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Fundamental SNR Limits imposed by ASE
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Abstract—Recirculating frequency-shifting loops (FSLs) are
a simple source of optical frequency combs with bandwidth
compatible with microwave technologies. As such, they have
demonstrated promising capabilities for telecommunications, re-
mote sensing, and microwave photonics. In these systems, the
coherent frequency comb is produced by recirculation of a single
frequency laser in a fiber loop containing a frequency shifter. Due
to the insertion of an optical amplifier in the loop to compensate
for the losses, amplified spontaneous emission (ASE) is inevitably
emitted and superimposes to the coherent output. In this paper,
we quantify theoretically the contribution of the ASE background
to the FSL output for different types of receivers used in
FSL-based techniques: direct, self-heterodyne, and dual-comb
detection. In particular, we focus on two important practical
applications of FSL: coherent optical reflectometry and real-time
Fourier transforms of radio-frequency signals. We provide for
each of them numerical estimations of the signal-to-noise ratio
and dynamic range. This work constitutes a compact framework
for the general evaluation of techniques based on FSLs.

Index Terms—Frequency shifting loops, ASE noise, microwave
photonics, optical frequency comb, signal to noise ratio.

I. INTRODUCTION

The growing need for reliable sensing and signal pro-
cessing techniques at large has triggered the occurrence of
numerous novel techniques based on photonics over the
last 20 years. Combining low power consumption, immunity
to electromagnetic interference, directivity, large bandwidth,
availability of low-cost telecom components and potential
integration, photonics offers many advantages as compared
to conventional sensing or signal processing techniques based
on microwaves (MW). In particular, photonics has proven a
reliable platform both for metrology, including remote sensing
and Lidar [1], [2], and for microwave photonics, namely the
generation, the transport, and the processing of MW signals
based on photonics [3], [4]. The advent of photonic techniques
to practical real-world applications was facilitated by the
availability of compact coherent light sources at the telecom
wavelength, including narrow-linewidth lasers and frequency
combs, and of broadband modulators and detectors enabling
an easy conversion between the MW and the optical domain.
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Fig. 1. Generic sketch of a frequency shifting loop (FSL) injected by a
CW laser (frequency: f0). The loop contains an amplifier (EDFA), an optical
tunable bandpass filter (TBPF), and a frequency shifter (FS). A modulator can
be inserted on the injection arm. The FSL roundtrip time and the frequency
shift per roundtrip are respectively denoted by τc and fs.

In this context of intense technological development, an orig-
inal photonic architecture, so-called recirculating frequency-
shifting loops (or FSLs), has proven a powerful, yet simple
tool for multiple applications in telecommunications, sensing
and signal processing.

Essentially, FSLs are based on a cavity, or a fiber loop, in-
corporating a frequency shifter (Fig. 1). The latter can be based
on acousto-optic or on electro-optic interaction. A coupler
enables to seed the FSL and to extract a fraction of the optical
signal circulating in the loop. When seeded with a single
frequency laser (frequency: f0), the recirculation of the optical
field in the loop gives birth to an optical frequency comb, i.e.
a set of equidistant spectral lines starting at the frequency of
the seed laser and spaced by the frequency shift (fs) [5]–
[9]. To compensate for the unavoidable losses of the loop, an
amplifier is generally inserted, as well as an optical bandpass
filter. The role of the filter is double: to control the number
of lines of the comb, and to limit the amplified spontaneous
emission (ASE) produced by the optical amplifier. In practice,
the effects of gain saturation and the role played by ASE tend
to limit the maximum number of comb lines to a few hundreds.
In the case of electro-optic frequency shifters based on single
sideband Mach-Zehnder interferometers, the frequency shift
is usually in the GHz range [5], enabling multiplexed optical
networks in telecommunications [6], [7], [10], [11]. In the
case of an acousto-optic frequency shifter operating at a few
tens of MHz, the total resulting comb bandwidth amounts
to a few tens of GHz, a value notably smaller than mode-
locked optical frequency combs, whose bandwidth extends
over several nanometers. However, acousto-optic FSLs, which
only involve slow electronics (tens of MHz), have a different
scope. They have turned out to be an efficient platform
enabling the generation and the processing of waveforms with
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bandwidth in the tens of GHz range and compatible with
standard MW technologies. As such, FSLs seeded with a CW
laser have shown applications in coherent optical reflectometry
[12], remote sensing [13], multi-heterodyne spectroscopy [14],
or generation of light pulses with multi GHz repetition rates
[15], [16].

When the seed laser is modulated before its injection in the
loop by a radio-frequency (RF) signal, the FSL generates a
large set of replicas of this input signal, shifted both along the
temporal, and the frequency domain. More precisely, defining
τc as the roundtrip time of the light in the FSL, the replica
labelled by the integer n has been temporally delayed by
nτc and frequency shifted by nfs. The FSL output results
in a coherent superposition to these replicas, a property at
the heart of practical demonstrations of analog RF signal
processing, such as real-time Fourier and fractional Fourier
analysis by frequency to time mapping [17], [18], signal
filtering [19], [20], ultrafast signal characterization [21], and
arbitrary waveform generation [22].

The FSL can also be injected with a pulse whose width
is lower than the roundtrip time τc. In this case, the FSL
acts as a frequency translation circuit that outputs a series
of pulses carried by a progressive frequency, equal in number
to the number or recirculations. This type of systems finds
applications, for instance, in heterodyne Brillouin OTDR [23]
and as photonic generators for stepped-frequency radars [24].

Beside the spectral bandwidth and the domains of applica-
tion, acousto-optic frequency combs show another significant
difference with mode-locked optical frequency combs. In
these, the cavity plays an important role on the output spectrum
by filtering out ASE between the lines. In FSLs, due to the
presence of the frequency shifter, the cavity does not provide
spectral filtering in the usual sense. Any spontaneous photon
emitted by the amplifier will travel in the FSL whatever
its frequency [25]. Therefore, ASE plays a stronger role in
FSLs than in classical mode-locked optical frequency combs.
For instance it has been shown that in standard experimental
situations, the total power of ASE at the FSL output can be
comparable to, or even exceed the total power of the comb
[26]. Therefore, the role of ASE in the output signal cannot
be neglected. So far, the research devoted to the influence of
ASE noise in FSLs has limited to an analysis in the spectral
domain and in the permanent regime [26], [27] or in frequency
translation circuits [28]–[30]. To our knowledge, no research
work has been devoted to the role of ASE noise on the output
temporal signal. Still, ASE noise directly sets the limits of the
system. To give an example, the ASE background constraints
the dynamics of spectral analysis in FSLs. Moreover, it also
reduces the signal-to-noise ratio of ranging experiments based
on FSL.

The objective of this paper is to provide an extensive
theoretical analysis of the effect of ASE on the signal received
at the FSL output, to help assess the practical utility of
FSL-based applications, and develop means to optimize them.
Though our strategy of analysis is valid for both electro-optic
and acousto-optic FSL, the numerical estimates of the SNR
and the application examples will be based on the latter sys-
tems. The paper is structured as follows. First, we characterize

the electric field at the FSL output as the superposition of
the coherent signal and of the recirculating ASE noise. Then
we derive analytically the expression of the signal-to-noise
ratio (SNR) and of the dynamic range (DR) at the FSL output
for various receivers and detection schemes. More precisely,
we consider the three following cases encountered in different
applications of FSLs:

• Direct detection. The FSL output is directly sent to a
broadband photodetector.

• Self-heterodyne detection. The FSL output is mixed on
a broadband photodetector with a fraction of the seed
laser that acts as a local oscillator. This detection scheme
enables coherent detection and processing of the FSL
output and can be combined with digital correlation.

• Multi-heterodyne dual-comb correlation detection. This
detection scheme, similar to multi-heterodyne interferom-
etry, consists in mixing on a narrowband photodetector
the FSL output with a second optical frequency comb
mutually coherent with the first one.

Finally, we illustrate our analysis by focusing on the SNR
and the DR in two representative and practical scenarios:
coherent optical reflectometry and real-time Fourier transform.

II. THE FSL FIELD WITH ASE NOISE

As was schematically shown in Fig. 1, recall that a FSL
encompasses a gain medium, typically an EDFA, that com-
pensates for the optical losses in the loop, an optical filter that
rejects ASE and limits the optical bandwidth of the generated
frequency comb, and a frequency shifter. The loop is externally
injected by a highly coherent CW laser frequency f0, so that
the frequencies in the optical comb are fn = f0 + nfs, with
n = 0, . . . , N − 1 and N the total number of lines. We define
s0 as the seed power of the FSL. In the rotating frame at
frequency f0, the electric field in the permanent regime at the
output of the FSL writes [31], [32]:

e(t) + ϵ(t) =

N−1∑
n=0

√
sne

−iϕn ei2πnfs(t−τ) + ϵ(t) (1)

In this equation, e(t) is the (noiseless) optical comb, ϵ(t) is the
recirculating ASE noise produced in the FSL, sn is the optical
power of the n-th spectral line, ϕn = πfsτcn

2 its phase, and
τ = τcf0/fs + τc/2 is a global delay that depends linearly
on the seed frequency f0. Note that the ASE noise generated
by the EDFA is unpolarized, but the frequency shifter blocks
one of its polarizations. Hence, the recirculation process that
originates (1) takes place in a single, linear polarization.

The temporal waveforms described by (1) are determined by
the comb’s spectral phases ϕn and can be classified according
to the theory of temporal Talbot effect: when the product fsτc
equals an integer value, a requirement termed integer Talbot
condition, the comb describes an optical train of transform-
limited pulses at a repetition rate fs. When fsτc equals a
rational number p/q (fractional Talbot condition), each period
1/fs of the train contains q transform-limited pulses whose
relative phases are organized following a quadratic law, result-
ing in a q-fold increase of the intensity’s repetition rate [15],
[31], [32]. Finally, when the product fsτc departs from integer
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or fractional Talbot conditions say, by a small change δf of
the shifting frequency, pulses stretch under the action of an
effective first-order dispersion τcδf/f2s and the train becomes
composed of linearly chirped optical pulses [33], [34].

The n-th spectral line in (1) is generated after n recircula-
tions of the seed frequency in the loop, undergoing in each
round trip a frequency shift fs, an EDFA power gain G and
a power loss described by the transmission coefficient of the
loop over one round trip, T < 1. Its power is therefore:

sn = (GT )ns0 (2)

and the total comb’s power is:

Pcomb =

N−1∑
n=0

(GT )ns0 = s0
1− (GT )N

1−GT
(3)

Two limit cases are worth considering: when (GT )N ≪ 1 the
comb has a purely decaying shape, the role of the optical filter
is solely to reject ASE, and Pcomb = s0/(1 − GT ). In turn,
when GT → 1 the comb has a flat power over a bandwidth
determined by the optical filter, and Pcomb = Ns0.

The ASE field ϵ(t) can also be decomposed in N different
spectral slices αn(t) of width fs and centered at nfs (n =
0, . . . N − 1) according to:

ϵ(t) =

N−1∑
n=0

αn(t)e
i2πnfst (4)

The spectrum of the baseband fields αn(t) is contained in the
interval [−fs/2, fs/2] and the total FSL optical bandwidth is
thus Nfs. The ASE power in the n-th band will be denoted
by an = ⟨|αn(t)|2⟩, where the brackets stand for statistical
average. As is discussed in Appendix A, the recirculation
process induces mutual correlations between the αn(t) fields
which nonetheless show a simple recurrence in power [26]:

an = GT · an−1 + a0 (5)

Here, a0 is the single-pass ASE power generated by the
amplifier in a bandwidth fs and in one polarization, a0 =
nsphν(G−1)fs, where nsp is the spontaneous emission factor
(nsp > 1), and h and ν are respectively the Planck’s constant
and the central frequency of the photons (≃ f0). With a typical
value of the gain G = 10 and using fs = 80 MHz, also
typical for acousto-optic FSL, a0 is of the order of 0.1 nW.
For fs = 8 GHz (electro-optic FSL), a0 is close to 10 nW.
According to (5), the ASE power grows from slice to slice
following the shifting frequency, until the growth is finally
cut off by the optical filter. Recurrence (5) is solved as [26]:

an = a0

n∑
k=0

(GT )k = a0
1− (GT )n+1

1−GT
(6)

and so the spectrum has the staircase structure with steps of
width fs shown in Fig. 2. The total ASE power becomes:

PASE =

N−1∑
n=0

an = a0

[
N

1−GT
−GT

1− (GT )N

(1−GT )2

]
(7)

which reduces to PASE = 1
2N(N+1)a0 for a flat comb and to

PASE ≃ Na0/(1−GT ) for an exponentially decaying comb.

Fig. 2. Schematics of the optical spectrum of the FSL field with ASE: blue,
power of the spectral lines; red, power of the ASE slices; green: schematic
transmittance of the optical bandpass filter.

We define the comb’s optical SNR as:

OSNR =
Pcomb

PASE
(8)

Thus, the OSNR values of the flat and exponentially decaying
combs are, respectively:

OSNR =
2

N + 1

s0
a0

GT → 1 (9)

and:

OSNR =
1

N

s0
a0

(GT )N ≪ 1 (10)

In general, the OSNR is a function of the number of lines N ,
the GT product, and the quotient s0/a0 that describes the ratio
of injected power and the excess ASE power generated by the
amplifier in single pass in a bandwidth of fs and in a single
polarization. Using typical values (s0 = 1 µW, a0 = 0.1 nW)
this ratio is 40 dB for an acousto-optics FSL, a figure that sets
a scale for the values of SNR to be derived in the following
sections. It can be shown, either analytically of by a simulation
based on (3) and (7), that among all possible GT products
below threshold, GT < 1, the OSNR is maximized by the flat
comb and thus (9) represents its maximum value.

In the calculus of the SNR we will need some results from
the coherence theory of the ASE generated by the FSL. We
present these results here, leaving its justification to Appendix
A. Due to the frequency shifting, both the ASE field ϵ(t) and
the ASE intensity Iϵ(t) = |ϵ(t)|2 are cyclostationary noise
processes. The intensity, however, has constant mean ⟨Iϵ(t)⟩ =
PASE since the recirculation round-trip delay τc is typically
larger than the ASE coherence time, and so the intensity of the
sum of recirculating ASE fields is the sum of their intensities.
Moreover, the ASE intensity shows photon bunching and in
this regard it is similar to a stationary chaotic field despite
being cyclostationary. This property is well understood in the
related context of frequency-shifted feedback lasers [35], [36].
The degree of second-order coherence at zero lag is therefore:

g(2)(0) =
⟨Iϵ(t)2⟩
⟨Iϵ(t)⟩2

= 2 (11)

This is equivalent to the following fourth-order correlation of
the ASE field:

⟨Iϵ(t)2⟩ = ⟨|ϵ(t)|4⟩ = 2⟨|ϵ(t)|2⟩2 = 2P 2
ASE (12)
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On the other hand, the recirculation of the ASE field leads
to partial correlations in the intensity at time lags multiples
of the loop’s round-trip time τc. These correlations show up
in the spectrum of intensity noise as bumps at frequencies
multiples of 1/τc, an effect that, again, is well known in
frequency-shifted feedback lasers [36]. Since the typical length
of fiber loops is of the order of some or even tens of meters,
the scale 1/τc lies in the MHz range. This implies that at
least some noise bumps always enter the electrical detection
bandwidth of practical receivers, which may range from the
value of the optical bandwidth (tens of GHz using direct
detection or self-heterodyne receivers) to a fraction of the
shifting frequency (tens of MHz for dual-comb schemes). The
only systematic means to avoid them, and thus optimize the
SNR, is to employ balanced detection. This is the reason why
most of the receivers analyzed below make use of this type
of detectors. Our first scenario, however, is based on direct
detection, for whose analysis it suffices the aforementioned
result (12).

III. SNR FOR FSL PEAK DETECTION

In the following paragraphs we address the computation of
the SNR attainable by FSL fields in ASE-induced noise at a
peak used for detection. This peak can result after the direct
detection of an optical pulse or as a result of the correlation
of a more general FSL waveform with a certain matched
filter, this being implemented by optical or digital means. In
the former case, the FSL is generally operated in an integer
Talbot condition, so that the FSL output consists of a series
of transform-limited pulses described as:

e(t) =

N−1∑
n=0

√
sne

i2πnfs(t−τ) (13)

In the latter case, the optical FSL waveforms are described, in
general, by (1). Of course, the practical meaning of the peak
and the appropriate system’s performance metrics rely on the
application under consideration. Theses issues, together with
the expected impact of quantization noise, will be considered
in Section IV. However, in order to justify the definitions used
in the present section, we will assume that the FSL is used
as a (coherent or incoherent) optical reflectometer, where an
unknown chain of reflective events are placed after the FSL
output and before detection.

A. Direct Detection

Following the scheme depicted in Fig. 3, we consider the
direct detection of the pulse train (13) using a wideband
detector with electrical bandwidth Nfs equal to the comb’s
spectral width. The voltage after photodetection is

v(t) = |e(t) + ϵ(t)|2 (14)

= |e(t)|2 + [e(t)∗ϵ(t) + e(t)ϵ(t)∗] + |ϵ(t)|2

= vS(t) + vSA(t) + vA(t)

where, correspondingly, vS(t) is the signal term representing
the intensity of the transform-limited train of pulses, and
vSA(t) and vA(t) are two noise terms originated, respectively,

Fig. 3. a: Schematics of an acousto-optic FSL with direct detection. When
used to perform the real-time Fourier transform of RF signals, an electro-optic
modulator is placed after the CW laser. b: Simulation of the recorded voltage
when the FSL is configured in a integer Talbot condition. The trace shows
the intensity of a train of transform-limited pulses with period 1/fs in the
presence of noise.

by the signal-ASE beat and by the ASE intensity. The average
ASE intensity ⟨vA(t)⟩ = PASE provides a dc level for the
voltage time trace v(t) whereas the signal-ASE beat vSA(t) is
of zero mean. The variance of this signal-ASE beat, however,
depends on the time where it is evaluated and is proportional
to the pulse intensity: it is high within the pulse duration and
zero between pulses. Experimentally, the voltage trace v(t)
entails a series of noisy peaks surrounded by a relatively quiet
noise background due to ASE intensity noise only.

The SNRs used in this paper will be defined from the optical
point of view, and so the signal power in its numerator is
proportional to the optical power. This approach is particularly
suited to situations where one wishes to compare a detected
optical power level, for instance in an optical measurement
system, with the relevant noise power level. This point of view
contrasts with the conventional electrical definition of the SNR
of optical communication systems, where the signal power is
the electrical power delivered by the receiver.

In our case, we assume that the FSL pulse train is used in a
reflectometric configuration, and so it works as an incoherent
reflectometer: voltage vS(t) represents a series of pulses whose
peak values are proportional to the reflected intensity and so
to the reflectivity. The SNR is thus given by the ratio between
the voltage at the intensity peak and the rms values, denoted
by tildes, of the noise voltages also evaluated at the peak:

SNRpeak =
vS,peak√

ṽ2SA,peak + ṽ2A

(15)

Here, ṽA is the rms value of the ASE intensity noise, which is
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constant over time and hence can be described as a statistical
or as a temporal average:

ṽA = ⟨vA(t)2⟩
1
2 =

(
1

Ta

∫ Ta

dt vA(t)
2

) 1
2

(16)

In turn, ṽSA,peak is the rms value of the (time-dependent)
signal-ASE beat ṽSA(t) = ⟨vSA(t)2⟩

1
2 evaluated at the peak.

This optical definition of SNR is standard in the analysis of
incoherent reflectometers (see, for instance, [37] for conven-
tional OTDR). The equivalent electrical SNR would simply be
the square of the ratio in (15).

From (13), the peak voltage is:

vS,peak = max |e(t)|2 =

(
N−1∑
n=0

√
sn

)2

≡ N0Pcomb (17)

where we have defined the equivalent number of lines N0 =
(
∑
n

√
sn)

2/
∑
n sn. It can be shown that 1 ≤ N0 ≤ N and

that its maximum value of N is reached by the flat comb. For
the signal-ASE beat at the peak we find

ṽSA,peak = (
∑
n

√
sn) · ⟨|ϵ(t) + ϵ∗(t)|2⟩ 1

2 (18)

=
√
2N0PcombPASE

where we have used the peak value of |e(t)|, the fact that
⟨|ϵ(t)|2⟩ = PASE, and that ⟨ϵ(t)2⟩ = ⟨ϵ(t)∗2⟩ = 0 due to the
circularity of the ASE field. Finally, ṽA is constant and given
by (12):

ṽA = ⟨|ϵ(t)|4⟩ 1
2 =

√
2PASE (19)

The SNR thus writes:

SNRpeak =
N0Pcomb√

2N0PcombPASE + 2P 2
ASE

≃
√
N0Pcomb

2PASE
(20)

where in the last approximation we have assumed that
N0Pcomb ≫ PASE. For arbitrary values of the GT product,
this SNR can be computed by use of (3) and (7). The SNR
becomes optimal for the flat comb GT → 1 as it maximizes
both N0 and the OSNR. The result is:

max SNRpeak =

(
N

N + 1

s0
a0

) 1
2

≃
(
s0
a0

) 1
2

(21)

where again we have used that N ≫ 1. This optimal SNR is
of the order of 20 dB as follows from our estimations of s0
and a0 in the previous section.

B. Self-heterodyne Balanced Detection

This detection scheme represents the simplest coherent
alternative to the previous receiver. Field (13) is mixed with a
portion e0 exp(i2πf0t) of the CW seed acting as a local oscil-
lator (LO), as is shown in Fig. 4. Its complex amplitude will
be denoted by e0 =

√
PLO exp(iθ), with PLO the LO power

and θ the interferometer’s phase imbalance. Photodetection is
performed by use of a wideband balanced detector, again of
bandwidth Nfs. The computation proceeds along the same

Fig. 4. a: Schematics of an acousto-optic FSL with balanced self-heterodyne
detection. b: Simulation of the recorded voltage when the FSL is configured
in an integer Talbot condition. The detected signal is a set of noisy oscillating
waveforms with period 1/fs, in blue. Here, the interferometer is stabilized
at phase imbalance θ = π/3 (see text). Hilbert transform can be used to
realize an envelope detection, in red, which represents the amplitude of the
transform-limited pulses.

lines as in direct detection, with only a significant difference
in the definition of SNR. The voltage is:

v(t) = [e∗0e(t) + e0e(t)
∗] + [e∗0ϵ(t) + e0ϵ(t)

∗]

= vS(t) + vA(t) (22)

where, using a notation similar to that used in the previous
subsection, vS(t) and vA(t) describe respectively the signal
and the ASE noise terms. Noise vA(t) is now purely addi-
tive and of zero mean, and generates a noise level constant
over time. The resulting trace is a periodic series of peaked
waveforms, as is also depicted in Fig. 4.

Given that in a coherent receiver such as the one treated here
the signal term vS(t) is proportional to the field’s amplitude,
and thus to the square root of the reflectivity, the SNR is:

SNRpeak =
v2S,peak

ṽ2A
(23)

Note the change with respect to the SNR defined in (15) for
an incoherent reflectometer: here, the optical and the electrical
definitions of SNR coincide. The peak value in (23) is:

vS,peak = max |e∗0e(t) + e0e(t)
∗| = 2| cos θ |

√
PLO

N−1∑
n=1

√
sn

≃ 2| cos θ |
√
N0PLOPcomb (24)

Here we have excluded the n = 0 spectral line in the sum,
as it would lead to a constant background voltage that does
not contribute to the peak determination. In practice, this is
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Fig. 5. Schematics of the contributions to the RF spectrum in self-heterodyne
detection: blue (resp. yellow), power of the spectral lines in e(t) (resp. e∗(t));
red (resp. brown), power of the ASE slices in ϵ(t) (resp. ϵ∗(t)); green,
schematic transmittance of the digital filter.

implemented by a dc-rejection filter applied to the voltage
trace. The rms noise level is:

ṽA = ⟨[e∗0ϵ(t) + e0ϵ(t)
∗]

2⟩
1
2 =

√
2PLOPASE (25)

The SNR at the peak finally writes:

SNRpeak =
2 cos2 θN0Pcomb

PASE
≤ 4 cos2 θ

s0
a0

(26)

The bound presented in the last part of the equation corre-
sponds to the flat comb in the limit of large N , and shows a
typical value of 46 dB when the interferometer is stabilized
at imbalances θ = 0 or π. This SNR represents a significant
increase with respect to direct detection that is consequence
of the coherent character of the receiver.

Other alternatives for peak determination result in a decrease
of SNR. First, peak detection can be performed by averaging
over different phase imbalances with a subsequent deteriora-
tion of the SNR by 3 dB since ⟨cos2 θ⟩ = 1

2 . The same loss is
observed if one uses IQ demodulation and considers the square
modulus [38]. Peak detection can alternatively be performed
by purely digital means, taking advantage of the single-sided
character of the FSL optical spectrum [12]. As a real signal,
the spectrum of v(t) is double-sided with a bandwidth equal
to the comb’s optical width, as is schematically depicted
in Fig. 5. This voltage is first dc-filtered and then Hilbert
transformed to remove negative frequencies, as is also shown
in that figure. This filtering procedure will be denoted by
a caret in what follows. The filtered voltage is then given
by v̂(t) = e∗0[ê(t) + ϵ̂(t)] and the peak amplitude becomes
independent of the interferometer’s imbalance:

|v̂S |peak = max |e∗0ê(t)| =
√
PLO

N−1∑
n=1

√
sn (27)

The peak amplitude is thus halved as compared with (24) for
θ = 0, π, and so the signal power is divided by a factor of four.
On the other hand, the noise power is halved after filtering
negative frequencies, resulting again in a 3-dB SNR loss.

C. Digital Pulse Compression

Correlation or pulse-compression techniques aim at the
detection of a noisy optical waveform through the correlation
with a specific (reference) waveform. As a result, the energy
of the original waveform is gathered in the form of a virtual

pulse that is used for detection. The optimal reference is
defined as the specific waveform that maximizes the SNR
at the correlation peak. In the simplest case where noise is
white, the optimal correlation is performed with the noiseless
waveform. In the case at hand, the objective is to detect the
periodic sequence of optical waveforms (1) generated by the
FSL. Such a procedure results in the cyclic autocorrelation of
the FSL field:

Re(t) = fs

∫ Ts

0

du e(u)∗e(u+ t) =

N−1∑
n=0

sne
i2πnfst (28)

where we have denoted by Ts = 1/fs the period of the FSL
train. This series of autocorrelation peaks does not depend on
the actual temporal waveform, only on the power sn of the
optical spectral lines. This observation, which is equivalent to
the Wiener-Khinchin theorem, allows for the detection of more
general waveforms than the transform-limited pulse trains used
in the previous subsections. This fact represents an advantage
in reflectometric-type systems where the FSL output is to be
amplified before probing an optical circuit, since the generic
FSL field (1) contains families of quasi-CW waveforms [12].

We consider the digital pulse compression procedure used in
[12]. This technique is based on a self-heterodyne receiver, and
so the starting point of our analysis is (22). Again, as shown
in Fig. 5, this voltage is first dc-filtered up to frequency fs/2
and then Hilbert transformed to remove negative frequencies.
The complex voltage can be expressed in terms of slices as:

v̂(t) = v̂S(t) + v̂A(t) = e∗0 [ê(t) + ϵ̂(t)] =

=
√
PLOe

−iθ
N−1∑
n=1

[√
sne

−iϕn + αn(t)
]
ei2πnfst (29)

The noise term v̂A(t) is proportional to the filtered ASE ϵ̂(t)
so that its n = 0 slice is also absent. The signal term v̂S(t)
is proportional to the dc-filtered FSL field ê(t), which can be
expressed as a periodic series of waveforms w(t):

ê(t) =

N−1∑
n=1

√
sne

−iϕnei2πnfst =
+∞∑

k=−∞

w(t− kTs) (30)

As is well-known, the impulse response hw(t) of the filter
matched to the detection of w(t) is contained in the interval
[0, Ts] and given by hw(t) = fs · w (Ts − t)

∗. It can be
alternatively expressed in terms of the periodic field ê(t)
provided that this field is restricted to a fundamental period:

hw(t) = fs · ê(−t)∗ 0 ≤ t ≤ Ts (31)

However, this standard matched filter is not optimal, since
ASE noise is not white. Instead of relying on the general
theory of matched filtering in non-white noise, we construct
the optimal filter using a simple generalization of (31). We
consider a family of impulse responses given by:

h(t) = fs

N−1∑
n=1

hn
√
sne

iϕnei2πnfst 0 ≤ t ≤ Ts (32)

with non-negative weights hn ≥ 0 to be optimized. The
standard matched filter (31) corresponds to hn = 1. The result
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of the convolution of v̂(t) with (32), denoted as r(t), is also
composed of signal and additive noise:

r(t) = rS(t) + rA(t) = h(t)⊗ v̂(t) (33)

Using (30) and (32) the convolution can be written as:

r(t) =
√
PLOe

−iθ
N−1∑
n=1

[hnsn + βn(t)] e
i2πnfst (34)

We observe that only in the specific case of the standard
matched filter, the signal term is proportional to the field’s
autocorrelation (28) except for the absence of the first (n = 0)
spectral line. For arbitrary hn the signal term still gives a series
of cross-correlation peaks with amplitude:

|rS |peak =
√
PLO

N−1∑
n=1

hnsn (35)

that can be alternatively used for detection.
As for the noise in (34), we show that the random

functions βn(t) have their frequency content in the interval
[−fs/2, fs/2], and therefore they describe fluctuations in the
correlation’s harmonics. Indeed, after performing the convolu-
tion βn(t) can be expressed as:

βn(t) = hn
√
sne

iϕnfs

∫ t

t−Ts

du ϵ̂(u)e−i2πnfsu (36)

Hence, βn(t) is proportional to a causal running average over
a time scale Ts = 1/fs, which represents a low-pass filter
of bandwidth fs/2. The integrand in (36) is the filtered ASE
field, ϵ̂(u), downshifted in frequency by nfs. According to
(4), the portion of this downshifted field that passes through
the running average filter is the n-th slice of ASE, αn(t).
Fluctuations βn(t) are therefore ASE slices weighted by the
corresponding harmonics of the filter:

βn(t) ≃ hn
√
sne

iϕn αn(t). (37)

The ASE slices αn(t) are described by circular gaussian
stationary noise processes with zero mean. Moreover, we show
in Appendix A that different slices are mutually uncorrelated
at equal times. These properties are inherited by fluctuations
βn(t), so that ⟨βn(t)∗βm(t)⟩ = δnm⟨|βn(t)|2⟩ and:

⟨|βn(t)|2⟩ = h2nsn⟨|αn(t)|2⟩ = h2nsnan (38)

Then, the (squared) rms noise level writes:

r̃2A =⟨|rA(t)|2⟩ = ⟨
∣∣√PLOe

−iθ
N−1∑
n=1

βn(t)e
i2πnfst

∣∣2⟩
=PLO

N−1∑
n=1

⟨|βn(t)|2⟩ = PLO

N−1∑
n=1

h2nsnan (39)

As a coherent reflectometer, the peak SNR is again given
by the squares of signal and noise voltages, and so:

SNRpeak =
|rS |2peak

r̃2A
=

(∑N−1
n=1 hnsn

)2
∑N−1
n=1 h

2
nsnan

(40)

This SNR can be optimized using standard arguments: intro-
ducing the parametrization hn = gn

√
a0/ansn with unknown

gn ≥ 0 and using the Schwarz inequality we are led to:

SNRpeak =

(∑N−1
n=1 gn

√
a0sn
an

)2
a0
∑N−1
n=1 g

2
n

≤
N−1∑
n=1

sn
an

(41)

where this maximum is attained for:

gn =

√
a0sn
an

=⇒ hn =
a0
an

(42)

and therefore the optimal filter de-emphasizes those signal
harmonics which are more perturbed by noise. Notice that,
if ASE were white (an = a0 for all n), we would recover the
definition of the standard matched filter. On the other hand, a
simulation of the optimum value in (41) over different values
of the GT product shows that the SNR is maximum, once
more, in the case of a flat comb, for which sn = s0 for all n
and an = (n+ 1)a0. In this case the SNR reads:

max SNRpeak =

N−1∑
n=1

sn
an

=
s0
a0

N−1∑
n=1

1

n+ 1
≡ η

s0
a0

(43)

where, according to the asymptotic limit of the harmonic
series, η = (γ−1)+log(N−1)+O(1/N) with γ = 0.5772 . . .
the Euler’s constant. Noticeably, the optimal SNR increases
logarithmically with the number of lines N , showing that
under optimal matched filter detection it is beneficial to extend
the FSL bandwidth despite the concomitant increase in ASE
power. For a typical value N = 200 we get η = 4.87,
which amounts to 6.9 dB above the s0/a0 level. Comparison
with (26) shows that the typical improvement with respect to
a self-heterodyne receiver with peak determination based on
averaged imbalances, IQ demodulation, or digital techniques
is ∼4 dB, an improvement that decreases to only ∼1 dB with
respect to self-heterodyne detection with a stable interferom-
eter imbalance θ = 0, π. In this regard, the advantage of
digital pulse compression is that it provides an equivalent SNR
without the need of interferometer’s stabilization.

Finally, we compute the suboptimal SNR that is reached
when we use a standard matched filter (hn = 1) with the non-
white ASE field. From (40) and assuming a flat comb in the
limit of large N , we get:

SNRpeak =

(∑N−1
n=1 sn

)2
∑N−1
n=1 snan

=
s0 (N − 1)

2

a0
[
1
2N(N + 1)− 1

] ≃ 2
s0
a0
(44)

This SNR is independent of the number of spectral lines, show-
ing that there is no improvement with an additional increase in
FSL bandwidth. In practical situations, the SNR is degraded
by ∼4 dB with respect to the detection with an optimal
filter (43), and is thus equivalent to a self-heterodyne receiver
with peak determination based on averaged imbalances, IQ
demodulation, or digital techniques.
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D. Analog Pulse Compression using Dual Comb

In a dual-comb correlation receiver [13], schematically
shown in Fig. 6, the field’s correlation is retrieved by use
of a second optical comb which provides, at the same time,
line-by-line self hetererodyne detection together with down-
conversion. The initial comb, referred to as the probe and
denoted as before by e(t), is used to explore a certain optical
circuit (not shown in the figure). The description of this comb
is given by (1) together with the ASE slices (4). The additional
comb, designated as the reference, exhibits the same form and
the same set of spectral phases ϕn as the probe and will be
denoted with primes. Without loss of generality we assume
that both combs have the same number of spectral lines N .
The reference field is:

e′(t) + ϵ′(t) =

N−1∑
n=0

hn

[√
s′ne

−iϕn + α′
n(t)

]
ei2πnf

′
s(t−τ)

(45)

with s′n the power of the spectral lines and a′n = ⟨|α′
n(t)|2⟩ the

ASE slice power. The ASE from these two combs represents
a pair of independent noise sources in the correlation receiver.
The repetition rate f ′s of the reference is close but not equal
to that of the probe, fs. We assume that fs > f ′s, and denote
∆f = fs− f ′s. This figure is low, typically some tens of kHz.
Also, and motivated by the result of the previous subsection,
we assume that before optical mixing we introduce an optical
filter in the reference comb to be used for SNR optimization,
described in (45) by weights hn ≥ 0.

The two fields are sent to a slow balanced detector with
bandwidth B of the order of N∆f and such that B <
fs/2, f

′
s/2. The detected voltage is:

v(t) = [ (e(t) + ϵ(t)) (e′(t)∗ + ϵ′(t)∗)

+ (e(t)∗ + ϵ(t)∗) (e′(t) + ϵ′(t))]lp (46)

The subindex lp is used to denote the low-pass filtering
implemented by the slow balanced detector. As is also shown
in Fig. 6, the detected signal is a set of (noisy) peaks with
period 1/∆f . In the absence of ASE noise they constitute the
signal term in (46). Noticing the action of the low-pass filter,
this signal term is given by:

vS(t) =[e(t)e′(t)∗ + e(t)∗e′(t)]lp

=2

N−1∑
n=1

hn
√
sns′n cos(2πn∆ft) (47)

which is (twice) the real part of the cyclic cross-correlation of
both combs with period 1/∆f . In the specific case of equal
weights, hn = 1, and equal fields, sn = s′n, we recover the
autocorrelation (28). Note that we have excluded again the
first spectral line (n = 0) by setting h0 = 0. This also rejects
the n = 0 terms in the ASE noise levels analyzed below. In
general, the signal’s peak value is:

vS,peak = 2

N−1∑
n=1

hn
√
sns′n (48)

The rest of the terms arising in (46) are noise sources for
the detected voltage. They can grouped in pairs, corresponding

Fig. 6. a: Schematics of a dual-comb correlation receiver based on two
acousto-optic FSLs and a balanced detector, followed by a low-pass filter (LP).
For the probe (resp.: reference) comb, the frequency shift per roundtrip is equal
to fs (resp.: f ′

s), and the roundtrip time to τc (resp. τ ′c). b: Simulation of the
recorded voltage. The detected signal is a set of noisy oscillating waveforms
with period 1/∆f , in blue. Here, the interferometer is stabilized at phase
imbalance θ = 2π/3 (see text). Hilbert transform can be used to realize an
envelope detection, in red.

to reference-ASE, probe-ASE, and ASE-ASE beat terms. The
detailed computation of their rms noise levels is presented in
Appendix B; here we only show the results. The first pair
describes the beat between the reference comb and the ASE
in the probe comb, and the second is the analogous probe-ASE
beat. They are respectively given by:

vS′A(t) =[e′(t)ϵ(t)∗ + e′(t)∗ϵ(t)]lp

vSA′(t) =[e(t)ϵ′(t)∗ + e(t)∗ϵ′(t)]lp (49)

The (squared) rms noise levels are:

ṽ2S′A =
4B

fs

N−1∑
n=1

h2ns
′
nan ṽ2SA′ =

4B

f ′s

N−1∑
n=1

h2nsna
′
n (50)

and involve the weighted product of spectral line’s power and
ASE slice power. The final pair of noise terms entails the
ASE-ASE beat:

vAA′(t) =[ϵ(t)ϵ′(t)∗ + ϵ(t)∗ϵ′(t)]lp (51)

and its rms value is given by a weighted product of ASE slice
powers:

ṽ2AA′ =
4B

fs

N−1∑
n=1

h2nana
′
n (52)
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Using (48), (50) and (52) and recalling that fs ≃ f ′s, the peak
SNR can be written as:

SNRpeak =
v2S,peak

ṽ2S′A + ṽ2SA′ + ṽ2AA′
(53)

=
fs
B

(∑N−1
n=1 hn

√
sns′n

)2
∑N−1
n=1 h

2
n(s

′
nan + sna′n + ana′n)

It can be optimized using the same technique as in the previous
subsection. The optimal SNR is given by:

max SNRpeak =
fs
B

N−1∑
n=1

sns
′
n

s′nan + sna′n + ana′n
(54)

which is attained by a de-emphasis filter defined by the
weights:

hn =
2a0
√
sns′n

s′nan + sna′n + ana′n
(55)

These general expressions can be particularized to specific
situations. In general, one can simplify them by neglecting
the ASE-ASE beat because an, a

′
n ≪ sn, s

′
n. Moreover, in

some instances both probe and reference combs are similar.
This is the case of bidirectional FSL [13] where the reference
and the probe combs travel in the same TBPF, and where
both the optical spectral lines and the ASE slice powers are
equal, sn = s′n and an = a′n. In this situation we get a de-
emphasis filter given by the same set of weights as in digital
pulse compression, hn = a0/an, and an optimal SNR of

max SNRpeak =
fs
2B

N−1∑
n=1

sn
an

(56)

which therefore shows an improvement with respect to (43)
by fs/2B. This ratio represents the product of a bandwidth
compression factor, fs/B, detached by a factor of 2 that
accounts for the doubling of ASE noise, present in both the
probe and the reference combs. This factor can be significant:
using typical values (fs = 80 MHz, B = 4 MHz), the expected
SNR increase is 10 dB. However, this improvement comes at
the expense of detection speed since, as is shown by (47), the
correlation update period is 1/∆f instead of the value 1/fs in
the digital correlation technique. Using these values with the
estimation provided after (43), the typical optimal SNR can
be as large as 56.9 dB, i.e., 16.9 dB above the s0/a0 level.

Another relevant limit of the general expression (53) is that
describing a situation where both combs are similar and flat,
but the reference comb is not optimized (hn = 1). Again, we
assume that the ASE-ASE beat is negligible. The suboptimal
SNR given by (53) is:

SNRpeak =
fs
B

s0
a0
. (57)

With the typical values of fs and B given before, this amounts
to 13 dB above the s0/a0 level and ∼4 dB below the
optimal SNR, a degradation similar to that found with digital
correlation techniques.

IV. APPLICATIONS

A. Coherent Optical Reflectometry

The ASE-limited SNR values derived for the different
receivers so far are summarized in the first line of Table I.
As pointed out before, all these receivers, except the direct
detection scheme, can be used in coherent reflectometry
systems. Their SNR, understood as a relative ASE noise
level accompanying the probe field, comes with any detected
reflection. In consequence, the SNR coincides with the dy-
namic range (DR) of a reflectometric measurement, this being
defined as the maximum ratio between two simultaneously
detectable reflectivities. The minimum detectable reflectivity
Rmin or (reflectometric) sensitivity, however, is not determined
by ASE, but by the local oscillator’s power PLO, the optical
comb’s power Pcomb, and the receiver electronics noise. We
derive sensitivity estimates for FSL systems employing flat
combs under standard assumptions.

Let us first consider a FSL reflectometer based on self-
heterodyne balanced detection of transform-limited pulses. For
sufficient local oscillator power, typically some milliwatts,
detection is limited by the shot noise Ish(t) generated by
the local oscillator [39]. The one-sided, shot-noise current
spectral density is given by i 2sh(f) = 2eRPLO, with e the
electron’s charge and R the photodiode’s responsivity. The
FSL comb, assumed flat and of bandwidth Nfs, reaches the
detector with a power RPcomb, where R is the reflectivity.
The signal at the peak (24), expressed as a photocurrent,
is 2R| cos θ|

√
NRPLOPcomb, and therefore the sensitivity at

SNR = 1 is:

Rmin =
1

cos2 θ

i2shfs
4R2PLOPcomb

=
1

cos2 θ

efs
2RPcomb

(58)

Using typical values, R = 0.9 A/W and Pcomb = 100µW,
this yields Rmin = −71 dB for θ = 0, π and −68 dB for the
alternative peak detection methods.

The sensitivity of a shot-noise limited reflectometer based
on a heterodyne receiver with digital pulse compression can
be computed from (40) as follows. The digitally filtered signal
voltage in (29) with added shot noise can be presented as:

v̂(t) = Z
(
R e∗0ê(t) + Îsh(t)

)
= ZRe∗0

(
ê(t) +

Îsh(t)

R e∗0

)
(59)

where Z is the detector’s impedance. Here, the caret on the
shot-noise current Îsh(t) denotes that only positive frequencies
are to be considered. Hence, its current spectral density is
halved, ı̂ 2sh(f) = i2sh(f)/2. In view of the structure of (59),
it follows that shot noise generates single-sided white noise
with constant spectral density i2sh/2R2PLO = e/R, now in
units of optical power per hertz. Then, the SNR is that given
by (40) after the substitution of an with a constant slice power
ash = i2shfs/2R2PLO. Using also that for a flat comb returned
from a reflector sn = RPcomb/N this directly leads to:

Rmin =
N
∑
n h

2
n

(
∑
n hn)

2

i2shfs
2R2PLOPcomb

=
N
∑
n h

2
n

(
∑
n hn)

2

efs
RPcomb

(60)
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TABLE I
PERFORMANCE PARAMETERS OF FSL SYSTEMSa

Direct Self-het. Digital pulse Dual
detect. detectionb compressionc combc,d

SNR (dB) 20 46 43 47 43 57 53

Coherent optical reflectometry

DR (dB) − 46 43 47 43 57 53
Rmin (dB) − −71 −68 −61 −68 −61 −93

Real-time Fourier transform of RF signals

CDR (dB) 32 40 37 41 37 51 47
S (dBm) −23 −30 −27 −31 −27 −41 −37

a For s0/a0 = 40 dB and flat combs with fs = 80 MHz and N = 200.
b With stabilized interferometer (left column) and alternative peak detection
methods (right column).
c Filter matched to ASE (left column) and to white noise (right column).
d Bandwidth B = 4 MHz.

The prefactor is unity at large N when the filter is matched to
white noise, hn = 1, and so the sensitivity becomes similar to
the self-heterodyne receiver with the alternative peak detection
methods. However, when the filter is matched to ASE-induced
noise, hn ∼ 1/(n+1), the prefactor becomes Nκ/η2, with η
given in (43) and κ =

∑N−1
n=1 1/(n+1)2 ≃ π2

6 −1 in the limit
of large N . For a typical value N = 200, this factor results in
a deterioration of sensitivity by 10.4 dB with respect to self-
heterodyne detection with a stabilized interferometer, or by
7.4 dB with the rest of peak detection methods. This reflects
a compromise between DR and sensitivity: the receiving filter
hn, if matched to the white shot noise, maximizes sensitivity
but not DR and, if matched to the non-white ASE-induced
noise, maximizes DR but not sensitivity.

In a dual-comb correlation systems, the shot noise limit
is more difficult to attain as the role of local oscillator is
played by a second (reference) comb whose typical output
power is below the milliwatt. This fact can be compensated
by the increase in SNR associated to the decrease in detection
bandwidth. Systems are typically limited by the receiver
electronics noise, usually a transimpedance front-end whose
noise spectral density ie is dominated by thermal noise in the
feedback resistor and by amplifier noise [37], [39]. From (48),
the photocurrent generated in the balanced detector by a pair
of flat combs with equal power Pcomb, one of which returns to
the receiver after a reflectivity R and the other weighted by
hn, is 2R

√
RPcomb(

∑
n hn)/N . The noise power is simply

i2eB, with B the detection bandwidth. At SNR = 1 this yields
a sensitivity of:

Rmin =
N2

(
∑
n hn)

2

i2eB

4R2P 2
comb

(61)

Comparison with the first expression in (60) shows that the
prefactor is again unity for hn = 1, but in general differs by∑
n h

2
n/N = κ/N . This ratio is the power loss experienced by

the flat reference comb after filtering with weights hn and rep-
resents a comparative loss of sensitivity. With B = 4 MHz and
ie = 2 pA/

√
Hz together with the previously quoted values of

R, N and Pcomb, the actual sensitivity is Rmin = −60.8 dB
for a filter matched to ASE-induced noise, hn ∼ 1/(n + 1).

The advantage provided by the low detection bandwidth is
therefore wasted by the reduction in reference comb’s power.
In turn, low-bandwidth detection with two flat combs, i.e., with
hn = 1, reaches a sensitivity of −93.1 dB, largely surpassing
the performance of wideband self-heterodyne systems even at
the shot noise limit.

B. Real-time Fourier Transforms of RF Signals

FSLs perform real-time Fourier transforms of arbitrary RF
signals by exploiting the dependence of the FSL’s output delay
in the seed frequency [17]. Before the FSL, which is config-
ured in an integer Talbot condition, the seed CW optical carrier
at frequency f0 is modulated in amplitude by a RF signal
vRF(t). If such a RF signal is a pure tone at frequency fRF and
amplitude v0, thus of the form vRF(t) = v0 sin(2πfRFt), the
CW carrier develops optical sidebands at frequencies f0±fRF
that act as additional seed frequencies for the FSL. Each of
these sidebands are then mapped to the time domain by the
time delay τ in (13), and as a result the output shows two
transform-limited satellite pulses at delays ±fRFτc/f0 relative
to the main pulse created by the CW carrier. Assuming that
the RF tone is impressed onto the carrier by use of a Mach-
Zehnder modulator biased at quadrature, the optical power of
each sideband seed is:

s′0 = s0
π2

2

Zm
V 2
π

PRF (62)

with Zm the modulator’s input impedance, Vπ the modulator’s
half-wave voltage, and PRF = v20/2Zm the input RF power.
This linear relationship assumes absence of compression in the
input modulator. Note that in this type of systems the input
signal is a RF signal, and therefore the SNR is defined as
a ratio where the numerator is an RF power. However, (62)
states that the RF power is proportional to the optical power,
and so the relevant SNRs are again given by (15), (23), (40)
or (53), depending on the receiver under consideration.

In the case of a direct-detection receiver, the calculus of the
SNR at the sideband-generated peak is immediate as it only
entails the substitution in the first expression in (20) of Pcomb
with the power P ′

comb of the comb generated by the sideband
seed (62):

P ′
comb =

N−1∑
n=1

(GT )ns′0 =
π2

2

Zm
V 2
π

PRFPcomb (63)

The sensitivity S at SNR = 1, i.e. the input RF power at fRF
for which the sideband-generated pulse shows SNR = 1, is:

S =
2(1 +

√
3)

π2

V 2
π

Zm

PASE

N0Pcomb
≃ 1 +

√
3

π2

V 2
π

Zm

a0
s0

(64)

where the rightmost part of the equation is the asymptotic
value of S for a flat comb with N ≫ 1. The sensitivity is there-
fore inversely proportional to the OSNR and depends through
the prefactor on the electro-optic modulator’s characteristics.
Using standard values of a low-Vπ modulator (Zm = 50Ω,
Vπ = 3 V), the typical best-case value is S = −23.0 dBm.

An additional metrics is the linear or compression dynamic
range (CDR) [4], which is defined as the range of input
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RF powers under which the output satellite pulse is above
noise, and where its peak power is compressed by 1 dB
or less relative to a linear response. In the present scheme,
compression is determined by the input modulator for which
the input RF power for 1 dB compression is given by [4]:

P1dB =
ϕ21dB

2π2

V 2
π

Zm
(65)

with ϕ1dB = 0.9504. Then, the CDR is given by:

CDR =
P1dB

S
=

ϕ21dB

2(1 +
√
3)

s0
a0

= 0.1653
s0
a0

(66)

The optimal CDR is therefore −7.8 dB below the ratio s0/a0,
with a typical maximum value of ∼32 dB.

Real-time Fourier transform systems can also be imple-
mented using any of the coherent receivers analyzed before, as
they only entail the detection of the satellite peak generated by
the modulation sideband. The values of sensitivity and CDR
can be computed using the same arguments. In the case of self-
heterodyne detection, and starting from (26), the sensitivity for
θ = 0, π reads

S =
1

π2

V 2
π

Zm

PASE

N0Pcomb
≃ 1

2π2

V 2
π

Zm

a0
s0

(67)

where in the last part of the equation we have written again
the sensitivity for a flat comb. Comparison with (64) results
in an improvement by a factor of 2(1+

√
3) or 7.4 dB, which

reduces to 4.4 dB if the alternative peak determination methods
are used instead. The same improvements are transferred to
the CDR. The calculus for the remaining correlation receivers
follow the same lines and, as shown in Table I, results in the
same pattern of improvement and degradation of parameters
as the SNR.

C. Quantization Noise

Finally, we briefly discuss the limits imposed by quantiza-
tion noise in the detection of FSL temporal waveforms. The
signal to quantization noise ratio (SQNR) for a waveform with
a given peak-to-average power ratio (PAPR) and displayed at
full scale is, expressed in dB [40]:

SQNR = 6n+ 4.8− PAPR (68)

with n the number of quantization bits. For the standard 8-
bit architecture of high-bandwidth (> 3 GHz) digitizers, one
obtains 52.8 dB minus the PAPR, to be compared with the
DR and CDR values obtained before. A problem arises here
with systems employing pulses, namely those based on direct
or self-heterodyne detection: the PAPR of a typical transform-
limited FSL pulse is of the order of the number of lines N
and this results in traces prone to be limited by quantization
noise. This calls for the use of correlation detection, either
with digital or analog techniques. In digital pulse compres-
sion systems the SQNR does not constitute a limiting factor
since, as already mentioned, quasi-CW FSL waveforms are
available [12]. In dual combs, the availability of low-PAPR
optical waveforms does not represent an advantage in the peak
detection process, as these systems output a peaked, high-
PAPR cross-correlation trace. However, the required detection

bandwidth of dual-comb systems is low (in the MHz range)
and so the available number of quantization bits is much
higher (typically > 12). Hence, the SQNR does not represent
a practical constraint in dual-comb correlation detection.

V. DISCUSSION AND CONCLUSIONS

We have provided a theoretical framework to quantify the
limitation of the SNR in FSL-based techniques set by the
ASE of the amplifier. This study is valid for both acousto-
optic and electro-optic FSLs. It is able to provide best-case
performance values for FSL-based techniques. As expected,
the obtained theoretical expressions are closely related to the
type of receiver used in the system. As compared to heterodyne
techniques (self-heterodyne and dual-comb), direct detection
is penalized by the fact that the output voltage is proportional
to the square modulus of the signal of interest. Additionally,
the dual-comb technique shows the best SNR performance,
owing to the compression factor of the detection bandwidth.
A similar trend is reported in the two specific cases discussed
here, coherent reflectometry and real-time Fourier transform,
where dual-comb detection shows the best performance in
terms of DR/CDR and sensitivity.

In the course of the analysis we have also pointed out a num-
ber of comparative advantages between the different receivers.
In contrast to direct detection or to self-heterodyne receivers,
which require transform-limited pulses, both digital and analog
correlation receivers are more resilient to quantization noise
and can be used with low-PAPR waveforms, hence amenable
to high-power optical amplification if required. Also, digital
pulse compression techniques attain a SNR similar to self-
heterodyne detection of transform-limited pulses without the
need of interferometer’s stabilization.

In this study, we have assumed ideal optical components.
In particular, we have supposed that the optical TBPF in the
FSL has a perfect rectangular profile. In practice, the edges
of the transmission function have a finite slope, which tends
to increase ASE as compared to the ideal case depicted here.
Additionally, the transmission window of a real bandpass filter
is not strictly flat-top, which can alter the simple recurrence
relations given in (2) and (5). The analytic treatment could
be adapted to take into account the deviation of the TBPF
transmission function from the ideal rectangular function.

Finally, our work raises the question on the reduction of
the influence of ASE in FSL-based techniques. For this aim,
several options can be considered. A first strategy consists
of reducing the noise factor of the amplifier and increasing
the transmission function of the FSL T by limiting as much
as possible the losses of the optical components in the loop
(TBPF, frequency shifter, fiber connectors). Another way of
reducing ASE is to insert into the FSL a periodic band-
pass filter, whose free spectral range matches precisely the
frequency shift. It has been shown that the insertion of a multi-
tap filter enables to clean the optical frequency comb at the
output of electro-optic FSLs [11], [25], [44]. However, the
extension of the technique to acousto-optic FSLs where the
value of the frequency shift is much smaller (tens of MHz),
seems challenging: it would require to lock the frequency of
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the seed laser to a peak of the filter’s transmission function.
Moreover, spectral filtering in the FSL is not adapted to
techniques like real-time Fourier transform, where the seed
laser is modulated by a RF signal. Beside limiting ASE, the
performance of FSL-based techniques can also be increased by
temporal averaging. The gain in terms of performance can be
computed depending on the type of receiver. From a practical
perspective, averaging raises the question of the system’s
stability. Experimentally, FSL have been proven stable at the
ms time scale [13], [33], while recently, stabilization schemes
have been reported, enabling to maintain the coherence of the
output up the hundreds of ms scale [16]. Of course, temporal
averaging degrades the temporal response of the system, which
can be inconvenient for real-time or dynamic applications.

APPENDIX A
CORRELATIONS OF ASE SLICES

As is described by (4), the ASE field ϵ(t) can be de-
composed in ASE slices αn(t) with power an and constant
spectrum of width fs. Their statistical correlations are thus
given by:

Rαn(u) = ⟨αn(t)∗αn(t+ u)⟩ = an sinc(fsu) (69)

where sinc(x) = sin(πx)/πx. The statistical properties of the
ASE field presented in Section II can be derived from the
generalization of this formula to correlations of different slices.
To this end, we introduce an alternative description based on
the recurrence of the ASE generated in the FSL amplifier.
Let us denote such a field by ϵ0(t). In the rotating frame at
frequency f0, it can be decomposed in spectral slices as:

ϵ0(t) =

N−1∑
n=0

ηn(t)e
i2πnfst (70)

Fields ηn(t) are zero-mean, mutually independent, circular
gaussian stationary processes [41], centered at optical fre-
quency f0 + nfs. Their ASE power is that contained in a
spectral slice of width fs and density nsphν(G − 1), so it
coincides with a0 as defined in Section II:

⟨|ηn(t)|2⟩ = a0 (71)

In each recirculation, the initial ASE ϵ0(t) is first frequency
shifted by fs and then undergoes a delay by τc. Then, it
generates the ASE slices αn(t) according to:

α0(t) = η0(t)

α1(t) = η1(t) +
√
GTe−iψ

0
1η0(t− τc)

α2(t) = η2(t) +
√
GTe−iψ

1
1η1(t− τc)

+ (
√
GT )2e−iψ

0
2η0(t− 2τc) (72)

or, in general:

αn(t) =

n∑
k=0

(
√
GT )ke−iψ

n−k
k ηn−k(t− kτc) (73)

where ψmk is the phase accumulated in k recirculations by a
field initially centered at optical frequency f0 +mfs:

ψmk = πfsτck(k + 1) + 2πk(f0 +mfs)τc (74)

The comb’s spectral phases generated by the injected carrier
are particular values corresponding to m = 0. Indeed,

ψ0
k = πfsτck(k + 1) + 2πkf0τc = ϕk + 2πkfsτ (75)

recovering the phases of the spectral lines defined in (1). In
general, these phases verify that ψmk + ψm+k

q = ψmk+q .
Expansion (73) indicates that αn(t) are circular gaussian

processes and that the following recurrence in amplitude holds:

αn(t) = ηn(t) +
√
GTe−iψ

n−1
1 αn−1(t− τc) (76)

This follows from (73) after noticing that ψn−kk = ψn−kk−1 +

ψn−1
1 . Moreover, ⟨ηn(t)∗αn−1(t − τc)⟩ = 0 since αn−1(t)

does not contain ηn(t) in its expansion. Using this last
observation we can prove the recurrence in power (5): if we
multiply (76) side by side by its complex conjugate we get:

an =⟨|αn(t)|2⟩ = ⟨|ηn(t)|2⟩+GT ⟨|αn−1(t− τc)|2⟩
=a0 +GT · an−1 (77)

where we have also used (71).
To obtain the mutual correlation between ASE slices n+ k

and n with k > 0, we use (76) iteratively to find:

αn+k(t) = ηn+k(t) +
√
GTe−iψ

n+k−1
1 ηn+k−1(t− τc) + . . .

+ (
√
GT )k−1e−iψ

n+1
k−1 ηn+1(t− (k − 1)τc)

+ (
√
GT )ke−iψ

n
kαn(t− kτc) (78)

Shifting the argument of this expression to t+ u, multiplying
it by αn(t)∗, and taking the statistical average we get:

⟨αn(t)∗αn+k(t+ u)⟩ = (
√
GT )ke−iψ

n
kRαn

(u− kτc)

=(
√
GT )ke−iψ

n
k ansinc(fsu− kfsτc) (79)

where we have used again that αn(t) is independent of those
ηm(t) with m > n. This shows that different ASE slices are
mutually stationary and correlated only at multiples of the
loop’s round-trip time τc, correlation that is responsible of the
noise bumps at multiples of 1/τc found in the spectrum of the
intensity fluctuations [35], [36].

The temporal extent of the correlation in (79) is ∼ 1/fs.
This implies that, if fsτc ≫ 1, the mutual correlation at
equal times between different ASE slices, ⟨αn(t)∗αn+k(t)⟩,
vanishes since in that case sinc(kfsτc) ≃ 0 for k ̸= 0. The
required condition is met by practical implementations of FSL
based on fiber loops where the product fsτc is typically 6 or
higher. Without mutual correlation in amplitude at equal times,
the recirculating ASE field behaves as an incoherent gaussian
(or chaotic) optical field and (11) and (12) directly follow.

We end with the derivation of the ASE optical power
spectral density, which will necessary in Appendix B. From
(4), the cyclostationary correlation of the total ASE field is:

Rϵ(t, u) =⟨ϵ(t)∗ϵ(t+ u)⟩ (80)

=

N−1∑
n,m=0

⟨αn(t)∗αm(t+ u)⟩ei2π(m−n)fstei2πmfsu
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The optical spectral density is the Fourier transform of the
temporal average in t of this correlation [42], [43]. This time-
averaged correlation is denoted with an overline. The average
selects only those terms in (80) with n = m, and so:

Rϵ(u) = Rϵ(t, u) =

N−1∑
n=0

ansinc(fsu)ei2πnfsu (81)

The optical spectral density is thus:

Sϵ(f) =
N−1∑
n=0

an
fs

rect
(
f

fs
− n

)
(82)

where the rectangle function is defined as rect(x) = 1 for
|x| < 1

2 and zero otherwise. The ASE spectral density is a
stair of N steps with spectral density an/fs and width fs, in
accordance with the power spectrum depicted in Fig. 2.

APPENDIX B
NOISE TERMS IN DUAL-COMB DETECTION

To compute the different rms noise values in dual-comb
detection we first calculate the statistical correlation at full
bandwidth (without low-pass filtering) of the corresponding
noise terms. Then, we compute its spectral density by Fourier
transform, and finally implement the low-pass filtering on the
spectrum. The reference-ASE beat is vS′A(t) = e′(t)ϵ(t)∗+cc
where cc denotes complex conjugation. Its correlation involves
only two complex-conjugated terms, as those involving the
product ⟨ϵ(t)ϵ(t + u)⟩ or its complex conjugate are null due
to the circularity of the ASE field. The correlation is:

⟨vS′A(t)vS′A(t+ u)⟩ = e′(t)e′(t+ u)∗⟨ϵ(t)∗ϵ(t+ u)⟩+ cc

= Rϵ(t, u)

N−1∑
n,m=0

hnhm
√
s′ns

′
me

i2π(n−m)f ′
ste−i2πmf

′
su + cc

(83)

The temporal average applies independently to correlation
Rϵ(t, u) and e′(t)e′(t+ u)∗ since they have different periods
1/fs and 1/f ′s, respectively. We get:

⟨vS′A(t)vS′A(t+ u)⟩ = Rϵ(u)

N−1∑
n=0

h2ns
′
ne

−i2πnf ′
su + cc

(84)

and so its spectrum reads:

SS′A(f) =

N−1∑
n=0

h2ns
′
n [Sϵ(f + nf ′s) + Sϵ(−f + nf ′s)] (85)

The noise spectral density consists of N frequency-shifted
copies of the ASE spectrum weighted by the harmonics of
the reference comb, together with its symmetric components.
In terms of this spectrum, the (squared) rms noise value after
low-pass filtering is:

ṽ2S′A =

∫ B

−B
dfSS′A(f) (86)

and so each frequency-shifted ASE spectrum Sϵ(±f + nf ′s)
only contributes at baseband with its n-th slice an/fs:

ṽ2S′A = 2

N−1∑
n=0

h2ns
′
n × an

fs
× 2B (87)

This is the first of the equations in (50) after the exclusion of
the n = 0 term. The same type of analysis can be applied to
the probe-ASE beat noise, vSA′(t), leading to the second of
the equations in (50).

The final pair of noise terms represents the ASE-ASE
beat, vAA′(t) = ϵ′(t)ϵ(t)∗ + ϵ′∗(t)ϵ(t). The non-zero terms
contributing to the statistical correlation are:

⟨ϵ′(t)ϵ(t)∗ϵ′(t+ u)∗ϵ(t+ u) + ϵ′(t)∗ϵ(t)ϵ′(t+ u)ϵ(t+ u)∗⟩
=Rϵ(t, u)Rϵ′(t, u)

∗ +Rϵ(t, u)
∗Rϵ′(t, u) (88)

Again, the time-averaged correlation is to be applied inde-
pendently to Rϵ(t, u) and Rϵ′(t, u). Performing the Fourier
transform we get that the noise spectrum is expressed in terms
of the cross-correlation of ASE spectra as:

SAA′(f) =

∫ +∞

−∞
Sϵ(f ′ + f)Sϵ′(f ′)df ′

+

∫ +∞

−∞
Sϵ(f ′ − f)Sϵ′(f ′)df ′ (89)

The ASE-ASE beat noise spectral density thus extends in
bandwidth to the sum of the individual ASE spectra. Since
the filtering is performed at baseband, the (squared) rms noise
level can be approximated in terms of the dc value of SAA′(f)
as ṽ2AA′ = 2BSAA′(0) = 2B×2

∫
Sϵ(f ′)Sϵ′(f ′)df ′. The ASE

spectra in (89) consist of N slices with respective densities of
an/fs and h2na

′
n/f

′
s, extending in widths fs ≃ f ′s. Then we

can approximate:

SAA′(0) ≃ 2

N−1∑
n=0

an
fs

× h2na
′
n

f ′s
× f ′s (90)

and this leads to (52).
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J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs
generated by acousto-optic frequency-shifting loops,” IEEE Photon.
Technol. Lett., vol. 31, no. 23, pp. 1878–1881, Dec. 2019.

[10] F. Tian, X. Zhang, J. Li and L. Xi, “Generation of 50 stable frequency-
locked optical carriers for Tb/s multicarrier optical transmission using
a recirculating frequency shifter,” J. Lightw. Technol., vol. 29, no. 8,
pp. 1085–1091, Apr. 2011.

[11] J. Lin, L. Wang, M. Lyu, A. Pai, X. Zhang, S. LaRochelle, and
L. A. Rusch, “Demonstration and evaluation of an optimized RFS
comb for terabit flexible optical networks,” J. Opt. Commun. Netw.,
vol. 9, no. 9, pp. 739–746, Sep. 2017.
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