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ABSTRACT

One of the most important areas of nonlinear control 

system study is system stability. Unlike linear systems, it 

is quite complex and it has been defined in various ways in 

literature. The; only powerful general tool available for 

determining regions of asymptotic stability is Liapunov's 

direct method. But the finding of the Liapunov function is 

quite difficult in most cases and there are; few general 

rules available though,continuing research has broadened 

the class of functions for whicli it can be used.

This research concentrates on an effort to establish 

whether the suggested criterions for phase space partition, 

discriminant, generalised Hurwitz and Ku Shen, can be made 

to yield areas of asymptotic stability for a class of 

functions which could be mathematically defined.

It finds that though in general, they are quite 

useful in building Multilinear Models for non-linear systems, 

they are of little use in defining stability. A new separate 

use criterion is suggested, vzhich does furnish the regions of 

stability but for a very restricted class of simple control 

systems.
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CHAPTER 1

INTRODUCTION

Whenever confronting any control system, the most 

important question is that of its stable equilibrium 

states. This may consist of a position of asymptotic 

stability in the Liapunov sense or of a stable oscilla

tory motion of finite amplitude. For a linear system, if 

stability exists at all, it is global monotonic stability] 

This is defined as the stability condition for which a 

state point, anywhere in the entire finite region of phase 

plane, tends to the singularity and approaches arbitrarily 

close to it as time approaches infinity. This is not 

true of nonlinear control systems at all, and it is of 

great importance to prove stability in a defined finite 

region of state space , when global stability does not 

exist or cannot be proved. This defined area furnishes us 

the constraints for the system parameters which can only 

be exceeded at the cost of instability!

The nature of the phase space trajectories were 

studied in detail by Poincare' in his investigation of 

nonlinear mechanics and he developed the classification 

for different kinds of simple singularities that can 

exist. If first degree or linear terms are present in 

the state space equations, then the singularity is
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defined as simple. For a small region around these points 

in the phase plane, for a structurally stable system (any 

physical system almost automatically meets this require- 
n

ment); Liapunov showed that the linear approximation will 

determine the stability. However, frequently, practical 

interest dictates the exact delineation of as large a 

region of asymptotic stability around the singularity as 

possible.

Liapunov's second or direct method is a powerful and 

general approach to the stability of control systems and 

defining this area. The major problem in applying it is 

of construction of the Liapunov function. This is further- 

complicated by the fact that the Liapunov function is not 

unique. Thus:

(1) Should a particular function fail to show 

that a specific system is stable or unstable, 

there is no assurance that another function 

cannot be defined that does demonstrate stabi

lity or instability.

(2) Should a particular function fail to show

that a particular system is stable or unstable, 

there is no assurance that exceeding these 

limits will actually cause the system to be 

unstable. In other words, stability require

ments are almost without exception, overly
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ri gorous.

There are few general rules for choosing the 

Liapunov function though more and more attention has ■ 

been paid in recent years, to developing and broad

ening the classes for which it is available. Chetaev? 

Lure.Letov and Zubov® have done important pioneer

ing work in the area, with regional studies around 

singularities by Zubov? and Vogt,^ among others. But 

it is difficult even now to find a Liapunov function, 

quickly and conveniently for a specific control system. 

Some of the simplest ones that can be found give a 

quite small defined area out of a much larger possible 

one.

The great usefulness of the Liapunov approach, 

apart from its generality, is that the system .equations 

do not have to be solved. Therefore if some other 

criterion were developed, which was much less general, 

but was simpler and systematic, these criterion would 

still have some important practical utility. It is 

towards investigating this possibility that this re

search addresses itself.

Since each singularity in a state plane dominates 

the behavior of the neighborhood trajectories, it seems 

feasible, at least intuitively, to partition state space 

into single singularity dominated regions. Then if the 



singularity was stable by nature, the defined area v/ould 

be one of asymptotic stability.
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One such approach was investigated by Chung.The 

scope of the discriminant criterion and generalized 

Hurwitz criterion suggested by Chung are examined for 

this purpose^as is the work of Ku and ShenJO The latter 

Jt'ork is of some importance as it leads to a possible 

unified treatment with singularities of the second kind. 

It will be shown that the first two criterion (Chung) 

are quite weak as generally the defined area of stability 

always contains an undefined area of instability in it 

which almost completely invalidates its usefulness. A 

new criterion is also suggested for a very restricted 

class of functions using the property of the separatrix .



CHAPTER II

SINGULARITIES

(1) Definitions of terms

Just as poles and zeros exist in the complex plane 

similarly there exist points on the phase planes called 

singularities which characterize the system response.^ 

Limiting our attention to the second order system, 

the state space equations can be represented in the gen 

eral form by:

*Z-\ "P 2-) .................................. (1)

7-2.= .Xz) ....................................(2)

where P and Q are not restricted to linear 

terms but are ascending polynomials in in the

general case.

Then, dividing (2) by (1):
C'X.xt'XO .................................. /3\

7-a. ?(?%.!, Xi.)
The integral curves of equation (3) on the 

plane, called the state plane, determine the phase por

trait of the system^ which represents all possible 
io

histories of it. If then the state plane is
11 13 referred to as the phase plane. ’

Singularities of this function are said to occur 

where P^.X^Q^^.O............. (4)



that is where the slope is indeterminate.:
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Graphically speaking, there is a unique trajectory which 

passes through each point with the exception of the points 

of singularities through which either an infinite number, 

or none, pass.^ (Poincare) The singularity is classified 

as simple, which are the ones dealt with here, if the 

lowest degree terms present in (3) in the numerator and 

denominator are of first degree.

(2) Location of Singularities

The singularities can thus be obtained by forcing 

the rate variables in the state equations to zero (equa

tions 2 and 4).

Illustrative Example

1. Consider the following nonlinear differential 

equations:

* 2.
-^i + -'X-a.

By (4) for singularities

O--X.2. .................................. (5)

0= ............................. (6)

From (6) e'O or

Therefore singular points are (0,0), (1,0)

2. For the linear case:

"Z-i ?=. <lZ| +

%/L - (L'Z, 4-d%. 2
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The singularities are determined by:

O- 4- d-X-o.
v/hich is possible only if %t= G-, 

Therefore linear systems have only one singularity 

which is located at the origin.

(3) C1 assi f 1 ca ti on of S i ngu 1 ari tj es of Second Order
System (LinearT~

Starting with a linear second order system we have the 

space equations:

*X-1 ■* Q. 11 1 & i ‘i. *V--

'V'Z. " ^"2. ................................... ( 7 )

an^ be i ng constants, tlie particular form 

being chosen because of the facility with which it can 

be generalized to higher order systems, if necessary. 

The matrix form for (7) being:

................................. (s)

Then the singularity of this system exists at (0,0) 

as mentioned earlier.

The solution of equations of the form (7) is known 

to involve exponential functions and can be represented by 
LC'JexponentialHNori-trivial solutions exist only if A's 

are the roots of the characteristic equations.

1(2 n'A (ift . \ r-r*l -

This roots or eigenvalues determine completely the 

nature of the singularity at the origin and the solution



will be of the form:^5^ 8

x,= <2leA‘"*"+ Cze^

%=.= CseA,+ i- Cs.e^"*'

The following is the classification developed by

Poi ncare :

(1) If the roots are real and of the same sign, the 

singularity is called a node.

(2) If the roots are real and of opposite sign, the 

singularity is called a saddle.

(3) If the roots are purely imaginary and conjugate, 

the singularity is called a vortex or a center.

(4) If the roots are complex conjugate, the singular

ity is called a focus.

(1) and (4) have two sub-classes:

1(a) If the roots are real, of the same sign 

and positive, the singularity is classi

fied as an unstable node, as with
—> <X3 t QLt —> oo, 'Xa-—00

(b) If the roots are real, of the same sign 

and negative, the singularity is classi

fied as a stable node (as with ~f' —> co, 

%2-oto or the trajectory approaches 

[0,0] the singularity).

Simi1arly for (4) ,

4(a) If the real part of the complex root is 
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positive, the singularity is classified as an 

unstable focus.

(b) If the real part of the complex root is negative, 

the singularity is classified as a stable 

focus.

Some Illustrative Examples:

Example 1 :
'Z i"

Therefore characteristic equation is given by:
|0_;A

The roots have the same sign, are real and posi

tive.

The singularity is unstable node. The solution

is of the form:

Xi’ 4Ae4t + Be*
A and B being constants which are determined by the 

initial conditions. A plot of the trajectories with dif- 

ferent conditions are shown in Fig. 1. The lines with 

slope Xp and are called eigenvectors and are special 

solution curves. The eigenvector nearer the'Z^xis (or%^axis) 

is called the fast eigenvector and the other the slow eigen

vector because of the relative phase velocities of the state 

point when moving along them.6
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Example 2:

Zr
'Xz.- -* J-4 % 2.

The characteristic equation is given by:

°"x + ' I =
“"4- *"4 ~ A ) i__

/. A j “ "2. A 2. - 2.
The roots have the same sign, are real and" 

negative.

The singularity is a stable node. The solution 

is of the form:

7-i = -2.

The different trajectories, for different initial 

conditions, and the eigenvectors are shown in 

Figure 2.

Example 3:
- 'X-j

'A 2. s ^2-
The characteristic equation is given by: 

The roots are real and of opposite sign, therefore 

the singularity is a saddle. The phase portrait

of the system is shown in Figure 3.
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Pl = -X1

lx2 = X2
Tfe 4^1^11^. u 0. Saddle ot the •
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(x1 --

Xi

Tfte is ci
u d d
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Example 4: 
~

The characteristic equation is given by:

The roots are purely imaginary and conjugate, 

therefore the singularity is defined as a center 

or vortex.

Example 5:

The characteristic equation is given by:

I I- / I ) -

The roots are complex conjugates and the real 

part is positive, therefore the singularity ac

cording to Poincare's classification is an un

stable focus.
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The various trajectories for different initial condi

tions are plotted in Fig. 5

Example 6:

Consider the system represented by:

The characteristic equation is given by:
-3-A S I = ^^2.A'f2.^0

I 1I A 1 I); X2=

The roots are again complex conjugate, only the real 

part is negative, therefore the singularity is a stable fo

cus. The phase plot is shown in Fig. 6.

(4) Singularities of Nonlinear Systems

Consider the following equations:

The singularities are obtained by the usual 

of forcing the rate variables to zero. Thus:

O" 'X-2.

Therefore singularities are (0,0) and (1,0) 

we cannot find the eigenvalues in the conventional sense, 

the problem arises as to the classification of the sin

gularity.

However when the phase plot is obtained by a numeri

(8)

method

Since

cal solution of the above equations by the well known
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F^.6
fxj- -SXi-SXz 
(_X2 = X; + x2

TKe 4w.5UA!Uutq a itabte ^suvi at "ti\e e^ln.
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F^. 7
fX1 = 2.
Lx2.xr%1-x2i

Tfee x^Wa>uiUi ok£ at U>> 4acUk (O.O)
0 JL.fs I..... ri AX 
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Runge Kutta method, the trajectories close to (0,0) very 

closely resemble a saddle. (Fig. 3) and the trajectories 

close to (1,0) are very much like that of a stable focus, 

(Fig. 6) The phase plot is in Fig. 7.

This is not entirely unexpected as Liapunov pointed 

out that in the small, the linear terms approximate this 

behavior as of the system. Therefore we will henceforth 

use the linear approximation to define nonlinear singu

larities.
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LINEARIZATION

It has been mentioned in Chapter II that the system 

behaviors for nonlinear system is approximated by the 

linear terms near the singularity. Hov/ever, before pro

ceeding to a study of stability of nonlinear control sys

tems, the general approach to linearization of a control 

system must be considered. This is especially important 

as the ideas suggested for phase partition stem from this 

general concept.

Let the nonlinear system be represented by the space 

equations:

* * *4
I y ?......... /H-m)

.......... 2:"n)
Then the linear model can be obtained by using the

Jacobian matrix:

where

d'X-z.d7-i

%d.^3.

s" denotes the singularity p 6 i- n t.

Restricting our attention to the second order case:
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Illustrative Example:

Take the nonlinear case in Chapter II (Equation 7) 

mentioned in connection v/i th classification of singularites:

The linear models can be obtained by:
i =. r° 1

,^2.J " -|

The singularities of the'system were (0,0) and ■ 

(1,0).

Therefore the two linear models governing the system

behaviors are:

near the singularity (0,0)... (8)

near the singularity (1,0)... (9)

The characteristic equation of the system is given by:

(10)

It must be pointed out that, strictly speaking, this 

is valid near the singular point only.

The characteristic equation of (8) and (9) can be ob

tained by substituting the singularities in (10), which gives:

=0 di)

which indicates a saddle point and:
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0

Fig- 8 Tef 
= xa

1
ID /saJtiie -^evnt at 10,0)
(2) 4tahfe ol (1,0)
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-t- A + Is O (12)

which indicates a focal point.

Thus the nonlinear system has two singularities, a 

saddle point at (0,0) and a stable focal point at (1,0). 

The behavior near these points are approximated by the 

linear models (8) and (9).

This brings us to the interesting question as to 

whether there is a way of easily determining an area of

asymptotic stability around the stable focal point. It 

is on this problem that this research concentrates.



CHAPTER IV

AN INVESTIGATION INTO

STABILITY OF NONLINEAR CONTROL SYSTEMS

In Chung's thesis,^ it was pointed out that, on occa

sion, the area dominated by a stable singularity determined 

by the discriminant criterion or his generalized Hurwitz 

criteria was one of asymptotic stability. It will now be 

investigated whether this is true for any significant num

ber of control systems and if so, whether there is any scope 

for generalization to a class of functions.

Attention here will be concentrated on the simple con

trol systems, ic., those of the second order containing one 

or two singularities.

1. Stability: The stability of a nonlinear control 

system is a more complex matter than linear systems and a 

number of definitions (more than 28p have been used in the 

literature. However, the definitions we will be concerned 

with will be the following:^

Asymptotic Stability: If for any initial conditions 

within the region under consideration the state 

point approaches arbitrarily close to the singula

rity as time approaches infinity, the system is said 

to exhibit asymptotic stability for that region.
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Local Stability: or stability in the small strict

ly applies only in the infinite small region about 

a singular point.

The first degree approximation yields infor

mation for this only,rigorously speaking.

Global Stability: This refers to the entire finite 

region of the state space.

Finite Stability: It lies in between global and 

local stability and applies to a finite region of 

the state space.

Stability, local, global, or finite does not 

rule out limit cycles but only asymptotic local, 

global and finite stabilities will be dealt with 

here.

2. Generalized Routh Hurwitz and Discriminant Criterion 

Both the above criterion try to partition phase 

space into single singularity dominated regions, ie., regions 

in which all the trajectories are influenced by one singu

larity alone.

Any second order control system can be represented by
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Therefore the characteristic equation is:

(a) According to the discriminant criterion the 

boundary is determined by the equation:
(W + V .j. 4. " o
XC^Ti-i / <-» Xl. cJZ-t

This gets more and more difficult to use as the 

system gets complex. For more than two singularities 

or for a higher order system it becomes unworkable. 

Even in the two singularity case it gives the boundary 

between a center dominated region, or between a focus 

dominated region and a saddle dominated region, but not 

between stable and unstable focus dominated regions. 

The limit cycle, if any, is also not confirmed or ruled 

out.

(b) The Generalized Routh Hurwitz criterion sug

gested by Chung^ is that the following equations deter

mine the partition:

The boundary partition is actually given by 

equation (3) and for a certain broad class of func

tions as demonstrated by Ku and Shen's^ more rigorous 
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mathematical treatment which will be taken up in 

the next section.

3. Ku and Shen's Partition of Phase Space:^

They established that just as there is separation pro

perty for poles and zeros in the complex plane, there is a 

separation property of singularities in the phase plane in 

that the focal points, centers, or nodal points alternate 

with saddle points. Also for systems represented by the 

following equations is defined in the following way:

Srtl 'Ax’ - A Ct-,?! BCxj

where AC%-2.)~
_a real number and ------------- -------- j> (Xl *7 O (X - L?.-

and a s sume s one of the forms:
('"ti ), Vx* ^f-o

S|M x< X
BCvCj) (22. s/K XdTT siuYi/

when C-z. is a real number t 0, Sin = Sin^ f 0.

Then the boundary is given by:

Separation of singularity regions leads to a unified 

treatment of the singularites of the second kind, a fact 

that will be of no concern here, as only simple singularity 

situations are dealt with.
g

So Chung's thesis is only a less general variation of 

Ku and Shen's work.10

Now the structure of the: entire phase plane is
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determined by putting the regions together. The transition 

of a phase trajectory from the region of one singularity to 

the other may be interpreted as a jumping phenomena in a 

fictitious singular point associated with the trajectory at 

the boundary point of the two regions.

Chung showed that this has scope for higher order 

systems also. This or the more restricted discriminant 

criterion can lead to multilinear models for nonlinear sys

tems, but , however, the point of interest here is the 

region of asymptotic stability. Obviously whenever a tra

jectory from a stable singularity region hits the boundary 

of the unstable region (separation property), then whether 

it will return to the first singularity region (double 

singularity case) depends on the orientation of the second 

singularity. So a number of cases will be studied to see 

whether any criterion does give finite asymptotic stability 

for a defined class of functions.

It must be pointed out that neither method rules out 

limit cycles and Bendixso^friterion is a sufficient but 

not necessary condition for their existence.

4. Single Singularity Systems:

The determination of stability of single singularity 

control systems turns out to be quite simple. The nature 

of the singularity controls the behaviors of the system and
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since it is the only singularity, local stability turns out 

to be global stability. Thus stable node, stable focus 

systems are globally stable while unstable node, unstable 

focus and saddle systems are globally unstable.

Example 1

The singularity is at (0,0)

The Jacobian is given by:
O |

I -5-SX^
"herefore the characteristic equation is:

-I -5- " O
or Az+ (M+S') A-H’O

At (0,0)
A2-b5A-hj^O

The singularity is a stable node.

Therefore the system is globally stable.

This could be verified by the phase plot obtained by 

numerical Runge Kutta method or Liapunov's direct method, the 

first one being preferred because it will be used in all 

the other cases. The plot is shown in Fig. 9.

The discriminant criterion suggests:
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-i-2^tSD^-2l = O
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0^ ZbVt4+SOx^+21 > 0 

25^ 52^+ 21 >0 always.
as the boundary line but

Therefore no boundary exists.

Therefore local stability implies global stability.

The Generalized Hurwitz Criterion suggests: 
+5 7 0

which are both true irrespective of 5nd

Therefore system is globally stable.

Example 2

*7-2.- -'O.StLz.- oA^CoT-I-X-x

The singularity is at (0,0)

The Jacobian is given by:
I O 1
l-l

The characteristic equation is:
Ai + A(o.5' + .‘f-!i«J:J)i-l 1= O

I
Therefore at singularity:

X1- + X(p-5) -v I -p
X= -^2 t.ZS-A

Therefore singularity is a stable focus.

System is globally asymptotically stable. Fig. 10
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10 "Th^^ueA

e X1 ?
I X2 5 ~0 5 Xt - o.l 66 xt * X j

'^uri^utcuuJto. U oi -^ttikte ^'>5 ot "bxs.



3.4

shows the phase plot.

The discriminant criterion suggest the boundary:
(o.S +.4Sg'^y),-4=O
or

which exists.

Therefore Discriminant gives a portion of the 

region that is asymptotically stable.

The Routh Hurwitz suggests the criterion of:
.05" 7 0

I 70
both of which are automatically fulfilled.

Therefore it gives global asymptotic stability.

It might be pointed out that both of the above exam

ples originate from Rayleigh's well known equation:"14

K-Z, i -0

Example 3
/y - 'y -.o'A|~ - *-2.

+%r
The singularity is at the origin.

The characteristic equation is:
-A- Stc,2- - |

a

At the singularity:
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a

- - xa -
"*
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Therefore the singularity is a stable focus. 

The system is globally stable.

Phase plot is shown in diagram 11.

Discriminant criterion suggests the boundary:

(1 -t Sn,2-)2- - 4 (^x-^+O’O
(\ (I + 3x.12"-4) — O
or

i 1 whi ch exi sts .

Therefore it gives only a portion of the area of 

asymptotic stability.

Generalized Hurwitz criterion evidently also gives 

global asymptotoic stability. It must be added that the 

singularity at the origin is not a special case as trans

lation of axis leaves the system stability obviously un- 

disturbed.

5. Double Singularity Control Systems

Since the interest lies in asymptotic stability, the 

center or vortex will not be considered. As it is it 

never occurs in physical systems except as a limiting case. 

Restricting the investigation to saddles, nodes, and foci, 

it is also evident that two stable singularities or two 

unstable singularities cannot occur because of the separa

tion property.

(c) Saddle-Node Systems
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Example 4

V-1" 'X-t.

The singularities are (0,0) and (-1,0).

The characteristic equation is:
°-A I 1-0
-l-Z-x, -2-A J

For (0,0) it becomes:
A i7~-t 2. A -t 1 - O
or -I, - 1

(0,0) is a stable node.

For (-1,0) it becomes:
X2* d-2A-l^C) 
o r

"2-± Y”'? -i-t = - 1 ± {1
2. ~ .414, -2.414-

The singularity is a saddle.

Discriminant criterion:
c^.

Generalized Routh Horwitz Criterion:
Y -t ZX-x 7 0 or %_x7-x/i_

Both criterion delimited stable singularity re

gions have positions of instability. (Fig. 12)

Example 5
5"-Xx -%-l.

Singularities are (0,0) and (-1,5).

Characteristic equation is given by:
-5-A -! 1 o

Otf A2-4- A Cs-l - S"%., 4 ^=--0
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Fzg. 12 <9-ji

= -H1- Xi -^Xx
T'fte M ot U) AojJle -|)£wt at (-1,0)



For (0,0)

X5--* A(4)-5=O
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or
A = “I —* Saddle.

For (-1 ,5)
A8- •+• 5 A"* 5"® o

—nod^.

Discriminant Criterion
s%t-5>o

Sx.) ~4-%2. +2.Oxx4-2O-d)
%x ■+ 12%., i‘5G> -4Xz_= O

Oit. (Vx i *t" “*
which is a parabola and does give the area of 

stabi1i ty.

Generalized Routh Hurwitz Criterion
— %, 'Z O oR 'X— i

Srtd Xa." 5x, -5* 7 0
which contains portions which are unstable.

The trajectories for the state space are plotted 

in Fig. 13 along with the boundary predicted by 

the above two,methods.

Example 6

= -X-z.
•Xt.- X.+X.Xa
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L^2. - x1xz
T&e o)t^. at (1) ^ctdclie (°'0)

(2) /stal^U TifiJs. at 61,5)



41

Singularities are (0,0) and (^,-1).

Characteristic equation is given by:
|"5"A ' =0

z Cl? A t 0-1
For (0,0):
A2- •* 5 A *t I sQ

c - 3 t V K\od^
For (^, -1T:

A^-t-AC3-y3)-i- 1-1- I = o
A2" + X — I - O A ~ — i \y^q “F^ -i*

Discriminant Criterion

which is a parabola and the area is asymptotically

stabl e.

Generalized Routh Hurwitz Criterion
3- 7 0 x.t z.3

All the area demarcated under the influence of

stable node is not asymptotically stable. (Fig. 14)

Example 7
~ %-

Singularities are (0,0) and (1,0)

Characteristic equation is given by:
|°-A 1 =o

2213.-2-A

ex A2--A^lXz.-^)-(2X-.~I>O
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X-2 - -b XtXz

"I)
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At (0,0)
Az-t- 2-A •* l 9 O
A “ *' 1 i~ I
At (1,0)
A^ + ZA-l -'O

ok. A = = -I - ’Tz. —sa.ddje>
Discriminant Criterion

4^r\') = o

which is a parabola and area bounded by it

contains area of instability. (Fig. 15)

Generalized Routh Hurwitz Criterion
-’tiX-2,-2-) 7 0 0$? I

^L'X-x-X LO or^ 'X-xLW.
Area contains portions of unstable region as

shown in the phase plot. (Fig. 15)

Example 8
*Xj = *X-'2_ -
A-2.= X-I

Singularities are (0,0) and (-1,0)

Characteristic equation is given by:
j I + 2.y.t-t 4%-t. Z+-^x+A^-rA | ~

or A^-A (2.-i-27C2+4^) - Ci+

At (0,0)
A31- 2A- I = o 
or A= = J ±
At (-1 ,0) a

A2- -A (2.-4) - Cl-2J) = O
ofi. A2- *f 2-A 4-1-0 os. _  s4-

YXCxt-^,
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F jlo . 15 T

*2.1 * .. ..2. . ?■

Tfe. ^^uJIcvulIU^ cuul tt U) ^<xdcUe ot (1,^ 
(2) ^toJkte tuoM ci (0,0)
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Discriminant Criterion
(X4-"+ 2->l1'1-4%0 = 0
4x.2.+ Hr •+ Ito'y-i'b l(o,V1%z.-S,7Lt- I (» %2. -O
^^a2-- ^7-2.* XU-^-b ^7_x H- MoT-fTL-x = O

which is plotted on the phase plot and not

all this area demarcated is asymptotically stable.

Generalized Routh Hurwitz Criterion
+20.2.+ 2 42 o

Srd | + 2.xt -t- 4^140
The area defined has portions of instability in it.

(Fig. 16)

Therefore both methods do not yield the area of 

asymptotic stability.

(b) Saddle Focus Systems:

These are the ones most often found among 

physical systems.

Example 9
~ /L'i-

The singularities are (0,0) and (-3,0)

The characteristic equation is given by:
I *" ■'2^1 **2—A

or Az-f-2A + (3+’2Xj) = O
At (0,0)

A^-b 2A + 5^ (D
At (-3,0)

X^h- 1A-5 = o

Of? 1 V4 -12T —> stable node> 
2.

A= -^2± = -1.3 Saddle,
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F • 16

I =: x1-fr x/i- 4XjLx2, ^2

He om ot (i) vsotcldle. ot (o,o)
(2) -itols^ n&d.e at C-1,0)
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Discriminant Criterion 

4-12.- 0

or %,j“ - I 

which fails to yield the region of asymptotic 

stability.

Generalized Routh Hurwitz Criterion

5 •+ 2^) 7 0 Oft *X-x -1.5
which also fails as far as defining the area of

asymptotic stability is concerned. (Fig. 17)

Example 10
~,X-x "

‘V-)
The singularities are (0,0) and (-1,1)

Therefore the characteristic equation is:

A2- - A Xx- x-!- o
At (0,0)

o oft A = - I —7 s^ddile.
At (-1,1)
A21 + A + I O or A = - I - V l - 4- —> stable 4ccjjs

Discriminant Criterion

which is a parabola that does furnish the area 

of asymptotic stability. (Fig. 18)
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F^.17

T^te a/te (1) AwkUU ^&uA at (-*3,0)
(2) ^tabh (°.o)
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Fig- 18 ^4
fxl=-xrx2.

TKe. AArr^uta^UM.*! oJtt rd* (i) 4ticlc&» jsGikl" d L^iO)
(2) XtaJbta ^U4 <4 (-1J)
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Generalized Routh Hurwitz Criterion
O

CUiot 9^2- ~ — I z7

The test fails (areas of instability in it)

The state space plot is shown in Fig. 18 with

both criterion boundaries shown.

Example 11

The singularities are (-2,0) and (0,0).

The characteristic equation is:
[O-A 1 1

At (0,0)
A2- -t z\ t- 2.. - O OR  । + focuA.e,

At (-2,0)
A2- *4- A ~ 2-" c> oft. A— I jr \ \ ~ l/*" 2.

Discriminant Criterion
6^- ^Cl~2.x,) oft. Xi - 5/^

Generalized Routh Hurwitz Criterion

2-t-Zx, 7 0 od, %, 7- I

Both of these criteria do not define an area

of asymptotic stability. (Fig. 19)

Example 12
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F^. 19 T<sj«
- Xg, 

2, = -2 - Xt -

Tfe. ^i^AuIle^ oaje. (i; zacUSe d (-2,0)
(2) daBle. h^tu at (o,o)
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Singularities are (0,0) and (-1,0)

The characteristic equation is:

For (0,0)
A” 1 » C)

°r A - ~ I - —> saddle
For (-1,0) 2.

A = 1 - x s-feUe. -Poojs
Discriminant Criterion

(a.^.z.-l')2" 4- 4(I*2.<^|)-O
Generalized Routh Hurwitz Criterion

l.'X-a. - I L O 7-2. z. ‘H-
Z_O oK Z-U-l-

Both the boundaries are plotted in the phase

plot but fail to give the desired area. (Fig. 20)

Thus it is seen that though both criterion are valua

ble in multilinear model simulation, especially the second, 

neither one defines consistently, the area of asymptotic 

stabi1i ty.

Only in Examples 5, 6, and 10 the area furnished by 

the discriminant criterion is such an area, and at first 

it seems hard to find the common element in them:. In 

the next chapter, a criterion with very restricted appli

cation will be developed, which explains the above as well
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Fx^- 20
(xj ? Xj,
[X2. = X1^X1 + x^- xz

Tfiz /S^Atla/ut^ cute (1) Aouddie ot (o,o) 
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as defines the narrow class of functions for which it will 

give the desired area of asymptotic stability.



CHAPTER V

SEPERATRIX CRITERION FOR THE PHASE-SPACE PARTITION

Before dealing v/ith the criterion, a seperatrix will be de

fined, so as to make the following discussion more clear.

Seperatrix: A seperatrix is a path tending to a singular 

point (generally a saddle point) as^-* +c,° (or -co ), such that 

the neighboring paths do not tend to that point under the same 

conditions and so part from it as-V-*<^o (or -co ) , . Or more 

simply, seperatrices can be defined as curves passing through 
1 *19 singular points.’

The role of seperatrices as dividing curves which separate 

regions with paths of different types is well known.

Andronov in his classical work on the theory of oscillations 

gives a detailed treatment on their importance and existence, 

and deals with a number of idealized mathematical cases. 

Gibson points it out in connection with a damped single 

pendulum under constant driving force or torque and an illus

tration of Bendixson's Theorem.

It is known that they correspond to the path when a 

line is tangent to the potential energy curve^2 but though 

they can be established near the saddle point, an equation 

for them can be generally found only if the differential 

equation representing the system can be solved.

However, in the special case, when the seperatrix is a 

straight line, one would expect to obtain a division into 
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regions of opposing tendencies. For a saddle, the eigen

vectors correspond to special solutions which pass through 

the singularity and hence would be the seperatrices. Of 

these two seperatrices, one moves away from the singularity 

and goes to the singularity dominated regions while the other 

tends to divide the phase space. This will not only fur

nish us a portion of the region of asymptotic stability 

where the above conditions hold, but define the whole of it. 

Some examples will now be taken, to demonstrate the working 

of this criterion, and in particular Examples 5, 6, and 10 

of Chapter IV will be dealt with.

Example 1 : Considering Ex. 5 of Chapter IV again:

*)S2- — ^-5. ^—1

Singularities are (0,0)|sadd(4

(1)

and (-1

Then the eigenvectors for the saddle are given 

by the equations:

and ^2.' ^3.%-a. (2)

where 4VI. -e 
b A a."

Al* ~ >.  
As.*

AitAi-are roots of characteristic equations 

for saddle equal to 1,-5. and a, b, c, and d are 

the coefficients of the equations that represent 

the linear approximation to the control system, ie.:



57

J^r-SXt-X^
" Xg. "t" Xj, Xg_

Tlte. twe (1) ^azlzlSe 6^,0)
(2) /stcdaU wtU- ot (-1,5)
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= a?ct -+ b%.t

(L,<,

. Here a=-5, b=-l, c=0, d=l

Therefore 1 + 5 =. Tai * -'p-fS" = O

Agj:ne^a+ive, $ therefore corresponds to the 

path that tends to the singularity.

Therefore, <D (from 2) is the equation of 

the seperatrix near the saddle. But the equation for %•>_ 

indicates it will remain zero if , no matter what

value assumes.

Therefore, the seperatrix is a straight line.

Therefore, the region dominated by the stable 

singularity (node) bounded by this seperatrix (upper 

half of the phase plane) will be asymptotically stable.

A look at the phase plot confirms this. (Fig. 21)

Example 2: Considering Ex.6 of Chapter IV:

'X, 

^2.= + ..................(3)

Singularities are (0,0), node, and (+^,-1), saddle. 

Shifting the origin to (/)>-l)> because the sepe

ratrix passes through the saddle point and equa

tions for the eigenvectors (which turn out to be 

the seperatrix) are given by the coefficients
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- x1+ x1x2
om. (i) -dojitie fswJ- ct(-£>-l) 

(.2) 'hsds d to,o) 
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representing the system near the singularity in question.

•• Xj — “3%! "X-x.
Xz = xfxl -f /s Zx

where

/. A* -3 b*-I 
c= o d= /£

(Roots of the characteristic equation and nature of 

trajectories remain unchanged under the operation of 

translation of axes. ) The seperatrix corresponding to 

the path tending to the singularity is given by the 

equation OR ~l
But again from equation 3:

And if -I , no matter what Xi is,

Therefore the seperatrix is a straight line which 

should then define the area of asymptotic stability, which 

it does. (Fig. 22)

Example 3: Considering Ex. 10 of Chapter IV:

=: -<Xt-%.5L

7-2-" 7-2. + Xi Xz ........... (4)

The singularities are (0,0), saddle, and (-1,1), 

focus.

The roots of the characteristic equation for the 

saddl e are d? 1 .
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a=-l b=-l

c=0 d=l
,* TH,- A t* - 2 ~ ~ 1 -t I o

b i
Ther.efore the equation for eigenvectors:
Xj.” - cxod 7112.= O

Therefore the seperatrix tending to (0,0) the saddle 

point is given by:
^2.= C>

But if X^-O from (4) and remains so for

any %, .

Therefore seperatrix is a straight line.

The phase plot in Fig. 23 confirms that the sepe

ratrix criterion gives the area of asymptotic stability.

Example 4:

Let = 2'X.i - 4X2.

Singularities are (0,0) and (-6,-3)

Characteristic equation is:

At (0,0)

X- •= 2,-32.
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r- 4

(/a = x2. + x, Xl
T^e. 4uv^«Ayutu (Vt£ (d £culj& ot (Ao)

VZ) ^tolte. d (-1,1)
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For (-6,-3)
A2" + A (, I ~ Cp *h (o') -- -f- I 2- - O

AX-t-A+ (p=O

A = ~ I - = - I ■tjr2.5 ' —» sfidAle-
a = 2 b-4 &

c=0 d=-3:

VA I - 2-*'2- = O 7V> 2. - - 5" s

The seperatrix which is a straight line is 'X-2.-0 but this 

corresponds to the path going away from the singularity. The 

eigenvector corresponding to the stable path is not a straight 

line and thus it could be expected that area of asymptotic 

stability will not be yielded. The Figure 24 confirms this 

contention.

Thus we see that the seperatrix which is linear does 

demarcate the state space into regions of opposing tenden

cies furnishing us with the area of asymptotic stability. 

However the limitation of this criterion is that since it 

gives the exact demarcation where the region nature changes 

from stability to instability, the linear approximation to 

the seperatrix will not in general give the desired area. 

But if the boundary is uniformly convex to the stable single 

singularity region then the criterion would still hold. As 

in general the nature of the equations of the seperatrices 

are not known as they imply a knowledge of the solution of 

the system differential equations, the power of the criterion
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. 24-

x z 
z

TU (Vte (1) AoidJUU j^rj: at lo,o)
(2.) /to^le at 



is strictly limited.
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CHAPTER VI

CONCLUSION

Summing up, it becomes clear that though the discriminant 

criterion and Ku and Shen^ criterion for phase partition 

are useful for simulating non-linear control systems by 

multilinear models, they do not yield information leading to 

the definition of the area of asymptotic stability. The 

Generalized Hurwitz Criterion of Chung^, a weak and slightly 

erroneous restatement of the more powerful Ku and Shen 

criterion, also gives no valuable information in this regard.

The discriminant criterion does furnish such an area 

for an undefined class of functions but the better defined 

seperatrix criterion gives the whole area in all such cases. 

This new criterion, though useful, has, however, a strictly 

limited range of applicability.



67
REFERENCES

1. Gibson, J.E. "Nonlinear Automatic Control", McGraw Hill 
Book Co., New York, 1 963 , PP.256-299.

2. Lefshetz, S. "Proceeding Symposium on Nonlinear 
Circuit Analysis", Vol. II, Brooklyn Polytechnic Insti
tute, 1953.

3. Chateav, N.G., "Stability of Motion", translated from 
the Russian by Morton Nedler, Ed.by A.W. Babister and

/J. Burlak, New York, Pergamon Press, 1961.

4. Lure, A.I. "Some Nonlinear Problems in the Theory of 
Automatic Control", a translation from the Russian 
London H.M. Stationary Office, 1957.

5. Letov, A.M. "Stability in Nonlinear Control Systems", 
translated for the Russian by J.George Adashko, 
Princeton, Princeton University Press, 1961.

6. Zubov, V.I. "Mathematical Methods for the Investigation 
of Automatic Control Systems", translated from the 
Russian by Yaakov Schorrikion. Translation editor 
David P. Gelfano, New York, Macmillan, 1963.

7. Zubov, V.I. "Problems in the Theory of the Second 
Method of Liapunov, Construction of the Several Solu
tion in the Domain of Asymptotic Stability" PMM, 
Vol. 19, 1955, PP.179-210.

8. Vogt, W.G. and S.G. Margolis, "Control Engineering 
Applications of V.I. Zubov's Construction Procedure 
for Liapunov Functions", EEEE, Transactions on Auto
matic Control, April 1 963 , PP.104-13.

9. Chung, Kwei-Tang, "Simulation of Nonlinear Systems
by Multilinear Models via State-Space Linearization", 
Masters Thesis, University of Houston, July, 1969.

10. Ku, Y.H. and D.W.C. Shen, "Separation of Singularity 
Regions for Phase Trajectories in Certain Nonlinear 
Systems", IEEE International Convention Record, Part 7, 
PP.175-181 , 1965 .

11. Chen, C.R. and I.J. Haas, "Elements of Control Systems 
Analysis, Classical and Modern Approaches", Prentice 
Hall Publishing Co., 1968.



68

12. Andronov, A.A. and C.E. Chaikin, "Theory of Oscillations", 
English Language Edition, Princeton University Press, 
1949, PP.1-86.

13. Cunningham, W.J., "Introduction to Nonlinear Analysis", 
McGrav/ Hill Book Co., New York, 1 958 , PP.85-118.

14. Ku, Y.H. , "Analysis and Control of Nonlinear Systems", 
Ronald Press Co., New York, 1958.

15. Davis, H.T., "Introduction to Nonlinear Differential 
Equations", Dover Publications, New York, 1960, PP. 12-22.


