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ABSTRACT 

Applicable to most real-world decision scenarios, multiobjective optimization is 

an area of multicriteria decision-making that seeks to simultaneously optimize two or 

more conflicting objectives. In contrast to single-objective scenarios, nontrivial 

multiobjective optimization problems are characterized by a set of Pareto optimal 

solutions wherein no solution unanimously optimizes all objectives. Evolutionary  

algorithms have emerged as a standard approach to determine a set of these Pareto 

optimal solutions, from which a decision-maker can select a vetted alternative. While 

easy to implement and having demonstrated great efficacy, these evolutionary approaches 

have been criticized for their runtime complexity when dealing with many alternatives or 

a high number of objectives, effectively limiting the range of scenarios to which they 

may be applied. This research introduces mechanisms to improve the runtime complexity 

of many multiobjective evolutionary algorithms, achieving state-of-the-art performance, 

as compared to many prominent methods from the literature. Further, the investigations 

here presented demonstrate the capability of multiobjective evolutionary algorithms in a 

complex, large-scale optimization scenario. Showcasing the approach’s ability to 

intelligently generate well-performing solutions to a meaningful optimization problem. 

These investigations advance the concept of multiobjective evolutionary 

algorithms by addressing a key limitation and demonstrating their efficacy in a 

challenging real-world scenario. Through enhanced computational efficiency and 

exhibited specialized application, the utility of this powerful heuristic strategy is made 

more robust and evident. 
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1. INTRODUCTION 

1.1. SINGLE- VS. MULTIOBJECTIVE OPTIMIZATION 

An appropriate applicant to many real-world decision scenarios, multiobjective 

optimization differs from single-objective optimization in a number of ways. A principal 

difference lies in the nature of the resolution to problems of these distinct classes. Single-

objective optimization is concerned with the identification of a globally-optimum 

solution exhibiting the best possible performance as determined by a single objective 

function (Figure 1.1). Multiobjective optimization, however, is akin to problem 

formulations possessing a number of conflicting objective functions that disallow the 

existence of a single, globally optimal solution. Instead, the solution-space is 

characterized by a set of Pareto optimal solutions wherein no solution unanimously 

optimizes all objectives (Figure 1.2). Also called the Pareto efficient set or the Pareto 

frontier of the solution-space, a tradeoff exists between the members of this set. Each 

solution is simultaneously inferior to all other members by at least one objective and 

superior to all other members by another. Without additional preference information, no 

solution can be selected as the single best alternative. 

These common scenarios of conflicting objectives manifest regularly in a myriad 

of situations. Indeed, the operations of science, business, and life itself recurrently face 

scenarios demanding the simultaneous optimization of disparate interests. Developing 

and improving methods to address these prevalent situations are thus areas of 

considerable research interest.  



 

 

2 

 

Figure 1.1. A single-objective optimization scenario with a globally optimum solution. 

 

 

Figure 1.2. A multiobjective optimization scenario with two objectives. 
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1.2. AREAS OF APPLICATION 

Multiobjective optimization has been applied to seemingly innumerable fields of 

study, occupations, industries, and circumstances. While this section does not scratch the 

surface of an exhaustive list of applications, a few examples are given to demonstrate the 

pervasiveness of this common decision-making situation. 

1.2.1. Economics.  Many aspects of macro- and microeconomics involve 

scenarios of competing simultaneous objectives. For instance, decisions along the 

production possibilities frontier describe the relative mix of products a society can 

produce (Hitch, 1953). Assuming full resource utilization, additional production of one 

product can only occur at the expense of another’s production. A tradeoff then arises 

between the benefit associated with the increased production of the first product and the 

opportunity cost of producing less of another. 

Governments and central banks use multiobjective optimization in establishing 

fiscal and monetary policy. Expanding upon the latter, institutions, such as the Federal 

Reserve in the United States, seek to establish policy that balances their stated objectives 

of price stability, low unemployment, and steady economic growth, among others 

(Federal Reserve Board, 2021; Dennis, 2002). While desired, achieving the optimum 

value of each of these objectives concurrently may not be feasible. Instead, the institution 

must enact policy promoting their preferred balance of these independent objectives. 

1.2.2. Finance.  A classic multiobjective optimization problem in the financial 

realm is the risk-return tradeoff of an investment portfolio (Mukerjee et al., 2002; Subbu 

et al., 2005). Specifically, investors desire their security portfolio to have a high excepted 

value of returns while also having low risk, usually measured by some variation metric, 
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such as standard deviation. However, these objectives are somewhat negatively 

correlated, with higher potential return values often associated with greater risk 

(Lundblad, 2007). Selecting a portfolio balancing this tradeoff is then an area of 

considerable interest for securities investors. A multitude of methods has been developed 

to generate and select well-performing alternatives along the Pareto frontier of these 

objectives (Mukerjee et al., 2002; Subbu et al., 2005; Chiam et al., 2007; Saborido et al., 

2016). 

1.2.3. Engineering Design.  Multiobjective optimization has been applied 

regularly to engineering design problems spanning a range of disciplines. One such 

example occurs in aerospace design, where increased attention to the environmental 

impact of air travel has driven the design of commercial airplanes. Studies have sought to 

determine combinations of design and operational decision variables that simultaneously 

optimize greenhouse gas emissions and direct operating costs (Flores-Alsina et al., 2008; 

Sweetapple et al., 2014). Greener planes may produce less pollutants, but often come at 

the expense of increased operating costs which may be passed on to commercial 

customers. The strategies generated by these optimization models thus have substantial 

real-world environmental and economic impacts. 

The design of sustainable buildings has employed multiobjective optimization in 

establishing well-performing renewable energy strategies (Kong et al., 2015). Given a set 

of renewable energy source alternatives, a multiobjective model is formulated, looking to 

concurrently optimize expected primary energy needs and resource investment costs. 

These models are used to guide decision-makers in determining the most advantageous 

array of renewable energy systems to deploy. 
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1.2.4. Medicine.  A great variety of applications have been found for 

multiobjective optimization in the study of medicine. Drug design has used 

multiobjective optimization extensively in balancing numerous pharmaceutically 

important objectives (Nicolotti et al., 2011; Nicolaou et al., 2012; Nicolaou & Brown, 

2013; Domenico et al., 2020). Conflicting directives such as effectiveness, safety, 

potency, and longevity, to name a few, are used in evaluating potential candidates for 

development. These optimization procedures search a vast decision-space of possible 

molecular structures, seeking to find solutions that perform well by each utilized 

objective. 

Radiologic therapy plans are also developed using multiobjective optimization 

(Yu et al., 2000; Chan et al., 2014). Here, the amount of radiation interacting with 

different regions of the body is of critical importance. Concurrent objectives may look to 

minimize deviations from prescribed radiation levels for distinct regions including 

healthy tissues, critical tissues, and foreign masses (Aubry et al., 2006; Holdsworth, 

2010). Finding an appropriate strategy, as evaluated by these objectives, can significantly 

bolster the procedure’s chance of success while reducing the risk of unintended harm 

(Holdsworth et al., 2011). 

This short survey of multiobjective optimization application demonstrates the 

amazing breadth of this paradigm’s application. As application continues and the 

problems addressed become more challenging and complex, the efforts conducted to 

improve multiobjective optimization methods may become more vitally and broadly 

valuable.  
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1.3. MATHEMATICAL PRELIMINARIES 

Here, several preliminary definitions are introduced to facilitate the understanding 

and discussion of multiobjective optimization terminology and properties. 

1.3.1. Multiobjective Problem Definition.  Principal is the definition of a 

(minimization) multiobjective optimization problem, given in Equation (1). 

 min(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)) 

𝑠. 𝑡. 𝑥 ∈ 𝑋 

(1) 

where the integer k ≥ 2 is the number of objectives and the set X is the feasible set of 

decision vectors. 

1.3.2. Pareto Dominance.  As conflicting objectives likely rule out the existence 

of a globally optimal solution, a mechanism is needed to reason about solution 

performance. The principle of Pareto dominance is used to compare the attractiveness of 

multiobjective solutions. Defined in Equation (2), Pareto dominance is achieved when a 

solution-a performs just as well as another solution-b with respect to each objective of the 

optimization, while also performing better than solution-b with respect to at least one 

objective. In this scenario, solution-a is said to Pareto dominate solution-b and may be 

thought of as superior to the latter, as defined by the set of objective functions. 

 𝑓𝑖(𝑥𝑎) ≤ 𝑓𝑖(𝑥𝑏)∀ 𝑖 ∈ {1, 2, … , 𝑘} 𝑎𝑛𝑑 𝑓𝑗(𝑥𝑎) < 𝑓𝑗(𝑥𝑏) 

𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑗 ∈ {1, 2, … , 𝑘} 

(2) 

If the relationships of Equation (2) exist between two solutions (xa and xb) then xa Pareto 

dominates xb, assuming the minimization of each objective is aspired.  

Solution-a’s dominance of solution-b may be denoted as xa ≺ xb. Alternatives 

between which a dominance relationship does not exist are called nondominating 

solutions. 
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1.3.3. Pareto Optimality and the Pareto Frontier.  Solutions which are not 

dominated by any other solution in the set are regarded as Pareto optimal or Pareto 

efficient solutions. The set of all Pareto optimal solutions within the solution space is said 

to constitute the Pareto frontier of the optimization problem. Collectively, these solutions 

can be thought of as objectively better than all dominated solutions. However, no 

member of the Pareto frontier can be thought of as globally optimal. Pareto optimality 

and the Pareto frontier are defined in Equations (3) and (4), respectively. 

 𝑥𝑎 ∈ 𝑋 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑖𝑛 𝑋 𝑖𝑓𝑓 ∄𝑥𝑏 ∈ 𝑋 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥𝑏 ≺ 𝑥𝑎 

(3) 

 𝑇ℎ𝑜𝑠𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 {𝑥𝑎 ∈ 𝑋|∄𝑥𝑏 ∈ 𝑋, 𝑥𝑏 ≺ 𝑥𝑎} 

𝑐𝑜𝑚𝑝𝑟𝑖𝑠𝑒 𝑡ℎ𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 

(4) 

Equipped with these definitions, the general proceedings of most multiobjective 

optimization algorithms can be understood and discussed. 

1.4. MULTIOBJECTIVE SOLUTION SET QUALITY 

Two considerations commonly describe the quality of a set of solutions to a 

multiobjective optimization problem (assuming the solution set aims to approximate the 

Pareto frontier of the solution space). Firstly, the convergence of the solution set’s 

multiobjective alternatives to the actual Pareto frontier is evaluated. It is desired that the 

alternatives identified lie as close as possible to the true Pareto frontier. If successful, the 

identified alternatives are, indeed, part of the Pareto frontier and cannot be dominated by 

any feasible alternative in the objective space. Additionally, the distribution of the 

solution’s multiobjective alternatives is a principal concern. A solution set is well-

distributed if it represents the expanse of the Pareto frontier, and its constituent 
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alternatives are relatively equally spaced across this expanse. Well-distributed solution 

sets provide more information about the Pareto frontier and its associated tradeoffs, 

allowing for a more informed and vetted alternative consideration. Figure 1.3 describes a 

solution set that has a worse distribution than that of Figure 1.4. While both figures depict 

solution sets with 9 Pareto efficient alternatives, the solution set of Figure 1.4 is generally 

more valuable as it provides more diverse and complete information about the Pareto 

frontier. 

 

 

Figure 1.3. A poorly distributed multiobjective solution set with 9 alternatives. 
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Figure 1.4. A well-distributed multiobjective solution set with 9 alternatives. 

1.5. DISSERTATION ORGANIZATION 

This section (SECTION 1) introduced the concept of multiobjective optimization 

and hinted at the scope of the paradigm’s application. Additionally, some definitions and 

concepts were introduced which facilitate the understanding and discussion of 

multiobjective optimization procedures. 

The remainder of this dissertation is organized as follows: 

SECTION 2, Multiobjective Optimization: Approaches and Critiques, introduces 

several multiobjective optimization approaches from the literature, providing a brief 

critical analysis of select methods. 

PAPER I, A Geometrically-Based Method for Efficient Many-Objective Decision-

Making, presents a method of expediting the determination of the Pareto frontier of a 
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solution set, easing the restrictions this resource intensive procedure places on explorative 

rigor. 

PAPER II, Ideal Sort: A Terminable, Efficient Nondominated Sorting Algorithm, 

extends the principles of Paper I, culminating in a NDS algorithm that achieves state-of-

the-art performance in some cases. Further, the concept of terminability is introduced, a 

notion shown capable of improving the efficiency of other NDS algorithms from the 

literature. 

PAPER III, Disaster Recovery Strategy Generation via Multiobjective Heuristic 

Optimization, applies a multiobjective evolutionary algorithm to disaster recovery 

strategy generation. This application demonstrates the feasibility of utilizing such a 

scheme in an incredibly challenging optimization scenario. 

SECTION 3, Conclusions and Future Work, recounts the objective of these 

investigations: to advance the concept of multiobjective evolutionary algorithms by 

addressing a key limitation and demonstrating their efficacy in a challenging real-world 

scenario. Some directives for future research are also presented. 
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2. MULTIOBJECTIVE OPTIMIZATION: APPROACHES AND CRITIQUES 

 

Multiobjective optimization methods have exhibited a number of forms and 

undergone a variety of transformations in approach across decades of research and 

innovation. While an exhaustive survey of proposed methods is impractical, some very 

prominent methods, their features, and acknowledged critiques are next discussed. 

2.1. A PRIORI APPROACHES 

A priori methods require the interjection of decision-maker preferences in effort 

to determine members of the Pareto frontier of a multiobjective optimization problem. 

These supplied preferences are generally incorporated within a priori methods to reflect 

the importance decision-makers place on varying objectives (Marler & Arora, 2004). 

These methods are then used to find the single Pareto efficient solution that optimizes the 

preference-adhering problem. In essence, these approaches look to transform a 

multiobjective problem into a single-objective problem by the introduction of the user-

supplied preferences. While a sound means of finding a member of the Pareto frontier, 

this approach inherently introduces bias, as some objectives are assigned greater 

importance than their counterparts. This is problematic as the true significance of 

conflicting objectives may be very difficult to determine, variable with time, and/or 

disagreeable to different stakeholders. While the true spirit of multiobjective optimization 

is abandoned when following these a priori approaches, their ease of application, 

frequency of implementation, and capability to reliably identify solutions along the 

Pareto frontier warrant some further discussion. 
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2.1.1. Weighting and Scalarization Techniques.  Weighting and scalarization 

techniques are perhaps the most simplistic means to address multiobjective optimization 

problems. These techniques use decision-maker preferences to form a single, 

parameterized objective function that can be optimized to find a Pareto optimal solution. 

Varying levels of complexity are applied to this objective function parameterization 

procedure, ranging from a simple linear weighting of independent objectives to more 

sophisticated product-based and exponential weighting strategies (Zadeh, 1963; Steuer, 

1989; Yoon & Hwang, 1995; Saaty, 1977; Rao & Roy, 1989; Athan & Papalambros, 

1996; Bridgman, 1992; Gerasimov & Repko, 1978). Each of these strategies introduce 

decision-maker preferences that impact the optimal solution identified by the 

parameterized optimization model. 

2.1.2. Distance Function Methods.  Distance function methods cast a 

multiobjective problem as a single-objective counterpart, looking to minimize the 

objective function distance between an optimal solution and some supplied 

multiobjective aspiration point (Charnes et al., 1955). When the aspiration point is 

unattainable (that is, an objectively better solution than can be attained given the 

problems objective functions and constraints) the identified optimal solution is Pareto 

optimal (Wierzbicki, 1986; Marler & Arora, 2004). Several evolutions of this distance 

function approach have emerged with varying levels of intricacy and utility (Charnes et 

al., 1955; Charnes & Cooper, 1957; Ijiri, 1965; Charnes et al., 1967; Charnes & Cooper, 

1977; Hwang & Md. Masud, 2012; Gembicki, 1974; Ogryczak, 1994). It is important to 

note that the aspiration point utilized has ramifications on the optimal solution generated; 

in this way, bias is more subtly introduced by these distance function methods. 
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2.1.3. Constraint Methods.  Constraint methods, sometimes called bounded 

objective function methods, seek to optimize the objective function identified as most 

important while ensuring that the other objective functions are within some range of 

acceptability. In this way, the constraint methods transform a multiobjective problem into 

a partially representative single-objective problem with additional constraints (Marler & 

Arora, 2004). User preference is thus interjected in both the selection of a single objective 

to optimize, and the acceptability bounds identified for objective functions translated into 

constraints. While preference bias is introduced, Pareto optimal solutions can be 

precipitated by constraint method application (Hwang & Md. Masud, 2012; Miettinen, 

2012). Effort has been expended to develop and refine variations of these constraint 

methods and provide guidance toward the selection of appropriate acceptability bounds 

(Haimes et al., 1971; Goicoechea et al., 1976; Cohon, 2004; Stadler, 1988; Carmichael, 

1980; Lin, 1976; Stadler & Dauer, 1992; Dauer & Krueger, 1980; Wendell & Lee, 1977; 

Corley, 1980). 

2.2. NO-PREFERENCE METHODS 

While the discussions of Section 2.1 make clear the inherent bias introduced by a 

priori preference methods, a warning is issued about the apparent remedy of no-

preference methods. No-preference methods operate under the premise that the relative 

importance of objective functions cannot be accurately defined (Marler & Arora, 2004). 

This argument leads to a desire to treat each objective function as equally important and 

identify optimal solutions under this egalitarian prescription. Methods have been 

developed following this premise, utilizing various tactics to heed each objective function 
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equally in determining a Pareto optimal solution (Yoon, 1980; Stadler, 1988; Hwang et 

al., 1993; Mazumdar et al., 1991; Cheng & Li, 1996; Rao, 1987; Rao & Freiheit, 1991). 

However, the assumption that each objective function is similarly important is another 

form of bias, akin to assigning the same weight to each objective when scalarizing 

multiple objectives functions into a single measure. Therefore, variations of no-

preference methods should not be regarded as an objective means to perform 

multiobjective optimization, even if their inherent subjectivity is more subtle. 

2.3. MATHEMATICAL A POSTERIORI METHODS 

The a priori and no-preference methods introduced previously are, as mentioned, 

not entirely veracious to the spirit of multiobjective optimization. Instead of considering 

multiple objectives independently, these instead find a means to convert the original 

problem into a single-objective problem that is, in some way, reflective of the 

multiobjective form. Because a single-objective nature is instilled, solving the modified 

problem usually results in the determination of a single optimum solution. This may be 

problematic as a single solution is not informative about the tradeoffs that can be made 

along the Pareto frontier of the solution space. 

To remedy this shortcoming, a posteriori methods seek to supply the decision-

maker with a set of Pareto efficient alternatives from which a preferred solution can be 

selected (Messac & Mattson, 2002). By delaying the articulation of decision-maker 

preference, a final solution can be identified with a greater knowledge of the Pareto 

efficient alternatives achievable. A posteriori methods are also helpful when the decision-

maker finds it difficult to make an explicit articulation of objective preference a priori.  
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2.3.1. Weighting Methods.  To provide a set of Pareto efficient solutions, a 

weighting method may be recursively applied with varying a priori preferences imposed. 

In doing so, the final solution identified by each run can similarly vary. In this way, the 

interjection of bias is used as a mathematical tool to generate alternatives, instead of a 

means to impose decision-maker preference (as in a priori methods). If repeated enough 

times, a nice set of Pareto efficient alternatives can be generated, providing some 

information about the Pareto frontier (Marler & Arora, 2004). While straight-forward, 

successfully implementing this multi-run strategy may be challenging. Specifically, it 

may be difficult to vary the imposed weights in a manner that produces a good 

representation of the Pareto frontier (Das & Dennis, 1997). Some mechanism to ensure a 

good distribution of the identified solutions about the Pareto frontier would lead to a 

much more informative set of alternatives for a posteriori consideration. 

2.3.2. The Normal Boundary Intersection Method.  The Normal Boundary 

Intersection Method provides a means to obtain an evenly distributed set of Pareto 

efficient points. Specifically, the method seeks to identify the portion of the boundary of 

feasible objective space that contains Pareto optimal points (Das & Dennis, 1998). To do 

so, a series of points along the convex hull of individual minima (CHIM) are 

systematically selected. These points are then projected normally to the CHIM toward the 

origin until they intersect the boundary of the feasible objective space (Das & Dennis, 

1998). The determination of these intersections is completed algebraically by solving 

respective optimization problems. This method, however, can return points that are not 

Pareto optimal if the feasible region of the objective space is not convex. Further, this 
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method may overlook some Pareto optimal points when the number of objectives is 

greater than two (Das & Dennis, 1998)  

2.3.3. The Normalized Normal Constraint Method.  The Normalized Normal 

Constraint Method, like the Normal Boundary Constraint Method, seeks to determine a 

well-distributed set of Pareto optimal solutions. This procedure first determines the utopia 

point of the objective space and normalizes each objective (Messac et al., 2003). The 

individual exhibited minima of each normalized objective are then used to construct the 

utopia hyperplane of the objective space. A systematic weighting procedure then 

identifies a supplied number of points along this plane, which are next projected onto the 

boundary of the feasible objective space by solving respective optimization problems 

(Messac et al., 2003). Casually resembling the Normal Boundary Intersection Method to 

this point, the Normalized Normal Constraint Method finishes with a Pareto filter to 

ensure that only Pareto efficient points are returned by the procedure. 

2.3.4. Brief Discussion.  While the a posteriori methods presented are admirable 

in their ability to generate a set of Pareto efficient solutions for further consideration, they 

are generally encumbered by a few considerations. Firstly, these methods require the 

successive solution of single-objective sub-problems, used to reason about, and glean 

information from, the true multiobjective solution space. With each run, at most a single 

Pareto optimal solution is identified. While the process can be systematized to some 

extent, reasonable mathematical formulation and solution efforts may need to be 

expended. Further, these efforts, and the computational expense they incur, may become 

problematic as the number of objectives becomes large. Additionally, some of these 
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methods rely on knowledge of the utopia point of the objective space, an entity which 

may be difficult to determine in many instances (Wang et al., 2018.) 

2.4. HEURISTIC A POSTERIORI METHODS 

While the a priori and mathematical a posteriori methods previously introduced 

have sought to modify the formulation of a multiobjective optimization problem into an 

emblematic single-objective counterpart, several heuristic methods have been developed 

to solve multiobjective optimization problems directly (Marler & Arora, 2004). These 

heuristic approaches are often inspired by natural processes and consider each of a 

problem’s objectives simultaneously, in quest of finding an approximation to the Pareto 

frontier. Many of the developed approaches maintain multiple solutions throughout their 

progression, finding natural application to multiobjective optimization where the Pareto 

frontier is generally comprised of many nondominated alternatives. While not guaranteed 

to find globally Pareto optimal solutions, these methods have proven adept at finding 

multiple objectively excellent solutions in a single algorithmic run (Deb et al., 2002; Hu 

& Eberhart, 2002; Bandyopadhyay et al., 2008). While a multitude of heuristic 

approaches have been developed, three very prominent approach avenues are described 

briefly, next. 

2.4.1. Evolutionary Algorithms.  Several multiobjective evolutionary algorithms 

have been developed, seeking to mimic evolutionary processes such as genetic crossover 

and natural selection to evolve a set of solutions toward the Pareto frontier of a solution 

space (Schaffer, 1985; Murata & Ishibuchi, 1995; Deb et al., 2002). In general, a random 

set of solutions defined by their decision variables are first generated and evaluated. 
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Some protocol is then used to select a subset of these solutions which will be used in the 

creation of a set of offspring solutions added to the population. Through user defined 

mechanisms, each of these offspring are created by combining the decision-variable 

information of two or more of the solutions selected from the initial population. In this 

way, new solutions may be generated that share some characteristics of the solutions used 

in their formation. Additionally, a defined mutation operator may be applied that 

randomly modifies some decision variable(s) within select offspring solutions to 

introduce entirely new characteristics. The new population (the solutions selected from 

the original population and the offspring they produced) are then subjected to a 

subsequent round of selection and the process repeats itself. When a selection mechanism 

is utilized that appropriately encourages the proliferation of well-performing solutions, 

the population can migrate toward the Pareto frontier of the multiobjective space. After 

meeting some stopping criteria, the algorithm is terminated, and a set of Pareto efficient 

solutions can be identified from the final generated population. While several 

mechanisms for the mentioned selection procedure have been developed, those 

employing some sort of Pareto dominance ranking scheme have emerged as some of the 

best performing and most widely applied (Srinivas & Deb, 1994; Horn et al., 1994; 

Zitzler & Thiele, 1999; Zitzler et al., 2001; Deb et al., 2002; Deb & Jain, 2013). 

2.4.2. Particle Swarm Optimization.  Particle swarm optimization is another 

biologically inspired optimization procedure that has been modified to solve 

multiobjective optimization problems (Hu & Eberhart, 2002). Generally, particle swarm 

optimization algorithms initiate a set of random solutions and maintain a mechanism to 

individually migrate these points toward better performing regions of the decision space 
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(Kennedy & Eberhart, 1995). Naturally inspired, this method mimics the behavior of 

flocking birds, schooling fish, and other swarm instances in their activities to find food, 

avoid predators, and optimize environmental parameters (Kennedy & Eberhart, 1995). 

Utilizing individual and population-held knowledge, challenging optimization scenarios 

can be effectively explored via the swarms managed by these approaches. Initially 

developed for single-objective optimization, alterations have been made to avoid the 

convergence of the method’s agents upon a single solution. Often using clustering or 

some other diversity-preserving mechanism, these modified particle swarm optimization 

methods have shown the ability to discover well-distributed representations of the Pareto 

frontier in multiobjective space (Hu & Eberhart, 2002; Janson & Merkle, 2005; Coello et 

al., 2004; Pulido & Coello, 2004). 

2.4.3. Simulated Annealing Approaches.  Simulated annealing seeks to mimic 

the controlled cooling of metals and other materials to manipulate their physical 

properties (Kirkpatrick et al., 1983). Whereas metallurgic annealing is concerned with the 

heating and slow cooling of a metal to remove internal stresses and toughen the material, 

simulated annealing adopts analogous techniques to perform global optimization (Černý, 

1985). In the most general sense, an arbitrary initial solution is set as the current state and 

is evaluated with respect to the objective function. A neighboring solution is then selected 

and similarly evaluated. If the neighboring solution is more optimal than the current state, 

the algorithm moves to this neighboring solution, setting it as the new current state. If, 

however, the neighbor is not more optimal than the current state, the algorithm may still 

elect to move to the neighbor by some probabilistically driven mechanism. While not 

described in detail here, this mechanism considers both the objective function difference 
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between the two solutions and a descending temperature parameter. When the 

temperature is high, there is a greater chance the algorithm can move to a less optimal 

solution; as the temperature lowers, a move of this kind becomes much less likely. At 

each step of the algorithm, this temperature is reduced by a supplied convention, 

resembling the cooling of a metal undergoing annealing. This ability to move to less 

optimal solutions allows the algorithm to escape local optima in search of a globally 

optimal solution. This procedure is repeated until the temperature is reduced to some 

predefined level or other stopping criteria are met. Originally designed for single-

objective optimization, this method has been modified to handle multiobjective problems 

as well (Bandyopadhyay et al., 2008; Suppapitnarm et al., 2000). Typically, this involves 

the incorporation of some sort of Pareto archive to keep track of Pareto efficient solutions 

discovered and provide information about the relative performance of compared 

solutions.  

2.5. INTERACTIVE METHODS 

Interactive methods have carved out a niche within the taxonomy of 

multiobjective optimization solution approaches (Mäkelä & Miettinen, 2006; Branke et 

al., 2008; Miettinen et al., 2008). This iterative solution process periodically requests 

decision-maker input to guide the search toward a preferred solution. This interactive 

approach provides some utility as it incorporates preferences important to the decision-

maker, but does so gradually, allowing a continued search process that gives the decision-

maker updated information about the range of solutions attainable before requiring all 

preferences be made. While a creative and effective tool to learn about the solution space 
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and identify preferred solutions, the results of these methods are inherently subjective and 

require considerable effort from decision-makers to obtain. A survey of interactive 

method concepts, variations, and utilizations was conducted by Xin et al. (2018). 

2.6. METHOD PREVALENCE AND RESEARCH DIRECTIONS 

Each of the above methods have received considerable attention and application, 

obvious by their possession of the notoriety requisite of inclusion in this very brief 

survey. While a priori methods using simple scalarization techniques have enjoyed much 

usage —owing their simplistic and expedient implementation—, their deviation from a 

truly multiobjective consideration and the inherent bias they introduce before any 

solutions are generated have limited their applicability, veracity, and performance 

(Srinivas & Deb, 1994).  

Examining a posteriori alternatives, evolutionary algorithms have emerged as 

some of the most widely applied, rigorously examined, and well-performing 

multiobjective optimization methods (Deb et al., 2002; Zitzler et al., 2001; Srinivas & 

Deb, 1994; Zitzler & Thiele, 1999). These techniques have shown the ability, in repeated 

evaluations, to converge to a well-distributed set of Pareto optimal points, producing an 

approximation to the Pareto frontier in a single algorithmic run (Corne et al., 2001; Deb 

et al., 2002; Zitzler et al., 2001). Further, they do not require much in the way of 

mathematical transformation or reformulation; all that is needed is a means to determine 

the objective function values achieved by programmatically generated solutions. These 

approaches also consider all objectives simultaneously, retaining the true spirit of 

multiobjective optimization. Indeed, evolutionary algorithms have emerged as some of 
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the premier methods to solve multiobjective optimization problems in the literature and in 

practical application. 

While celebrated and well-performing, some criticisms of these biologically 

inspired algorithms have emerged. Principally, the computational complexity of their 

processes has been a major critique. Often, this complexity has limited the scale and 

scope of problems to which these algorithms may be applied. Therefore, substantial effort 

has been dedicated to improving the efficiency of these well-adopted optimization tools 

(Deb et al., 2002; Tang, Cai, & Zheng, 2008; McClymont & Keedwell, 2012; Wang & 

Yao, 2014; Zhang et al., 2015; Roy, Islam, & Deb, 2016; Mishra et al., 2018; Roy, Deb, 

and Islam, 2019). These investigations have considerably, and advantageously, improved 

the computational efficiency of multiobjective evolutionary algorithms, greatly 

broadening their range of applicability.  

Accordingly, two cooperative research directives are here identified, relating 

specifically to enhancing the state and scope of multiobjective evolutionary algorithms: 

1. Improve the computational efficiency of multiobjective evolutionary algorithms  

2. Demonstrate the utility of multiobjective evolutionary algorithms by applying 

them to challenging optimization scenarios 

These directives are complimentary in that achievement with respect to one 

sponsors effort and potential achievement in the other. For instance, improving the 

computational efficiency of multiobjective evolutionary algorithms enables their 

successful application to a more complete and challenging set of multiobjective 

optimization scenarios. Reciprocally, the successful application of multiobjective 

evolutionary algorithms to challenging optimization scenarios demonstrates their range 
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and utility, further sponsoring efforts to make them more efficient and widely applicable. 

Researches demonstrating achievement toward either of these directives serve well to 

further the study of multiobjective evolutionary algorithms and the broader paradigm of 

multiobjective optimization. 
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I. A GEOMETRICALLY-BASED METHOD FOR EFFICIENT MANY-

OBJECTIVE DECISION-MAKING  

Samuel Vanfossan 

Department of Engineering Management and Systems Engineering, Missouri University 
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ABSTRACT 

Practitioners of the systems engineering discipline are increasingly asked to make 

decisions from large sets of alternative solutions while considering the conflicting 

interests of diverse system stakeholders. Formulated as many-alternative, many-objective 

optimization problems, a posteriori methods are often applied to these scenarios to 

determine the solution alternatives that are objectively best performing according to the 

diverse stakeholder preferences. Frequently operating under computational and temporal 

constraints, decision-makers are often forced to consider fewer alternatives or incorporate 

a smaller number of stakeholder preferences due to the inefficiencies of current a 

posteriori methods. Utilizing a geometric comparison to the ideal point of the solution-

space, a method is proposed that seeks to reduce the computational and temporal expense 

of determining the set of objectively superior solutions. In a numerical comparison to 

current methods, the proposed was shown to exhibit improved efficiency across a range 

of many-objective test-classes. Equipped with these efficiency allowances, systems 

engineering decision-makers can consider more alternatives and a greater number of 

stakeholder preferences without violating computational or time restrictions. These 
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liberties enable a more complete and tailored search of the solution-space, permitting the 

identification of more thoroughly vetted and scrutinized objectively superior engineering 

solutions. 

Keywords: Pareto frontier, Pareto efficient set, many-objective decision-making, 

geometric presort, ideal point comparison 

 

1. INTRODUCTION 

 

The systems engineering discipline frequently demands its practitioners make 

decisions from large sets of alternative solutions while serving the conflicting interests of 

diverse stakeholders (Crawley, Cameron, & Selva, 2016). Sponsoring this demand has 

been the increased employment of model-based systems engineering. This technique 

allows systems designers to develop an ever-greater number of solution alternatives 

quickly, while avoiding many of the inhibitive costs associated with traditional system 

development approaches (Ramos, Ferreira, & Barcelo, 2012). While this increased 

exploration of the solution-space has facilitated marked advancement in creativity and 

innovation, it has greatly increased the burden associated with systems engineering 

decision-making. Decision-makers are now expected to consider a large number of 

solution candidates in justifiably selecting the preferred alternative (Crawley, Cameron, 

& Selva, 2016). Further complicating the selection process are the alluded diverse 

interests that nominated system solutions must serve. As engineering endeavors become 

more complex and global in scale, the parties contributing to a system’s creation, and 

those expecting service from its enaction, greatly increase in number (Leybourne, 
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Kanabar, & Warburton, 2010). These stakeholders often house conflicting interests and 

dissimilarly perceive system value, creating scenarios where different alternatives are the 

preferred solution of different interest parties. Consider the simple example of two 

stakeholders interested in the development of an aircraft. The first stakeholder may desire 

the vehicle have as large a carrying capacity as possible, while the second may desire the 

craft’s fuel economy be maximized. Because of the noncooperative nature of the desires, 

it is unlikely that a single solution is the globally preferred choice of both stakeholders. 

As the number of conflicting stakeholders increases, the likelihood that a universally 

preferred alternative exists decreases (Marler & Arora, 2004) Instead, the decision-maker 

will likely be faced with a set of alternatives that are variably attractive to different 

stakeholders in accordance with their respective conflicting preferences. 

The described scenario, characterized by a high-volume of solution candidates 

and diverse stakeholder preferences, is indicative of a many-alternative, many-objective 

optimization problem. This class of optimization problems is defined by the use of many 

(more than 3; whereas a multiobjective problem has 2 or 3) objectives in the selection of 

alternatives from a set of many candidate solutions (IEEE, 2018). In solving many-

objective optimization problems, two method classes are used. The first method class, a 

priori methods, requires preference information be expressed prior to conducting the 

optimization (Hwang & Masud, 1979). These methods typically involve the scalarization 

of the multiple objective functions into a single function based on the information 

supplied by the decision-maker. Strategies of this class include weighting or utility 

function techniques, lexicographic methods, and goal programming (Srinivas & Deb, 

1994). While this class of methods serves well to reduce the set of candidate solutions to 
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a fitting alternative, each variation requires extensive user input that is inherently 

subjective, detracting from the veracity and robustness of generated solutions. The 

second method class, a posteriori methods, operates to provide the decision-maker with 

the set of alternatives objectively performing the best with regard to the independent 

objective functions (Marler & Arora, 2004). This provision proves extremely useful to 

the systems engineer as it reduces the consideration set of solution candidates to a 

condensed set of well-performing alternatives. Further, the members of this condensed 

set are superior to removed candidates according to their performance at the stated 

objectives. Constructing this reduced superior set allows for greater attention and scrutiny 

to be paid to the remaining candidates. This aids the decision-maker in selecting a more 

informed and well-vetted alternative, while ensuring that objectively superior alternatives 

are not overlooked. No preference information is required of decision-makers to establish 

the superior set, insulating it from the subjectivity that plagues a priori methods. 

Comprised primarily of mathematical programming-based and heuristic 

strategies, the crux of many a posteriori methods is the pairwise and objective-wise 

comparison of candidate alternatives to determine those constituting the superior set 

(Marler & Arora, 2004). These comparisons are the mechanism enabling certification that 

members of the reduced set are both relatively well-performing and not inferior to any 

member of the original set of candidates. However, this mechanism, particularly when 

applied to many-alternative and many-objective problems, is computationally and 

temporally expensive (Roy, Islam, & Deb, 2016). This expense arises as more 

comparisons are required to reduce the original candidate set to the set of superior 

performers. This shortcoming proves problematic, particularly as systems engineers seek 
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to optimize the stakeholder-determined value of complex contemporary systems selected 

from large pools of candidate alternatives. The effect of this deficiency is that decisions 

made under computational or time constraints cannot be as thorough in their search of the 

solution-space. Instead, decision-makers must reduce the quantity of alternatives 

examined or the number of objectives considered when selecting a candidate solution. 

Simply, the computational expense of this comparative mechanism institutes a tradeoff 

between the scrupulousness of the solution search conducted and the resources required 

to construct the superior set. 

The author herein proposes a technique based on solution-space geometry that can 

be used within a posteriori optimization methods to reduce their computational and 

temporal expense. Armed with this technique, systems engineers employing a posteriori 

methods can include considerably more solution alternatives and an increased number of 

objective functions in determining the set of superior alternatives. This permits a more 

exhaustive, incorporating, and tailored search of the candidate solution-space without 

violating computational or time constraints. Through a more complete search, decision-

makers are granted the potential to identify and select solutions that more aptly and 

globally satisfy the interests of the system’s diverse stakeholders. 

To introduce the proposed technique, a few definitions describing many-objective 

considerations are first presented. Current methodologies used in constructing the 

superior set are then examined, in addition to the provision of commentary on their 

efficiency and contributing factors. The proposed technique is then presented, 

highlighting the logic precipitating its formulation. The proposed and current methods are 

then applied to a variety of many-alternative, many-objective solution sets, testing the 
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computational and temporal expense of each. The comparative performance of the 

proposed technique is then discussed, providing some explanation for its aptitude across 

the different testing scenarios. Finally, a brief discussion of the technique’s limitations 

and future work suggestions are provided. 

 

2. PRELIMINARIES 

 

To facilitate discussion of current methods and the technique proposed by the 

author to hasten the discovery of the superior set, a few basic concepts are first 

established. Principal is the definition of a many-objective optimization problem, given in 

Equation (1). 

 min(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)) 

𝑠. 𝑡. 𝑥 ∈ 𝑋 

(1) 

where the integer k > 3 is the number of objectives and the set X is the feasible set of 

decision vectors. 

 Contrary to their single-objective counterparts, many-objective optimization 

problems incorporate numerous distinct, and often competitive, objective functions that 

can be optimized independently. Constituting the essence of many-objective decision-

making, the optimization of one objective often occurs at the expense of others. This 

culminates in the nonexistence of a feasible solution that concurrently minimizes all 

objective functions (Srinivas & Deb, 1994). The mechanism of Pareto dominance is 

instead used to compare the attractiveness of candidate solutions, given the absence of a 

universally optimizing feasible solution (Steuer, 1989). 
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 Defined in Equation (2), Pareto dominance is achieved when a solution-a 

performs just as well as another solution-b with respect to each objective of the 

optimization, while also performing better than solution-b with respect to at least one 

objective. In this scenario, solution-a is said to Pareto dominate solution-b and may be 

thought of as superior to the latter, as defined by the set of objective functions. 

 𝐼𝑓 𝑓𝑖(𝑥𝑎) ≤ 𝑓𝑖(𝑥𝑏)∀ 𝑖 ∈ {1, 2, … , 𝑘}𝑎𝑛𝑑 𝑓𝑗(𝑥𝑎) < 𝑓𝑗(𝑥𝑏) 

𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑛𝑑𝑒𝑥 𝑗 ∈ {1, 2, … , 𝑘} 

(2) 

then xa is said to Pareto dominate xb.  

Solution-a’s dominance of solution-b may be denoted as xa ≺ xb. Alternatives 

between which a dominance relationship does not exist are called non-dominating 

solutions (Steuer, 1989). 

Solutions which are not dominated by any other solution in the set are regarded as 

Pareto optimal or Pareto efficient solutions (Pareto, 1906). The set of all Pareto optimal 

solutions within the candidate set is said to constitute the Pareto frontier of the set. This 

set describes the collection of solutions that are superior to the dominated solutions while 

non-dominating to other members of the Pareto frontier (Horn, Nafpliotis, & Goldberg, 

1994). Pareto optimality and the Pareto frontier are defined in Equations (3) and (4), 

respectively. The Pareto frontier is synonymous with the superior set described in the 

previous section. 

 𝑥𝑎 ∈ 𝑋 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑖𝑛 𝑋 𝑖𝑓𝑓 ∄𝑥𝑏 ∈ 𝑋 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥𝑏 ≺ 𝑥𝑎 

(3) 

 𝑇ℎ𝑜𝑠𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 {𝑥𝑎 ∈ 𝑋|∄𝑥𝑏 ∈ 𝑋, 𝑥𝑏 ≺ 𝑥𝑎} 

𝑐𝑜𝑚𝑝𝑟𝑖𝑠𝑒 𝑡ℎ𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 

(4) 
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These conventions work well to describe the responsibility of systems engineering 

decision-makers facing the conflicting interests of diverse stakeholders. Treating 

stakeholder preferences as independent objectives, the decision-maker may formulate 

solution selection as a many-objective optimization problem void of a globally 

optimizing alternative. It is then the task of the decision-maker to determine the set of 

objectively superior (Pareto efficient) solutions which will receive increased scrutiny 

before a final selection is made. 

 

3. CURRENT METHODS 

 

To discern the set of Pareto efficient solutions various methodologies have been 

developed. Each of these require the pairwise and objective-wise comparison of 

alternative solutions as discussed previously. As the number of candidate solutions 

increases, these comparisons make the computational and temporal expense of 

constructing the Pareto frontier much more burdensome. While an increased number of 

comparisons is inevitable as solution sets expand, the scheme used in determining the 

Pareto frontier can have substantial implications on the number of comparisons 

necessitated.  

The first methodology, which will henceforth be called the traditional method, 

compares each member of the candidate solution set (S) to every other member. At each 

comparison, it is determined whether the focal solution (xℓ) is Pareto dominated by the 

current comparison solution (xw). If this relationship exists, the index of the comparison 

solution (w) is added to the index set of counterpart solutions dominating the focal 
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solution (DSℓ). Upon the comparison of each counterpart solution to the focal, the focal 

solution is added to the set of Pareto efficient solutions (PF) if its index set of dominating 

solutions is empty. 

After each candidate has been examined for domination as the focal solution, the 

resulting set of Pareto efficient solutions describes the Pareto frontier of the solution set. 

The algorithmic description of the traditional method is presented in Algorithm 1. 

 

Algorithm 1: Traditional Method 

Description: The following procedure determines the set of Pareto efficient solutions, 

PF, within any given set of solutions, Ѕ. 

1 Let xℓ
i denote the ith objective function value of the ℓth solution of Ѕ such that  

i ≤ | Ѕℓ | and ℓ ≤ | Ѕ |. 

Let DSℓ denote the index set of solutions Pareto dominating solution ℓ. 

Set DSℓ = ∅ ∀ ℓ 

Set PF = ∅ 
Set ℓ = 1 

2 While ℓ ≤ | Ѕ | 

3  Set w = 1 

4  While w ≤ | Ѕ | 

5   If w = ℓ, set w=w+1 

6   Else if xw ≺ xℓ, set DSℓ = DSℓ ∪ w, w=w+1 

7   Else set w=w+1 

8  End 

9  Set ℓ = ℓ+1 

10  If DSℓ = ∅, set PF = PF ∪ xℓ 

11 End 

12 Return PF 

 

Methodologies following the scheme of the traditional method have been used in 

several popular publications, perhaps most notably Srinivas and Deb’s work on non-

dominated sorting in genetic algorithms (1994). These algorithms, among others, 
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commonly utilize structures resembling the traditional method for various optimization 

processes including evolutionary survival and parent selection. Employed in many 

applications for the facilitation of non-dominated sorting, the use of the traditional 

method solely for the determination of the Pareto frontier may not make best use of 

expended computation as redundant comparisons frequently occur. Several adaptations 

have been developed to address this inefficiency, one of which will be introduced 

following a discussion of the factors contributing to the traditional method’s 

improvidence.  

While the traditional method produces the Pareto frontier, the number of 

comparisons required for this production can be reduced, enabling a more efficient 

algorithm. Following the traditional method, the relationship between a solution-a found 

to be dominated by a solution-b will later be reexamined during solution-b’s tenure as the 

focal solution. Indeed, no additional information is found through this reexamination, a 

redundancy that will occur between every pairwise comparison within the set. Other 

inefficiencies are also present. For instance, consider a solution-a found to be dominated 

by a solution-b while subsequently found to dominate a solution-c. In this scenario, 𝑥𝑏 ≺

𝑥𝑎 ≺ 𝑥𝑐, implying that 𝑥𝑏 ≺ 𝑥𝑐. While this implied relationship could have been inferred 

from the information gained during solution-a’s tenure as the focal solution, it is not 

reconciled by the traditional method until solution-c is investigated as the focal.  

The second methodology, which will henceforth be called the dynamic method, 

addresses both of the previous inefficiencies. This method begins by setting the first 

solution of the candidate set (x1) as the focal solution (xℓ) and comparing it to the second 

(xℓ+1) solution of the candidate set, denoted as xw. If xw is dominated by xℓ, xw is removed 
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from the candidate set and xw+1 becomes the new xw. If, instead, xℓ is dominated by xw, xℓ 

is removed from the solution set. Upon the removal of xℓ, xℓ+1 is set as the new xℓ and the 

new xℓ+1 is set as xw. In the event that no dominance relationship exists or xℓ and xw are 

identical, no removal is made and the index w is set to w+1. Repeating this process until 

w exceeds the number of solutions in the candidate set (| S |), the index ℓ is then set to 

ℓ+1 and w is reset to the new ℓ+1. The indexing of ℓ is then repeated as dictated by w 

until ℓ exceeds one less than the number of solutions in the candidate set (| S |−1).  

When ℓ reaches this stopping criterion, the algorithm is terminated and the solutions 

remaining in the candidate set comprise the Pareto frontier of the original set. The 

algorithmic description of the dynamic method is presented in Algorithm 2. 

 

Algorithm 2: Dynamic Method 

Description: The following procedure determines the set of Pareto efficient solutions, 

PF, within any given set of solutions, Ѕ. 

1 Let xℓ
i denote the ith objective function value of the ℓth solution of Ѕ such that  

i ≤ | Ѕℓ | and ℓ ≤ | Ѕ |. 

Set ℓ = 1 

2 While ℓ ≤ | Ѕ |−1 

3  Set w = ℓ + 1 

4  While w ≤ | Ѕ | 

5   If xℓ
i = xw

i for all i, set w=w+1 

6   Else if xℓ ≺ xw, set Ѕ = Ѕ \ {xw} 

7   Else if xw ≺ xℓ, set Ѕ = Ѕ \ {xℓ}, w= ℓ+1 

8   Else set w=w+1 

9  End 

10  Set ℓ = ℓ+1 

11 End 

12 Set PF = S 

13 Return PF 
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The dynamic method, as described, addresses the inefficiencies of the traditional 

method by removing dominated solutions from the consideration set upon the recognition 

of their domination. This does not affect the output of the algorithm as any solutions that 

would have been dominated by a removed solution are assuredly dominated by the 

solution instigating the latter’s removal. Additionally, the dynamic method employs two-

way dominance checks, determining if the focal solution is dominated by or dominates 

the pairwise solution at every comparison. Through these mechanisms the effects of the 

second discussed inefficiency are reduced, enabling a smaller number of comparisons to 

construct the Pareto frontier. Further, the index advancement conventions of the dynamic 

method ensure that all necessary comparisons needed to ensure the Pareto efficiency of 

nonremoved solutions are made, without performing the directly redundant comparisons 

described by the first discussed inefficiency. 

Methodologies following a scheme resembling the logic of the dynamic method 

have been used in many well-cited algorithms including the Normalized Normal 

Constraint Method (Messac, Ismail-Yahaya, & Mattson, 2003) and Deductive Sort 

(McClymont & Keedwell, 2012). The use of this approach has shown to be effective in 

reducing the number of comparisons required to generate the Pareto frontier (McClymont 

& Keedwell, 2012). This allows for the consideration of more candidate solutions and a 

greater number of objective functions without violating computational or time 

constraints. Building upon its efficacy, an adjustment to the algorithm of the dynamic 

method is now presented, aimed at further reducing the number of comparisons required 

in constructing the Pareto frontier. 
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4. A GEOMETRICALLY INTELLIGENT METHODOLOGY 

 

To understand the logic of the proposed methodology the following scenario is 

first presented: 

Let a set of candidate solutions be composed of four alternatives: solution-a, 

solution-b, solution-c, and solution-d. Let non-dominating relationships exist between 

solution-a, solution-b, and solution-c, while each of these solutions are dominated by 

solution-d. If the solutions are placed in alphabetical order, the following operations are 

completed by following the dynamic method algorithm:  

1. Solution-a compared with solution-b, no removal 

2. Solution-a compared with solution-c, no removal 

3. Solution-a compared with solution-d, solution-a removed 

4. Solution-b compared with solution-c, no removal 

5. Solution-b compared with solution-d, solution-b removed 

6. Solution-c compared with solution-d, solution-c removed 

This constitutes six pairwise comparisons to determine solution-d as the only 

Pareto efficient solution within the candidate set. However, if solution-d is placed as the 

first alternative in the candidate set, the same algorithm is able to produce the Pareto 

frontier in half the amount of comparisons: 

1. Solution-d compared with solution-a, solution-a removed 

2. Solution-d compared with solution-b, solution-b removed 

3. Solution-d compared with solution-c, solution-c removed 
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The reduced number of required comparisons arises as the solution dominating 

the highest number of counterparts (the most dominant solution) is placed first in the set. 

This allows it, serving as the original focal solution, to remove dominated counterparts 

early, relieving the proceedings of the non-dominating relationships examined in the first 

sequence. This recognition sponsors the desire to place the most dominant solutions of 

the candidate set first, increasing the likelihood that inferior candidates are removed 

early, along with the unnecessary comparisons they may solicit.  

Seeking to place the most dominant solutions of the candidate set at the set’s 

beginning, a surrogate dominance metric must be established. This surrogate is developed 

as determining the exact number of counterparts that each candidate solution dominates 

requires the use of an algorithm with complexity similar to the traditional method. The 

application of an algorithm of this scale would then make any efficiencies granted by 

knowledge of the true domination count irrelevant, as the Pareto frontier could have been 

established for the same computational expense. In establishing this proxy metric, a 

consideration of the location on the solution-space that would be the most dominant is 

made. To approach this location the ideal point of the candidate set is identified. The 

ideal point is comprised by the optimum exhibited value of any solution in the candidate 

set for each objective function. Defined by Equation (5) for a candidate solution set with 

X members and k objectives, the ideal point exhibits dominance over every alternative 

within the candidate set. 

 𝑥𝑖
𝑖𝑑𝑒𝑎𝑙 = 𝑖𝑛𝑓

𝑥∈𝑋
𝑓𝑖(𝑥) ∀ 𝑖 = 1, . . . , 𝑘 (5) 

 The ideal point, however, is likely not a real member of the candidate solution set, 

as optimizing all objectives simultaneously is difficult in practice. Consider, for example, 
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the simplistic multiobjective problem of maximizing performance while minimizing cost. 

Intuitively, it is very unlikely that the ideal point of maximum performance at minimal 

cost is exhibited by any real alternative.  

The illusory nature of the ideal point does not, however, mean that it is not useful. 

Instead, it can be used as a measuring stick to anticipate the dominance that any real 

solution will exhibit. This expectation is achieved by determining the scaled Euclidean 

distance between the real candidate solution and the ideal point, as shown for candidate 

solution-a with k objectives in Equation (6). 

 

𝐷𝑎 = √∑ (
𝑥𝑖

𝑎 − 𝑥𝑖
𝑖𝑑𝑒𝑎𝑙

𝑥𝑖
𝑖𝑑𝑒𝑎𝑙

)

2𝑘

𝑖=1

 

(6) 

Determining the distance to ideal point (D) value for all members of the candidate 

solution set, those with the smallest D-values can be regarded as most geometrically 

similar to the ideal point, xideal. Sorting the candidate solution set by ascending D-value, 

the algorithm shown in Algorithm 3 seeks to use this dominance surrogate to place the 

most dominating alternatives first. This proposed methodology, henceforth called the 

geometrically intelligent dynamic method (GIDM), attempts to take advantage of 

dominance ordering and reduce the number of comparisons required in producing the 

Pareto frontier. 

Identical to the dynamic method following the D-value sorting initiated in Step 0, 

the GIDM attempts to remove poor performing alternatives early in the procedure by 

subjecting them to frontloaded comparisons with highly dominating focal solutions. With 

the less dominating solution candidates removed, the redundant comparisons they incite 
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are also removed from the procedure, enabling a more efficient construction of the Pareto 

frontier. 

 

Algorithm 3: GIDM 

Description: The following procedure determines the set of Pareto efficient solutions, 

PF, within any given set of solutions, Ѕ. 

1 Let xℓ
i denote the ith objective function value of the ℓth solution of Ѕ such that i ≤ | 

Ѕℓ | and ℓ ≤ | Ѕ |. 

Let Dℓ denote the scaled Euclidean distance of the ℓth solution of S from the Ideal 

Point x*.  

Set S as the set S sorted by the ascending D-value of each solution.  

Set ℓ = 1 

2 While ℓ ≤ | Ѕ |−1 

3  Set w = ℓ + 1 

4  While w ≤ | Ѕ | 

5   If xℓ
i = xw

i for all i, set w=w+1 

6   Else if xℓ ≺ xw, set Ѕ = Ѕ \ {xw} 

7   Else if xw ≺ xℓ, set Ѕ = Ѕ \ {xℓ}, w= ℓ+1 

8   Else set w=w+1 

9  End 

10  Set ℓ = ℓ+1 

11 End 

12 Set PF = S 

13 Return PF 

 

5. NUMERICAL ANALYSIS 

 

To test the efficacy of the GIDM at reducing the resources required in 

establishing the Pareto efficient set, a series of random many-objective solution sets was 

created. Comprising 25 test-classes, solutions sets were developed incorporating a 

variable number of objectives (5, 7, 10, 12, and 15) and a variable number of candidate 
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solutions (1,000, 5,000, 10,000, 15,000, and 25,000). Objective function values for each 

solution were randomly selected from the uniform distribution between zero and one. The 

three defined methodologies were then presented identical solution sets within each class. 

The number of solution comparisons and the algorithmic runtime required by each 

method to determine the Pareto frontier was then recorded. This procedure was repeated 

50 times within each class, totaling 1,250 distinct scenarios presented to each method.  

 Table 1 describes the average number of alternative-to-alternative comparisons 

required by each method for each of the 25 test-classes. 

 

Table 1. Average Required Comparisons by Method and Test-Class. 

 

 

While a consideration of the number of comparisons required by each method is a 

good rudimentary measure of computational efficiency, temporal considerations are 

perhaps more valuable. This value advantage arises as the latter is a more tangible 
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measure and also incorporates the resource expense of the presorting mechanism utilized 

by the GIDM. While the improved runtime of structures using the dynamic method over 

the traditional method has been well demonstrated in the literature (McClymont & 

Keedwell, 2012; Wang & Yao, 2014; Roy, Islam, & Deb, 2016), a comparison of the 

dynamic method to the GIDM is now made. Table 2 describes the average algorithmic 

runtime required by these methods for each of the 25 test-classes. The tests were 

conducted on a 3.00 GHz Intel Core i9-9980XE processor with 64 GB of RAM, running 

Windows 10.  

From the data in the Table 2, Table 3 displays the average reduction in runtime 

required by the GIDM from the dynamic method. This data is displayed both as the 

number of seconds reduced and the percent runtime reduction achieved. Reading the 

table, the GIDM required 0.073 fewer seconds than the dynamic method for the 5-

objective, 1,000-alternative test-class, recognized as a 46.642% runtime reduction. 

Table 4 details the average percent of candidate solutions within each test-class that exist 

as non-dominated points. These solutions, which comprise the Pareto frontier, constitute 

a greater proportion of the original candidate set with an increased number of objectives 

and a diminished number of alternatives. The former phenomenon occurs as domination 

is harder to achieve with an increased number of objective criteria (Deb & Jain, 2014). 

The latter arises as an increased number of randomly generated solutions increases the 

prevalence of highly-dominating and highly-dominated solutions. 
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Table 2. Average Required Algorithmic Runtime by Method and Test-Class. 

 

 

Table 3. Average GIDM Algorithmic Runtime Reduction from Dynamic Method. 

 

 

Table 4. Average Percent of Candidate Solutions Non-dominated by Test-Class. 
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6. DISCUSSION 

 

Examining Table 1, it is shown that the GIDM is able to reduce the average 

number of comparisons required to establish the Pareto frontier in relation to the 

traditional and dynamic methods for all test-classes. The superiority of the dynamic 

method over the traditional method is similarly confirmed. Shifting focus to Table 2 and 

Table 3, the GIDM is additionally shown to reduce the algorithmic runtime required to 

produce the Pareto frontier in comparison to the dynamic method. It is also observed that 

for each objective function value tested, the GIDM generally enjoys increased runtime 

superiority over its counterpart methods with an increased number of alternatives. For 

example, examining 1,000 alternatives and 10 objectives, the GIDM exhibits an average 

runtime reduction of 0.206 seconds from the dynamic method; however, when 25,000 

alternatives are examined at the same objective function level, the reduction improves to 

over 101 seconds. Similar advantage trends can be discerned for the required number of 

comparisons by an analysis of Table 1. The only figure not in compliance with this 

tendency is the runtime reduction value for 5 objectives and 25,000 alternatives within 

Table 3. This value is smaller than its 15,000-alternative counterpart within the objective 

function level, perhaps indicating a point where the resource requirements of the 

presorting mechanism outweigh the benefits they enable. 

In a further review of Table 3, it appears that the runtime percent reductions are 

diminished as the number of objective functions increases. While the percent reductions 

are reduced, the GIDM still maintains some savings even in the most troublesome case of 

15 objectives and 1,000 alternatives. Additionally, the apparently contracted efficiency of 
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the GIDM with an increased number of objective functions is a product of the nature of 

the candidate solution set. As discussed previously and confirmed by Table 4, a greater 

number of objective functions generally corresponds to a greater proportion of the initial 

candidate set exhibiting Pareto efficiency. With an expanded Pareto frontier, less 

eliminations are made throughout the process, waning the efficiency that any Pareto-set-

identifying method could achieve. While an examination of the percent reductions for 

these high-objective test-classes may appear underwhelming, attention is reverted to 

direct runtime reduction values of Table 3, describing the concrete and not-insignificant 

savings achieved by the GIDM.  

 With these allowances, systems engineering decision-makers can consider more 

alternatives and incorporate a greater number of objective functions without violating the 

constraints imposed by computational or time limitations. Utilizing this freedom, 

decision-makers can claim and conduct a more complete and tailored search of the 

solution-space; strengthening their assertations of diligence and consideration when 

presenting recommendations to the diverse stakeholders from which objective functions 

stem. Simply, the GIDM equips systems engineering practitioners with a tool to make 

better decisions when computational and temporal availability are at a premium. This 

method helps assuage the need to ignore, or develop combinatory surrogates for, 

stakeholder preferences or reduce the number of alternatives that receive consideration. 

Consider a decision-maker using the dynamic method whose constraints only allow for 

the consideration of 10,000 alternatives when 7 objective functions are used; had this 

practitioner used the GIDM, the number of alternatives that could have been examined 

exceeds 15,000 (see Table 2). As consideration limitations are removed, decision-makers 
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can more confidently select alternatives that are scrutinized by a greater number of 

stakeholder preferences and selected from an even larger pool of candidate alternatives. 

These liberties enable a more justifiable and robust recommendation to these system 

interest parties. 

 

7. CONCLUSIONS AND FUTURE WORK 

 

Decision-makers of the systems engineering discipline are increasingly asked to 

make solution selections from large sets of alternatives while serving the interests of 

diverse stakeholders. Constituting a many-alternative, many-objective optimization 

problem, these scenarios confront practitioners with a set of stakeholder preferences to 

which no single solution alternative is globally preferred. Instead, the decision-maker is 

faced with a set of solutions that are variably attractive to the different interest groups. A 

posteriori methods help alleviate this burden by reducing the complete set of candidate 

alternatives to those objectively best performing, the Pareto frontier. The determination 

of this reduced set allows greater scrutiny to be granted to each member in making a final 

decision. As the number of alternatives and objective functions used in making a decision 

increases, however, the computational and temporal expense required to establish the 

Pareto frontier increases dramatically. This increased resource demand limits the number 

of alternatives that can be examined and the number of objective functions that can be 

utilized in producing the Pareto frontier under computational and time constraints. 

Decision-makers are thus forced to consider fewer alternatives or evaluate using fewer 
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objective functions, culminating in a less complete or less tailored search of the solution-

space.  

Seeking to remediate some of the inefficiencies of current a posteriori methods, a 

geometrically intelligent dynamic method of establishing the Pareto frontier was 

proposed. A comparative study was then conducted to examine the method’s efficacy at 

reducing the computational and temporal load of establishing sets of Pareto efficient 

solutions. In repeated trials, across a range of candidate solution set sizes and employed 

objective functions, the proposed method was shown to reduce the resources required to 

produce the Pareto frontier in comparison to current methods. This improved efficiency is 

useful to the systems engineering decision-maker as it allows more alternatives and a 

greater number of stakeholder-preference-driven objectives to be considered within the 

same computational and time restrictions. These allowances permit a more thorough and 

considerate search of the solution-space, enabling the contemplation and selection of 

more globally preferred and competitively examined solutions. Using this methodology, 

decision-makers are more well equipped to handle the many-alternative, diverse-interest-

serving nature of contemporary solution selection scenarios.  

The author notes that the numerical analysis performed used random values from 

the uniform distribution to create solution objective function values. The ability of this 

method should further be tested with objective values stemming from more complex and 

challenging distributions or creation functions. A number of many-objective test suites 

exist, serving as tremendous starting points for investigations of the kind. Several other a 

posteriori methodologies also exist that were not examined in this work. It is the 

immediate focus of the author to compare the GID ’s computational expectancy against 
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these nonincluded methodologies, incorporating solution sets generated by the mentioned 

many-objective test suites. 
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ALGORITHM 

 

Samuel Vanfossan and Benjamin Kwasa 
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ABSTRACT 

Nondominated sorting is a key procedure in the operations of many 

multiobjective evolutionary algorithms. Comprising most of the time required by these 

biologically inspired procedures, considerable attention has been dedicated to improving 

the efficiency of this critical process. Here presented is a novel, terminable nondominated 

sorting algorithm, Ideal Sort, that utilizes a pre-comparison solution ordering mechanism 

based on squared Euclidean distance to the ideal point of the population. The algorithm is 

further enhanced by the incorporation of a termination procedure, potentially reducing the 

number of fronts the algorithm has to determine. Both variations of this method (vanilla 

and terminable) exhibit a worst-case time complexity of O(MN2) and demonstrate strong 

experimental performance. Across a wide range of multiobjective datasets, Ideal Sort is 

shown to outperform other terminable nondominated sorting algorithms and achieves 

state-of-the-art performance in some instances. The investigation additionally highlights 

the importance and benefit of terminability within nondominated sorting procedures, a 

property demonstrated to enable considerable efficiency improvements. These findings 

make the case for the restructuring of efficient nondominated sorting procedures not 

equipped for terminability and the subsequent integration of this valuable property. 



 

 

50 

Keywords: Evolutionary algorithm, genetic algorithm, ideal sort, many-objective 

optimization, multiobjective optimization, nondominated sorting, terminable 

nondominated sorting, Pareto ranking 

 

1. INTRODUCTION 

 

An appropriate applicant to many real-world decision scenarios, multiobjective 

optimization differs from single-objective optimization in a number of ways. A principle 

difference lies in nature of the resolution to problems of these distinct classes. Single-

objective optimization is concerned with the identification of a globally optimum solution 

exhibiting the best possible performance as determined by a single objective function. 

Multiobjective optimization, however, is akin to problem formulations possessing a 

number of conflicting objective functions that disallow the existence of a single, globally 

optimal solution [1]. Instead, the solution-space is characterized by a subset of solutions 

superior to all other alternatives of the space, but from which no member can be 

considered globally preferable. Called the set of Pareto-optimal solutions (or Pareto 

efficient set, or nondominated set, or Pareto frontier), these alternatives constitute those 

solutions that perform objectively-best according to the objective functions while being 

unable to claim universal superiority over any other member of the Pareto efficient set 

[2]. The focus of many multiobjective optimization techniques is the provision of this 

Pareto efficient set, from which the receiving decision-maker can make a final selection.  
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Operating on populations of solutions, evolutionary algorithms (EAs) have 

emerged as a premier and natural approach avenue to handle multiobjective optimization 

problems. These heuristic methods seek to mimic natural selection in evolving a set of 

solutions toward the Pareto frontier of a problem [3]. Methodologies utilizing 

nondominated sorting (NDS) as a mechanism for selection have emerged as some of the 

most well-performing and widely applied of the published multiobjective EAs (NPGA 

[4]; MOGA [5]; PAES [6]; NSGA-II [7]; SPEA2 [8]; PESA-II [9]; NSGA-III [10]). 

While demonstrating aptitude, these algorithms are temporally and computationally 

constrained by the resource complexity of the NDS algorithm used [11]. This dependency 

culminates in the resource expense of NDS-employing EAs growing rapidly as the 

number of objective functions and candidate alternatives examined increases.  

An elevated resource complexity thus limits the number of objective functions 

and candidate alternatives that can be utilized under the presence of temporal and 

computational constraints. This limitation impacts not only the scale of optimization 

problems that these methods can feasibly address, but also their applicability within 

limited-resource, time-sensitive environments. Therefore, substantial effort has been 

expended to develop more efficient NDS algorithms, aimed at improving the time and 

computational requirements of employing multiobjective EAs [12]. These works have 

focused on reducing the number of solution-to-solution comparisons and the algorithmic 

runtime required to complete the NDS procedure [11]. While much progress has been 

made, any efforts capable of further improving the resource complexity of NDS 

procedures should receive considerable attention and application. 
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The contributions of this paper are summarized as follows: 

1) A novel, terminable NDS algorithm (Ideal Sort) is presented, along with the 

theoretical inspirations for its development.   

2) The importance and benefit of terminability within NDS algorithms is 

discussed and demonstrated. 

3) The presented algorithm’s performance across a wide range of multiobjective 

test sets is compared to that of several state-of-the-art methods. Ideal Sort is 

shown to generally outperform other terminable methods and achieves state-

of-the-art performance in some instances. 

4) A new, scalable multiobjective test set creation procedure for evolved datasets 

is presented (Algorithm 2) and utilized. This procedure looks to mimic a 

common scenario to which NDS algorithms are applied within multiobjective 

EAs. 

In the next section, some fundamental multiobjective optimization definitions and 

concepts are quickly introduced. Subsequently, a review of published algorithms focused 

on improving the efficiency of NDS is presented. A new methodology is then proposed, 

followed by a brief examination of its theoretical complexity. The method’s experimental 

performance is then compared to that of several state-of-the-art algorithms, followed by a 

discussion of the results achieved. In a final section, concluding remarks and 

recommendations for future work are extended. 
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2. PRELIMINARIES 

 

A (minimization) multiobjective optimization problem with M objectives is 

defined by Equation (1), where fj(x
a) is solution a’s performance with respect to objective 

function j and X is the set of feasible solutions. 

 𝑚𝑖𝑛(𝑓1(𝑥) , 𝑓2(𝑥), … , 𝑓𝑀(𝑥)) 
𝑠. 𝑡. 𝑥 ∈ 𝑋 

(1) 

As these objectives may be conflicting and eliminatory of a globally optimal 

solution, “Pareto dominance” is used to compare solutions. Solution a is Pareto 

dominated by another solution b in M objectives if the conditions of Equation (2) are met. 

Solution b’s dominance of a is denoted by xb ≺ xa
. 

 𝑓𝑖(𝑥𝑏) ≤ 𝑓𝑖(𝑥𝑎) ∀ 𝑖 ∈ 1,2, … , 𝑀 𝑎𝑛𝑑𝑓𝑗(𝑥𝑏) < 𝑓𝑗(𝑥𝑎) 

𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗 ∈ {1, 2, . . . , 𝑀} 

(2) 

Solutions that are not dominated by any solution in the set are said to be Pareto 

efficient or nondominated. Collectively, all nondominated members of a set comprise the 

set’s first Pareto front. Solutions dominated only by one or more member of the first 

Pareto front constitute the second Pareto front, and so on. NDS slates solutions of the set 

into their associated Pareto fronts in this manner. 

 

3. RELATED WORK 

3.1. COMPLETE COMPARISON METHODS 

Among the first prevalent multiobjective EAs to utilize NDS was Srinivas and 

Deb’s Non-dominated Sorting Genetic Algorithm (NSGA) [13]. Receiving much 
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attention, this algorithm emerged as one of the seminal works on the topic of 

multiobjective EAs. Capable of maintaining a well-distributed set of points while 

converging to the Pareto frontier of the solution-space, NSGA employs an NDS 

mechanism (which has come to be called the naïve or brute force method) that compares 

each solution in the population to every other solution. At each comparison, the 

dominance relationship between the pair is determined, recording an incrementing tally to 

the manifest of a dominated solution. After the final pairwise evaluation is completed, 

those solutions not dominated by any of their counterparts are recognized as the Pareto 

efficient solutions of the population. These solutions are then temporarily removed from 

the population, the dominance tallies are reset, and the process is repeated to find the next 

Pareto front. While able to successfully sort the population into their nondominated 

fronts, the algorithm is resource intensive, maintaining a worst-case computational 

complexity of O(MN3) -where M is the number of objective functions and N is the size of 

the population.   

Emerging as one of the key criticisms of NSGA, its computational complexity 

was addressed by one of the algorithm’s authors in a successor approach, NSGA-II [7]. 

The most well-cited multiobjective optimization procedure to date, NSGA-II utilizes an 

approach called Fast Non-dominated Sorting (FNDS) that reduces the worst-case 

computational complexity of the sorting procedure to O(MN2). This efficiency is enabled 

by an expanded bookkeeping mechanism that stores the dominance relationships between 

each pair of solutions in the population. Comparing each solution to every other, those 

shown to be not dominated by a counterpart are recognized as members of the first Pareto 

front. Editing the expanded domination records, the domination effects of these solutions 
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are then disregarded. Solutions not dominated by any member in the updated ledger are 

then set as the second Pareto front. This process is repeated until every solution is 

assigned to a front. Owing the dominance relationship traceability of this mechanism, 

each solution only needs to be compared to each of its counterparts once. This eliminates 

several of the directly redundant comparisons required by the naïve method as subsequent 

fronts are found. This computational savings does come at the expense of storage, 

increasing the space complexity to O(N2) from the O(N) required by its predecessor. The 

improved computational complexity of NSGA-II allows it to handle large and complex 

optimization problems much more feasibly than NSGA and other naïve-method-driven 

algorithms. As these two methods compare each solution to every other in the population 

in determining the set of Pareto fronts, they belong to a class of NDS algorithms called 

complete comparison methods.  

3.2. INFERRED DOMINANCE METHODS 

Recognizing the increased applicability of NDS EA’s when granted improved 

efficiency, several subsequent methodologies were developed to further improve the 

computational complexity of NDS procedures. An approach based on Arena’s Principle 

was proposed, capable of reducing computational complexity to O(MN√𝑁) [14]. This 

method uses dominance relationships to dictate a solution’s tenure as an arena host. 

During its tenancy, the Arena host is compared to all other solutions to determine if it is 

dominated by any of its counterparts. If it is not, it is added to the Pareto efficient set and 

the next arena host is selected. If the host is dominated by a counterpart, it is removed 

from consideration and the dominating solution becomes the new host. Solutions 
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dominated by the arena host are additionally removed from consideration. This procedure 

is continued until only the set of Pareto efficient solutions remain. Nondominated 

solutions are then ignored and the process is repeated to find the next Pareto front. 

Similar to FNDS, Arena’s Principle exhibits a worst-case computational complexity of 

O(MN2) while boasting a lesser space complexity of O(N).  

McClymont and Keedwell [15] proposed two algorithms, Climbing Sort and 

Deductive Sort, aimed at reducing the computational burden of NDS while maintaining a 

simple procedure to allow easy integration within existing EAs. The proposed Climbing 

Sort algorithm begins by comparing solutions of the population until a dominance 

relationship is established. When dominance occurs, the dominated solution is marked 

and discarded. If the focal solution of the comparison is the dominated solution, its 

dominating counterpart becomes the focal solution and the algorithm continues. This 

process is repeated until a nondominated focal solution is found. The algorithm then 

moves to the next focal solution and continues until only the set of nondominated 

solutions remain. The logic of this algorithm is that once a solution has been dominated, 

it cannot be a member of the efficient set, so any further comparisons to it are redundant. 

Additionally, any solutions that would have been dominated by the removed solution will 

be dominated by the solution prompting the latter’s removal. Called inferred dominance, 

this compound idea is the crux of the Climbing Sort and Deductive Sort algorithms. 

Inferred dominance lends to the improved efficiency of Arena’s Principle, as well, though 

the authors did not explicitly mention the term in their proceedings. Deductive Sort 

assesses each solution based on a fixed population order. By this procedure, a focal 

solution is compared to solutions that occur after it within a set list of solutions. Solutions 
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dominated by the focal solution are flagged and ignored. If a solution dominates the focal 

solution, the focal is similarly flagged and the focus is shifted to the counterpart 

immediately below the focal solution in the ordered list. This process is completed until 

all solutions have been examined, defining the nondominated set as those solutions not 

marked with a flag. Climbing Sort and Deductive Sort, like Arena’s Principle must be 

repeated to find subsequent Pareto fronts. Deductive Sort is demonstrated by the authors 

to generally outperform Climbing Sort and Arena’s Principle, while all maintain a best- / 

worst-case complexity of O(MN√𝑁) / O(MN2) and a space complexity of O(N). Corner 

Sort provides some improvement to Deductive Sort by ensuring that the next focal 

solution when a transition is made is in the current Pareto front [16]. This is achieved by 

selecting the remaining solution touting the best value at any one objective. While Corner 

Sort has been shown to outperform Deductive Sort in many scenarios, the algorithms’ 

computational and space complexity are identical.  

These four algorithms, Arena’s Principle, Climbing Sort, Deductive Sort, and 

Corner Sort, comprise prominent members of the set of NDS procedures called the 

inferred dominance methods. Heralding Deductive Sort and Corner Sort as their most 

efficient members, these algorithms successively determine Pareto fronts and can be 

terminated after a desired number of fronts are found. 

3.3. CONSTRUCTIVE FRONT METHODS 

Zhang et al. [17] took a different approach to NDS in their proposition of the 

Efficient Non-dominated Sort (ENS) algorithms. Instead of comparing each solution to all 

other unflagged solutions in the set, the ENS algorithms compare focal solutions only to 
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the solutions already assigned to a Pareto front. If a focal solution is dominated by any 

member of a front it is moved to the next front for similar testing. If the focal solution is 

found to be nondominating with all members of the front, then it is added to the front and 

the next solution is examined. This process is repeated until all members of a population 

are assigned to a front. Presorting the population in ascending order by the first objective 

function value (and lexicographically in the case of ties), there will never be a focal 

solution that is dominant of any previous solutions already added to the set of Pareto 

fronts. This enables the algorithms to disregard the possibility of having to move 

solutions to different fronts once they are placed during their focal tenure. The 

algorithmic variance between the two proposed ENS methodologies lies only in the first 

front to which the focal solution is compared. The Sequential Search algorithm (ENS-SS) 

begins by comparing the focal solution to the first front and progresses by the described 

mechanism accordingly. The Binary Search algorithm (ENS-BS) begins the comparisons 

at the median established front, seeking to bypass the comparisons stemming for common 

demotions arising as the algorithm progresses to the latter parts of the sorted population. 

While ENS-BS typically outperforms ENS-SS, the latter may exhibit superiority in some 

instances, particularly when a small number of fronts are present. Maintaining a worst-

case complexity of O(MN2), ENS-SS exhibits a best-case computational complexity of 

O(MN√𝑁) while ENS-BS achieves O(MNlogN) complexity. These algorithms are 

advantaged by a space complexity of O(1) but require that all solutions be examined 

before even the first Pareto front can be considered complete. 

Furthering the pre-comparison sorting procedures, Roy, Islam, and Deb [11] 

proposed an NDS algorithm entitled Best Order Sort (BOS). This method first sorts the 
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population according to their performance on each independent objective, assigning the 

set of partial ranks that define each solution. The algorithm then iterates through the 

sorted objective columns in a row-wise fashion, placing solutions into respective fronts as 

they are discovered. The sorting procedure (like with the ENS algorithms) ensures that 

the front to which a solution is added will not need to be altered after the initial 

assignment. Further, when a solution is discovered it only needs to be compared to 

solutions which have a higher partial rank with respect to the currently examined 

objective. This reduces many of the unnecessary comparisons executed by the ENS 

methods. BOS is able to achieve a best-case computational complexity of O(MNlogN) 

and requires O(MN) storage. The method described by the authors, however, is not able 

to handle duplicate solutions within the population. This shortcoming is addressed by 

Mishra et al. [18] in their proposition of the Generalized Best Order Sort (GBOS) 

algorithm. Their alterations enable the handling of duplicate solutions while retaining the 

computational and space complexities of BOS. Two variants of GBOS are posed, 

sequential search (GBOS-SS) and binary search (GBOS-BS), mirroring the strategy and 

performance characteristics applied to ENS. Roy, Deb, and Islam [12] expanded upon the 

BOS algorithm in their creation of Bounded Best Order Sort (BBOS). BBOS uses 

adaptive binary trees to cut down on the number of fronts a solution needs to pass 

through before finding the front to which it belongs. This algorithm is shown to 

demonstrate great performance when the number of fronts is very large and retains the 

space and time complexities of BOS. 

These six algorithms, ENS-SS, ENS-BS, BOS, GBOS-SS, GBOS-BS, and BBOS 

comprise members of the set of NDS procedures called the constructive front methods. 
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These algorithms each look to add solutions to their respective fronts individually and 

must examine all solutions before the algorithm can be terminated. The BOS and BBOS 

algorithms boast the best experimental efficiency of the constructive front methods and 

are considered state-of-the-art NDS procedures. 

A table summarizing the computational and space complexities of the discussed 

methods is shown in Table 1. 

 

Table 1. Time and Space Complexity of Existing Nondominated Sorting Methods. 

 

 

4. THE PROPOSED ALGORITHM: IDEAL SORT 

4.1. ALGORITHMIC INSPIRATION 

To understand the logic of the algorithm to be proposed, the following example is 

first presented: 

Consider a population of four solutions: solution-a, solution-b, solution-c, and 

solution-d (Figure 1). While the first three solutions are nondominating to each other, 

each is dominated by solution-d. Maintaining their alphabetical ordering and employing a 

terminable inferred dominance method (in this case, Deductive Sort, see [15]), the 

Method 
Time Complexity 

Space Complexity Method Class 
Base-Case Worst-Case 

Naïve / Brute Force O(MN2) O(MN3) O(N) Complete Comparison 

Fast Non-dominated Sort O(MN2) O(MN2) O(N2) Complete Comparison 

Arena's Principle O(MN√𝑁) O(MN2) O(N) Inferred Dominance 

Climbing Sort O(MN√𝑁) O(MN2) O(N) Inferred Dominance 

Deductive Sort O(MN√𝑁) O(MN2) O(N) Inferred Dominance 

Corner Sort O(MN√𝑁) O(MN2) O(N) Inferred Dominance 

ENS-SS O(MN√𝑁) O(MN2) O(1) Constructive Front 

ENS-BS O(MNlogN) O(MN2) O(1) Constructive Front 

BOS / GBOS O(MNlogN) O(MN2) O(MN) Constructive Front 

BBOS O(MNlogN) O(MN2) O(MN) Constructive Front  
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following domination comparisons may be conducted to determine the Pareto front of the 

set: 

1) solution-a to solution-b; no removal 

2) solution-a to solution-c; no removal 

3) solution-a to solution-d; solution-a removed 

4) solution-b to solution-c; no removal 

5) solution-b to solution-d; solution-b removed 

6) solution-c to solution-d; solution-c removed  

Here, six two-way dominance comparisons will be made to determine solution-d 

as the only member of the first Pareto front. Had solution-d been placed at the head of the 

ordered solutions list, the Pareto frontier could have been produced in half the number of 

comparisons: 

1) solution-d to solution-a; solution-a removed 

2) solution-d to solution-b; solution-b removed 

3) solution-d to solution-c; solution-c removed 

This reduced number of comparisons is enabled by the placement of the most 

dominant solution at the head of the ordered list. This placement allows solution-d to 

remove its inferior counterparts early, avoiding the unnecessary comparisons they 

sponsor. This capability yields a general desire to place the most dominant solutions of a 

candidate set first, seeking to sidestep unnecessary comparisons, as illustrated by the 

example. 
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Figure 1. 4-solution example population demonstrating effects of population order. 

4.2. A DOMINANCE SURROGATE 

Knowledge of a solution’s true dominance, however, cannot be affordably 

attained. Determining the number exact number of solutions any one solution of the 

population dominates would require a computational expense on the order of a complete 

comparison method. A surrogate is, therefore, proposed to estimate the dominance a 

solution may exhibit. 
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First, consider a point in the solution-space that is globally optimum, that is, 

optimum by every objective. This solution would then exhibit dominance over every 

other solution occupying the population. Called the ideal point, this location in the 

solution space is composed of the optimum exhibited value by any solution for each 

objective considered. Assuming minimization, as in (1), the ideal point (�⃗�𝑖𝑑𝑒𝑎𝑙) is defined 

by Equation (3) where M is again the number of objectives and X is the population of 

possible solutions. 

 �⃗�𝑖𝑑𝑒𝑎𝑙 ∋ �⃗�𝑖
𝑖𝑑𝑒𝑎𝑙 = 𝑖𝑛𝑓

𝑥∈𝑋
𝑓𝑖(𝑥) ∀ 𝑖 = 1, . . . , 𝑀 (3) 

While a solution matching the ideal point is not likely to exist within a 

multiobjective population, the knowledge of its location can be used in establishing an 

expected dominance surrogate. Here proposed is the use of the squared Euclidean 

distance of a solution from the ideal point as an estimate of the solution’s Pareto 

dominance. Each objective’s contribution to the distance is also divided (or scaled) by the 

corresponding ideal point term to handle varying scales. The calculation of this proxy 

metric for a solution-a (Ea) with M objectives is detailed in Equation (4). 

 

𝐸𝑎 = ∑
(𝑓𝑖(𝑥𝑎) − �⃗�𝑖

𝑖𝑑𝑒𝑎𝑙)
2

�⃗�𝑖
𝑖𝑑𝑒𝑎𝑙

𝑀

𝑖=1

 

(4) 

Determining the squared distance to the ideal point (E) for all members of the 

population, those closest are considered most dominant by the surrogate measure. 

4.3. ALGORITHM DESCRIPTION 

Described by Algorithm 1, the proposed method makes use of the established 

dominance surrogate and is relatively simple to implement. The procedure begins by 
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determining the ideal point of the population, as defined in Equation (3). Once 

determined, the distance of each solution to the ideal point is calculated and the 

population is sorted according to this value in an ascending fashion. The algorithm then 

selects the first solution in the sorted list, marks it as a member of the current –initially, 

the first– front, and begins comparing it to its counterparts in an orderly manner. 

Progressing down the sorted list, if a solution is dominated by the selected solution, the 

dominated candidate is marked as such and will not be a member of the current front.  

Note that considerations do not need to be made for the selected solution being 

dominated by a subsequent counterpart, due to the nature of the pre-comparison sorting. 

For a solution to exhibit a lesser E-value than a counterpart solution, the former must be 

better (smaller-valued) than the latter by at least one objective. Called a one-way 

domination comparison, this characteristic is also intrinsic to Corner Sort [16], and 

further implies that any solution enduring a tenure as the selected solution will be present 

within the current front. These factors are largely responsible for the improved 

experimental performance of Corner Sort over other inferred dominance methods. 

Once a selected solution has been compared to all unmarked members of the 

population, the next unmarked solution is selected, ranked within the current front, and is 

compared to its remaining unmarked counterparts. When all solutions have been marked 

(as dominated or members of the current front), marks are cleared from the dominated 

solutions and the procedure is repeated to find the next front of the population. 

These operations are repeated until every solution has been assigned to a front 

(Algorithm 1: line 10) or the number of solutions assigned to fronts satisfies what is 

needed for selection by the employing multiobjective EA (Algorithm 1: line 25). 
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Algorithm 1: Ideal Sort 

Inputs: Population P with N solutions and M objectives; Boolean T defining if the 

algorithm is to be terminated after a sufficient number of solutions are ranked. 

Functions: ideal(X): Determines ideal point of population X, as defined by 

Equation (3); SSED(y, z): determines squared scaled Euclidean distance between 

two points y and z, as defined by Equation (4). 

Output: Pareto front Rank of desired number of solutions 

1 I = ideal(P) // Determine ideal point 

2 for n = 1 to N   // For all solutions 

3 En = SSED(pn, I) // Determine SSED from nth solution of P to I  

4 end  

5 P ← Sort(P, E) // Sort P by ascending E-value 

6 front = 1 // Initialize front to 1 

7 Rank[1 : N] = null // Initialize Rank to null for all solutions 

8 ranked = 0 // Initialize number of ranked solutions to 0 

9 marked = 0 // Initialize number of marked solutions to 0 

10 while ranked < N    // While not all solutions are ranked 

11 current = 1 // Initialize current solution to first 

12 while marked < N // While not all solutions are marked 

13 while Rank[current] != null  // While the current solution is marked 

14 current += 1 // Increment current 

15 end  

16 Rank[current] = front // Rank current as front 

17 ranked += 1 // Increment ranked 

18 marked += 1 // Increment marked 

19 for i = current+1 : N // Rank current as front 

 // If pi is not marked and is dominated by pcurrent 

20 if Rank[i] == null && pcurrent ≺ pi then 

21 Rank[i] = inf // Mark pi as dominated 

 marked += 1 // Increment marked 

22 end  

23 end  

24 end  

 // If terminating and a sufficient number of solutions are ranked 

25 if T == True && ranked ≥ N/2 then 

26 ranked = N  // Set ranked to N to terminate sorting 

27 end  

28 marked = ranked // Set marked to only ranked 

29 Rank[Rank==inf] = null // Set Rank to null for dominated solutions 

30 front += 1 // Increment front 

31 end  

32 return  
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4.4. THE BENEFITS OF TERMINABILITY 

The latter method by which the algorithm may be concluded is allowable by the 

terminability property of Ideal Sort. Maintained similarly by the other inferred dominance 

methods introduced, this property allows the algorithm to be terminated following the 

determination of any single front defining the population. 

To demonstrate the benefits of this property, reference to Figure 2 is made. This 

graphic provides a high-level overview of the general selection operations that an NDS 

multiobjective EA may follow. For each iteration, an initial population is comprised of 

solutions surviving a previous iteration’s selection and the generated offspring they 

produce. Applying NDS, the fronts defining this population are then determined and used 

as the primary ranking mechanism for selection. In the likely event of a tie in NDS rank 

between solutions seeking to survive selection (such as those solutions comprising the 

third front in Figure 2), a diversity procedure is often used to keep the required number of 

solutions that maintain the best diversity about the population. Those selected by this 

procedure are then passed to the generation procedure used to form the initial population 

of the next iteration. 

This procedure can solicit some inefficiency during the NDS operations. Consider 

first that the number of solutions surviving from one iteration to another is generally 

fixed (and even more generally, known). Once this desired number of solutions has been 

ranked, the operations performed to rank solutions into subsequent fronts provides no 

value to the larger procedure. Returning to Figure 2: after the solutions belonging to the 

first, second, and third fronts have been identified, the effort dedicated to ranking 

solutions into the fourth and fifth fronts is computationally and temporally wasteful. 
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Figure 2. General selection operations of a generic NDS multiobjective EA. 

 

Therefore, algorithms exhibiting terminability may be able to see substantial 

improvements to their computational and runtime efficiencies should this property be 

invoked. The merit of these assertions will be evaluated in Section 7. 

 

5. TIME AND SPACE COMPLEXITY 

 

The time complexity of the proposed method is contributed to by four general 

procedures: 

1) Determining the ideal point of the population 

2) Determining each solution’s E-value, describing proximity to the ideal point 

3) Sorting the population by ascending E-value 

4) Performing domination comparisons to determine Pareto fronts 
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Assuming minimization, finding the ideal point of a population with N solutions 

and M objectives is equivalent to finding the minimum of a 1xN array, M times. As each 

solution must be examined to find the minimum of each 1xN array, the number of 

comparisons required will be O(N) per objective. Completing this procedure for each of 

the M objectives yields a contribution of O(MN) to the overall complexity. Determining 

the E-value of each solution similarly requires O(MN) operations as each of the N 

solutions must be compared to the ideal point with respect to M objectives. Once the E-

value of each solution is found, the population can be sorted in-place via Heapsort with a 

complexity of O(NlogN) [19]. 

Having established the sorted population, the time complexity of the 

nondominated sorting procedure should be investigated for the worst- and best-case. The 

worst-case complexity for Ideal Sort occurs when all solutions of the population are in a 

single front. In such a scenario, each solution in the sorted population will be compared 

to each subsequent solution. With no solution being marked as dominated, a total of 

1

2
𝑀(𝑁2 −

𝑁

2
) comparisons will be required for a population with N solutions and M 

objectives. This worst-case comparison complexity mirrors that of Deductive Sort [15] 

but is faster as it only requires one-way domination comparisons. This worst-case 

complexity also arises for the vanilla (non-terminating) implementation of Ideal Sort 

when each solution occupies its own front; the terminable implementation of Ideal Sort 

performs better in this case as the second half of the sorted population is not ranked into 

fronts. Examining these contributing processes, the algorithm is shown to exhibit a worst-

case complexity of O(MN2). 
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The best-case for the vanilla Ideal Sort algorithm bears a relationship to the 

triangular number sequence, where the nth triangular number (Tn) is the sum of the natural 

numbers from 1 to n. When a population with Tn solutions is comprised by n fronts and 

the number of solutions in incrementing fronts reduces by one (see Figure 3) the number 

of comparisons required to rank the solutions can be reduced to the value defined by 

Equation (5). Herein, CN is the number of comparisons required for a population of N 

solutions with M objectives where N is the nth triangular number. This best-case 

complexity additionally requires that the first encountered solution (according to E-value 

sorting) in each front dominates every solution of each subsequent front. Populations of 

this structure may be created at varying scales and dimensionality by following the 

procedure for fixed-front dataset generation described in [15]. 

 
𝐶𝑁 =  𝑀 ∑ 𝑖(𝑖 − 1)

𝑛

𝑖 = 1

 
(5) 

For populations with a number of solutions (N) between the nth and n+1th 

triangular number, the best-case number of comparisons required occurs in select 

instances where a nonincreasing number of solutions comprise incrementing fronts. In 

such a case, the comparisons required (CN) is a linear interpolation between that required 

for the nth and the n+1th triangular number. This is defined by (6) where �̂�𝑛 is minimum 

number of comparisons required for a population size equal to the nth triangular number 

(see Equation (5)) and the number of objectives is M. 

 
𝐶𝑁 = 𝑀 (�̂�𝑛 +

𝑁 − 𝑇𝑛

𝑇𝑛+1 − 𝑇𝑛
(�̂�𝑛+1 − �̂�𝑛)) 

(6) 
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This required number of comparisons can be improved by incorporating 

terminability, a claim evidenced by the experimental results of the subsequent section.  

Ideal Sort requires O(N) space to track which solutions are dominated and the 

rank assigned to each solution. 

 

 

Figure 3. Population with T5 solutions enabling best-case computational performance by 

the Ideal Sort algorithm. 
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6. EXPERIMENTAL RESULTS 

 

This section compares the performance of Ideal Sort to four other NDS 

algorithms: Deductive Sort [15], Corner Sort [16], Best Order Sort [11], and Bounded 

Best Order Sort [12]. Additionally, simple terminability modifications are made are to 

Deductive Sort and Corner Sort to examine this property’s effect on performance 

characteristics. These modifications mirror that described for Ideal Sort in Algorithm 1: 

Lines 25-27. As members of the constructive front class of NDS methods, the current 

implementations of Best Order Sort and Bounded Best Order Sort must examine all 

solutions before any front can be considered complete. Therefore, these algorithms have 

not been modified to include an early termination procedure. Thus, the total number of 

algorithms examined is eight, with Deductive Sort, Corner Sort, and Ideal Sort being 

implemented under terminable and vanilla statuses. 

These algorithms are presented with a variety of multiobjective datasets, 

described within the next subsection. The number of objective comparisons to determine 

domination and the total algorithmic runtime required are used to evaluate the 

performance of each NDS procedure. 30 instances of each dataset are created and the 

average performance of each algorithm on each dataset is presented in the Experimental 

Results subsection. Each algorithm is implemented in Java and experiments are 

conducted on a PC with a 3.00GHz Intel Core i9-9980XE CPU with 64 GB of RAM. 
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6.1. EXPERIMENTAL DATASETS 

To compare the performance of Ideal Sort with these state-of-the-art methods, a 

test suite of multiobjective datasets is developed. Instances of these datasets are presented 

to each algorithm under similar conditions, enabling a comparison of the discussed 

performance measures. Two standard multiobjective dataset creation methods are 

utilized: cloud dataset generation and fixed front dataset generation. Additionally, a new 

generation scheme is presented and implemented, aimed at emulating a common EA 

scenario. 

6.1.1. Cloud Dataset Generation. Cloud dataset generation methods create 

random populations of solutions with objective values pulled from the uniform 

distribution between zero and one. The datasets can be tailored to a desired population 

size and number of objectives using the procedure defined in [16]. These datasets reflect 

the scenarios incumbent of NDS procedures at the beginning of an EA implementation as 

initial populations are often generated randomly [12]. Two series of cloud datasets were 

created. The first maintains a constant population level of 10,000 solutions while 

incrementing the number of objectives by 1 from 2 to 30 (Figure 5). The second series 

conducted incrementation along two axes, increasing the population size from 1,000 to 

10,000 in steps of 1,000 solutions, while also incrementing the number of objectives from 

5 to 20 by a step size of 5 (Figure 7). In total, 69 different cloud dataset classes were 

produced, each owning 30 unique instances for an examination total of 2,070 unique 

cloud populations. 

6.1.2. Fixed Front Dataset Generation. Fixed front dataset generation methods 

offer further tailoring of the dataset by allowing the number of fronts within the 
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population to be controlled. Utilizing the strategy described in [16], a reasonably similar 

number of solutions are placed within each of the designated number of fronts, enabling 

the investigation of examined methods’ performances across a variety of dominance 

scenarios. As different methods may inherently perform better given a different number 

of Pareto fronts, it is important that a range of front-counts be examined. In doing so, the 

demonstrated strength of consistently well-performing algorithms can be considered 

more robust.  

A two-axis incrementation was similarly employed in the creation of fixed front 

datasets, incrementing the number of fronts by 1 from 1 to 15 in one direction and the 

number of objectives by 5 from 5 to 20 in the other (Figure 8). Each population contains 

10,0000 solutions. 60 classes culminate in the examination of 1,800 unique fixed front 

populations. 

6.1.3. Evolved Dataset Generation. The final dataset generation strategy 

employed seeks to mimic the datasets presented to an NDS algorithm by EAs during 

general iterations. Any non-initialization iteration of a generic EA will have a population 

comprised by two classes of members. The first class constitutes those solutions from the 

previous iteration that survived the selection process. The second is composed of 

offspring solutions generated by combining characteristics from the surviving members 

and incorporating the effects of mutation. This procedure within multiobjective EAs 

enables the gradual convergence of the maintained population to the Pareto front of a 

decision-space [3]. This gradual migration is emulated by Algorithm 2 as an initial 

population is used to make modified “offspring” that are better or worse by one objective. 

For each added solution, a root solution of the original population, used to create the new 
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member, will either dominate or be dominated by the added solution. Highly 

customizable, the generated dataset and the level of migration its added members exhibit 

are dependent on a few input parameters defined next. 

 

Algorithm 2: Evolved Dataset Generation 

Inputs: Population (P) dimensions: N solutions and M objectives; a: the number of 

new solutions added to P as a fraction of N; b: the best objective performance 

improvement exhibited by an added solution as a fraction 

Functions: randi(y, z): generates a random number from the uniform distribution 

between y and z 

Output: Evolved dataset with N+N*a solutions and M objectives 

 // Create initial front of population 

1 for i = 1 to N   // For all solutions 

2 P(i, 1) = randi(0, 1) // Set first objective value between 0 and 1  

3 for j = 2 to M-1 // For objectives 2 to M-1  

4 P(i, j) = randi(0, 1)*sum(P(i, 1:j-1)) 

5 end  

6 P(i, M) = 1-sum(P(i, 1:M-1)) // Ensure nondomination 

7 end  

 // Add new solutions emulating offspring  

8 for k = 1 to N*a   // For new solutions 

9 modCol = randi(1, M) // Select column for modification 

10 modVal = randi(1-b, 2-b) // b% improvement to (100-b)% regression   

11 P(N+k, :) = P(k, :) // Add new solution 

 
//  odify new solution’s modColth objective value according to modVal (smaller 

is better) 

12 if P(k, modCol) ≥ 0 // If root is nonnegative  

13 P(N+k, modCol) = P(k, modCol)*modVal  

14 else // If root is negative 

15 P(N+k, modCol) = P(k, modCol)*(2-modVal) 

16 end  

17 end  

18 return  

 

This procedure first creates a single front of N nondominating solutions with M 

objectives, as defined by user input (Algorithm 2: Lines 1-7). The user additionally 

supplies a desired number of additional solutions to be added to the population (a) as a 

fraction (can be improper) of N. Further supplied by the user is a parameter, b, defining 
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the superiority a new solution can have when compared to a member of the original 

population. Entered as a fraction, b describes the maximum improvement at any one 

objective a new solution can exhibit when compared to the root solution used to create it 

(i.e. a b-value of 0.15 indicates a maximum 15% improvement). This value further 

defines the proportion of added solutions that will be present within the first front of the 

expanded dataset. All four parameters are used in Lines 8-17 to add N*a additional 

evolved solutions. An example evolved dataset utilizing the following parameters is 

shown in Figure 4: 

• N = 1,000 

• M = 2 

• a = 0.25 

• b = 0.15 

Figure 4 clearly shows the incorporation of a handful of evolved solutions that are 

closer than the initial front to the optimal values of each objective. Each of these 

solutions will dominate at least one member of the original front and belong to the new 

Pareto efficient set. 

An identical creation scheme to that used for cloud datasets was employed to 

develop 2,070 unique evolved datasets for examination (Figure 6; Figure 10). These 

populations were developed using an a-value of 1 (doubling the population as EA 

reproduction procedures generally do) and a b-value of 0.1. 
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Figure 4. Example evolved dataset with 1,000 original solutions and 250 added solutions. 
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6.2. EXPERIMENTAL RESULTS 

 
(a) 

 
(b) 

Figure 5. Computational performance for cloud datasets with 10,000 solutions and an 

incrementing number of objectives. a) Required runtime. b) Required number of 

dominance comparisons. 
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(a) 

 
(b) 

Figure 6. Computational performance for evolved datasets with 10,000 solutions and an 

incrementing number of objectives. a) Required runtime. b) Required number of 

dominance comparisons. 
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(a) 

 
(b) 

Figure 7. Computational performance for cloud datasets with an incrementing number of 

solutions and a set number of objectives. a) Required runtime with 5 objectives. b) 

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required 

runtime with 20 objectives. e) Required number of dominance comparisons with 5 

objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. 
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(c) 

 
(d) 

Figure 7. Computational performance for cloud datasets with an incrementing number of 

solutions and a set number of objectives. a) Required runtime with 5 objectives. b) 

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required 

runtime with 20 objectives. e) Required number of dominance comparisons with 5 

objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 
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(e) 

 
(f) 

Figure 7. Computational performance for cloud datasets with an incrementing number of 

solutions and a set number of objectives. a) Required runtime with 5 objectives. b) 

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required 

runtime with 20 objectives. e) Required number of dominance comparisons with 5 

objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 
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(g) 

 
(h) 

Figure 7. Computational performance for cloud datasets with an incrementing number of 

solutions and a set number of objectives. a) Required runtime with 5 objectives. b) 

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required 

runtime with 20 objectives. e) Required number of dominance comparisons with 5 

objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 
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(a) 

 
(b) 

Figure 8. Computational performance for fixed front datasets with an incrementing 

number of fronts and a set number of objectives. a) Required runtime with 5 objectives. 

b) Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) 

Required runtime with 20 objectives. e) Required number of dominance comparisons 

with 5 objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. 
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(c) 

 
(d) 

Figure 8. Computational performance for fixed front datasets with an incrementing 

number of fronts and a set number of objectives. a) Required runtime with 5 objectives. 

b) Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) 

Required runtime with 20 objectives. e) Required number of dominance comparisons 

with 5 objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 
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(e) 

 
(f) 

Figure 8. Computational performance for fixed front datasets with an incrementing 

number of fronts and a set number of objectives. a) Required runtime with 5 objectives. 

b) Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) 

Required runtime with 20 objectives. e) Required number of dominance comparisons 

with 5 objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 



 

 

86 

 
(g) 

 
(h) 

Figure 8. Computational performance for fixed front datasets with an incrementing 

number of fronts and a set number of objectives. a) Required runtime with 5 objectives. 

b) Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) 

Required runtime with 20 objectives. e) Required number of dominance comparisons 

with 5 objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 
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(a) 

 
(b) 

Figure 9. Zoomed region of required runtime for fixed front datasets with an 

incrementing number of fronts and a set number of objectives. a) Required runtime with 

5 objectives. b) Required runtime with 10 objectives. c) Required runtime with 15 

objectives. d) Required runtime with 20 objectives. 
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(c) 

 
(d) 

Figure 9. Zoomed region of required runtime for fixed front datasets with an 

incrementing number of fronts and a set number of objectives. a) Required runtime with 

5 objectives. b) Required runtime with 10 objectives. c) Required runtime with 15 

objectives. d) Required runtime with 20 objectives. (cont.) 
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(a) 

 
(b) 

Figure 10. Computational performance for evolved datasets with an incrementing number 

of solutions and a set number of objectives. a) Required runtime with 5 objectives. b) 

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required 

runtime with 20 objectives. e) Required number of dominance comparisons with 5 

objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. 
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(c) 

 
(d) 

Figure 10. Computational performance for evolved datasets with an incrementing number 

of solutions and a set number of objectives. a) Required runtime with 5 objectives. b) 

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required 

runtime with 20 objectives. e) Required number of dominance comparisons with 5 

objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 
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(e) 

 
(f) 

Figure 10. Computational performance for evolved datasets with an incrementing number 

of solutions and a set number of objectives. a) Required runtime with 5 objectives. b) 

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required 

runtime with 20 objectives. e) Required number of dominance comparisons with 5 

objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 
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(g) 

 
(h) 

Figure 10. Computational performance for evolved datasets with an incrementing number 

of solutions and a set number of objectives. a) Required runtime with 5 objectives. b) 

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required 

runtime with 20 objectives. e) Required number of dominance comparisons with 5 

objectives. f) Required number of dominance comparisons with 10 objectives. g) 

Required number of dominance comparisons with 15 objectives. h) Required number of 

dominance comparisons with 20 objectives. (cont.) 
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7. DISCUSSION 

 

The average total runtime (a) and the average number of dominance comparisons 

required (b) for each of the examined algorithms while sorting the cloud datasets with an 

ascending number of objectives is detailed in Figure 5. The figure first describes the two 

constructive front methods (BOS and BBOS) as the most efficient according to both 

metrics. Of the inferred dominance methods, Ideal Sort, and its terminable form (Ideal 

Sort – T), consistently outperform their counterparts with respect to runtime. Further, it is 

demonstrated that just the vanilla form of Ideal Sort is more efficient than even the 

terminable forms of Deductive Sort and Corner Sort (Deductive Sort – T and Corner Sort 

– T, respectively). Examining the number of dominance comparisons required, the 

inferred dominance methods are again secondary to their constructive front counterparts. 

Ideal Sort and Corner Sort grapple for the best efficiency, a contest that appears to be 

based on the number of objectives. While the Corner Sort algorithms sometimes require 

less comparisons, they are hampered by the complexity of repeatedly finding a corner 

solution [16], allowing the Ideal Sort algorithms to consistently outperform the former 

with respect to runtime. Additionally, note the tendency of terminability to lose its 

superiority over the vanilla methods as the number of objectives becomes large in cloud 

populations. This occurs as a greater proportion of the population becomes nondominated 

[16], reducing the number of fronts whose sorting can be avoided by early termination. 

These findings are mirrored by the results of the two-axis parameter variation of 

cloud datasets (Figure 7). In relatively low dimensionality ((a), (b)), the Ideal Sort 

methods universally outperform their inferred dominance competitors for all population 
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sizes. Further, they are much more competitive here to the constructive front methods 

than in high-dimensional space. Terminable variations clearly outperform their associated 

vanilla algorithms at this level of low dimensionality.  

As the number of objectives is increased, a growing gap emerges between the 

inferred dominance methods and the efficient constructive front methods. While Corner 

Sort again eclipses Ideal Sort in terms of required comparisons as the number of 

objectives becomes high, the latter maintains a consistent advantage in terms of 

algorithmic runtime. As expected, the benefits of terminability diminish as the number of 

objectives increases.  

Performance measures corresponding to the tests on fixed front data sets are 

shown in Figure 8. As other studies have demonstrated [12], the number of required 

comparisons and runtime generally decrease, for a given population size and 

dimensionality, as the number of fronts increases. As the number of fronts becomes 

larger, the superiority of the constructive front methods over their inferred dominance 

counterparts additionally becomes less pronounced. The benefits of terminability are 

well-defined in this figure, as the terminable implementations outperform their vanilla 

variations across all instances. While the Corner Sort algorithms again jockey with their 

Ideal Sort counterparts for superiority in terms of the dominance comparisons required, 

Ideal Sort and Ideal Sort – T, as before, consistently require less runtime than Corner Sort 

and Corner Sort – T, respectively. The non-smooth descent of the terminable methods is 

an interesting behavior highlighted; a characteristic most clearly demonstrated by 

Deductive Sort – T in the higher dimension sets of Figure 8 ((c), (d)). This occurs as 

scenarios with an even number of equivalently sized fronts allows termination 
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immediately after the F/2th front is determined, where F is the number of fronts. When an 

odd number of fronts are present, the F/2 + 1th front must also be sorted. Populations 

with an even number of like-sized fronts thus demonstrate greater improvement when 

moving from vanilla to terminable implementations. While this behavior may not be 

obvious from the busier regions of Figure 8, this behavior is noted for each of the 

terminable algorithms examined.  

Figure 9 provides a focused look at a busy region of the runtime figures of Figure 

8. Eliminating the poorer performing inferred dominance methods, the best performing 

(Corner Sort – T, Ideal Sort, and Ideal Sort – T) are compared to the state-of-the-art 

constructive front method, BBOS. At each level of dimensionality, Ideal Sort – T is 

shown to outperform BBOS beyond a certain number of fronts. Further, Corner Sort – T 

is shown to outperform BBOS in many cases, though, itself, being outperformed by Ideal 

Sort – T in each case. The vanilla version of Ideal Sort is also shown to approach the 

runtime performance of BBOS at the very highest number of dimensions and fronts 

examined. These findings support the notion of Ideal Sort as a meaningful contributor to 

the arsenal of NDS algorithms. Perhaps more importantly, these findings cement the 

benefits of terminability, as an algorithm (Corner Sort), never before shown to 

outperform a member of the constructive front class, demonstrates superiority via the 

inclusion of a termination operation. Combining the aptitudes of Ideal Sort and 

terminability, Figure 9 defines perhaps the first instance of an inferred dominance method 

(Ideal Sort – T) regularly outperforming a state-of-the-art constructive front procedure.  

The performance characteristics for each method, when applied to the described 

evolved datasets, are shown in Figure 6 and Figure 10. As with the cloud dataset 
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experiments, the two constructive front methods are shown to outperform the inferred 

dominance methods in each instance. Ideal Sort and Ideal Sort – T are shown to sizably 

outperform the other inferred dominance methods and exhibit only a slight disadvantage 

to BOS and BBOS in terms of the number of comparisons required. This disadvantage is 

manifested in the runtime requirements as well, but unlike in the cloud experiments, the 

Ideal Sort algorithms become more competitive as the number of objectives increases. 

This occurs as the evolved datasets do not create scenarios where most solutions are 

nondominated when the number of objectives is high. 

In analyzing the results of these tests, attention should be paid to the significance 

of each test class. While cloud datasets are easy to implement and provide some feedback 

on NDS algorithm performance, their occurrence within true multiobjective optimization 

scenarios is limited. Specifically, they likely only occur at the onset of the optimization 

procedure when preliminary solutions are initialized using a random generation 

procedure [7]. Subsequent iterations are then likely characterized by populations with 

multiple fronts, more closely resembling the fixed front populations examined. As the 

multiobjective EA continues and reduces the number of Pareto fronts, a scenario akin to 

the evolved datasets examined is likely to exist until the algorithm is concluded [20]. 

Frequently outnumbering cloud dataset scenarios within the operations of a 

multiobjective EA, performance on fixed front and evolved datasets may be considered 

more important and demonstrative of an NDS algorithm’s computational efficiency.  

Conveniently for Ideal Sort, cloud scenarios are the only dataset class heralding 

the constructive front methods as far and away superior. Under the more critical and 

prevalent scenarios, Ideal Sort becomes much more competitive and can even exceed the 
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performance of the constructive front methods. These arguments have parallels to the 

argument for terminability, as well; the benefits of which subside in high-dimensional 

cloud space but are evident and meaningful while operating on the more critical dataset 

scenarios. 

 

8. CONCLUSION 

 

Improving the efficiency of NDS algorithms has been a topic of considerable 

interest since the introduction of the first NDS multiobjective EAs. Comprising a 

majority of the time required by an employing EA, NDS procedures boasting increased 

efficiency broaden the scale of problems that can be addressed using these popular 

evolutionary procedures. Herein was introduced a novel, terminable NDS algorithm, 

shown capable of competing with and outperforming other state-of-the-art NDS 

procedures. Further, this algorithm is easier to understand and implement than many 

state-of-the-art methods. Perhaps more importantly, the benefits of terminability were 

introduced and demonstrated. This concept has been shown to enable considerable 

efficiency improvements to NDS algorithms retaining this property. The utilization of 

terminability was even shown to grant Corner Sort superiority over BBOS in some 

instances, a feat not previously demonstrated by the vanilla Corner Sort algorithm. While 

the namesake algorithm of this investigation, Ideal Sort, does add a novel (and in some 

instances, computationally state-of-the-art) algorithm to the literature of NDS procedures, 

the discussion of terminability it enticed beseeches the integration of this property into 

the otherwise superior constructive front methods. While this integration may require a 
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reasonable exertion due to the structure of current constructive front algorithms, the 

computational benefits such an integration may induce could be well worth the effort. 

 

REFERENCES 

Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algorithms for Multiobjective 

Optimization: Formulation, Discussion and Generalization. Proc. International 

Conference of Gen. Alg., San Mateo, California, 1993, pp. 416-423. 

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York, NY, 

USA: Wiley, 2001. 

J.D. Schaffer, "Some experiments in machine learning using vector evaluated genetic 

algorithms", Ph.D. dissertation, Vanderbilt University, Nashville, TN, 1984. 

J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm for 

multiobjective optimization,” in Proc. 1st IEEE Conf. Evol. Comput. World 

Congr. Comput. Intell., vol. 1. Orlando, FL, USA, Jun. 1994, pp. 82–87. 

T.  urata and H. Ishibuchi, “  GA   ulti-objective genetic algorithms,” in Proc. IEEE 

Int. Conf. Evol. Comput., vol. 1. Perth, WA, Australia, Nov. 1995, pp. 289–294. 

J. Knowles and D. Corne, “The Pareto archived evolution strategy  A new baseline 

algorithm for Pareto multiobjective optimisation,” in Proc. Congr. Evol. Comput. 

(CEC), vol. 1. Washington, DC, USA, 1999, p. 105. 

K. Deb, A. Pratap, S. Agarwal, and T.  eyarivan, “A fast and elitist multiobjective 

genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–

197, Apr. 2002 

E. Zitzler,  . Laumanns, and L. Thiele, “SPEA   Improving the strength Pareto 

evolutionary algorithm for multiobjective optimization,” in Proc. Evol. Methods 

Design Optim. Control Appl. Ind. Problems (EUROGEN), 2002, pp. 95–100. 

 . L. Wong, “Parallel multi-objective evolutionary algorithms on graphics processing 

units,” in Proc. 11th Annu. Conf. Companion Genet. Evol. Comput. Conf. Late 

Breaking Papers (GECCO), Montreal, QC, Canada, 2009, pp. 2515–2522. 

 



 

 

99 

K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using 

reference-point-based nondominated sorting approach, part I: Solving problems 

with box constraints,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, 

Aug. 2014. 

P. C. Roy, M. M. Islam, and K. Deb, “Best order sort  A new algorithm to non-dominated 

sorting for evolutionary multi-objective optimization,” in Proc. Genet. Evol. 

Comput. Conf. Companion (GECCO), Denver, CO, USA, 2016, pp. 1113–1120. 

P. C. Roy, K. Deb, and  .  . Islam, “An efficient nondominated sorting algorithm for 

large number of fronts,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 859-869, March 

2019. 

N. Srinivas and K. Deb, “ ultiobjective optimization using nondominated sorting in 

genetic algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221–248, Sep. 1994 

S. Tang, Z. Cai, and J. Zheng, “A fast method of constructing the nondominated set  

Arena’s principle,” in Proc. 4th Int. Conf. Nat. Comput. (ICNC), vol. 1. Jinan, 

China, 2008, pp. 391–395. 

K.  cClymont and E. Keedwell, “Deductive sort and climbing sort: New methods for 

non-dominated sorting,” Evol. Comput., vol. 20, no. 1, pp. 1–26, Mar. 2012. 

H. Wang and X. Yao, “Corner sort for Pareto-based many-objective optimization,” IEEE 

Trans. Cybern., vol. 44, no. 1, pp. 92–102, Jan. 2014. 

X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach to nondominated sorting 

for evolutionary multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 

19, no. 2, pp. 201–213, Apr. 2015. 

S. Mishra, S. Mondal, S. Saha, and C.A.C. Coello, "Generalized best order sort algorithm 

for nondominated sorting," Swarm and Evol. Comput., vol. 43, pp. 244-264, 2018. 

J. W. J. Williams, “Algorithm  3  – heapsort,” Communications of the ACM, vol. 7, no. 

6, pp. 347–348, 1964. 

Y. Tian, H. Wang, X. Zhang, and Y. Jin, "Effectiveness and efficiency of non-dominated 

sorting for evolutionary multi- and many-objective optimization," Complex and 

Intell. Systems, vol. 3, no. 4, pp. 246-263, 2017.  



 

 

100 

III. DISASTER RECOVERY STRATEGY GENERATION VIA 

MULTIOBJECTIVE HEURISTIC OPTIMIZATION 

 

Samuel Vanfossan, Benjamin Kwasa, and Suzanna Long 

Department of Engineering Management and Systems Engineering, Missouri University 

of Science and Technology, Rolla, MO 65409 

ABSTRACT 

In the wake of extreme events, the response efforts conducted to restore an 

affected area comprise two strategy horizons. Initially, short-term emergency procedures 

are conducted, providing search and rescue facilities along with temporary relief and 

medical aid. These primary measures are followed by an extended restoration period 

during which the area’s infrastructure must be reinstated, returning the area to operating 

capacity. It is of paramount importance that these second-stage restoration efforts be 

completed as quickly and affordably as possible; reestablishing the affected area’s 

internal infrastructure and external connectivity while mitigating the financial burden 

these efforts assume. Determining the schedule of operations that must be conducted to 

achieve this restoration is a difficult task with substantial ramifications on these time and 

cost considerations. It is, therefore, critical that tools be developed to assist decision-

makers in the discovery and selection of optimal recovery strategies. Herein a 

methodology is proposed leveraging agent-based simulation and multiobjective heuristic 

optimization to generate a set of Pareto efficient recovery strategies. This methodology 

provides decision-makers with an instrument to automatically generate well-performing 

solutions, enabling the expedient and cost-effective reinstatement of disaster-affected 
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areas. Through the improved restorative efforts facilitated by these allowances, the 

impact of extreme events can be effectively reduced. 

Keywords: Disaster recovery scheduling, multiobjective optimization, evolutionary 

algorithm, genetic algorithm, agent-based modeling, resource constrained heuristic 

optimization 

 

1. INTRODUCTION 

 

Following a disaster event, the response efforts conducted to restore an affected 

area comprise two strategy horizons. Initially, short-term emergency procedures are 

conducted, providing search and rescue facilities along with temporary relief and medical 

aid. These primary measures are followed by an extended restoration period during which 

the area’s infrastructure must be reinstated, returning the area to operating capacity 

(Ramachandran et al., 2015). While many efforts have sought to establish decision-

making procedures that guide recovery agencies’ short-term emergency procedures, the 

need for methods advising the extended restoration period remains (Holguín-Veras & 

Jaller, 2012; Hale & Moberg, 2005; Horner & Widener, 2011; Altay & Green, 2006; 

Galindo & Batta, 2013). These methods should seek to assist decision-makers in 

intelligently scheduling the activities required for restoration, enabling the re-entry of the 

affected area into the broader supply chain as expediently and affordably as possible. 

Differences in the monetary and temporal expenses incurred to restore a disaster-

affected area can have substantial and lasting ramifications on the communities impacted. 

A primary concern is the return of the affected area to the broader supply chain as 
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affordably as possible (Çağnan & Davidson,  003; Galindo & Batta, 2013). Disaster 

events are shown to cause economic hardship both immediately after the event and well 

into the future (Ojha et al., 2018). It is therefore of great importance that the activities 

performed to restore the affected area be carried out in way that does not unduly 

compound these economic difficulties. 

The direct monetary considerations of recovery efforts (labor, materials, fuel, etc.) 

must also be coupled with the time-sensitive nature of other economic concerns. While an 

area’s infrastructure is nonfunctioning, similarly positioned businesses may not be able to 

operate. This not only results in lost income for the businesses themselves, but 

diminished tax revenues and tributary commerce for the encompassing municipality. 

Consider an extreme example, where an estimated $2.9 billion in gross regional product 

was lost during the two-month period following the Loma Prieta earthquake that hit the 

San Francisco area in October of 1989 (Brady & Perkins, 1991). Additionally, the 

restoration efforts individual businesses must assume often depend on the functionality of 

surrounding infrastructure and can extend beyond the horizon of public recovery 

(Masoomi et al., 2018). Consequently, an elongation of the timeline required for 

infrastructure restoration can prolong the period during which affected businesses are 

unable to operate. 

Community outmigration can further exacerbate socioeconomic losses over time. 

This permanent population dislocation can stem from several factors related to the 

duration of time required to reestablish community operation: namely, infrastructure 

disruption and loss of employment (Masoomi et al., 2018). As these influences persuade 

residents and organizations to relocate from the affected community, the businesses 
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opting to remain, and the municipality itself, can be negatively affected by the loss of the 

outmigrant’s usual revenue. In this way, the length of time required to reinstitute a 

disaster area’s infrastructure supply chain can impact a community long after restoration 

efforts have been completed. While some studies demonstrate that the economic 

depressions immediately after a natural disaster can be followed by a flurry of economic 

activity during the restoration period, it’s important to note the jobs created during this 

period may be transient. That is, they are largely based on contract labor and may move 

to a new location once recovery efforts have been completed (Jiménez Martinez et al., 

2020). 

While a strictly monetary impact may be derived for each of the previous 

considerations, some tribulations related to disaster restoration time have more abstract 

implications. Chief concerns among the literature are the relationships between disaster 

event trauma and post-traumatic stress disorder (PTSD) and depression (Steinglass & 

Gerrity, 1990; Madakasira & O'Brien, 1987; Neria et al., 2008; Qu et al., 2014, Houston, 

2015). Capable of gravely impacting the lives of those they affect; the prevalence and 

severity of these disorders may be related to the speed at which restoration is completed. 

This relationship exists as symptoms may be triggered or worsened by reminders of a 

traumatic event, e.g., an affected area not yet returned to its pre-restoration functionality 

(Houston et al.,  015; Carlson and Ruzek,  003). Just as an individual’s perceived trauma 

may extend beyond the destructive event into the post-event chaos and recovery, there is 

evidence that the duration of traumatic exposure may impact the severity and 

commonality of PTSD symptoms (Neria et al., 2008; Adams, 2014; Houston et al., 2015). 

Stress and depression may also manifest from disaster-induced factors such as reduced 
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business and/or unemployment during infrastructure recovery and the subsequent 

personal/organizational rebuilding period (Qu et al., 2014). Intensifying these concerns is 

the diminished availability of many support resources prior to restoration achievement 

(Houston et al., 2015). While research has shown the importance of early and frequent 

counselling following a major trauma or stressor, these services may not be widely 

available until a state of normalcy is resumed (Torres-Mendoza et al., 2021). Previous 

studies further acknowledge the need for long-term (multi-year) community mental 

health monitoring, assessment, outreach, and services following major disasters (Houston 

et al., 2015). It may then be beneficial, with respect to community health and economics, 

to take steps to mitigate stress and anxiety to the extent, and with the rapidity, possible. 

Expedient restoration of an impacted area’s damaged infrastructure is one critical step in 

this mitigation process. 

Those affected by a disaster event are also subject to many other impacts such as 

time lost in school or the ability to participate in social and extracurricular activities. 

Incalculable losses may be subsumed in the form of missed opportunities and experiences 

for individuals instead focusing time and resources on rebuilding their damaged 

ecosystems. As the true economic impact of many of these time-sensitive disaster effects 

may be difficult to quantify (and, in many cases, can be of incomparable value), it is 

important that both economic and temporal considerations be made in developing 

recovery strategies for disaster-affected areas. Further, efforts to place a monetary value 

on ramifications transcending economic consideration inherently introduce bias and 

distort the problem to be addressed. This linearization of time and cost also disallows 

associated tradeoff analysis which may be quite valuable to decision-makers when 
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comparing recovery strategies. Considering the crucial objectives of restoration time and 

cost independently may, therefore, be more appropriate, informative, and dispassionate.   

In the following section, some fundamental observations about disaster recovery 

are first discussed. Current methods addressing disaster recovery are then critically 

analyzed and the characteristics of a desirable strategy generation model are determined 

and disclosed. Section 3 details the workings of a proposed model, demonstrating the 

desireabilities previously presented. In the subsequent section, a simulated disaster region 

is established and presented to the model, prompting the model’s production of suggested 

recovery strategies. The recommended strategies of the model are then shared and 

discussed, comparing the performance of those produced with that of intuitive 

alternatives. A final section makes concluding remarks and offers some suggestions for 

future work. 

 

2. OBSERVATIONS, CURRENT METHODS, AND THE DESIRED MODEL 

2.1. PRELIMINARY DISASTER RECOVERY OBSERVATIONS 

To facilitate a critical analysis of current recovery literature and methods, some 

observations about post-disaster scenarios are first presented. Foundational is the 

mechanism through which recovery is completed. After short-term emergency procedures 

are completed, teams of restoration professionals are called to the affected area to begin 

repairing the damaged infrastructure (Ramachandran, 2015). These vehicles of 

restoration include teams of varyingly skilled laborers —such as electricians, linemen, 

machine operators, plumbers, and engineers, to name a few— and the tools, resources, 
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and literal vehicles they need to complete their restoration tasks. Teams responsible for 

reinstating roadway infrastructure, for example, may include physical laborers and 

equipment operators, bulldozers and other debris-clearing vehicles, and the heavy 

equipment used in the repair of damaged roads and bridges. Teams dedicated to electrical 

repair may include electricians and linemen, transport vehicles loaded with replacement 

electrical components, and the specialty vehicles needed to access and repair overhead 

and underground electrical elements. The contents of these inexhaustive lists and other 

required assets move through physical space and often themselves rely on infrastructure 

elements to perform repairs. They can be blocked physically by debris and other 

impediments and may not be able to conduct operations in damaged locations while 

required infrastructures are unavailable. These vehicles perform their operations 

following a schedule of repair activities that should be organized to restore the impacted 

area as quickly and affordably as possible. Creating this schedule of repairs, however, is 

mired by a few complexities that can substantially impact these two objectives. 

Consider the scene of Figure 1, depicting the types of damage frequently caused 

by natural disasters events (Myint et al., 2008). Therein a damaged storefront sits along a 

street littered with downed trees and foreign debris. Mangled electrical and 

communication lines cross the roadway, close to the site where an impacted hydrant 

spews water. Damage scenarios of the kind commonly arise following disaster events and 

can be thought of as a complex overlay of damaged infrastructure systems. For example, 

this scene may be thought of as a location in space simultaneously occupied by respective 

portions of larger transportation, electrical, communications, and water systems. This 

spatial overlay makes reasonable the assumption that precedence considerations be made 
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when attempting to restore the damaged infrastructure. An intuitive example of this is the 

need for the roadway to be cleared before the appropriate equipment can be brought in to 

repair the downed electrical and communication lines. The existence of this, and other 

precedence relationships, means the amount of time required to restore the damaged 

infrastructure shown in the scene is not trivial to determine. For instance, the total time 

cannot be assumed to be the mere maximum of the times required to restore individual 

infrastructure systems. If the maximum amount of restoration time needed for any one 

system is owned by the electrical infrastructure, the total time needed will be no less than 

that required for the roadway clearing plus that required for electrical repair. Estimating 

the total time required as the sum of that necessitated by each infrastructure is also not 

veracious as some systems may be repaired concurrently. For example, it may be 

reasonable that the electrical and water infrastructure can be simultaneously restored once 

the roadways have been reinstated.  

The cost required to complete these restorations is similarly complicated to 

determine as repair efforts will undoubtedly incur both time-dependent (variable) and 

fixed expenses (Ojha, 2019). Differences in the lengths of time needed to complete 

repairs, for example, require the employment of restoration vehicles for varying time 

horizons. These variations correspond to disparate expenditures for things such as labor 

wages, fuel and hospitality costs, and resource storage expenses, to name a few (Ojha et 

al., 2021). The length of time each utilized resource is employed, then, impacts the 

overall restoration cost objective. Fixed costs associated with employing a resource 

similarly factor into the total restoration cost. Commonly as some form of hiring, 

acquisition, or other overhead expense, a fixed cost may accompany each resource 
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employed and is not related to the length of time the resource is utilized (Ojha, 2019). 

When more resources are employed, the restoration may be completed sooner; however, 

more fixed costs are assumed. Thus, the amount of resources utilized similarly impacts 

both restoration time and cost. 

 

 

Figure 1. Simulated disaster scene with damage to multiple critical infrastructure 

systems. 

 

Another factor that needs to be explored is the accessibility of damaged 

infrastructure with respect to space and time. Consider the two simplified post-disaster 

scenarios represented in Figure 2; each subfigure depicts a partitioned network with 

damage indicated by a red tinting of the partition and a symbol indicating the affected 

infrastructure element. In each case, the impacted partitions are surrounded by a 

functional region to which no damage has occurred, from which the vehicles of 

restoration enter to make repairs. The first scenario, Figure 2 (a), includes five partitions 
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requiring restoration to associated roadway network sections. This damage is nearly 

mirrored in Figure 2 (b), the only difference being the type of damage to the central 

partition (Partition 5), now to the electrical infrastructure instead of the roadway. As 

access to Partition 5 from the functional surrounding is denied by damage to the 

roadways of Partitions 1-4 (in both subfigures), efforts to repair the affected 

infrastructure of the central partition may be temporarily delayed. Access to this central 

partition is eventually enabled by a restoration of one of the other damaged partitions. 

Figure 2 (b) reveals that even if the roadway infrastructure for Partition 5 is not damaged, 

efforts to restore the partition’s impacted electrical systems are similarly dependent on 

the restoration proceedings of the neighboring roadway partitions. Therefore, the current 

feasibilities of a location’s required restoration efforts are not only dependent on the 

damage to the specific location, but also on that sustained by surrounding locations. In 

short, a damaged partition may have to wait until another damaged partition is restored to 

begin receiving its own infrastructure repair. Recounting the scenario of Figure 2 (b), an 

additional tier of complexity is realized as the feasibility of repairing Partition 5’s 

electrical infrastructure is dependent on prerequisite repairs that are not only in another 

partition but are also to a completely different infrastructure system. These insights 

emphasize the spatial, temporal, and interconnective dependencies of restoration efforts 

and the necessity of accounting for them when scheduling post-disaster recovery efforts. 
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(a) 

 
(b) 

Figure 2. Simplified disaster scenarios with partitioned infrastructure regions. a) Disaster 

scenario with five infrastructure partitions, each exhibiting damage to the region’s 

roadway infrastructure. b) Disaster scenario with five infrastructure partitions, four 

exhibiting damage to the region’s roadway infrastructure and one with damage to the 

region’s electrical infrastructure.   
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The order in which repairs occur can also impact the total time and cost required 

to restore a disaster-affected area. This is demonstrated even in the simple example of 

Figure 3, where damage has befallen two partitions of a community’s infrastructure. 

Partition 1 has experienced damage to both its roadway and electrical infrastructure 

systems while only the roadway of Partition 2 is impacted. Each instance of damage is 

also known to require one day to be restored. Both partitions may be accessed 

immediately to begin repairs but recall that a partition’s roadway infrastructure should 

first be functional before other systems may be repaired. Finally assume that the example 

community only has the resources to repair one roadway partition at a time. If the 

roadway of Partition 2 is restored first, then three days will be required to complete all 

repairs. If, however, the damage to Partition 1’s roadway infrastructure is restored first, 

the entire area can be reinstated in two days. In the latter scenario, damage to Partition 1’s 

electrical infrastructure and Partition  ’s roadway system can be simultaneously repaired 

during the second day. These schedules are summarized in Table 1. 

The circumstances of different overlaid-system scenarios will undoubtedly 

necessitate the making of differing precedence and feasibility rules. The presence of these 

relationships can yield situations where identical sets of repairs may require different 

amounts of time to complete depending on the order in which they are slated. The simple 

examples disclosed demonstrate the need for any model to make considerations of the 

kind when scheduling and optimizing the processes of disaster-affected infrastructure 

recovery. 
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Figure 3. Disaster scenario with a partition exhibiting damage to multiple infrastructure 

systems (roadway and electrical). 

 

Table 1. Alternative restoration schedules and required restoration time for damage 

exhibited in Figure 3. 

 

 

 

 

Schedule Partition 1 Roadway First Partition 2 Roadway First 

Day 1 Repairs Partition 1 Roadway Partition 2 Roadway 

Day 2 Repairs 
Partition 2 Roadway,                                 

Partition 1 Electrical 
Partition 1 Roadway 

Day 3 Repairs - Partition 1 Electrical 

Total Time 

Required 
2 Days 3 Days 
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2.2. CURRENT METHODS ADDRESSING DISASTER RECOVERY 

Several general mechanisms have been utilized by the limited literature 

addressing post-disaster recovery planning. In many approaches, restoration curves 

derived from historical disaster events are used to estimate restoration times (Applied 

Technology Council, 1992; Chang, Seligson, and Eguchi, 1996; Nojima et al., 2001). 

While these may provide some insight and a reasonable expectation of total recovery 

time, they do little to inform decision-makers regarding recovery task scheduling and 

cannot be used to optimize operations. Further, these models do not account for the 

spatial and temporal variability existent between different disaster locations and scenarios 

(Çağnan & Davidson,  003). Alternatively, some studies have sought to estimate the total 

restoration costs required to reinstate disaster-damaged infrastructure systems (Ojha, 

2019; Ojha et al., 2021). While these are useful in providing some estimation of expected 

restoration costs, they are not geared toward the optimization of restoration operations or 

minimizing the costs incurred. 

Numerous models have proposed the use of a resource constraint model, 

incorporating available resources and the amount of damage incurred to determine 

restoration time (Isumi, Nomura, and Shibuya, 1985; Balantyne et al., 1990; Chang et al., 

2000). While an appropriate choice for modeling and optimization, these employments 

have typically focused on a single type of infrastructure, not incorporating other 

infrastructure systems and their interdependencies. Moreover, reasonable effort may be 

needed to construct these formal optimization models. 

Linked systems are examined in some cases, seeking to incorporate the 

relationships between infrastructure systems and their effects on restoration time. A 
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linked system approach is endorsed by Zhang (1992), utilizing Markov chains to model 

infrastructure restoration proceedings. Other mathematical models using a variety of 

techniques have also been developed to optimize recovery efforts (Wang et al., 2005; 

Minas, Simpson, and Tacheva, 2020). However, these models often lack the specificity to 

provide a detailed schedule of restoration activities. Additionally, they can be highly 

scenario- and disaster-specific and require extensive efforts to formulate. A more robust 

procedure capable of providing a granular schedule of recovery operations while being 

situationally flexible and easy to utilize would be much more valuable. 

Ramachandran et al. (2015) created a framework in which publicly available 

geospatial data was used to formulate a combinatorial graph of linked infrastructure 

components. Incorporating an infrastructure component precedence scheme, the expected 

recovery time for a given area was estimated using damage totals and the critical path 

method (CPM). This method is admirable in its ability to discern the required information 

from readily available data sources and its reconciliation of multiple infrastructure 

components.  

However, the approach may be improved by incorporating spatial and precedence 

considerations into its determination of restoration time. Consider the scenario of Figure 

4 where a disaster has impacted the infrastructure systems of two partitions. Note that 

Partition 2 requires repairs to both the roadway and water systems within its boundaries. 

Partition 1 blocks immediate admittance to its neighbor as the roadway infrastructure of 

the former first needs to be restored. Assuming one day is required to restore each 

damaged infrastructure system within each node, a naïve CPM assessment with no 

precedence considerations may conclude that only two days are needed to recover the 
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disclosed partitions. Alternatively, consider the assessment made while adhering to 

spatial and precedence relationships. Just as discussed in Section 2.1, a reasonable 

assumption is that the damaged roadway of an impacted partition needs to first be 

reinstated before the appropriate vehicles can be brought in to repair other 

infrastructure(s). The intricacies of the scenario thus dictate that three days are needed to 

repair the damaged infrastructures: one day to repair the roadway of Partition 1, one day 

to repair the roadway of Partition  , and a final day to restore Partition  ’s water 

infrastructure.  

 

 

Figure 4. Disaster scenario with a partition exhibiting damage to multiple infrastructure 

systems (roadway and water). 

 

Without knowledge of the precedence and spatial relationships between the 

damaged partitions, the real time required to restore this network cannot be reliably 
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determined. While Ramachandran et al. (2015) makes concessions for intricacies of this 

kind by incorporating lags into their CPM formulation, the estimated delays they utilize 

cannot adequately capture the complex interactive and scenario-dependent variabilities of 

coupled infrastructure systems. Further, the methodology proposed by Ramachandran et 

al. (2015) does not culminate in the creation of a schedule of activities needed for 

restoration; instead, an estimate for the total time required for recovery is precipitated. 

Masoomi and van de Lindt (2017) proposed a system wherein an area’s 

infrastructure was modeled as a series of nodes and de facto arcs, overlaid on a grid-like 

division of the region. In addition to the basic infrastructure elements of power and water 

systems, their investigation included aggregate residential and business building data, and 

the location of schools. Spatial considerations were included in their modeling efforts, 

allowing this information to be used in the determination of realistic recovery strategies. 

The approach employed determined a priority level for the damaged components 

following a simulated disaster. Addressing the highest priority component first, the 

shortest path along the spatial infrastructure network enabling this component’s 

restoration is slated for completion. This is then repeated with the next highest priority 

component until the area is completely restored. While this allows the determination of a 

relatively utilitarian restoration schedule, a minimum total restoration time is not sought 

or generally achieved.  

Masoomi and van de Lindt (2017) represents one of the most complete strategies 

within the literature for the creation of informed recovery schedules. This model, 

however, does not consider the expense associated with different recovery strategies, 

focusing instead on time required, exclusively. Additionally, restoration times are 
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calculated using fixed (or in some cases, infinite) resource amounts; a convention that 

does not translate well to real-world restoration scenarios where resources are both 

limited and adjustable (Almoghathawi et al., 2019). Perhaps the biggest shortcoming of 

this methodology is the careful data gathering and modeling required to utilize the tool. 

This represents a barrier to its use by municipalities and administrations not equipped 

with the erudite knowledge needed for implementation and utilization. 

While the examined models provide some utility and demonstrate many valuable 

characteristics, the need for more generalizable, informative, and considerate models 

remains. This assessment of the current literature is supported by many survey works, 

citing the deficit of disaster recovery methods in comparison to the wealth of work 

addressing emergency response tactics and disaster preparedness and mitigation 

stratagems (Altay & Green, 2006; Wright, Liberatore, & Nydick, 2006; Lettieri, Masella, 

& Radaelli, 2009; Simpson & Hancock, 2009; Richey et al., 2009; Galindo & Batta, 

2013). 

2.3. THE DESIRED MODEL 

Examining the features and capabilities of models within the literature, the 

characteristics of a desired model are discerned. A satisfactory model shall: 

• Require only readily available data without the need for significant manual 

collection or processing 

• Incorporate multiple critical infrastructure component systems into a single 

combinatorial methodology 
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• Consider both temporal and monetary ramifications in recommending recovery 

strategies 

• Maintain the ability to scale and generalize to a variety of situations and 

scenarios, namely: 

• Differing infrastructure component systems 

• Differing regions and disaster types 

• Differing area and granularity requirements 

• Enable the incorporation of precedence and spatial considerations in developing a 

recovery schedule 

• Culminate in a granular schedule of restoration activities to be performed, along 

with the expected costs and times required 

• Automatically perform the processes necessary to translate from readily available 

data to actionable recommendations, allowing utilization by non-erudite operators 

• Allow multiple runs to be conducted easily, enabling the consideration of multiple 

scenarios 

 

3. AN EVOLUTIONARY METHODOLOGY 

3.1. REASONING ABOUT INFRASTRUCTURE SYSTEMS 

To allow the determination of well-performing restoration schedules, a means of 

reasoning about infrastructure systems systematically is first required. Per the 

observations of the previous section, the mechanism selected should allow for the 

consideration of spatial and temporal characteristics, along with the discernment and 
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utilization of precedence information. The selection of a mechanism that enables 

objective and standardized performance evaluation is also desirable to easily compare 

competing schedules. Combinatorial graphs, such as those used by Ramachandran et al. 

(2015) and Masoomi and van de Lindt (2017), are a great structure that can easily be 

made to meet these criteria. 

While any number of representation schemes may be used to encode the required 

information within graph structures, the approach utilized by the proposed method is here 

presented. Prerequisite to this discussion is a very basic understanding of graph theory; 

wherein a graph is described as a set of abstractions, known as vertices (or nodes), 

sharing some set of relationships as defined by associated arcs. A simple graph with four 

nodes and five arcs is shown in Figure 5. In the proposed methodology, nodes will be 

representative of partitions to a disaster-affected area such as those made in Figure 2, 

Figure 3, and Figure 4. Arcs then describe the connection of these infrastructure systems 

between partitions. For example, if a roadway travels from one partition to another, an 

arc will connect the nodes associated with these partitions. Partitions not containing the 

selected infrastructure are not assigned a node and are not connected by any arcs. As 

illustration, the roadway infrastructure system of Figure 2 (a) is translated from 

partitioned map (Figure 6 (a)) into network graph (Figure 6 (b)), below. Damage to 

partitions can then be described in differences between the normal and post-disaster 

network graphs. Note the difference between Figure 6 (b) and Figure 6 (c), detailing the 

roadway infrastructure before and after damage to Partition 3, respectively. 
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Figure 5. Simple network graph with four nodes and five arcs. 

 

 

(a) (b) (c) 

Figure 6. Disaster scenario with five roadway partitions translated to a network graph. a) 

Five partitions of a region’s roadway infrastructure system. b) A network graph of the 

partitioned infrastructure system of Figure 6 (a). c) A network graph of the partitioned 

infrastructure system of Figure 6 (a) with damage to Partition 3. 

 

Individual graphs can then be created to describe the status of different 

infrastructure systems. Using a common partition strategy, the overlay of infrastructures 

within partition boundaries is easily represented. The adoption of an informative labeling 

convention allows for the straight-forward and systematic integration and utilization of 

spatial relationships. This approach uses a Cartesian approach to define a partition’s (and 

thus, a node’s) relational geographic location. The sample region of Figure   is encoded 

using this scheme for four infrastructure systems (roadway (a), electric (b), water (c), and 

communications (d)) in Figure 7. While the first two coordinate of each node describe 
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their location within the partitioned region, the third coordinate indexes the type of 

infrastructure the node represents. These individual infrastructure graphs are additionally 

combined along this third coordinate axis to enable the standardized encoding of 

precedence information between different infrastructure systems. For example, in Figure 

7, an edge placed between the central node of the roadway graph (Node (1, 1, 0)) and that 

of the electric graph (Node (1, 1, 1)) can be used to describe the previously discussed 

precedence relationship between these two system partitions. Here, Node (1, 1, 0) is a 

precedence node to Node (1, 1, 1). This strategy of translating an area’s overlayed 

infrastructure systems into a single combinatorial graph is critical as it allows the use of 

established network optimization algorithms in reasoning about and evaluating these 

connected systems. 

 

 

(a) (b) (c) (d) 

Figure 7. Example network diagrams for four infrastructure systems. a) Roadway 

infrastructure network diagram. b) Electrical infrastructure network diagram. c) Water 

infrastructure network diagram. d) Communications infrastructure network diagram. 

3.2. AUTOMATED NETWORK GRAPH FORMULATION 

Creating these networks graphs manually, however, would be quite tedious and 

time consuming. Fortunately, the standardized nature of these combinatorial 

representations allows them to be constructed and updated automatically. While it is safe 
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to assume that many municipalities are equipped with graphical information systems that 

would make easy work of such a task, a barebones approach to creating these graphs 

from minimal information is next presented. This mechanism can be used in the worst-

case scenario when all that is possessed is a rudimentary map of a region’s infrastructure 

systems. Recall that these maps should generally be available as Ramachandran et al. 

(2015) demonstrated the ability to model a region’s critical infrastructure systems from 

publicly available data sources.  

Using Python’s  penCV computer vision library (Bradski, 2000), a selected 

infrastructure map is first divided into a specified number of partitions. In Figure 8 (b) the 

sample infrastructure map of the Figure 8 (a) is divided into 6 equally sized partitions. 

Counting the number of pixels matching the infrastructure defining color (in Figure 8, a 

nice blue), it is determined which partitions contain elements of the selected 

infrastructure. Those partitions with a positive pixel count are then assigned a node via 

Python’s networkx package for graphical network modeling (Hagberg et al.,  008). 

Partitions with a pixel count of zero do not contain the selected infrastructure and are not 

assigned a node. These pixel counts can also be used to describe the prevalence of an 

infrastructure system within a partition. Partitions with a greater prevalence for a 

particular infrastructure system contain more elements of that system than partitions with 

lower associated prevalence values. Here, elements is a general term and may describe 

things like yards of wire, feet of pipe, or square feet of pavement area, dependent on the 

associated infrastructure system. In Figure 8 (b), only the top-right partition fails to 

receive a node. Using the Cartesian labeling convention discussed in the previous 

subsection, spatial relationships are preserved and discernable. Arcs connecting these 



 

 

123 

nodes are next needed to complete the network graph. OpenCV is again used to automate 

this process. Here, the boundaries of each partition are examined; that is, the outermost 

pixel layer of each of the partition rectangles. In Figure 8 (b), the boundaries of the two 

right-most partitions are highlighted yellow. The characteristics of adjoining boundary 

sections are then compared, exemplified for two partitions by the two red highlighted 

boundary lines in Figure 8 (b). If each of these boundary sections contains a pixel 

representative of the selected infrastructure, then the two nodes associated with these 

partitions are joined by an arc. With respect to this example, Node (0, 0) and Node (0, 1) 

are connected in Figure 8 (c). Completing this analysis for all adjoining boundary 

sections, the complete network graph of the infrastructure system is produced. This 

procedure can be applied to any infrastructure system of interest and is scalable to regions 

of any size.  

 

Infrastructure Map  Infrastructure Partitions Infrastructure Network Graph 

 

(a) (b) (c) 

Figure 8. Translation of a sample infrastructure map into a representative infrastructure 

network graph. a) Sample infrastructure map. b) Sample infrastructure map divided into 6 

infrastructure partitions. c) Network graph of sample infrastructure map. 

 

While this network generation approach may seem rudimentary, its granularity 

and veracity to actual infrastructure maps can become quite credible as the number of 

partitions increases. Note how the network representation of a region’s sidewalk system 
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(Missouri University of Science and Technology, 2022) becomes more analogous to the 

actual map (Figure 9 (a)) as the number of partitions increases (Figure 9 (b – e)). When 

determining the number of partitions to utilize, decision-makers should consider the 

sophistication of the network to be represented, the amount of effort required to 

determine damage at varying granularities, and the increased algorithmic time needed to 

reason about networks with a greater number of nodes. 

 

 

(a) 

Figure 9. Translation of a region’s sidewalk system into representative network graphs at 

varying granularities. a) Sidewalk infrastructure map of a selected region. b) 

Automatically generated network graph of sidewalk infrastructure with a 5-by-8 partition 

granularity. c) Automatically generated network graph of sidewalk infrastructure with a 

13-by-20 partition granularity. d) Automatically generated network graph of sidewalk 

infrastructure with a 25-by-39 partition granularity. e) Automatically generated network 

graph of sidewalk infrastructure with a 50-by-78 partition granularity. 
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(b) 

 

(c) 

Figure 9. Translation of a region’s sidewalk system into representative network graphs at 

varying granularities. a) Sidewalk infrastructure map of a selected region. b) 

Automatically generated network graph of sidewalk infrastructure with a 5-by-8 partition 

granularity. c) Automatically generated network graph of sidewalk infrastructure with a 

13-by-20 partition granularity. d) Automatically generated network graph of sidewalk 

infrastructure with a 25-by-39 partition granularity. e) Automatically generated network 

graph of sidewalk infrastructure with a 50-by-78 partition granularity. (cont.) 
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(d) 

 

(e) 

Figure 9. Translation of a region’s sidewalk system into representative network graphs at 

varying granularities. a) Sidewalk infrastructure map of a selected region. b) 

Automatically generated network graph of sidewalk infrastructure with a 5-by-8 partition 

granularity. c) Automatically generated network graph of sidewalk infrastructure with a 

13-by-20 partition granularity. d) Automatically generated network graph of sidewalk 

infrastructure with a 25-by-39 partition granularity. e) Automatically generated network 

graph of sidewalk infrastructure with a 50-by-78 partition granularity. (cont.) 
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3.3. OPTIMIZATION BY SIMULATION 

Equipped with a means to systematically represent dependent infrastructure 

systems, a method using this allowance to intelligently restore damaged systems of the 

kind should be developed. As discussed, arranging the required repairs in a manner that 

restores the damaged area as quickly and affordably as possible is critical, but no easy 

task. Represented by damaged nodes, differently ordering these required repairs has been 

demonstrated to yield different restoration costs and times. Seeking to simultaneously 

minimize these two metrics comprises a multiobjective optimization problem with a 

complex decision space. In fact, preferably ordering the repairs for each infrastructure 

system may be thought of as a permutation problem similar in complexity to the classical 

traveling salesman or vehicle routing problems (Bellmore & Nemhauser, 1968; Dantzig 

& Ramser, 1959). Herein, the required repairs for each infrastructure system may be 

arranged in n! ways, where n is the number of damaged nodes. This number becomes 

incredibly large for even a relatively small number of nodes, exceeding 1 trillion possible 

permutations for just 15 damaged nodes. Already a set of NP-Hard problems, these 

permutations are further complicated by the intricacies they have been demonstrated to 

share and the challenge of selecting appropriate resource levels to repair each 

infrastructure (Karp, 1972). These considerations mean that finding feasible schedules 

may be difficult and that a holistic approach must be assumed in creating a combinatorial 

permutation of all required repairs. 

While all possible arrangements may be assessed when given enough time, this is 

impractical not only because of the quickly exploding number of permutations, but also 

because of the time required to determine the feasibility of, and assess, each alternative. 
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Permutation problems of the kind have been addressed using a number of heuristics 

including genetic algorithms, simulated annealing, ant colony optimization, nearest 

neighbor algorithms, pairwise exchange, and variable-opt approaches, to name a few 

(Razali & Geraghty, 2011; Skiscim & Golden, 1983; Manfrin et al., 2006; Monnot & 

Toulouse,  014; Kizilateş & Nuriyeva,  013; Verhoeven et al., 1995; Bentley, 1990). 

These inexact methods have been adopted to find very-good solutions in a reasonable 

amount of time and have enjoyed considerable success. Recognizing this efficacy, a 

multiobjective genetic algorithm is proposed to generate well-performing restoration 

schedules for post-disaster infrastructure systems. Inspired by the processes of natural 

selection and evolution, multiobjective genetic algorithms look to evolve a population of 

solutions toward the Pareto frontier of an objective space (Schaffer, 1985; Srinivas & 

Deb, 1994). This Pareto frontier is comprised by a set of Pareto efficient solutions from 

which no solution can be selected that is better than another member of the set by all 

objectives. They exist in contrast to a set of dominated solutions which are not better than 

any member of the Pareto efficient set by any objective and are worse than a member of 

the Pareto efficient set by at least one objective (Steuer, 1986). An illustration of this 

relationship is shown in Figure 10. Unless it is comprised by only one solution, no 

solution of the Pareto efficient set can be considered objectively best. Therefore, some 

subjectivity must be introduced in making a final selection. However, determining a set 

of Pareto efficient solutions is incredibly useful as it provides decision-makers with a set 

of alternatives that are strictly not worse than any known solution and disclose useful 

tradeoff information between the competing objectives.  
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Figure 10. Relationships between Pareto efficient solutions, dominated solutions, and the 

Pareto frontier for a bi-objective optimization scenario. 

 

A general overview of the proposed method is shown in Figure 11. This approach 

follows a backbone resembling that of NSGA-II (likely the most widely employed 

multiobjective genetic algorithm), with several modifications that allow it to handle the 

task of optimizing disaster recovery schedules (Deb et al., 2002). The high-level 

workings of this method are described briefly here, with intricacies discussed in greater 

detail in the following subsections. After determining the required repairs and 

representing this damage on the combinatorial infrastructure graph, an initial population 
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of restoration schedules (solutions) is first created. Each member of this population is 

simply a randomly generated permutation of the required repairs along with randomly 

assigned resource levels to address each infrastructure type. The nature and 

representation of these population members is further discussed in Section 3.3.1. This 

initial, or parent, population is then used to create a population of offspring via crossover 

(Section 3.3.2) and mutation (Section 3.3.3) operators. The combined parent and 

offspring populations are then passed to an agent-based simulation (Section 3.3.4) used to 

determine the repair time and cost associated with each schedule. This procedure also 

augments the schedules into feasible solutions, making sure that precedence and 

accessibility constraints are not violated. This is necessary as the randomly generated 

solutions (and those manufactured by offspring creation procedures) will likely exhibit 

several infeasibilities without modification. These augmented solutions, along with their 

elicited performance metrics are passed back to the genetic algorithm for selection 

(Section 3.3.5). This procedure determines a subset of the total population which will be 

used as parents in creating the next set of offspring, completing the first iteration of the 

genetic algorithm. The selected solutions and the offspring they generate are then passed 

to the simulation, as before, and the iterative process (the loop formed by black arrows in 

Figure 11) is repeated until some stopping criteria are met. Following several iterations 

and termination, the proposed method culminates in a set of feasible, automatically 

generated restoration strategies for decision-maker consideration and comparison. 
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Figure 11. High-level overview of proposed method operations. 

 

3.3.1. Solution Representation.  To encode resource and schedule information 

for use by the genetic algorithm and agent-based simulation, a representation scheme is 

necessary. Maintaining the terminology of its biologic inspiration, this representation is 

known as a chromosome. Each chromosome is comprised of a sequence of bits which 

encode pieces of information about the solution. Here, a compound representation is 

used. The first part of the chromosome describes the resource levels selected to restore 

each type of infrastructure. Any unit may be used to describe resource levels in this initial 

section. Further, multiple bits may be dedicated to address the same infrastructure 

system; e.g., a bit to describe the number of workers capable of repairing low-voltage 

electrical lines and a bit dictating the number of lineman able to work on high-voltage 

components. The remainder of this investigation uses units of number of repair teams 

assigned to each infrastructure for convenience and ease of understanding and discussion. 
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In the example of Figure 12, three infrastructure systems need repair: roadway, water, 

and electricity. The first three bits of this chromosome define the number of restoration 

teams assigned to repair these respective infrastructures: two teams capable of roadway 

restoration, one to address the electric system, and two for water infrastructure repair. 

The second portion of the chromosome has one bit for each required repair to an 

infrastructure system. The order of these bits then describes the order that these repairs 

are set to begin. In Figure 12, six damaged nodes are scheduled for repair in the order 

shown. Note, for any application of the proposed method, this second section is a 

permutation of all damaged infrastructure nodes. 

 

 

Figure 12. Sample compound solution representation for proposed method. 

 

3.3.2. Crossover Operators.  Crossover is an operation within genetic algorithms 

that (generally) uses two parent chromosomes to create an offspring exhibiting some 

characteristics of each parent. This mimics the combination of parental genes within the 
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offspring of many biologic organisms (Holland, 1992). Because the chromosomes used in 

this work have some special characteristics, as discussed in Section 3.3.1, a custom 

crossover operator is be adopted. Detailed in Pseudocode 1, the crossover procedure first 

selects two random chromosomes from the population of parent solutions. Two bit-

positions along the first parent chromosome are also randomly selected. If the earliest 

selected bit along this sequence, call it position y, is within the range of bits dictating 

resource levels (Pseudocode 1 – Line 6), a simple single-point crossover is utilized (Deb 

& Agrawal, 1995). This procedure creates an offspring by combining the bits of the first 

parent up to and including position y, then appends the bits of the second parent occurring 

after position y. Alternatively, if the earliest selected bit occurs within the range dictating 

restoration order (Pseudocode 1 – Line 10), a more sophisticated crossover protocol is 

required; crossover procedures applied to this range must take care to maintain a 

permutation of all required repairs. Classical approaches such as one-point, two-point, 

and uniform crossover do not ensure the preservation of this property (Oliver, 1987). 

Here, a procedure known as OX Crossover is utilized. Described in Pseudocode 1, this 

operator is discussed in greater detail in Davis (1985). 

At each generation, the crossover method of Pseudocode 1 is used to produce a 

population of offspring equal in number to the parent population used in their creation. It 

is hoped, through these operations, that offspring are bred which improve upon their 

parent chromosomes by one or more objectives. 
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Pseudocode 1: Crossover 

Functions: 
 firstX(M, N): returns the first item in N not already in M  

Indexing: 

 list[C : D]: the Cth through Dth items of list, inclusive 

Inputs: 
 population: population of solution chromosomes (parents) 

Outputs: 
 offspring: chromosome sharing characteristics of parents 

Pseudocode: 
1 set r as the number of bits dictating resource levels 
2 set end as the length of the chromosome representation used 
3 randomly select parent1 and parent2 from population 
4 randomly select two bit positions: a and b 
5 set y as the minimum of a and b 
6 set z as the maximum of a and b 
7 if y ≤ r: 
8  parent1Contribution = parent1[1 : y] 
9  parent2Contribution = parent1[y+1 : end] 

10  offspring = parent1Contribution + parent2Contribution 
11 else: 
12  offspring = parent1[0 : r] 
13  parent1Contribution = parent1[y : z] 
14  for i in range(y-r): 

15   append firstX(parent1Contribution, parent2[r+1 : end]) to 

offspring 
16  append parent1Contribution to offspring 
17  for j in range(z+1 : end): 
18   append firstX(offspring, parent2[r+1 : end]) to offspring 
19 return offspring 

 

3.3.3. Mutation Operators.  Mutation is a process within genetic algorithms used 

to achieve and maintain solution diversity from one generation to the next. Analogous to 

biologic mutation within living organisms, this procedure stochastically modifies 

chromosomes to avoid local optima and keep the population from becoming too similar 

(Holland, 1992). Mutation further allows characteristics not exhibited by any member of 

the population to be injected into a chromosome, potentially allowing a new region of the 

decision space to be explored.  
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 As with the crossover operator, the proposed model employs a specialized mutation 

procedure to handle the used representation’s unique properties. Disclosed in Pseudocode 

2, this mutation operator can introduce diversity into both the resource level and restoration 

schedule sections of a population’s chromosomes. If a randomly generated number from 

the uniform distribution between 0 and 1 is less than or equal to a supplied mutation rate 

(mutationRate), the procedure will mutate the selected chromosome. If it is greater than 

mutationRate, no mutation will occur. When mutating, if a second randomly generated 

number from the same distribution is less than or equal to a supplied threshold (resWeight) 

the operator will mutate the resource level portion of the chromosome. In such a case, a 

random bit dictating resource level will be replaced with a random integer between one 

and a user-defined cap for the associated resource (resCap). Supplied as a list, a scenario 

employing three resource types with a resCap sequence of [3, 8, 6] could utilize at most 3 

units of Resource 1, 8 units of Resource 2, and 6 units of Resource 3. If, however, the 

second randomly generated number is greater than resWeight, the restoration schedule 

portion of the chromosome is mutated by swapping the values of two randomly selected 

bits from this range. For simplicity, only this swap operator is used when mutating the 

restoration schedule section of a chromosome. Other operators, such as inversions or slides, 

may be used, as long as they preserve the permutation nature of this section. 

Note the utility of resWeight, allowing the user to dictate the general distribution 

of mutation between the resource level and restoration schedule portions of a 

population’s chromosomes. This control is useful as some scenarios may underserve one 

of these equally important sections if mutation is left to totally random bit selection. This 
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can particularly occur when one of these chromosome portions is much longer than 

another, wherein the shorter portion may be left receiving very few mutations. 

 

Pseudocode 2: Mutation 

Functions: 

 swap(U, V, W): swaps the bit-values of position U and position V 

within chromosome W 

 random(): produces a random value from the uniform distribution 

between 0 and 1 

Indexing: 
 list[E]: the Eth item of list 

Inputs: 

 population: population of solution chromosomes (parents) 

 mutationRate: proportional likelihood a solution will be mutated 

 

resWeight: the proportional likelihood a given mutation will occur to 

the resource level section of the respective chromosome 

 resCap: a list defining the maximum level of each potential resource  

Outputs: 

 mutant: chromosome which may have been mutated 

Pseudocode: 
1 set r as the number of bits dictating resource levels 
2 set end as the length of the chromosome representation used 
3 set mutant as the chromosome which may be mutated 
4 if random() ≤ mutationRate: 
5  if random() ≤ resWeight: 
6   randomly select a bit position from 1 to r, inclusive: k 

7   replace the kth bit-value of mutant with a random integer from 

1 to resCap[k] 
8  else: 
9   randomly select a bit position from r+1 to end, inclusive: g 

10   randomly select a bit position from r+1 to end, inclusive: h 
11   swap(g, h, mutant) 
12 return mutant 

 

At each generation, Pseudocode 2 is applied to each chromosome within the 

combined population of parents and crossover-born offspring. As a measure of preserving 

elitism and diversity, Pareto efficient solutions that occupy a unique point in the objective 

space are not mutated traditionally. Instead, a copy of the original version is appended to 
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the population before the original is mutated as usual. Note that this individuality is not 

determined by the uniqueness of a chromosome, but by the objective performance that 

chromosome achieves. This measure looks to maintain the benefits of mutation while 

avoiding the loss of solutions with unmatched performance to potentially detrimental 

stochastic modification. 

3.3.4. Evaluation by Simulation.  Agent-based simulation serves a dual purpose 

within the proposed method. When presented with a chromosome, this procedure 

simultaneously augments (if required) the solution to have a feasible restoration schedule 

and serves as a performance evaluator, determining the time and cost required by the 

chromosome to restore the disaster area. This strategy side-steps the need to manually 

craft feasibility constraints which may be arduous to formulate and are variable from one 

area or situation to another. Similarly, the establishment of formal objective functions is 

not required, with objective values derived instead from the proceedings of the 

simulation.  

 To facilitate a discussion of this mechanism (Pseudocode 3), a few definitions are 

first required. Within a combinatorial graph representing an area’s infrastructure systems, 

a damaged node describes a partition containing damage to the infrastructure system the 

node defines. Alternatively, an undamaged node represents a partition containing the 

associated infrastructure while exhibiting no damage. Each node also possesses a set of 

neighbors, which are the nodes of the same infrastructure type to which it is normally 

connected by an arc. An accessible node has at least one undamaged neighbor that is linked 

to the functional surroundings by arcs connecting undamaged nodes of the same 

infrastructure type. A feasible node, finally, is one which may be restored given the current 
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state of the combinatorial graph. For a node to be feasible, it must be accessible and each 

of its precedence nodes must be accessible and undamaged. While these general feasibility 

rules are adopted for the current investigation, any desired ruleset may be integrated into 

this flexible framework.  

These statuses are easily encoded within combinatorial graphs and discerned by 

network optimization techniques. To describe the impacts of a disaster event, all damaged 

nodes and the arcs connected to them are removed, such as demonstrated in Figure 6. 

Whether a node is accessible can be determined by a simple tree search along all arc 

paths branching out from the node in question; if one of these branches reaches the 

functional surroundings, the node is known to be accessible. This tree search can also be 

used to determine if an accessible node is feasible by checking if each of the node’s 

precedence nodes are accessible, in addition to being undamaged. When a damaged 

feasible node is restored, it is readded to the combinatorial graph and arcs are drawn 

between it and each of its undamaged neighbors. This reinstitution moves the overall 

network closer to its pre-disaster condition and may affect the statuses of other nodes. 

Through these procedures, the systematic assessment of a proposed restoration plan can 

be completed by the agent-based scheme of Pseudocode 3. 

 

Pseudocode 3: Agent-Based Simulation Evaluation 

Functions: 

 restore(O, Q): adds node O to graph Q and connects O to 

undamaged neighbors 

Indexing: 
 list[E]: the Eth item of list 
 list[C : D]: the Cth through Dth items of list, inclusive 

Inputs: 
 chromosome: restoration solution from genetic algorithm  
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 G: area combinatorial graph with damaged nodes (and associated 

arcs) removed  

 timeReq: matrix of time required to restore each node 
 fixedCosts: list of fixed costs associated with each resource type 

 variableCosts: list of costs per unit time associated with each 

resource type  

Outputs: 

 feasChromosome: augmented chromosome with feasible restoration 

schedule 
 resCost: cost to restore disaster area by implementing chromosome  
 resTime: time to restore disaster area by implementing chromosome  

Pseudocode: 
1 set r as the number of bits dictating resource levels 
2 set end as the length of the chromosome representation used 
3 set restorationLog as empty 
4 resources = [ ] 
5 for h in range(r): 
6  append r(h) agent(s) of type h to resources 
7 mark each agent in resources as available 
8 set jobs as the ordered list of restorations (chromosome[r+1 : end]) 
9 mark each job in jobs as notAssigned 

10 clock = 0 
11 while any job in jobs is not completed: 
12  mark each idle agent as available 
13  for each available agent in resources: 
14   assign agent to first feasible job in jobs of appropriate type 
15   mark agent as unavailable for timeReq[job] steps of clock 
16   mark job as assigned 
17   record job assignment to agent in restorationLog 
18   if no job is currently feasible for agent: 
19    mark agent as idle 
20  clock += 1 
21  for any job just completed by an agent: 
22   restore(job, G) 
23   mark job as completed 
24   record job completion by agent in restorationLog 
25   mark agent as available 
26 resTime = clock 
26 resCost = chromosome[1 : r] ● fixedCosts 
28 for each agent in resources: 
29  find timeUtilized by examining restorationLog 
30  resCost = resCost + (timeUtilized * variableCosts[agent.type]) 

31 
set feasChromosome as the order of job assignment in 

restorationLog 
32 return feasChromosome, resCost, resTime 
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The simulation begins by creating a set of resources which are responsible for 

restoring the damaged infrastructure systems. Each agent within resources has an attribute, 

type, defining the type of infrastructure system it may restore. The number of each type of 

agent created is dictated by the resource level portion of the chromosome passed to the 

simulation. Each agent is then marked as available as none have yet been assigned a 

restoration task. The ordered set of jobs, or nodes requiring repair, is next gleaned from the 

restoration schedule portion of the chromosome. Each job within jobs is then marked as 

notAssigned, indicating that no agent has yet been dispatched to restore it. 

 The time regulator of the simulation, clock, is then initialized and the task of 

restoring the damaged infrastructure systems is begun. While any job remains not 

completed, the procedure will look to find an available agent of the appropriate type to 

complete the required repairs. Assignment occurs following the order of jobs (inherited 

from the chromosome), with an available agent being assigned the first feasible job (related 

to a feasible node) it is qualified to complete. Upon this assignment, the agent is marked 

as unavailable for the amount of time required to complete the repairs of the assigned job, 

as prescribed by timeReq. The job is then marked as assigned and the assignment is 

recorded in restorationLog. If no feasible job can be found for an agent, the agent enters 

an idle state until the next clock step. This assignment search is conducted for each 

available agent, resulting in all resources being either unavailable or idle before the next 

clock step is initiated. 

 When no available resources remain, clock is stepped to the next value, signifying 

the passing of one time-unit within the simulation. Upon each step of clock, an assigned 

job may be completed by an agent. Upon this occurrence, the node of the combinatorial 
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graph (G) associated with the job is restored and the job is marked as completed. This 

completion is also recorded in restorationLog. The agent completing the job is next marked 

as available and is eligible for assignment to a new job. 

 When every job is completed, the simulation is ended, and the performance metrics 

of the chromosome can be determined. The amount of time required by the solution to 

restore the area, resTime, is set equal to clock. The cost required by the solution to complete 

the overall restoration, resCost, is then determined as the sum of all fixed and variable costs 

incurred. resCost is first set equal to the dot product of the resource level portion of 

chromosome and a list of the fixed costs associated with employing one unit of each 

resource, fixedCosts. For instance, a scenario with chromosome-defined resource levels of 

[2, 5, 1] and a fixedCosts list of [$300, $200, $250] would accumulate $1,850 of fixed 

costs: 2 units * $300/unit for resource 1, 5 units * $200/unit for resource 2, and 1 units * 

$250/unit for resource 3. The variable costs associated with each individual agent of 

resources is then added to resCost to finalize the metric. Examining restorationLog, the 

time (in clock steps) between the first assignment of a job and the last instance of 

completing a job is determined for each agent. This value, timeUtilized, is then multiplied 

by the cost per unit time of employing the type of agent, as prescribed by variableCosts. 

The sum of this product for every agent and the fixed costs previously determined comprise 

the total resCost mandated by the examined solution. 

The agent-based model finally examines restorationLog to determine the actual 

order in which each job was assigned. This order is the final output, feasChromosome, of 

the procedure. This augmented chromosome is free of any precedence or feasibility 

violations, which may have been present in the input chromosome. Returning these 
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augmented solutions, all alternatives output by the simulation are perfectly viable 

restoration strategies. These feasible chromosomes are then passed back to the genetic 

algorithm for selection based on their associated time and cost objective values. 

3.3.5. Multiobjective Selection.  To maintain a fixed population size, a subset of 

all solutions returned from the agent-based model needs to be selected to serve as the 

parent population of the genetic algorithm’s next generation. A popular selection method 

within multiobjective genetic algorithms is to use nondominated sorting to assign an 

overall fitness value to each solution, then retain those deemed most fit (Deb et al., 2002). 

This fitness is determined by sorting the set of solutions into successive Pareto fronts 

based on their objective values. The first Pareto front of a set of solutions are all those 

solutions that are Pareto efficient. If the first Pareto front were removed from the set, 

those solutions becoming Pareto efficient comprise the second Pareto front. This is done 

repeatedly until all solutions are assigned a front. Solutions with the lowest front number, 

or rank, are then considered by the selection mechanism as most fit.  

 Starting with the first front, the selection procedure adds successive fronts of 

solutions to the population to be retained until a minimum specified number of solutions 

has been added. If necessary, solutions from the worst included rank are then removed by 

a crowding distance operator until the exact number of specified solutions is retained. 

Following these operations, the population passed to each generation of the genetic 

algorithm is exactly the same size, regardless of the number of new solutions created by 

crossover and mutation. 

The selection mechanism of this approach follows that of NSGA-II (Deb et al., 

2002), with the exception of the nondominated sorting method utilized. While capable, 
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the Fast Nondominated Sort procedure used in NSGA-II is much less efficient than 

contemporary methods. Instead, the proposed method uses Ideal Sort (Vanfossan & 

Kwasa, 2022) to expedite nondominated sorting and generate the final set of restoration 

strategies more quickly. 

 

4. DISASTER SIMULATION AND PROPOSED METHOD APPLICATION 

4.1. A SIMULATED DISASTER 

To test the proposed method, a simulated disaster scenario was created using the 

actual infrastructure maps of the nearly 2-square-mile sample region shown in Figure 13 

(a). Here, four basic infrastructure systems are included: roadway, electric, water, and 

communications. Following the presented procedures, the infrastructure maps (Figure 13 

(b)) were partitioned by a common 13-by-16 grid, dividing each system into 208 

rectangular partitions. Each partition, then, relates to an area roughly measuring 465 feet-

by-575 feet. The automated process disclosed was then used to generate the network 

graph of each infrastructure system, as shown in Figure 13 (c). Finally, the networks are 

combined into a single combinatorial graph through the connections prompted by the 

precedence schedule of Table 2. Specifically, an arc is drawn from each node to any 

precedence nodes the former relies on. As demonstrated, this precedence relationship is 

made considering both infrastructure type and locality. For example, an electric 

infrastructure node existing at graph location (0, 0, 1) will be connected by an arc to the 

similarly located roadway infrastructure node, Node (0, 0, 0). Correspondingly, a 

communications infrastructure node at this spatial location, Node (0, 0, 3), would be 
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connected to both Node (0, 0, 0) and Node (0, 0, 1). If a node is of an infrastructure type 

having a precedence requirement, but the required node does not exist in the same 

locality, the geographically closest node of the required precedence infrastructure is 

linked as the precedence node. If a tie exists for closest required precedence node, the 

candidate node defining the partition with the greatest infrastructure prevalence is chosen. 

Recall that this prevalence is automatically recorded by the automated network 

generation procedure of Section 3.2. Each of these processes can be performed 

systematically, requiring no effort from the end-user to encode these precedence 

relationships. 

 

 

(a) 

Figure 13. Identification of infrastructure systems from sample geographic region and 

translation to representative network graphs. a) Sample region comprised of co-located 

infrastructure systems. b) Infrastructure maps describing selected systems present within 

the sample region of Figure 13 (a). c) Network graphs representative of the infrastructure 

maps of Figure 13 (b). 



 

 

145 

 

(b) 

 

(c) 

Figure 13. Identification of infrastructure systems from sample geographic region and 

translation to representative network graphs. a) Sample region comprised of co-located 

infrastructure systems. b) Infrastructure maps describing selected systems present within 

the sample region of Figure 13 (a). c) Network graphs representative of the infrastructure 

maps of Figure 13 (b). (cont.) 
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Table 2. Precedence relationships between four selected infrastructure systems. 

 

 

After constructing the combinatorial graph, the effects of a simulated disaster 

were introduced. Seeking to emulate the impacts of a tornado, the damage schedule of 

Table 3 and Figure 14 was used. Here, nodes of the combinatorial graph are set as 

damaged according to the type of infrastructure they describe, their geographic location, 

and the associated damage probabilities of Table 3. For instance, the electric 

infrastructure node corresponding to Partition (7, 7) has an 80% chance of being damaged 

as it exists within the Red Region of Figure 14. For each infrastructure system, the 

probability of damage is greatest for nodes within the Red Region, less for those within 

the Yellow Region, and even less for those in the Green Region. This is adopted to mimic 

the reduced damage that may be experienced by areas an increasing distance from the 

touchdown path of a tornado (Roueche & Prevatt, 2013). 

 

Table 3. Likelihood of node damage by type of infrastructure system and region 

classification, as defined by Figure 14. 

 

Infrastructure Type Precedence Infrastructures 

Roadway - 

Electric Roadway 

Water Roadway 

Communications Roadway, Electric 

 

Infrastructure Type 
Likelihood of Node Damage 

Red Region Yellow Region Green Region 

Roadway 90% 75% 50% 

Electric 80% 60% 40% 

Water 30% 15% 10% 

Communications 70% 50% 30% 
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Figure 14. Tornado damage schedule, describing relative damage expectations by map 

partition. 

 

In a real disaster scenario, the amount of damage to each node may be estimated 

by observing the affected region or the application of assessment models (Spedheger et 

al., 2002; Marshall, 2002; Hashemi & Alesheikh, 2011; Myint et al., 2008; Wu & Cui, 

2018; Erdik et. al, 2011; Kryvasheyeu et al., 2016; Gong, 2013; Foresti, 2015). These 

estimates can then be used in conjunction with resource repair rates to determine the 

length of time required to repair each node (Ramachandran et al., 2015). Here, the time 

required by an appropriate resource team to repair each node is simply set as a random 

integer between 1 and 10. At most, then, a node will take 10 clock steps of the simulation 

to restore. While a more sophisticated damage simulation method may have been used, 

this basic approach easily incorporates the unpredictable and nonuniform damage that 

may accompany varying types of disasters (Masoomi et al., 2018; Lu & Guan, 2017). 
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The following parameters and scenario inputs were finally supplied to the model, 

prompting its generation of a set of Pareto efficient restoration strategies: 

• Population Size: 100 Solutions 

• Maximum Generations: 500 

• Clock Step: 1 Day 

• mutationRate: 0.1 

• resWeight: 0.25 

• resCap: [10, 10, 10, 10] 

• Resources: Roadway Repair Team(s), Electric Repair Team(s), Water Repair 

Team(s), Communications Repair Team(s)  

• Resource Costs (fixedCosts and variableCosts) defined by Table 4 

 

Table 4. Fixed and variable resource cost schedule by resource type. 

 

 

Note, here, that arbitrary fixedCosts and variableCosts are assigned for the 

example resource types. These can be easily modified to reflect the real costs incumbent 

of the scenario to which the method is being applied. 

Resource Type fixedCosts variableCosts 

Roadway Repair Team $6,500 / Team $480 / Day / Team 

Electric Repair Team $8,250 / Team $1,120 / Day / Team 

Water Repair Team $6,200 / Team $800 / Day / Team 

Communications Repair Team $9,000 / Team $960 / Day / Team 
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4.2. METHOD RECOMMENDATIONS AND ALTERNATIVE RESTORATION 

STRATEGIES  

Following 500 generations, the model returned solutions with 11 unique objective 

pairings. These comprised a set of Pareto efficient solutions spanning from 65 to 457 

days to complete, while incurring expenses between $1,351,150 and $1,519,950. The 

objective values owned by each of these alternatives are listed here: 

Format: (Restoration Time, Restoration Expense) 

• (65 Days,  $1,519,950) 

• (67 Days, $1,512,110) 

• (70 Days,  $1,511,950) 

• (78 Days,  $1,484,350) 

• (92 Days,  $1,457,150) 

• (93 Days,  $1,452,350) 

• (115 Days, $1,430,100) 

• (127 Days, $1,409,400) 

• (153 Days, $1,400,400) 

• (229 Days, $1,370,700) 

• (457 Days, $1,351,150) 

While 100 unique solutions were generated, only the 11 unique objective function 

pairs were precipitated. This demonstrates another complexity of the scenario, in which 

two recovery schedules may produce identical objective function results. This could serve 

problematic for recovery planners attempting to manually produce alternative solution 
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strategies. This potential frustration is sidestepped by the automated strategy generation 

of the proposed method. 

To provide some context toward the efficacy of the proposed method, a few 

intuitive alternative strategies are conceived and evaluated. Each alternative is introduced 

here, with performance disclosed and discussed in Section 4.3. When generating these 

alternatives, it is assumed that a mechanism is possessed to ensure that only feasible 

strategies are produced. A further assumption is that some procedure is available to assess 

each alternative in terms of time and cost required. While easily achieved by the agent-

based simulation of the proposed method, these capabilities may not be available to 

decision-makers using traditional approaches to generate recovery schedules. 

Nonetheless, these facilities will be used in creating and assessing the alternative 

strategies to isolate and highlight the benefits of the proposed model’s evolutionary 

generation strategy. 

4.2.1. Random Generation Strategy.  A very basic approach is to generate 

several random solutions and then pick a desirable one. This is akin to the random 

population generation initiating the proposed method. There, 100 solutions were created. 

4.2.2. Maximum Resource Strategy.  Alternatively, decision-makers may look 

to develop strategies that restore the affected area as quickly or affordably as possible. 

Attempting to repair all damage as quickly as possible, the maximum number of each 

resource is employed. Here, this implies the availability of 10 units of each resource (a 

chromosome[1 : r] sequence of [10, 10, 10, 10]). However, the order in which nodes are 

repaired will still impact overall restoration time and cost. Thus, 100 randomly generated 
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restorations schedules are followed using these maximum resource levels to get some 

idea of this strategy’s performance range. 

4.2.3. Minimum Resource Strategy.  Seeking to complete the required 

restorations as affordably as possible, the minimum number of each resource is 

employed: a chromosome[1 : r] sequence of [1, 1, 1, 1]. As before, 100 random 

restoration schedules were followed using this minimalist strategy to approximate its 

range of performance. 

4.2.4. Most Damaged First Strategy.  A seemingly intuitive strategy may be to 

restore those nodes sustaining the most damage (that is, those that will take the longest to 

repair), first. In this way, the most burdensome repairs are completed first, allowing 

resources to become available with more frequency during latter repair stages. This may 

help avoid scenarios where the long restoration times of nodes with many dependent 

counterparts can cause resources to sit idle, substantially extending overall completion 

time. Using this front-loaded restoration order, 100 solutions with randomly generated 

resource levels are created and assessed. 

4.2.5. Least Damaged First Strategy.  Instead, a strategy restoring the least 

damaged nodes first could also be used. Ordering restorations by increasing repair time, 

more nodes are restored earlier, allowing the network to resemble its undamaged state 

earlier in the restoration process. This may have the beneficial property of reducing the 

number of nodes that are not feasible quicker, helping avoid scenarios where resources sit 

idly with no feasible repairs. Here again, 100 solutions with random resource levels were 

created and assessed following this scheduling strategy. 
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4.3. STRATEGY COMPARISON AND DISCUSSION 

The multiobjective performance of the solutions generated by each strategy is 

shown in Figure 15. This all-solution view is presented to give an idea of the scope and 

distribution of the solutions generated by each strategy. A zoomed view of a busy region 

of the solution space (Restoration Time: 60 Days – 160 Days; Restoration Cost: 

$1,400,000 - $2,000,00) is then shown in Figure 16, highlighting the objective superiority 

of the solutions produced by the proposed method. When all generated solutions are 

considered, each of those created by the proposed method are Pareto efficient. Further, all 

500 solutions generated by the alternative strategies are dominated by at least one of 

these Pareto efficient options. Finally, the Pareto efficient set associated with each 

strategy is shown in Figure 17, demonstrating the proposed method’s ability to cover the 

entire spectrum of solution performance achieved by other methods while simultaneously 

producing objectively better alternatives. 

While the dominance enjoyed by the proposed method’s solutions describes 

objective superiority, a further investigation is made to describe the degree of this 

superiority. Some summary statistics are presented, describing the multiobjective 

performance and distribution of the solutions generated by each examined strategy (Table 

5). The yellow highlighted values within Table 5 denote the strategy performing the best 

with respect to respective summary statistics. For example, the best minimum restoration 

time achieved by any strategy is owned by the proposed method, requiring 65 days. 
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Figure 15. Multiobjective performance of recovery strategies created by proposed and 

alternative solution generation methods. 

 

 

Figure 16. Selected region of multiobjective performance of recovery strategies created 

by proposed and alternative solution generation methods. 
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Figure 17. Pareto frontiers of solutions created by proposed and alternative strategy 

generation methods. 

 

Table 5. Multiobjective performance statistics of proposed and alternative strategy 

generation methods. 

 

 

These summary statistics further describe the proposed method as the best 

performing of all examined strategies. In fact, the proposed method boasts the best 

performance by each summary statistic with respect to solution restoration cost. These 

summary statistics can be misleading, however. When describing restoration time for 

each examined strategy, a casual observer may deduce that the Maximum Resource 
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Strategy competes with the proposed method with respect to restoration time. Indeed, 

four of the included summary statistics for restoration time exhibit best values achieved 

by the Maximum Resource Strategy. However, these values are affected by the tight 

distribution of this strategy’s solutions. Discernable from the tight cluster of green 

diamonds in Figure 16, this dense distribution yields quartile and mean values that are 

favorable, while each of these Maximum Resource Strategy solutions are in fact inferior 

to some subset of proposed method solutions. 

A powerful method for describing the multiobjective performance of populations 

of solutions is the hypervolume indicator or S-metric (Zitzler & Thiele, 1998; Beume, 

2009). This value describes the multiobjective space dominated by at least one member 

of a population of solutions, bound by some universally dominated reference point. The 

hypervolume indicator is perhaps the most widely adopted evaluation metric for 

multiobjective population quality as it is a unary, pareto dominance-compliant 

performance measure. That is, whenever a population of solutions dominates another, the 

hypervolume indicator of the former is always larger. Being the case, the hypervolume 

indicator values disclosed in Table 5 describe the population of the proposed method as 

the best performing. Note that the reference point used in determining these hypervolume 

indicators was the combination of the worst objective values observed for any solution of 

any method during the investigation.  

A final exercise seeks to compare the solutions found by the proposed method to a 

set of hypothetical bounds for restoration time and restoration cost. In this idealized (and 

assuredly unrealistic) scenario, imagine that all constraints are removed from the model. 

Then, any node could be repaired at any time, without worrying about its accessibility or 
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if its precedence considerations have been met. In a scenario of the kind, the total 

restoration cost could be minimized by utilizing one unit of each resource type. Therein, 

fixed costs and variable costs are minimized as no constraints are present to force a unit to 

sit idle. Similarly, the total restoration time could be minimized by utilizing as many 

resources as possible and applying a parallel resource makespan minimization strategy 

(Graham et al., 1979; Dessouky et al., 1990). Here, a resCap of [10, 10, 10, 10] was used 

as this was the maximum resource allotment at the disposal of the proposed method. 

These methods yielded a best-case bound for the unrestricted case of the disaster 

scenario at $1,325,150 and 59 days for restoration cost and restoration time, respectively. 

The most optimal restoration cost value yielded by the proposed method ($1,351,150) is 

roughly 2% worse than this idealized cost bound. Examining restoration time, the best 

generated value of the proposed method (65 days) is about 10% worse than its idealized 

counterpart. As comparing these objectives independently is underinformative, a 

multiobjective assessment is also made. Relating to the hypervolume indicator, it is of 

interest to see how much of the multiobjective space between this idealized bound and 

some reference point is dominated by a set of solutions. Here, again, the reference point is 

the combination of the worst observed objective values conjured by any method during the 

investigation is used ($6,258,050, 612 Days). Because this is a completely bounded space, 

the region dominated by a set of solutions can be represented as a proportion or percentage. 

The population of solutions produced by the proposed method is shown to dominate 

around 97.8% of this space (Figure 18). This high coverage proportion and the proximity 

of found solutions to the idealized bounds is impressive, considering the varied constraints 

the proposed method must satisfy. Further, the region left undominated by the proposed 
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method’s solutions may not represent feasible space when the mentioned constraints are 

considered. While the constraint cognizant bounds of the examined scenario cannot be 

easily determined, the proposed method’s ability to approach and dominate the objective 

space of the unrealistic bounds established is impressive. 

 

 

Figure 18. Hypervolume of proposed method’s Pareto frontier between unrestricted 

hypothetical bounds and a universally dominated reference point. 

4.4. SCALING TO A REAL-WORLD DISASTER SCENARIO 

With the merits of the proposed method demonstrated on a simulated restoration 

scenario, it is of interest to investigate how the benefits realized scale to real disaster 

situations. While each disaster scenario will have an intractable number of nuances and 

intricacies -certainly beyond what is captured by the simple scaling procedure used here-, 
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this exercise may provide some indication of the magnitude of temporal and monetary 

savings enabled by the proposed method. 

 An EF5-Rated, multi-vortex tornado struck the city of Joplin, MO in May of 2011, 

causing catastrophic damage to buildings and infrastructure. One of the deadliest and most 

expensive natural disasters in recent U.S. history, the State of Missouri reported the 

requiring of  5 days to restore the region’s critical infrastructure (Ramachandran et al., 

2015. The municipality of Joplin additionally reported the utilization of $150 million in 

completing this restoration (Onstot, 2013). 

To scale this real-world situation to the simulated scenario introduced previously, 

the former’s restoration cost and time ($150,000,000,  5 Days) are first mapped to the 

multiobjective solution space of the simulation. Suppose the procedure followed to restore 

Joplin’s critical infrastructure maps to some point in the simulation space that is in the top 

10% of known solutions (i.e., all solutions generated by any method of this investigation) 

for both restoration cost and time. The average restoration cost and time of solutions within 

this well-performing region is $1,528,576 and 71 days, respectively. Note that this 

performance assumption is generous as conflicting objectives often discourage solutions 

that are universally well-performing. In fact, if we look at the best 10% of known solutions 

according to restoration cost, their average objective performance is $1,528,576 and 201 

days. If we look at the best 10% of known solutions according to restoration time, these 

objective values are $1,853,667 and 71 days. By assuming the strategy followed in 

remedying Joplin’s damaged infrastructure achieved the best combination of these 

independent top-decile averages, the competence of models able to find even better 

solutions is strongly supported. 
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Assuming this placement of the real-world solution in the simulated objective 

space, the proposed method is shown capable of producing solutions that can improve both 

objectives. In fact, multiple solutions generated by the proposed method Pareto dominate 

this mapped point. The best improvement, along each objective, from this mapped point to 

a solution generated by the proposed method is also determined. With respect to restoration 

cost, an improvement of 11.61% to $1,351,150 is discerned. This improvement is 8.45% 

to 65 days when considering the objective of restoration time. When these percent savings 

are scaled back to the real-world Joplin disaster, they describe potential savings of roughly 

$17,415,000 and 2.11 days, respectively. This simple scaling method, though very 

primitive, gives some indication of the scope of real-world benefits enabled by the 

utilization of the proposed method. 

The noted value for restoration cost savings assumes the entire $150,000,000 

dedicated to restoring Joplin’s damaged infrastructure was discretionary in nature. Here, 

discretionary is meant to describe those costs that can be controlled, such as the fixed and 

variable costs considered by the simulation model. These exist in contrast to unavoidable 

expenses: things attached to costs that must be assumed, such as construction materials. 

This all-discretionary assumption, of course, is not veracious to actual expenditures. While 

this research does not seek to determine the proportions of Joplin’s mentioned cost total 

that are inevitable versus those that may be impacted by strategy decisions, Figure 19 

describes the potential savings possible at different points along this discretionary-

unavoidable spectrum. 
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Figure 19. Potential restoration cost savings of the Joplin tornado recovery effort when 

simulated scenario results are scaled using different discretionary versus unavoidable cost 

breakdowns. 

 

5. CONCLUSIONS AND FUTURE WORK 

 

Following disaster events, it is crucial that a region’s critical infrastructure systems 

be restored as quickly and affordably as possible. Failure to do so can have serious and 

lasting negative effects on the well-being of impacted communities and the residents that 

comprise them. Scheduling the granular set of recovery activities needed to complete this 

restoration is a challenging task, made difficult by a variety of spatial and precedence 

relationships incumbent of co-located and interdependent infrastructure systems. Further, 

differences in the order that these recovery activities are completed can have drastic impact 

on the length of time and cost of disaster restoration. 
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This work proposed a method to generate granular and well-performing restoration 

strategies, seeking to repair an impacted region’s disaster damaged infrastructure as 

affordably and quickly as possible. The multiobjective genetic algorithm with agent-based 

simulation yielded fitness functions was shown to outperform other strategy generation 

methods when applied to a simulated disaster. In fact, strategies generated by the proposed 

method were shown to Pareto dominate all solutions produced by any of the study’s 

competing methods with respect to restoration cost and time. This is preliminary evidence 

of the utility of the proposed method and hints at the real-world benefits its application 

could deliver. This method warrants further investigation as enhancing the restoration 

processes of disaster-impacted areas is a meaningful and consequential endeavor. 

 While the application here presented is focused on finding well-performing 

restoration strategies for a given disaster scenario, the proposed methodology could also 

be used in a resource planning capacity. For a certain region, decision-makers may easily 

simulate multiple disaster scenarios and determine the performance metrics achieved by 

different resource allocations. In this way, advance information about the resource levels 

needed to satisfactorily address differing disaster situations may be assumed. Further, 

experimentation may be conducted to see how altering specific resource allocations 

impacts a strategy’s position along the cost-time tradeoff curve.  

A few obvious extensions and opportunities for further study are also noted. First, 

this study used entirely deterministic data. The restoration times for damaged 

infrastructure elements were known with certainty, whereas there is assuredly some 

stochasticity to these values in real scenarios. Modeling this stochasticity may enable 

more robust objective value estimates if multiple simulations of each produced strategy 
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can be run. Further, this model does not allow resources to sit idle if there is an available 

job for them to complete. While it may seem counterintuitive, the ability to have a 

resource do nothing (even when feasible jobs exist) may yield reduced overall restoration 

cost and/or time. Allowing this optional idle state may improve the objective function 

values that can be attained by a modified model. Lastly, the proposed method is not tied 

solely to applications of disaster recovery. Its premises and procedures can be applied to 

any situation where interdependent systems are being constructed, modified, or repaired. 
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SECTION 

3. CONCLUSIONS AND FUTURE WORK 

 

Multiobjective optimization is a powerful and accommodating tool, applicable to 

an incredible variety of real-world scenarios. As the simultaneous consideration of 

conflicting objectives usually disallows the existence of a globally optimum solution, 

several creative techniques have been developed to resolve multiobjective optimization 

problems. Perhaps the most widely applied is a class of a posteriori approaches utilizing 

evolutionary algorithms to generate a set of well-distributed Pareto efficient solutions. 

Specifically, evolutionary algorithms using a nondominated sorting ranking procedure 

have become standard approaches. In repeated investigations, these models have 

demonstrated admirable performance and garnered considerable practical, and academic, 

application. 

While well-performing, a primary criticism of these methods is the computational 

complexity of the nondominated sorting procedure needed to evaluate solution 

alternatives. The burden of this resource intensive procedure has often limited the scope 

of scenarios to which nondominated sorting evolutionary algorithms can be applied in a 

reasonable time. Towards a remedy, considerable effort has been dedicated to improving 

the computational complexity of nondominated sorting algorithms. Success along this 

directive has seen the applicability of these evolutionary procedures grow considerably. 

This scope enhancement lends to the primary research edicts of this work. First, 

this work has sought to improve the computational complexity of nondominated sorting 
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evolutionary algorithms. The included investigations have introduced new nondominated 

sorting mechanics, shown to achieve state-of-the-art runtime performance in some 

instances. With the improvements here introduced, the range of multiobjective 

optimization scenarios to which evolutionary algorithms may be applied is expanded. 

Through incremental works of the kind, more challenging and larger-scale problems may 

be tackled by more the computationally affordable optimization proceedings enabled. 

Additionally, the second mandate of this work was to demonstrate the efficacy of 

multiobjective evolutionary algorithms when applied to challenging optimization 

scenarios. Here, an instance of this approach-class was tasked with the multiobjective 

consideration of a challenging permutation problem, further mired by numerous 

feasibility and resource constraints. Demonstrating objective success, beyond what was 

achieved by other intuitive strategies, another chapter has been added to the pedigree of 

evolutionary algorithm utility. Researches of this kind are important as the capabilities 

they describe sponsor additional efforts to improve the procedures of evolutionary 

algorithms, including nondominated sorting complexity. 

These cooperative research directives serve well to further the study and utility of 

multiobjective evolutionary algorithms. Equipped with these powerful and innovative 

methods, the pervasive scenario of multiobjective optimization can be more intelligently 

and successfully addressed. Indeed, efforts improving the capabilities of multiobjective 

optimization work to improve the decision-making processes that impact and drive 

everyday life. 

While several research extensions have been identified in individual 

contributions, the two reasoned to be most impactful are reiterated, here. A principal 
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contribution of PAPER II was an introduction of the concept of terminability, by which a 

nondominated sorting procedure may be stopped after a desired number of solutions have 

been assigned to their appropriate Pareto fronts. Allowing the procedure to sidestep the 

unnecessary sorting of highly dominated solutions that will not survive to the next 

generation of the evolutionary algorithm, the algorithmic runtime of both algorithms 

(nondominated sorting and the broader genetic algorithm) may be improved. This 

concept of terminability was shown to considerably improve runtime performance of the 

inferred dominance methods to which it was applied. This enhancement allowed methods 

of this inferred dominance class to outperform the otherwise superior class of 

constructive front nondominated sorting methods, in many instances. This sponsors the 

desire to modify strategies of the constructive front method class to utilize terminability, 

themselves. While some creativity may be required to achieve this objective, successful 

attempts may be very well worth the effort. 

Additionally, PAPER III introduced an evolutionary approach to generate 

multidimensional network restoration solutions under a variety of precedence and other 

feasibility constraints. While the case study of infrastructure network recovery following 

a natural disaster was used, this approach may be applied to any scenario where 

dependent combinatorial networks are to be built or repaired. Applying the methods of 

the approach demonstrated may prove valuable in a variety of fields where scenarios of 

this kind arise. 
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