. Math. Phys., 2014, vol. 54, no. 2, pp. 235-264.

Ushakov, V.N. and Ershov, A.A., On the solution of a control problem with a fixed termination time,
Vestn. Udmurt. Univ. Mat. Mekh. Komp’ yut. Nauki, 2016, vol. 26, no. 4, pp. 543-564.

Petrov, N.N., On the controllability of autonomous systems, Differ. Uravn., 1968, vol. 4, no. 4,
pp. 606-617.

Petrov, N.N., Local controllability of autonomous systems, Differ. Equations, 1968, vol. 4, no. 7,
pp. 1218-1232.

Narmanov, A.Ya. and Petrov, N.N., Nonlocal problem of the theory of optimal processes. I, Differ.
Uravn., 1985, vol. 21. N 4, pp. 605-614.

Narmanov, A.Ya., Stability of completely controllable systems, Differ. Equations, 2000, vol. 36, no. 10,
pp. 1475-1483.

Narmanov, A.Ya., On stability of completely controllable systems, Sib. Adv. Math., 2001, vol. 11, no. 4,
pp. 110-125.

Bannikov, A.S. and Petrov, N.N., On a nonstationary problem of group pursuit, Proc. Steklov Inst.
Math. (Suppl. Iss.), 2010, vol. 271, no. 1, pp. S41-S52.

Petrov, N.N., One problem of simple pursuit with phase constraints, Autom. Remote Control, 1992,
vol. 53, no. 5, pp. 639-642.

Petrov, N.N., One group pursuit problem with fractional derivatives and phase constraints, Vestn. Ud-
murt. Univ. Mat. Mekh. Komp’yut. Nauki, 2017, vol. 27, no. 1, pp. 54-59.

Petrov, N.N. and Solov’eva, N.A., Multiple capture in Pontryagin’s recurrent example with phase con-
straints, Proc. Steklov Inst. Math. (Suppl. Iss.), 2016, vol. 293, no. 1, pp. 174-182.

Vinogradova, M.N., Petrov, N.N., and Solov’eva, N.A., Capturing two coordinated evaders in linear
recurrent differential games, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2013, vol. 19, no. 1,
pp. 41-48.

Shchelchkov, K.A., On a nonlinear pursuit problem with discrete control and incomplete information,
Vestn. Udmurt. Univ. Mat. Mekh. Komp’ yut. Nauki, 2018, vol. 28, no. 1, pp. 111-118.

DIFFERENTIAL EQUATIONS Vol. 58 No. 2 2022



	INTRODUCTION
	1. STATEMENT OF THE PROBLEM
	2. CAPTURE STRATEGY CONSTRUCTED IN [22]
	3. GUARANTEED CAPTURE TIME
	4. COMPUTER MODELING
	CONCLUSIONS
	FUNDING
	REFERENCES

