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ABSTRACT 

Byzantine Fault Tolerance (BFT) has been a major subject of study over the last 

two decades with increasing societal dependance on secure, correct, and reliable 

computer systems and online services. This research presents a model for high-level 

optimization of emerging systems that rely on these BFT algorithms and use a variable 

numbers of decision nodes. The model highlights the relationship between the security of 

a system and its efficiency. Two experiments were performed to determine system 

performance by varying the number of compromised nodes, decision nodes, and total 

nodes. They examine the probability that a transaction will be compromised based on 

these variables using hypergeometric distribution, a subset of combinatorics. It was found 

that the compromise probability follows predictable patterns, with certain combinations 

of decision nodes performing better than others.  The results show a trichotomous 

relationship where one in every three decision nodes results in lower security risk than its 

neighbors. The purpose of this model is to assist system developers in deciding how to 

best construct their systems to improve security while minimizing resource usage. 
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1. INTRODUCTION 

 

This research explores the optimization of Byzantine Fault Tolerant (BFT) 

systems to reduce resource usage while maintaining a level of security. Byzantine Fault 

Tolerance was first proposed in 1978 as a method of achieving a consensus in a computer 

network even if some of the network nodes were faulty (Lamport et al., 1982). A network 

achieving consensus means that its nodes have come to an agreement with a high degree 

of certainty that the information being transferred is correct and has not been duplicated 

or tampered with.  This problem of network consensus in the face of faulty system nodes 

was initially named the interactive consistency problem before being renamed the 

Byzantine General’s problem by the same authors. 

The Byzantine General’s problem puts this issue into the context of a general 

from the byzantine era who is attempting to conquer a city. The general commands 

several companies surrounding the city, each led by a captain. For the city to be taken, all 

surrounding companies must attack at the same time. The general must send messages to 

the surrounding forces to ensure that they will attack at the designated time. In this 

problem, the captains are the system nodes who must reply to the general so that he may 

determine if they are all in consensus with the success of the attack being synonymous 

with the success of the system. Figure 1.1 is an example of when four of the six captains 

(light colored) are confirmed to attack at the designated time and two captains (dark 

colored) are unconfirmed. 



 

 

2 

 

Figure 1.1 Byzantine General’s Problem  

 

This problem introduces nuances such as certain captains being traitors and 

willfully returning false replies or messengers being captured along their routes. In Figure 

1.1, these are represented by the dark colored, unconfirmed captains. This translates to 

network systems as compromised nodes returning faulty decisions or nodes being unable 

to reply due to issues with maintenance or network communication. Nodes with these 

problems are said to have “Byzantine Faults”. The BFT algorithm was able to overcome 

these faults if fewer than one third of the nodes were affected.  

This method was improved upon by Castro and Lizkov (1999) who introduced 

Practical Byzantine Fault Tolerance (PBFT) which performed well in asynchronous 

environments and can be used to build highly available systems (Konnov et al., 1999). 

This method provides secure consensus and proactive recovery methods to recover faulty 
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nodes over the system lifetime, reducing the time that any single faulty node can 

contribute to consensus disruption (Castro & Liskov, 2002). These algorithms were still 

considered brand-new with little testing to prove that it merited implementation (Nair et 

al., 2020; Sternberg et al., 2020) in 2008 when Bitcoin and Blockchain technology was 

introduced. . Bitcoin used BFT to create the first public Blockchain network, reducing 

energy costs paid by system administrators by allowing anyone to act as a system node. 

The potential for malicious behavior was mitigated by requiring nodes to provide “Proof 

of Work”, requiring them to compute complex algorithms to even be allowed into a 

decision-making process with a reward for participating in decisions (Ghosh & Das, 

2020).The main draw of these Blockchain systems is their record keeping capabilities. 

Once a decision has been made to add data into the system, it is encoded as a block in a 

digital ledger and stored publicly on all nodes so that it can later be analyzed to ensure 

that no node attempted to change the data in that ledger. Blockchain systems use BFT to 

obtain a consensus and then write it into an immutable ledger, but not all BFT systems 

use the same record-keeping methodology (Zhao, 2009). Although Blockchain systems 

are the most well-known BFT systems, they are not the only. BFT algorithms can be used 

for any system that requires high levels of security in its decision-making processes. The 

algorithms are useful for many Web-based systems that require higher levels of security 

in their messaging processes, and can be implemented to help these systems meet reliable 

messaging standards (Zhao, 2009).  

Some common problems BFT systems encounter are those of excessive energy 

consumption and high latency times (Nair et al., 2020; Sedlmeir et al., 2020). To achieve 

the level of security provided by BFT algorithms, a system typically relies on many 
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nodes running in parallel to achieve a single consensus. Reducing the number of nodes 

performing calculations creates a tradeoff between security and energy consumption.  

The second problem is long latency times, caused by the algorithms being run on each 

node to ensure the security of the messages transmitted in the system. As the number of 

nodes performing calculations increases, the traffic on the network increases causing 

congestion and increased latency times to send messages. This increases the amount of 

time nodes wait for messages to be delivered, contributing to the energy consumption of 

the system and increasing the time it takes to achieve a consensus.  

Power consumption and latency issues have been a focus of research for BFT 

systems. Different Blockchain types have been developed to optimize the systems for 

these two issues based on their respective needs (Da Silva et al., 2019; Franke et al., 

2020; Vizier & Gramoli, 2020; Y. Wang, 2019). Various internet systems utilizing BFT 

algorithms have attempted to improve these issues for their purposes, but Blockchains 

has received a majority of the research focus since the rise of Bitcoin.  

The two most prominent types of Blockchain systems are Public and Private. 

Public Blockchains, like Bitcoin, allow any person to participate in consensus. The added 

security risk of allowing anyone to participate is mitigated through requiring that person 

to provide some proof that they will not tamper with the consensus. This is achieved by 

requiring a person’s node/computer to run complex algorithms to achieve a Proof of 

Work. This is based on the idea that the person now has an investment of energy and time 

contributed to the consensus and will therefore be motivated to provide a good decision 

for consensus (Ghosh & Das, 2020). Another motivator in this process is a small reward 

for their service, in the case of Bitcoin this comes in the form of a small monetary reward 
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in Bitcoins. This method places the burden of energy consumption on the unaffiliated 

parties but still pulls a large amount of power from the national grid. One study estimated 

that, over one year, power consumption from Bitcoin processes in the U.S. alone were 

equivalent to  a small country (Nair et al., 2020). The energy consumption of Proof of 

Work methods has led others to attempt other methods, such as Proof of X, a template 

term for any other type of proof which attempts to attain the same results but with the 

idea of improving energy usage and scalability (Franke et al., 2020). The currently 

accepted best alternative to Proof of Work is Proof of Stake, which selects nodes from 

users with stake in the Blockchain and its integrity. This method is considered to be an 

improvement over Proof of Work, although it has not been thoroughly tested(Franke et 

al., 2020). 

Private Blockchains skirt the energy requirements of Proof of Work by way of 

only allowing trusted, pre-approved nodes on their networks. This method requires far 

less energy as the complex algorithms no longer need to be run (F. Wang et al., 2021). 

Private Blockchains are also used for private companies to secure their transaction 

records without the public ledger provided by Public Blockchains. This research focuses 

on Private Decentralized Blockchains as they consist of a set of controlled nodes, each 

capable of returning a decision. 

When first introduced BFT systems have consisted of a set number of nodes 

capable of returning decisions to reach a secure consensus. These nodes are consistent, 

and the same nodes are used in each consensus. Recently, systems such as the Redbelly 

Blockchain have been introduced to utilize a far larger pool of nodes (Concurrent 

Systems Research Group, University of Sydney, n.d.). In these systems, not all nodes are 
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used in each consensus. This allows several decision-making processes to be run 

concurrently, reducing latency times as more decisions can be made at once. This 

development is only useful if different nodes are used to create pools of nodes each time. 

These systems constantly switch between which nodes in the pool are selected for each 

group every time a consensus is reached. Figure 1.2 displays a sample distributed 

network setup with twelve total nodes and two Byzantine Fault nodes.  

 

 

Figure 1.2 Example Node Pool with Sample Decision Node Groups 
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The nodes in this example are grouped into decision groups of six where two 

faulty nodes in a decision group are enough to cause the consensus to fail. The blue 

outlined group shows a selection of nodes where the single faulty node would not prevent 

the consensus from succeeding, and the red group shows a selection where both faulty 

nodes are included, and the consensus is disrupted.  

The Redbelly Blockchain was not the only attempt this method of varying 

decision nodes. The ComChain system was introduced to develop a type of Private 

Blockchain system called a Communal Blockchain, which uses a “Configuration block” 

to determine which nodes are called upon for the next consensus(Vizier & Gramoli, 

2020). The Honey Badger BFT Protocol is another method that focusing on adding 

system capabilities to run transactions asynchronously, drastically reducing latency times 

(Miller et al., 2016).   

The goal of this research is to analyze different combinations of total nodes (𝑁𝑡), 

decision nodes (𝑁𝑑), and compromised nodes (𝑁𝑐), to determine combinations that 

reduce the chance of selecting too many faulty nodes, compromising the system. The R 

programming language was used to create a model that processes the different 

combinations of variables to determine the probability that consensus will be 

compromised for any combination of nodes, while energy consumption is primarily based 

on the number of decision nodes running per consensus. The model compares the 

compromise chance to the number of decision nodes to allow system architects to make 

informed choices on how many 𝑁𝑑 to include in their consensus processes to balance 

security and energy consumption. 
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This research consists of two parts. The first experiment examines the effect on 

the security of a distributed network by changing the number of 𝑁𝑐 in the network while 

holding the number of 𝑁𝑑 and 𝑁𝑡 constant. The second experiment examines the effect of 

changing the number of 𝑁𝑑 in the network while holding the number of compromised and 

𝑁𝑡 constant. 
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2. METHODS 

 

The three variables describing this model are 𝑁𝑡, 𝑁𝑑, and 𝑁𝑐. A node is an actor in 

the network with the power to return a decision to be used in consensus. The number of 

nodes available to the network for use in consensus is 𝑁𝑡. 𝑁𝑑 are those nodes selected for 

each individual consensus out of the pool of 𝑁𝑡. 𝑁𝑐 are those that do not return any 

decision or incorrect information due to either the node being hacked and malicious, or 

defective due to maintenance issues with the nodes or the information lines connecting 

the nodes. For example, consider a distributed network consisting of 100 nodes capable 

of returning a decision, 10 of those nodes are called upon to provide a decision for a 

consensus, 4 nodes have been hacked and are malicious, and 3 nodes are down for 

maintenance issues but have not yet been taken off the active list in the pool. In this 

scenario, the 𝑁𝑡 are the 100, the number of 𝑁𝑑 is 10, and the number of 𝑁𝑐 is 7 (4 

malicious and 3 down). 

In both experiments run, the primary statistic observed is the probability of 

consensus disruption. It is assumed that the system cannot distinguish the 𝑁𝑐 from the 

properly functioning nodes when selecting 𝑁𝑑 from the pool. Thus, there exists a chance 

to select compromised nodes when selecting 𝑁𝑑. The BFT algorithm dictates that a 

consensus can only be disrupted if greater than (𝑁𝑑-1)/3 nodes are compromised (Castro 

& Liskov, 2002; Lamport et al., 1982). In this model, this threshold number required to 

disrupt a consensus is denoted by the variable k. This variable is static in the first 

experiment and will become dynamic in the second experiment where the number of 𝑁𝑑 

is varied across each experimental run. 



 

 

10 

 An important distinction is that disruption of a consensus is not the same as 

compromise of a consensus. A consensus being disrupted means that it cannot reach a 

secure decision due to not enough responses being uniform. This can happen due to null 

responses received from nodes down for maintenance who cannot return a decision, or 

dissenting decisions received from malicious nodes. A consensus compromise can only 

occur from greater than two thirds of the 𝑁𝑑 being malicious and returning dissenting 

decisions. Null decisions cannot contribute to proper consensus or compromised 

consensus, only disruption. Disruption of consensus is statistically more likely to occur 

than compromise, so it will be the focus of these experiments. 

The probability of compromised consensus could be modeled in a similar manner 

to the methods in this research. One method would be calculated by setting the k value to 

one third of the 𝑁𝑑 and finding the probability that consensus would be successful or 

disrupted, and then inverting. This method would give success and disruption probability 

collectively as it would not distinguish between the system properly functioning and 

failing but not compromised. Alternatively, it could be done by changing the k value to 

be two thirds of the 𝑁𝑑 and inverting the locations of malicious and non-malicious nodes 

in the combinatorics equations. 

2.1. EXPERIMENT 1 

The first experiment in this study holds the number of 𝑁𝑑 and 𝑁𝑡 constant while 

varying the number of 𝑁𝑐 to observe how the probability of disruption changes. A 

program written in R programming language (Appendix A) was created allowing 𝑁𝑑 and 

𝑁𝑡 to be set to any numbers so long as  𝑁𝑑 is less than 𝑁𝑡. The algorithm is as follows: 
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1. The number of decision (𝑁𝑑) and 𝑁𝑡 are set for the particular experiment. 

2. 𝑁𝑐  is set to 0. 

3. While 𝑁𝑐 <=𝑁𝑡 

a. the program determines the probability density of the 

hypergeometric distribution using the dhyper function in R.  

i. The probability of selecting a value of 𝑁𝑐 less than k is 

calculated, then repeated for all values less than k.  

ii. These values are then summed to find the probability of 

secure consensus, then inverted to obtain the probability of 

compromise. 

b. Set 𝑁𝑐 =𝑁𝑐 +1 

4. The resulting data is plotted showing the relationship between Nc and 

compromise probability and the trends as Nc increases. 

 The dhyper function in R takes in the number of total items (𝑁𝑡) and splits it into 

two types, in our case the two types are 𝑁𝑑and 𝑁𝑐 (Team,2021). The function then 

determines the likelihood that a specific value of 𝑁𝑐 will be chosen out of the total. 

However, the likelihood that a specific number is chosen does not indicate how likely it is 

that a consensus will be compromised. To determine the probability of disruption, the 

probability density is calculated for each potential number of disrupted nodes less than 

but not equal to k. These probabilities are then summed to give the final probability value 

that the consensus in question will not be disrupted, then inverted to obtain the 

probability of compromise. This increases efficiency as the number of iterations required 

to find the probability of secure consensus is less than would be required to find the 
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probability of compromise. This process repeats for each combination of 𝑁𝑑, 𝑁𝑡, and 𝑁𝑐 

to determine how the probability of compromise changes as the number of disrupted 

nodes increases. 

2.2. EXPERIMENT 2 

The second experiment varies 𝑁𝑑 while 𝑁𝑡 and 𝑁𝑐 are held constant. The R 

program also uses the dhyper function to find the probability density of the 

hypergeometric distribution. In this experiment the variable 𝑁𝑑 is changed, but as the k 

value is based solely on 𝑁𝑑  its value is expected to impact the results to an observable 

extent. The algorithm for this second experiment is as follows: 

1. The number of 𝑁𝑐 and 𝑁𝑡 are set. for the particular experiment. 

2. 𝑁𝑑  is set to 5 

3. While 𝑁𝑑 <=𝑁𝑡  

a. the program determines the probability density of the 

hypergeometric distribution using the dhyper function. 

i. The probability of selecting a number of 𝑁𝑐 less than k is 

calculated, then repeated for all values less than k.  

ii. These values are then summed to find the probability of 

secure consensus, then inverted to obtain the probability of 

compromise. 

b. Set 𝑁𝑑 =𝑁𝑑 +1 

4. The resulting data is plotted showing the relationship between 𝑁𝑑 and 

compromise probability and the trends as 𝑁𝑑 increases. 
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First, 𝑁𝑡 and 𝑁𝑐 are entered. Then the iterations begin by taking the number of 𝑁𝑑 

and calculating the k value. 𝑁𝑑 is initialized to 5, as using any less is impractical for 

newer BFT systems (Miller et al., 2016). The three main variables and k are used in the 

dhyper function to obtain the probability of picking between 0 and k-1 disrupted nodes 

out of the 𝑁𝑑. Picking fewer than k compromised nodes results in a secure consensus, so 

the value is inverted to obtain the probability of disruption. This process is performed in 

this manner as it requires fewer iterations. The next iteration then begins with the next 

number of 𝑁𝑑, and this continues until the number of 𝑁𝑑 equals the number of 𝑁𝑡. The 

probability of compromise for each respective number of 𝑁𝑑 is then charted so that trends 

and patterns can be determined. 

2.3.  ANALYSIS 

Once the results are obtained, they will be analyzed for patterns. For experiment 

1, the controlled variables are 𝑁𝑑 and 𝑁𝑡. 𝑁𝑑 is initialized to a low value and increase 

while 𝑁𝑡 is constant to observe pattern changes. Then 𝑁𝑡 will be increased to observe 

pattern changes and analyzed for potential proportional relationships. 

For the second experiment, Nc is initialized as a low percentage of 𝑁𝑡 and is 

increased to observe patterns in the results. Once this is complete, any points of interest 

will be examined. Then the experiment will be run again at higher proportions of Nc to 

𝑁𝑡 to observe any changes in patterns. 
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3. RESULTS 

3.1. EXPERIMENT 1 RESULTS 

The first experiment examined the consensus disruption chance changes with 

varying 𝑁𝑐 while 𝑁𝑑 and 𝑁𝑡 are held constant. Figure 3.1 shows the results obtained 

using 38 𝑁𝑑 and 100 𝑁𝑡. 

  

 

Figure 3.1 Comparison of Disruption Chance to Number of Compromised Nodes using 

38 Decision Nodes out of 100 Total Nodes 
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The results show that the trends follow a logistical curve. The initial probabilities 

on the lower left remains at a zero percent chance of disruption until 𝑁𝑐 reaches 13. This 

is due to the k value being 13 when using 38 𝑁𝑑, making it impossible to disrupt a 

consensus with 12 or fewer.  The opposite end at the top right reaches a nearly flat pattern 

when 50 𝑁𝑐 are in the network. From this point, this line slowly approaches a 100% 

disruption chance until there are 75 𝑁𝑐, in which case the line reaches 100% and remains 

there as it is impossible to choose less than 13 𝑁𝑐 out of the 38 when 75 or greater 𝑁𝑡 are 

compromised. To show how changing the number of 𝑁𝑑 alters the curve, Figure 3.2 

displays the results of using only 10 𝑁𝑑 while still maintaining a total pool of 100 𝑁𝑡. 

Altering 𝑁𝑑 changes the curve significantly, mainly in the position along the x-axis. 

Figure 3.3 shows the effect of changing 𝑁𝑡 to fifty while keeping the 𝑁𝑑 at 10. We see 

that the curves in Figures 3.2 and 3.3 are similar in shape. This is due to a proportional 

relationship between the number of 𝑁𝑡 and 𝑁𝑐. The number of 𝑁𝑡 is halved, but the 

disruption chance does not change for the same ½ proportioned number of 𝑁𝑐. 

3.2. EXPERIMENT 2 RESULTS 

In the second experiment the number of disrupted nodes and 𝑁𝑡 remain constant, 

and the disruption chance is calculated while iterating the number of 𝑁𝑑 used. This is 

synonymous with a user taking a given value of 𝑁𝑡 and estimate the highest number of 

down or 𝑁𝑐 their system might have before it is noticed and acted upon. Using these 

results, they could then determine the best number of 𝑁𝑑 to use to minimize the chance of 

transaction disruption.  
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Figure 3.2 Comparison of Disruption Chance to Number of Compromised Nodes using 

10 Decision Nodes out of 100 Total Nodes 

 

 

Figure 3.3 Comparison of Disruption Chance to Number of Compromised Nodes using 

10 Decision Nodes out of 50 Total Nodes 
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First, a simulation is run using a low number of 𝑁𝑐. The initial chart is obtained 

using 100 𝑁𝑡 where 10 of those nodes are compromised. The results are shown in Figure 

3.4. 

 

  

Figure 3.4 Comparison of Disruption Chance to Number of Decision Nodes using 10 

Compromised Nodes out of 100 Total Nodes 

 

Figure 3.4 shows a steep decline early in the data. This trend flattens out at around 

20 𝑁𝑑 until it reaches 0 at 32, where 10 𝑁𝑐 can no longer have any chance of disrupting 

consensus. The early data is of particular interest as it shows that the trend is not linear as 

the charts in the first experiment. Another chart is created using 25 𝑁𝑐 and 100 𝑁𝑡 to 

observe the changes in the pattern as the 𝑁𝑐 are increased and the results shown in Figure 

3.5. 
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Figure 3.5 Comparison of Disruption Chance to Number of Decision Nodes using 25 

Compromised Nodes out of 100 Total Nodes 

 

 

Figure 3.6 Comparison of Disruption Chance to Number of Decision Nodes using 33 

Compromised Nodes out of 100 Total Nodes 
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The results in Figure 3.5 show a pronounced trichotomous pattern. The downward 

slope has also elongated, not reaching 0 until 76 𝑁𝑑 are examined, where the 25 𝑁𝑐 can 

no longer disrupt consensus. Next the effect of 33 𝑁𝑐 out of 100 𝑁𝑡 was examined. This 

number is of particular interest as it is the k value of the number of the 𝑁𝑡. The results of 

using 33 𝑁𝑐 out of 100 𝑁𝑡 are shown in Figure 3.6. 

Figure 3.6 shows a pronounced trichotomous nature in the results. The lines do 

not converge to a 0% disruption chance but diverge as the value of 𝑁𝑑 approaches 100. 

This likely indicates that this is the point at which the trends in disruption chance change 

from converging at 0 to converging at 1. To confirm this, we examine the immediate 

neighbors, 32 and 34 𝑁𝑐 (Figures 3.7 and 3.8 respectively).  

It can be seen that just below the 33 compromised node point, the results 

converge at 0, and above the point they converge at 1. Figure 3.9 shows the results of 

using 50 𝑁𝑐 out of 100 total. These results show that the trends in Disruption Chance 

continue to rise more steeply as 𝑁𝑐 increases past 33.  

The trichotomous nature of the results requires additional explanation. The groups 

that form these lines are characterized by their results for taking the number of nodes 

modulo 3. The middle line is 𝑁𝑑 modulo 3 = 0 (6,9,12, etc.), the top line is 𝑁𝑑modulo 3 = 

1 (7,10,13, etc.), and the bottom line is 𝑁𝑑modulo 3 = 2 (8,11,14, etc.). The three lines 

formed in the results are most pronounced in Figure 3.6. That Figure has been broken 

down and each group charted individually as shown in Figures 3.10, 3.11, and 3.12. 

These Figures show that the best results are always obtained using the Modulo3=2 group 

(Figure 3.12) and the worst results are the Modulo3=1 group (Figure 3.10).  
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Figure 3.7 Comparison of Disruption Chance to Number of Decision Nodes using 32 

Compromised Nodes out of 100 Total Nodes 

 

 

Figure 3.8 Comparison of Disruption Chance to Number of Decision Nodes using 34 

Compromised Nodes out of 100 Total Nodes 
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Figure 3.9 Comparison of Disruption Chance to Number of Decision Nodes using 50 

Compromised Nodes out of 100 Total Nodes 

 

 

Figure 3.10 Comparison of Disruption Chance to Number of Decision Nodes of the 

Mod3=0 group using 33 Compromised Nodes out of 100 Total Nodes 
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Figure 3.11 Comparison of Disruption Chance to Number of Decision Nodes of the 

Mod3=1 group using 33 Compromised Nodes out of 100 Total Nodes 

 

 

Figure 3.12 Comparison of Disruption Chance to Number of Decision Nodes of the 

Mod3=2 group using 33 Compromised Nodes out of 100 Total Nodes 
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The trichotomous nature of these node combinations makes a direct comparison 

impossible, as increasing both compromised and 𝑁𝑡 exactly proportionately has varied 

results. If the value of 𝑁𝑐 is increased from 33 to 66, then a value of 199 and not 200 

should be used for 𝑁𝑡. This is due to each k value pertaining to 3 decision node values. In 

the case of 33 𝑁𝑐, this is the k value for 98, 99, and 100 𝑁𝑑 with 100 falling in the 

Modulo3=1 group. When examining 66 𝑁𝑐, the corresponding decision node values are 

197, 198, and 199 with 199 falling in the Modulo3=1 group. So, a better comparison 

exists between 33 𝑁𝑐 out of 100 total, and 66 𝑁𝑐 out of 199 total. The results of 66 

compromised and 199 𝑁𝑡 are shown in Figure 3.13. 

  

 

Figure 3.13 Comparison of Disruption Chance to Number of Decision Nodes using 66 𝑁𝑐 

out of 199 Total Nodes 

 

Figure 3.13 displays the same behavior as Figure 3.6 with a small discrepancy. 

The top two lines (Mod3=1 and Mod3=0) have a decreased average value and the bottom 
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line (Mod3=2) has an increased average value. Results were obtained from using higher 

numbers of compromised and 𝑁𝑡 comparable to the previous sets and the resulting 

average values of each Mod group is tabulated in Table 3.1. 

 

Table 3.1 Average Modulo Group Values of Proportionately Increasing Node Sets 
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4. DISCUSSION 

4.1. TRENDS IN EXPERIMENT 1 RESULTS 

The first experiment was run to see how network performance of a predetermined 

system set up of 𝑁𝑑 and 𝑁𝑡 is affected by changes in the value of 𝑁𝑐. In the results, we 

observe a logistical curve. The line holds at zero until 𝑁𝑐 increase past the k value of the 

𝑁𝑑, when they become capable of disrupting a consensus. The compromise probability 

raises rapidly past this point. 

We also observe in the results that increasing the number of 𝑁𝑑 pushes the curve 

further along the x-axis so that a larger number of 𝑁𝑐 is required to achieve the same 

disruption chance compared to situations with a lower value of 𝑁𝑑 and equal 𝑁𝑡. 

Increasing the value of 𝑁𝑑 to decrease disruption probability is nothing new, this is 

widely accepted to be an effective method of increasing security. But this is not the best 

method of optimization as increasing the value of 𝑁𝑑 is the largest contributor to 

increased energy cost and latency times.  

Increasing the value of 𝑁𝑑 and the total number of nodes by proportionate 

amounts increases the value of 𝑁𝑐 required to achieve similar levels of compromise 

probability. This means that, if run concurrently, a system could run more transactions 

simultaneously, the energy cost and latency times per transaction would not increase, and 

disruption probability would decrease. 
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4.2. TRENDS IN EXPERIMENT 2 RESULTS 

Note the three groups formed in each graph in the second part of the simulations. 

Here, the disrupted nodes and 𝑁𝑡 are held constant, and the disruption chance is 

calculated for each possible value of 𝑁𝑑. These three groups are characterized by their 

number of 𝑁𝑑  modulo 3. The bottom line (best result) is where decision node modulo 3 

is 2, the middle is 1, and the top (worst result) is 0. This is explained by the picking 

probability and the number of disrupted nodes required to disrupt a transaction.  

Consider the disruption chance for a transaction when values of 5, 6, and 7 are 

used for 𝑁𝑑. The modulo 3 results for these numbers are 2,0, and 1 respectively, so from 

left to right they represent the bottom, middle and top lines, or best, moderate, and worst 

results. The reason that using 5 𝑁𝑑 results in the lowest disruption chance is that 2 

disrupted nodes are required to disrupt this transaction, where 2 nodes are also able to 

disrupt a transaction using both 6 and 7 𝑁𝑑.  When the chosen number of 𝑁𝑑 increases 

from 5, each additional decision node increases the chance of selecting a disrupted node, 

and therefore the chance of disrupting the transaction. This pattern is observable in each 

set of three numbers as the value of 𝑁𝑑 increases. 

4.3. PROPORTIONAL TRENDS 

Most of the results show that the disruption chance converges to 0 at high values 

of 𝑁𝑑 if the number of disrupted nodes is below one third the total number of nodes, and 

that it converges at 1 if the number of disrupted nodes is above one third. The only 

exception being if the number of disrupted nodes is exactly one third the number of 𝑁𝑡. 

This research shows the best number of nodes to use in a transaction with given total and 
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𝑁𝑑 and assumed disrupted nodes. Here, it is assumed that lower numbers of 𝑁𝑑 are best 

for the system in terms of processing power, speed of transactions, and energy efficiency. 

4.4. CASE EXAMPLE 

Private companies who desire to create their own BFT Blockchain system can use 

the information presented in this study to design the physical architecture of their system 

in terms of how many total nodes to include and how many to include in each decision to 

maximize security while minimizing energy consumption and latency times. It is not 

meant to provide a final “best” answer to a system set up, instead, its primary purpose is 

to find a point that best balances the system organizer’s priority metrics. 

Some companies are looking to set up BFT Blockchain networks in their supply 

chains to record the handling of sensitive materials. In this case, the company is the 

system organizer and determines their acceptable ranges for number of total nodes and 

𝑁𝑑 and consult system technicians to determine approximate numbers of 𝑁𝑐 possible in 

the system at a time. They could then use this model to obtain figures showing the 

compromise probability of their transactions with their preferred parameters. Minor 

alterations would then be made to the system setup to reach their optimal point.  

This model is best tailored to Private Permissioned Blockchain networks where 

all nodes on the network are pre-approved and can be monitored by the system organizer. 

Certain companies, however, would prefer to share the system amongst partners where 

system nodes are spread across the various companies in the system. This system setup is 

known as a communal block chain, and could also be modeled similarly, but with a few 

adjustments.  
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Communal blockchains are the next logical step for this model, but more work 

could be done to alter it such that it becomes applicable to a much wider variety of 

system types to find their optimal setups as well. System developers are always looking 

for ways to improve their systems. This model provides another way for them to do just 

that. 
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5. CONCLUSIONS 

 

BFT System developers who need to optimize their networks without delving into 

the inner workings of BFT algorithms should look to the methods shown in this research 

to optimize their nodal arrangements. The results of this study show that transaction 

disruption chance follows patterns that can be predicted statistically. By selecting a 

number of decision nodes where 𝑁𝑑Mod3=2, they can optimize their system energy 

consumption while maintaining the lowest chance of transaction disruption.  

While many believe that more decision nodes result in higher security, this 

research shows that this is not the case for variable node systems. The largest source of 

energy consumption in BFT networks comes from nodes running computations and 

returning decisions for consensus. Adding nodes to the system also increases latency 

times as there are more nodes requiring bandwidth and increasing the chance of 

messaging delays. Increasing the decision nodes not only increases the energy usage of 

the system and lengthens latency times, if it is increased to an amount not in the Mod3=2 

group, it can actually decrease system security. 

This research shows that administrators of variable node systems should consider 

altering the amount of decision nodes they use in consensus. In some cases, it is even 

preferable to counter-intuitively reduce decision nodes. If the decision node amount is not 

in the Mod3=2 group, the system could drop nodes to an amount in the group and 

increase security while simultaneously reducing energy costs and latency times. This 

holds great potential for variable node system optimization. 



 

 

30 

This method applies to Private Distributed BFT networks but, with some 

alteration, should be able to be applied to a wider variety of network types. Other models 

should be created to test its robustness and other factors such as differentiating between 

malicious and non-malicious faulty nodes. 
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APPENDIX 

1. EXPERIMENT 1 CODE 

library(tidyverse) 

library(plyr);library(dplyr) 

library(openxlsx) 
library(rio) 
library(combinat) 

library(RcppAlgos) 
library(writexl) 

#Total Nodes 
N = 100 
#Decision Nodes 
n =10 
#Compromised Node information 
a <- ceiling((n-1)/3) 
b <- N-(n+1) 
 
 
 
m = a:b 
k = 0:(a-1) 
 
failure <- c(list, length(m)) 
 
for(i in a:b){ 
  pmf = dhyper(k,i,N-i,n) 
cbind(k,pmf) 
 
failure[[i-(a-1)]] = 1- sum(pmf) 
} 
 
#png( paste(n," decision nodes out of ", N, " total nodes.png", sep="")
) 
 
plot(m,unlist(failure),main = paste(n," decision nodes out of ", N, " t
otal nodes", sep=""), xlab = "Compromised Nodes", ylab = "Disruption Ch
ance") 
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2. EXPERIMENT 2 CODE 

 

library(tidyverse) 

library(openxlsx) 
library(rio) 

library(RcppAlgos) 
library(writexl) 
library(ggplot2) 
library(colorspace) 
library(ggpubr) 

# N: Total Nodes 
# n: Decision Nodes 
# m: Total number of Compromised Nodes 
# k: number of compromised nodes selected 
 
#set info 
#Total Nodes 
N = 100 
tempn=5 #starting point for iterations 
start=5 #starting point not iterated 
n=tempn:N 
m = 33 
 
#k = 0 
iterations <- n 
failureA <- c(list, length(iterations)) 
failureB <- c(list, length(iterations)) 
failureC <- c(list, length(iterations)) 
 
DecNodesA <- c(list, length(iterations)) 
DecNodesB <- c(list, length(iterations)) 
DecNodesC <- c(list, length(iterations)) 
 
A=1 
B=1 
C=1 
 
failure <- c(double,length(n)) 
 
 
for(i in n){ 
 
k <-  (0:(ceiling((tempn-1)/3)-1)) 
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  if((ceiling((tempn-1)/3)-1)>m){ 
     
     failure[[i-(start-1)]] <-0 
      
      
  }else{ 
     
     failure[[i-(start-1)]] <- 1-sum(dhyper(k,m,N-m,i)) 
      
    if( i%%3 == 0){ 
    failureA[[A]] <-1-sum(dhyper(k,m,N-m,i)) 
    DecNodesA[[A]] <- i 
      A=A+1 
       
  }else if(i%%3 == 1){ 
    failureB[[B]] <-1-sum(dhyper(k,m,N-m,i)) 
     DecNodesB[[B]] <- i 
      B=B+1 
  }else if(i%%3 == 2){ 
    failureC[[C]] <-1-sum(dhyper(k,m,N-m,i)) 
     DecNodesC[[C]] <- i 
      C=C+1 
  }else{ 
    print("ERROR") 
  } 
      
      
  } 
 
tempn=tempn+1 
 k=NULL 
  
} 
 
plot(n,unlist(failure),main = paste(m," compromised nodes out of ", N, 
" total nodes", sep=""), xlab = "Decision Nodes", ylab = "Disruption Ch
ance",xlim=c(0,N), ylim=c(0.4,0.85)) 

plot(DecNodesA, failureA, main= paste("Mod3=0: ",m,":Comp Nodes,", N, "
:Total Nodes", sep=""), xlab = "Decision Nodes", ylab = "Disruption Cha
nce",xlim=c(0,N), ylim=c(0.4,0.85)) 

plot(DecNodesB, failureB, main= paste("Mod3=1: ",m,":Comp Nodes,", N, "
:Total Nodes", sep=""), xlab = "Decision Nodes", ylab = "Disruption Cha
nce",xlim=c(0,N), ylim=c(0.4,0.85)) 

plot(DecNodesC, failureC, main= paste("Mod3=2: ",m,":Comp Nodes,", N, "
:Total Nodes", sep=""), xlab = "Decision Nodes", ylab = "Disruption Cha
nce",xlim=c(0,N), ylim=c(0.4,0.85)) 
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