
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2022

A variable node optimization model for byzantine fault tolerant A variable node optimization model for byzantine fault tolerant

systems systems

Ian Robert Fulton

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Systems Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Fulton, Ian Robert, "A variable node optimization model for byzantine fault tolerant systems" (2022).
Masters Theses. 8086.
https://scholarsmine.mst.edu/masters_theses/8086

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/8086?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8086&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A VARIABLE NODE OPTIMIZATION MODEL FOR BYZANTINE FAULT

TOLERANT SYSTEMS

by

IAN ROBERT FULTON

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ENGINEERING MANAGEMENT

2022

Approved by:

Dr. Steven Corns, Advisor

Dr. Benjamin Kwasa

Dr. Suzanna Long

© 2022

Ian Robert Fulton

All Rights Reserved

iii

ABSTRACT

Byzantine Fault Tolerance (BFT) has been a major subject of study over the last

two decades with increasing societal dependance on secure, correct, and reliable

computer systems and online services. This research presents a model for high-level

optimization of emerging systems that rely on these BFT algorithms and use a variable

numbers of decision nodes. The model highlights the relationship between the security of

a system and its efficiency. Two experiments were performed to determine system

performance by varying the number of compromised nodes, decision nodes, and total

nodes. They examine the probability that a transaction will be compromised based on

these variables using hypergeometric distribution, a subset of combinatorics. It was found

that the compromise probability follows predictable patterns, with certain combinations

of decision nodes performing better than others. The results show a trichotomous

relationship where one in every three decision nodes results in lower security risk than its

neighbors. The purpose of this model is to assist system developers in deciding how to

best construct their systems to improve security while minimizing resource usage.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Corns, who was always willing to lend a

hand to guide and support my academic journey and provide direction whenever I felt

lost. His aid and affirmation throughout this process has been an invaluable asset, without

which I would not have achieved the full understanding and appreciation for the field of

systems engineering. He has provided every opportunity for my success, for which he has

my sincerest gratitude.

I would like to thank the department of Engineering Management for all of their

help with funding, scheduling, conferences, and a multitude of other assistances I could

not have done without.

I would also like to thank the Boeing company for funding my research project

which led me to this study, and for providing the opportunity to pursue it.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... ix

NOMENCLATURE ..x

SECTION

1. INTRODUCTION .. 1

2. METHODS ... 9

2.1. EXPERIMENT 1 .. 10

2.2. EXPERIMENT 2 .. 12

2.3. ANALYSIS ... 13

3. RESULTS ... 14

3.1. EXPERIMENT 1 RESULTS .. 14

3.2. EXPERIMENT 2 RESULTS .. 15

4. DISCUSSION .. 25

4.1. TRENDS IN EXPERIMENT 1 RESULTS .. 25

4.2. TRENDS IN EXPERIMENT 2 RESULTS .. 26

4.3. PROPORTIONAL TRENDS ... 26

4.4. CASE EXAMPLE .. 27

5. CONCLUSIONS .. 29

vi

APPENDIX ..31

BIBLIOGRAPHY ..34

VITA ..36

vii

LIST OF ILLUSTRATIONS

 Page

Figure 1.1 Byzantine General’s Problem .. 2

Figure 1.2 Example Node Pool with Sample Decision Node Groups 6

Figure 3.1 Comparison of Disruption Chance to Number of Compromised

Nodes using 38 Decision Nodes out of 100 Total Nodes 14

Figure 3.2 Comparison of Disruption Chance to Number of Compromised

Nodes using 10 Decision Nodes out of 100 Total Nodes 16

Figure 3.3 Comparison of Disruption Chance to Number of Compromised

Nodes using 10 Decision Nodes out of 50 Total Nodes 16

Figure 3.4 Comparison of Disruption Chance to Number of Decision Nodes

using 10 Compromised Nodes out of 100 Total Nodes 17

Figure 3.5 Comparison of Disruption Chance to Number of Decision Nodes

using 25 Compromised Nodes out of 100 Total Nodes 18

Figure 3.6 Comparison of Disruption Chance to Number of Decision Nodes

using 33 Compromised Nodes out of 100 Total Nodes 18

Figure 3.7 Comparison of Disruption Chance to Number of Decision Nodes

using 32 Compromised Nodes out of 100 Total Nodes 20

Figure 3.8 Comparison of Disruption Chance to Number of Decision Nodes

using 34 Compromised Nodes out of 100 Total Nodes 20

Figure 3.9 Comparison of Disruption Chance to Number of Decision Nodes

using 50 Compromised Nodes out of 100 Total Nodes 21

Figure 3.10 Comparison of Disruption Chance to Number of Decision Nodes of

the Mod3=0 group using 33 Compromised Nodes out of 100 Total Nodes .. 21

Figure 3.11 Comparison of Disruption Chance to Number of Decision Nodes of

the Mod3=1 group using 33 Compromised Nodes out of 100 Total Nodes .. 22

viii

Figure 3.12 Comparison of Disruption Chance to Number of Decision Nodes of

the Mod3=2 group using 33 Compromised Nodes out of 100 Total Nodes .. 22

Figure 3.13 Comparison of Disruption Chance to Number of Decision Nodes

using 66 𝑁𝑐 out of 199 Total Nodes .. 23

ix

LIST OF TABLES

 Page

Table 3.1 Average Modulo Group Values of Proportionately Increasing Node Sets 24

x

NOMENCLATURE

Symbol Description

k Consensus Disruption Threshold Number

Nt Total Nodes in the System

Nd Decision Nodes

Nc Compromised Nodes

1. INTRODUCTION

This research explores the optimization of Byzantine Fault Tolerant (BFT)

systems to reduce resource usage while maintaining a level of security. Byzantine Fault

Tolerance was first proposed in 1978 as a method of achieving a consensus in a computer

network even if some of the network nodes were faulty (Lamport et al., 1982). A network

achieving consensus means that its nodes have come to an agreement with a high degree

of certainty that the information being transferred is correct and has not been duplicated

or tampered with. This problem of network consensus in the face of faulty system nodes

was initially named the interactive consistency problem before being renamed the

Byzantine General’s problem by the same authors.

The Byzantine General’s problem puts this issue into the context of a general

from the byzantine era who is attempting to conquer a city. The general commands

several companies surrounding the city, each led by a captain. For the city to be taken, all

surrounding companies must attack at the same time. The general must send messages to

the surrounding forces to ensure that they will attack at the designated time. In this

problem, the captains are the system nodes who must reply to the general so that he may

determine if they are all in consensus with the success of the attack being synonymous

with the success of the system. Figure 1.1 is an example of when four of the six captains

(light colored) are confirmed to attack at the designated time and two captains (dark

colored) are unconfirmed.

2

Figure 1.1 Byzantine General’s Problem

This problem introduces nuances such as certain captains being traitors and

willfully returning false replies or messengers being captured along their routes. In Figure

1.1, these are represented by the dark colored, unconfirmed captains. This translates to

network systems as compromised nodes returning faulty decisions or nodes being unable

to reply due to issues with maintenance or network communication. Nodes with these

problems are said to have “Byzantine Faults”. The BFT algorithm was able to overcome

these faults if fewer than one third of the nodes were affected.

This method was improved upon by Castro and Lizkov (1999) who introduced

Practical Byzantine Fault Tolerance (PBFT) which performed well in asynchronous

environments and can be used to build highly available systems (Konnov et al., 1999).

This method provides secure consensus and proactive recovery methods to recover faulty

3

nodes over the system lifetime, reducing the time that any single faulty node can

contribute to consensus disruption (Castro & Liskov, 2002). These algorithms were still

considered brand-new with little testing to prove that it merited implementation (Nair et

al., 2020; Sternberg et al., 2020) in 2008 when Bitcoin and Blockchain technology was

introduced. . Bitcoin used BFT to create the first public Blockchain network, reducing

energy costs paid by system administrators by allowing anyone to act as a system node.

The potential for malicious behavior was mitigated by requiring nodes to provide “Proof

of Work”, requiring them to compute complex algorithms to even be allowed into a

decision-making process with a reward for participating in decisions (Ghosh & Das,

2020).The main draw of these Blockchain systems is their record keeping capabilities.

Once a decision has been made to add data into the system, it is encoded as a block in a

digital ledger and stored publicly on all nodes so that it can later be analyzed to ensure

that no node attempted to change the data in that ledger. Blockchain systems use BFT to

obtain a consensus and then write it into an immutable ledger, but not all BFT systems

use the same record-keeping methodology (Zhao, 2009). Although Blockchain systems

are the most well-known BFT systems, they are not the only. BFT algorithms can be used

for any system that requires high levels of security in its decision-making processes. The

algorithms are useful for many Web-based systems that require higher levels of security

in their messaging processes, and can be implemented to help these systems meet reliable

messaging standards (Zhao, 2009).

Some common problems BFT systems encounter are those of excessive energy

consumption and high latency times (Nair et al., 2020; Sedlmeir et al., 2020). To achieve

the level of security provided by BFT algorithms, a system typically relies on many

4

nodes running in parallel to achieve a single consensus. Reducing the number of nodes

performing calculations creates a tradeoff between security and energy consumption.

The second problem is long latency times, caused by the algorithms being run on each

node to ensure the security of the messages transmitted in the system. As the number of

nodes performing calculations increases, the traffic on the network increases causing

congestion and increased latency times to send messages. This increases the amount of

time nodes wait for messages to be delivered, contributing to the energy consumption of

the system and increasing the time it takes to achieve a consensus.

Power consumption and latency issues have been a focus of research for BFT

systems. Different Blockchain types have been developed to optimize the systems for

these two issues based on their respective needs (Da Silva et al., 2019; Franke et al.,

2020; Vizier & Gramoli, 2020; Y. Wang, 2019). Various internet systems utilizing BFT

algorithms have attempted to improve these issues for their purposes, but Blockchains

has received a majority of the research focus since the rise of Bitcoin.

The two most prominent types of Blockchain systems are Public and Private.

Public Blockchains, like Bitcoin, allow any person to participate in consensus. The added

security risk of allowing anyone to participate is mitigated through requiring that person

to provide some proof that they will not tamper with the consensus. This is achieved by

requiring a person’s node/computer to run complex algorithms to achieve a Proof of

Work. This is based on the idea that the person now has an investment of energy and time

contributed to the consensus and will therefore be motivated to provide a good decision

for consensus (Ghosh & Das, 2020). Another motivator in this process is a small reward

for their service, in the case of Bitcoin this comes in the form of a small monetary reward

5

in Bitcoins. This method places the burden of energy consumption on the unaffiliated

parties but still pulls a large amount of power from the national grid. One study estimated

that, over one year, power consumption from Bitcoin processes in the U.S. alone were

equivalent to a small country (Nair et al., 2020). The energy consumption of Proof of

Work methods has led others to attempt other methods, such as Proof of X, a template

term for any other type of proof which attempts to attain the same results but with the

idea of improving energy usage and scalability (Franke et al., 2020). The currently

accepted best alternative to Proof of Work is Proof of Stake, which selects nodes from

users with stake in the Blockchain and its integrity. This method is considered to be an

improvement over Proof of Work, although it has not been thoroughly tested(Franke et

al., 2020).

Private Blockchains skirt the energy requirements of Proof of Work by way of

only allowing trusted, pre-approved nodes on their networks. This method requires far

less energy as the complex algorithms no longer need to be run (F. Wang et al., 2021).

Private Blockchains are also used for private companies to secure their transaction

records without the public ledger provided by Public Blockchains. This research focuses

on Private Decentralized Blockchains as they consist of a set of controlled nodes, each

capable of returning a decision.

When first introduced BFT systems have consisted of a set number of nodes

capable of returning decisions to reach a secure consensus. These nodes are consistent,

and the same nodes are used in each consensus. Recently, systems such as the Redbelly

Blockchain have been introduced to utilize a far larger pool of nodes (Concurrent

Systems Research Group, University of Sydney, n.d.). In these systems, not all nodes are

6

used in each consensus. This allows several decision-making processes to be run

concurrently, reducing latency times as more decisions can be made at once. This

development is only useful if different nodes are used to create pools of nodes each time.

These systems constantly switch between which nodes in the pool are selected for each

group every time a consensus is reached. Figure 1.2 displays a sample distributed

network setup with twelve total nodes and two Byzantine Fault nodes.

Figure 1.2 Example Node Pool with Sample Decision Node Groups

7

The nodes in this example are grouped into decision groups of six where two

faulty nodes in a decision group are enough to cause the consensus to fail. The blue

outlined group shows a selection of nodes where the single faulty node would not prevent

the consensus from succeeding, and the red group shows a selection where both faulty

nodes are included, and the consensus is disrupted.

The Redbelly Blockchain was not the only attempt this method of varying

decision nodes. The ComChain system was introduced to develop a type of Private

Blockchain system called a Communal Blockchain, which uses a “Configuration block”

to determine which nodes are called upon for the next consensus(Vizier & Gramoli,

2020). The Honey Badger BFT Protocol is another method that focusing on adding

system capabilities to run transactions asynchronously, drastically reducing latency times

(Miller et al., 2016).

The goal of this research is to analyze different combinations of total nodes (𝑁𝑡),

decision nodes (𝑁𝑑), and compromised nodes (𝑁𝑐), to determine combinations that

reduce the chance of selecting too many faulty nodes, compromising the system. The R

programming language was used to create a model that processes the different

combinations of variables to determine the probability that consensus will be

compromised for any combination of nodes, while energy consumption is primarily based

on the number of decision nodes running per consensus. The model compares the

compromise chance to the number of decision nodes to allow system architects to make

informed choices on how many 𝑁𝑑 to include in their consensus processes to balance

security and energy consumption.

8

This research consists of two parts. The first experiment examines the effect on

the security of a distributed network by changing the number of 𝑁𝑐 in the network while

holding the number of 𝑁𝑑 and 𝑁𝑡 constant. The second experiment examines the effect of

changing the number of 𝑁𝑑 in the network while holding the number of compromised and

𝑁𝑡 constant.

9

2. METHODS

The three variables describing this model are 𝑁𝑡, 𝑁𝑑, and 𝑁𝑐. A node is an actor in

the network with the power to return a decision to be used in consensus. The number of

nodes available to the network for use in consensus is 𝑁𝑡. 𝑁𝑑 are those nodes selected for

each individual consensus out of the pool of 𝑁𝑡. 𝑁𝑐 are those that do not return any

decision or incorrect information due to either the node being hacked and malicious, or

defective due to maintenance issues with the nodes or the information lines connecting

the nodes. For example, consider a distributed network consisting of 100 nodes capable

of returning a decision, 10 of those nodes are called upon to provide a decision for a

consensus, 4 nodes have been hacked and are malicious, and 3 nodes are down for

maintenance issues but have not yet been taken off the active list in the pool. In this

scenario, the 𝑁𝑡 are the 100, the number of 𝑁𝑑 is 10, and the number of 𝑁𝑐 is 7 (4

malicious and 3 down).

In both experiments run, the primary statistic observed is the probability of

consensus disruption. It is assumed that the system cannot distinguish the 𝑁𝑐 from the

properly functioning nodes when selecting 𝑁𝑑 from the pool. Thus, there exists a chance

to select compromised nodes when selecting 𝑁𝑑. The BFT algorithm dictates that a

consensus can only be disrupted if greater than (𝑁𝑑-1)/3 nodes are compromised (Castro

& Liskov, 2002; Lamport et al., 1982). In this model, this threshold number required to

disrupt a consensus is denoted by the variable k. This variable is static in the first

experiment and will become dynamic in the second experiment where the number of 𝑁𝑑

is varied across each experimental run.

10

 An important distinction is that disruption of a consensus is not the same as

compromise of a consensus. A consensus being disrupted means that it cannot reach a

secure decision due to not enough responses being uniform. This can happen due to null

responses received from nodes down for maintenance who cannot return a decision, or

dissenting decisions received from malicious nodes. A consensus compromise can only

occur from greater than two thirds of the 𝑁𝑑 being malicious and returning dissenting

decisions. Null decisions cannot contribute to proper consensus or compromised

consensus, only disruption. Disruption of consensus is statistically more likely to occur

than compromise, so it will be the focus of these experiments.

The probability of compromised consensus could be modeled in a similar manner

to the methods in this research. One method would be calculated by setting the k value to

one third of the 𝑁𝑑 and finding the probability that consensus would be successful or

disrupted, and then inverting. This method would give success and disruption probability

collectively as it would not distinguish between the system properly functioning and

failing but not compromised. Alternatively, it could be done by changing the k value to

be two thirds of the 𝑁𝑑 and inverting the locations of malicious and non-malicious nodes

in the combinatorics equations.

2.1. EXPERIMENT 1

The first experiment in this study holds the number of 𝑁𝑑 and 𝑁𝑡 constant while

varying the number of 𝑁𝑐 to observe how the probability of disruption changes. A

program written in R programming language (Appendix A) was created allowing 𝑁𝑑 and

𝑁𝑡 to be set to any numbers so long as 𝑁𝑑 is less than 𝑁𝑡. The algorithm is as follows:

11

1. The number of decision (𝑁𝑑) and 𝑁𝑡 are set for the particular experiment.

2. 𝑁𝑐 is set to 0.

3. While 𝑁𝑐 <=𝑁𝑡

a. the program determines the probability density of the

hypergeometric distribution using the dhyper function in R.

i. The probability of selecting a value of 𝑁𝑐 less than k is

calculated, then repeated for all values less than k.

ii. These values are then summed to find the probability of

secure consensus, then inverted to obtain the probability of

compromise.

b. Set 𝑁𝑐 =𝑁𝑐 +1

4. The resulting data is plotted showing the relationship between Nc and

compromise probability and the trends as Nc increases.

 The dhyper function in R takes in the number of total items (𝑁𝑡) and splits it into

two types, in our case the two types are 𝑁𝑑and 𝑁𝑐 (Team,2021). The function then

determines the likelihood that a specific value of 𝑁𝑐 will be chosen out of the total.

However, the likelihood that a specific number is chosen does not indicate how likely it is

that a consensus will be compromised. To determine the probability of disruption, the

probability density is calculated for each potential number of disrupted nodes less than

but not equal to k. These probabilities are then summed to give the final probability value

that the consensus in question will not be disrupted, then inverted to obtain the

probability of compromise. This increases efficiency as the number of iterations required

to find the probability of secure consensus is less than would be required to find the

12

probability of compromise. This process repeats for each combination of 𝑁𝑑, 𝑁𝑡, and 𝑁𝑐

to determine how the probability of compromise changes as the number of disrupted

nodes increases.

2.2. EXPERIMENT 2

The second experiment varies 𝑁𝑑 while 𝑁𝑡 and 𝑁𝑐 are held constant. The R

program also uses the dhyper function to find the probability density of the

hypergeometric distribution. In this experiment the variable 𝑁𝑑 is changed, but as the k

value is based solely on 𝑁𝑑 its value is expected to impact the results to an observable

extent. The algorithm for this second experiment is as follows:

1. The number of 𝑁𝑐 and 𝑁𝑡 are set. for the particular experiment.

2. 𝑁𝑑 is set to 5

3. While 𝑁𝑑 <=𝑁𝑡

a. the program determines the probability density of the

hypergeometric distribution using the dhyper function.

i. The probability of selecting a number of 𝑁𝑐 less than k is

calculated, then repeated for all values less than k.

ii. These values are then summed to find the probability of

secure consensus, then inverted to obtain the probability of

compromise.

b. Set 𝑁𝑑 =𝑁𝑑 +1

4. The resulting data is plotted showing the relationship between 𝑁𝑑 and

compromise probability and the trends as 𝑁𝑑 increases.

13

First, 𝑁𝑡 and 𝑁𝑐 are entered. Then the iterations begin by taking the number of 𝑁𝑑

and calculating the k value. 𝑁𝑑 is initialized to 5, as using any less is impractical for

newer BFT systems (Miller et al., 2016). The three main variables and k are used in the

dhyper function to obtain the probability of picking between 0 and k-1 disrupted nodes

out of the 𝑁𝑑. Picking fewer than k compromised nodes results in a secure consensus, so

the value is inverted to obtain the probability of disruption. This process is performed in

this manner as it requires fewer iterations. The next iteration then begins with the next

number of 𝑁𝑑, and this continues until the number of 𝑁𝑑 equals the number of 𝑁𝑡. The

probability of compromise for each respective number of 𝑁𝑑 is then charted so that trends

and patterns can be determined.

2.3. ANALYSIS

Once the results are obtained, they will be analyzed for patterns. For experiment

1, the controlled variables are 𝑁𝑑 and 𝑁𝑡. 𝑁𝑑 is initialized to a low value and increase

while 𝑁𝑡 is constant to observe pattern changes. Then 𝑁𝑡 will be increased to observe

pattern changes and analyzed for potential proportional relationships.

For the second experiment, Nc is initialized as a low percentage of 𝑁𝑡 and is

increased to observe patterns in the results. Once this is complete, any points of interest

will be examined. Then the experiment will be run again at higher proportions of Nc to

𝑁𝑡 to observe any changes in patterns.

14

3. RESULTS

3.1. EXPERIMENT 1 RESULTS

The first experiment examined the consensus disruption chance changes with

varying 𝑁𝑐 while 𝑁𝑑 and 𝑁𝑡 are held constant. Figure 3.1 shows the results obtained

using 38 𝑁𝑑 and 100 𝑁𝑡.

Figure 3.1 Comparison of Disruption Chance to Number of Compromised Nodes using

38 Decision Nodes out of 100 Total Nodes

15

The results show that the trends follow a logistical curve. The initial probabilities

on the lower left remains at a zero percent chance of disruption until 𝑁𝑐 reaches 13. This

is due to the k value being 13 when using 38 𝑁𝑑, making it impossible to disrupt a

consensus with 12 or fewer. The opposite end at the top right reaches a nearly flat pattern

when 50 𝑁𝑐 are in the network. From this point, this line slowly approaches a 100%

disruption chance until there are 75 𝑁𝑐, in which case the line reaches 100% and remains

there as it is impossible to choose less than 13 𝑁𝑐 out of the 38 when 75 or greater 𝑁𝑡 are

compromised. To show how changing the number of 𝑁𝑑 alters the curve, Figure 3.2

displays the results of using only 10 𝑁𝑑 while still maintaining a total pool of 100 𝑁𝑡.

Altering 𝑁𝑑 changes the curve significantly, mainly in the position along the x-axis.

Figure 3.3 shows the effect of changing 𝑁𝑡 to fifty while keeping the 𝑁𝑑 at 10. We see

that the curves in Figures 3.2 and 3.3 are similar in shape. This is due to a proportional

relationship between the number of 𝑁𝑡 and 𝑁𝑐. The number of 𝑁𝑡 is halved, but the

disruption chance does not change for the same ½ proportioned number of 𝑁𝑐.

3.2. EXPERIMENT 2 RESULTS

In the second experiment the number of disrupted nodes and 𝑁𝑡 remain constant,

and the disruption chance is calculated while iterating the number of 𝑁𝑑 used. This is

synonymous with a user taking a given value of 𝑁𝑡 and estimate the highest number of

down or 𝑁𝑐 their system might have before it is noticed and acted upon. Using these

results, they could then determine the best number of 𝑁𝑑 to use to minimize the chance of

transaction disruption.

16

Figure 3.2 Comparison of Disruption Chance to Number of Compromised Nodes using

10 Decision Nodes out of 100 Total Nodes

Figure 3.3 Comparison of Disruption Chance to Number of Compromised Nodes using

10 Decision Nodes out of 50 Total Nodes

17

First, a simulation is run using a low number of 𝑁𝑐. The initial chart is obtained

using 100 𝑁𝑡 where 10 of those nodes are compromised. The results are shown in Figure

3.4.

Figure 3.4 Comparison of Disruption Chance to Number of Decision Nodes using 10

Compromised Nodes out of 100 Total Nodes

Figure 3.4 shows a steep decline early in the data. This trend flattens out at around

20 𝑁𝑑 until it reaches 0 at 32, where 10 𝑁𝑐 can no longer have any chance of disrupting

consensus. The early data is of particular interest as it shows that the trend is not linear as

the charts in the first experiment. Another chart is created using 25 𝑁𝑐 and 100 𝑁𝑡 to

observe the changes in the pattern as the 𝑁𝑐 are increased and the results shown in Figure

3.5.

18

Figure 3.5 Comparison of Disruption Chance to Number of Decision Nodes using 25

Compromised Nodes out of 100 Total Nodes

Figure 3.6 Comparison of Disruption Chance to Number of Decision Nodes using 33

Compromised Nodes out of 100 Total Nodes

19

The results in Figure 3.5 show a pronounced trichotomous pattern. The downward

slope has also elongated, not reaching 0 until 76 𝑁𝑑 are examined, where the 25 𝑁𝑐 can

no longer disrupt consensus. Next the effect of 33 𝑁𝑐 out of 100 𝑁𝑡 was examined. This

number is of particular interest as it is the k value of the number of the 𝑁𝑡. The results of

using 33 𝑁𝑐 out of 100 𝑁𝑡 are shown in Figure 3.6.

Figure 3.6 shows a pronounced trichotomous nature in the results. The lines do

not converge to a 0% disruption chance but diverge as the value of 𝑁𝑑 approaches 100.

This likely indicates that this is the point at which the trends in disruption chance change

from converging at 0 to converging at 1. To confirm this, we examine the immediate

neighbors, 32 and 34 𝑁𝑐 (Figures 3.7 and 3.8 respectively).

It can be seen that just below the 33 compromised node point, the results

converge at 0, and above the point they converge at 1. Figure 3.9 shows the results of

using 50 𝑁𝑐 out of 100 total. These results show that the trends in Disruption Chance

continue to rise more steeply as 𝑁𝑐 increases past 33.

The trichotomous nature of the results requires additional explanation. The groups

that form these lines are characterized by their results for taking the number of nodes

modulo 3. The middle line is 𝑁𝑑 modulo 3 = 0 (6,9,12, etc.), the top line is 𝑁𝑑modulo 3 =

1 (7,10,13, etc.), and the bottom line is 𝑁𝑑modulo 3 = 2 (8,11,14, etc.). The three lines

formed in the results are most pronounced in Figure 3.6. That Figure has been broken

down and each group charted individually as shown in Figures 3.10, 3.11, and 3.12.

These Figures show that the best results are always obtained using the Modulo3=2 group

(Figure 3.12) and the worst results are the Modulo3=1 group (Figure 3.10).

20

Figure 3.7 Comparison of Disruption Chance to Number of Decision Nodes using 32

Compromised Nodes out of 100 Total Nodes

Figure 3.8 Comparison of Disruption Chance to Number of Decision Nodes using 34

Compromised Nodes out of 100 Total Nodes

21

Figure 3.9 Comparison of Disruption Chance to Number of Decision Nodes using 50

Compromised Nodes out of 100 Total Nodes

Figure 3.10 Comparison of Disruption Chance to Number of Decision Nodes of the

Mod3=0 group using 33 Compromised Nodes out of 100 Total Nodes

22

Figure 3.11 Comparison of Disruption Chance to Number of Decision Nodes of the

Mod3=1 group using 33 Compromised Nodes out of 100 Total Nodes

Figure 3.12 Comparison of Disruption Chance to Number of Decision Nodes of the

Mod3=2 group using 33 Compromised Nodes out of 100 Total Nodes

23

The trichotomous nature of these node combinations makes a direct comparison

impossible, as increasing both compromised and 𝑁𝑡 exactly proportionately has varied

results. If the value of 𝑁𝑐 is increased from 33 to 66, then a value of 199 and not 200

should be used for 𝑁𝑡. This is due to each k value pertaining to 3 decision node values. In

the case of 33 𝑁𝑐, this is the k value for 98, 99, and 100 𝑁𝑑 with 100 falling in the

Modulo3=1 group. When examining 66 𝑁𝑐, the corresponding decision node values are

197, 198, and 199 with 199 falling in the Modulo3=1 group. So, a better comparison

exists between 33 𝑁𝑐 out of 100 total, and 66 𝑁𝑐 out of 199 total. The results of 66

compromised and 199 𝑁𝑡 are shown in Figure 3.13.

Figure 3.13 Comparison of Disruption Chance to Number of Decision Nodes using 66 𝑁𝑐

out of 199 Total Nodes

Figure 3.13 displays the same behavior as Figure 3.6 with a small discrepancy.

The top two lines (Mod3=1 and Mod3=0) have a decreased average value and the bottom

24

line (Mod3=2) has an increased average value. Results were obtained from using higher

numbers of compromised and 𝑁𝑡 comparable to the previous sets and the resulting

average values of each Mod group is tabulated in Table 3.1.

Table 3.1 Average Modulo Group Values of Proportionately Increasing Node Sets

25

4. DISCUSSION

4.1. TRENDS IN EXPERIMENT 1 RESULTS

The first experiment was run to see how network performance of a predetermined

system set up of 𝑁𝑑 and 𝑁𝑡 is affected by changes in the value of 𝑁𝑐. In the results, we

observe a logistical curve. The line holds at zero until 𝑁𝑐 increase past the k value of the

𝑁𝑑, when they become capable of disrupting a consensus. The compromise probability

raises rapidly past this point.

We also observe in the results that increasing the number of 𝑁𝑑 pushes the curve

further along the x-axis so that a larger number of 𝑁𝑐 is required to achieve the same

disruption chance compared to situations with a lower value of 𝑁𝑑 and equal 𝑁𝑡.

Increasing the value of 𝑁𝑑 to decrease disruption probability is nothing new, this is

widely accepted to be an effective method of increasing security. But this is not the best

method of optimization as increasing the value of 𝑁𝑑 is the largest contributor to

increased energy cost and latency times.

Increasing the value of 𝑁𝑑 and the total number of nodes by proportionate

amounts increases the value of 𝑁𝑐 required to achieve similar levels of compromise

probability. This means that, if run concurrently, a system could run more transactions

simultaneously, the energy cost and latency times per transaction would not increase, and

disruption probability would decrease.

26

4.2. TRENDS IN EXPERIMENT 2 RESULTS

Note the three groups formed in each graph in the second part of the simulations.

Here, the disrupted nodes and 𝑁𝑡 are held constant, and the disruption chance is

calculated for each possible value of 𝑁𝑑. These three groups are characterized by their

number of 𝑁𝑑 modulo 3. The bottom line (best result) is where decision node modulo 3

is 2, the middle is 1, and the top (worst result) is 0. This is explained by the picking

probability and the number of disrupted nodes required to disrupt a transaction.

Consider the disruption chance for a transaction when values of 5, 6, and 7 are

used for 𝑁𝑑. The modulo 3 results for these numbers are 2,0, and 1 respectively, so from

left to right they represent the bottom, middle and top lines, or best, moderate, and worst

results. The reason that using 5 𝑁𝑑 results in the lowest disruption chance is that 2

disrupted nodes are required to disrupt this transaction, where 2 nodes are also able to

disrupt a transaction using both 6 and 7 𝑁𝑑. When the chosen number of 𝑁𝑑 increases

from 5, each additional decision node increases the chance of selecting a disrupted node,

and therefore the chance of disrupting the transaction. This pattern is observable in each

set of three numbers as the value of 𝑁𝑑 increases.

4.3. PROPORTIONAL TRENDS

Most of the results show that the disruption chance converges to 0 at high values

of 𝑁𝑑 if the number of disrupted nodes is below one third the total number of nodes, and

that it converges at 1 if the number of disrupted nodes is above one third. The only

exception being if the number of disrupted nodes is exactly one third the number of 𝑁𝑡.

This research shows the best number of nodes to use in a transaction with given total and

27

𝑁𝑑 and assumed disrupted nodes. Here, it is assumed that lower numbers of 𝑁𝑑 are best

for the system in terms of processing power, speed of transactions, and energy efficiency.

4.4. CASE EXAMPLE

Private companies who desire to create their own BFT Blockchain system can use

the information presented in this study to design the physical architecture of their system

in terms of how many total nodes to include and how many to include in each decision to

maximize security while minimizing energy consumption and latency times. It is not

meant to provide a final “best” answer to a system set up, instead, its primary purpose is

to find a point that best balances the system organizer’s priority metrics.

Some companies are looking to set up BFT Blockchain networks in their supply

chains to record the handling of sensitive materials. In this case, the company is the

system organizer and determines their acceptable ranges for number of total nodes and

𝑁𝑑 and consult system technicians to determine approximate numbers of 𝑁𝑐 possible in

the system at a time. They could then use this model to obtain figures showing the

compromise probability of their transactions with their preferred parameters. Minor

alterations would then be made to the system setup to reach their optimal point.

This model is best tailored to Private Permissioned Blockchain networks where

all nodes on the network are pre-approved and can be monitored by the system organizer.

Certain companies, however, would prefer to share the system amongst partners where

system nodes are spread across the various companies in the system. This system setup is

known as a communal block chain, and could also be modeled similarly, but with a few

adjustments.

28

Communal blockchains are the next logical step for this model, but more work

could be done to alter it such that it becomes applicable to a much wider variety of

system types to find their optimal setups as well. System developers are always looking

for ways to improve their systems. This model provides another way for them to do just

that.

29

5. CONCLUSIONS

BFT System developers who need to optimize their networks without delving into

the inner workings of BFT algorithms should look to the methods shown in this research

to optimize their nodal arrangements. The results of this study show that transaction

disruption chance follows patterns that can be predicted statistically. By selecting a

number of decision nodes where 𝑁𝑑Mod3=2, they can optimize their system energy

consumption while maintaining the lowest chance of transaction disruption.

While many believe that more decision nodes result in higher security, this

research shows that this is not the case for variable node systems. The largest source of

energy consumption in BFT networks comes from nodes running computations and

returning decisions for consensus. Adding nodes to the system also increases latency

times as there are more nodes requiring bandwidth and increasing the chance of

messaging delays. Increasing the decision nodes not only increases the energy usage of

the system and lengthens latency times, if it is increased to an amount not in the Mod3=2

group, it can actually decrease system security.

This research shows that administrators of variable node systems should consider

altering the amount of decision nodes they use in consensus. In some cases, it is even

preferable to counter-intuitively reduce decision nodes. If the decision node amount is not

in the Mod3=2 group, the system could drop nodes to an amount in the group and

increase security while simultaneously reducing energy costs and latency times. This

holds great potential for variable node system optimization.

30

This method applies to Private Distributed BFT networks but, with some

alteration, should be able to be applied to a wider variety of network types. Other models

should be created to test its robustness and other factors such as differentiating between

malicious and non-malicious faulty nodes.

31

APPENDIX

1. EXPERIMENT 1 CODE

library(tidyverse)

library(plyr);library(dplyr)

library(openxlsx)
library(rio)
library(combinat)

library(RcppAlgos)
library(writexl)

#Total Nodes
N = 100
#Decision Nodes
n =10
#Compromised Node information
a <- ceiling((n-1)/3)
b <- N-(n+1)

m = a:b
k = 0:(a-1)

failure <- c(list, length(m))

for(i in a:b){
 pmf = dhyper(k,i,N-i,n)
cbind(k,pmf)

failure[[i-(a-1)]] = 1- sum(pmf)
}

#png(paste(n," decision nodes out of ", N, " total nodes.png", sep="")
)

plot(m,unlist(failure),main = paste(n," decision nodes out of ", N, " t
otal nodes", sep=""), xlab = "Compromised Nodes", ylab = "Disruption Ch
ance")

32

2. EXPERIMENT 2 CODE

library(tidyverse)

library(openxlsx)
library(rio)

library(RcppAlgos)
library(writexl)
library(ggplot2)
library(colorspace)
library(ggpubr)

N: Total Nodes
n: Decision Nodes
m: Total number of Compromised Nodes
k: number of compromised nodes selected

#set info
#Total Nodes
N = 100
tempn=5 #starting point for iterations
start=5 #starting point not iterated
n=tempn:N
m = 33

#k = 0
iterations <- n
failureA <- c(list, length(iterations))
failureB <- c(list, length(iterations))
failureC <- c(list, length(iterations))

DecNodesA <- c(list, length(iterations))
DecNodesB <- c(list, length(iterations))
DecNodesC <- c(list, length(iterations))

A=1
B=1
C=1

failure <- c(double,length(n))

for(i in n){

k <- (0:(ceiling((tempn-1)/3)-1))

33

 if((ceiling((tempn-1)/3)-1)>m){

 failure[[i-(start-1)]] <-0

 }else{

 failure[[i-(start-1)]] <- 1-sum(dhyper(k,m,N-m,i))

 if(i%%3 == 0){
 failureA[[A]] <-1-sum(dhyper(k,m,N-m,i))
 DecNodesA[[A]] <- i
 A=A+1

 }else if(i%%3 == 1){
 failureB[[B]] <-1-sum(dhyper(k,m,N-m,i))
 DecNodesB[[B]] <- i
 B=B+1
 }else if(i%%3 == 2){
 failureC[[C]] <-1-sum(dhyper(k,m,N-m,i))
 DecNodesC[[C]] <- i
 C=C+1
 }else{
 print("ERROR")
 }

 }

tempn=tempn+1
 k=NULL

}

plot(n,unlist(failure),main = paste(m," compromised nodes out of ", N,
" total nodes", sep=""), xlab = "Decision Nodes", ylab = "Disruption Ch
ance",xlim=c(0,N), ylim=c(0.4,0.85))

plot(DecNodesA, failureA, main= paste("Mod3=0: ",m,":Comp Nodes,", N, "
:Total Nodes", sep=""), xlab = "Decision Nodes", ylab = "Disruption Cha
nce",xlim=c(0,N), ylim=c(0.4,0.85))

plot(DecNodesB, failureB, main= paste("Mod3=1: ",m,":Comp Nodes,", N, "
:Total Nodes", sep=""), xlab = "Decision Nodes", ylab = "Disruption Cha
nce",xlim=c(0,N), ylim=c(0.4,0.85))

plot(DecNodesC, failureC, main= paste("Mod3=2: ",m,":Comp Nodes,", N, "
:Total Nodes", sep=""), xlab = "Decision Nodes", ylab = "Disruption Cha
nce",xlim=c(0,N), ylim=c(0.4,0.85))

34

BIBLIOGRAPHY

Castro, M., & Liskov, B. (2002). Practical Byzantine Fault Tolerance and Proactive

Recovery. ACM Transactions on Computer Systems, 20(4), 398–461.

https://doi.org/10.1145/571637.571640

Concurrent Systems Research Group, University of Sydney, D.-C. (n.d.). The Red Belly

Blockchain Experiments. 1. https://redbelly.cdn.prismic.io/redbelly%2F7ad73d48-

ea5e-49d2-8ec9-fca77c453ec1_redbellyblockchain-experiments.pdf

Da Silva, V. F., Coelho, M. N., Coelho, B. N., Coelho, V. N., & Coelho, I. M. (2019). A

home ledger approach for IoT enabled devices. Proceedings - Symposium on

Computer Architecture and High Performance Computing, 2019-Octob, 227–233.

https://doi.org/10.1109/SBAC-PAD.2019.00044

Franke, L., Schletz, M., & Salomo, S. (2020). Designing a blockchain model for the paris

agreement’s carbon market mechanism. Sustainability (Switzerland), 12(3), 1–20.

https://doi.org/10.3390/su12031068

Ghosh, E., & Das, B. (2020). A Study on the Issue of Blockchain’s Energy Consumption.

Advances in Intelligent Systems and Computing, 1065, 63–75.

https://doi.org/10.1007/978-981-15-0361-0_5

Konnov, A., Makarov, A., Pozdnyakova, M., Safin, R., & Salagaev, A. (1999). Russia.

Laboratory for Computer Science, Massachusetts Institute OfTechnology, 545

Technology Square, Cambridge, MA 02139, February, 359–368.

https://doi.org/10.1007/978-0-387-95982-5_25

Lamport, L., Shostak, R., & Pease, M. (1982). The Byzantine Generals Problem. ACM

Transactions on Programming Languages and Systems (TOPLAS), 4(3), 382–401.

https://doi.org/10.1145/357172.357176

Miller, A., Xia, Y., Croman, K., Shi, E., & Song, D. (2016). The Honey Badger of BFT

protocols. Proceedings of the ACM Conference on Computer and Communications

Security, 24-28-Octo(Section 3), 31–42. https://doi.org/10.1145/2976749.2978399

Nair, R., Gupta, S., Soni, M., Kumar Shukla, P., & Dhiman, G. (2020). An approach to

minimize the energy consumption during blockchain transaction. Materials Today:

Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.10.361

Sedlmeir, J., Buhl, H. U., Fridgen, G., & Keller, R. (2020). The Energy Consumption of

Blockchain Technology: Beyond Myth. Business and Information Systems

Engineering, 62(6), 599–608. https://doi.org/10.1007/s12599-020-00656-x

35

Sternberg, H. S., Hofmann, E., & Roeck, D. (2020). The Struggle is Real: Insights

from a Supply Chain Blockchain Case. Journal of Business Logistics, 1–17.

https://doi.org/10.1111/jbl.12240

Team, R. C. (2021). A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing.

Vizier, G., & Gramoli, V. (2020). ComChain: A blockchain with Byzantine fault-tolerant

reconfiguration. Concurrency Computation, 32(12), 1–26.

https://doi.org/10.1002/cpe.5494

Wang, F., Ji, Y., Liu, M., Li, Y., Li, X., Zhang, X., & Shi, X. (2021). An Optimization

Strategy for PBFT Consensus Mechanism Based On Consortium Blockchain. 71–76.

https://doi.org/10.1145/3457337.3457843

Wang, Y. (2019). Designing a blockchain enabled supply chain. IFAC-PapersOnLine,

52(13), 6–11. https://doi.org/10.1016/j.ifacol.2019.11.082

Zhao, W. (2009). Design and implementation of a Byzantine fault tolerance framework

for Web services. Journal of Systems and Software, 82(6), 1004–1015.

ttps://doi.org/10.1016/j.jss.2008.12.037

36

VITA

Ian Robert Fulton received his Bachelor of Science in Mechanical Engineering in

the Spring of 2019 from Missouri University of Science and Technology. He enrolled in

the master’s degree program in Engineering Management at Missouri University of

Science and Technology in the Fall of 2019. He performed research for the Boeing

company under Dr. Steven Corns beginning in the Spring of 2020. He received his

Master of Science in Engineering Management and Certificate in Systems Engineering

from Missouri University of Science and Technology in May 2022.

	A variable node optimization model for byzantine fault tolerant systems
	Recommended Citation

	II

