
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2022

Advances and applications in high-dimensional heuristic Advances and applications in high-dimensional heuristic

optimization optimization

Samuel Alexander Vanfossan

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

Department: Engineering Management and Systems Engineering Department: Engineering Management and Systems Engineering

Recommended Citation Recommended Citation
Vanfossan, Samuel Alexander, "Advances and applications in high-dimensional heuristic optimization"
(2022). Doctoral Dissertations. 3162.
https://scholarsmine.mst.edu/doctoral_dissertations/3162

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/3162?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ADVANCES AND APPLICATIONS IN HIGH-DIMENSIONAL HEURISTIC

OPTIMIZATION

by

SAMUEL ALEXANDER VANFOSSAN

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

SYSTEMS ENGINEERING

2022

Approved by:

Dr. Suzanna Long, Advisor

Dr. Benjamin Kwasa, Co-Advisor

Dr. Cihan H. Dagli

Dr. Steven Corns

Dr. Sid Nadendla

© 2022

Samuel Alexander Vanfossan

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of the following three articles, formatted in the style

used by the Missouri University of Science and Technology:

A Geometrically-Based Method for Efficient Many-Objective Decision-Making,

found on pages 24–48, has been published in the Proceedings of the American Society

for Engineering Management 2019 International Annual Conference in Philadelphia, PA,

in October 2019.

Ideal Sort: A Terminable, Efficient Nondominated Sorting Algorithm, found on

pages 49–99, is intended for submission to IEEE Transactions on Cybernetics.

Disaster Recovery Strategy Generation via Multiobjective Heuristic Optimization,

found on pages 100–168, is intended for submission to Natural Hazards Review.

iv

ABSTRACT

Applicable to most real-world decision scenarios, multiobjective optimization is

an area of multicriteria decision-making that seeks to simultaneously optimize two or

more conflicting objectives. In contrast to single-objective scenarios, nontrivial

multiobjective optimization problems are characterized by a set of Pareto optimal

solutions wherein no solution unanimously optimizes all objectives. Evolutionary

algorithms have emerged as a standard approach to determine a set of these Pareto

optimal solutions, from which a decision-maker can select a vetted alternative. While

easy to implement and having demonstrated great efficacy, these evolutionary approaches

have been criticized for their runtime complexity when dealing with many alternatives or

a high number of objectives, effectively limiting the range of scenarios to which they

may be applied. This research introduces mechanisms to improve the runtime complexity

of many multiobjective evolutionary algorithms, achieving state-of-the-art performance,

as compared to many prominent methods from the literature. Further, the investigations

here presented demonstrate the capability of multiobjective evolutionary algorithms in a

complex, large-scale optimization scenario. Showcasing the approach’s ability to

intelligently generate well-performing solutions to a meaningful optimization problem.

These investigations advance the concept of multiobjective evolutionary

algorithms by addressing a key limitation and demonstrating their efficacy in a

challenging real-world scenario. Through enhanced computational efficiency and

exhibited specialized application, the utility of this powerful heuristic strategy is made

more robust and evident.

v

ACKNOWLEDGMENTS

To allies and adversaries: a sincere and humble Thank you!

130:1:49

141:12:5

57:3:69

26:5:6

5:20:16

161:16:76

22:9:8

159:16:9

41:13:11

114:18:1

※

 Additional acknowledgements are extended to my advisors, Dr. Suzanna Long

and Dr. Benjamin Kwasa, for their encouragement and direction, and for making my

graduate career a truly enjoyable experience. Thank you to Dr. Steven Corns and Dr.

Cihan Dagli, my de facto co-advisors, and to Dr. Sid Nadendla for contributing unique

perspectives and insights.

 Unequivocally, I thank my family for their relentless love and support, and for the

provision of every advantage I have ever received.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION ... iii

ABSTRACT ... iv

ACKNOWLEDGMENTS ...v

LIST OF ILLUSTRATIONS ... xi

LIST OF TABLES ... xiv

SECTION

1. INTRODUCTION .. 1

1.1. SINGLE- VS. MULTIOBJECTIVE OPTIMIZATION 1

1.2. AREAS OF APPLICATION .. 3

1.2.1. Economics. ... 3

1.2.2. Finance. .. 3

1.2.3. Engineering Design. ... 4

1.2.4. Medicine. .. 5

1.3. MATHEMATICAL PRELIMINARIES... 6

1.3.1. Multiobjective Problem Definition. ... 6

1.3.2. Pareto Dominance. ... 6

1.3.3. Pareto Optimality and the Pareto Frontier. ... 7

1.4. MULTIOBJECTIVE SOLUTION SET QUALITY... 7

1.5. DISSERTATION ORGANIZATION .. 9

2. MULTIOBJECTIVE OPTIMIZATION: APPROACHES AND CRITIQUES 11

vii

2.1. A PRIORI APPROACHES .. 11

2.1.1. Weighting and Scalarization Techniques. .. 12

2.1.2. Distance Function Methods. ... 12

2.1.3. Constraint Methods. ... 13

2.2. NO-PREFERENCE METHODS .. 13

2.3. MATHEMATICAL A POSTERIORI METHODS .. 14

2.3.1. Weighting Methods. ... 15

2.3.2. The Normal Boundary Intersection Method. ... 15

2.3.3. The Normalized Normal Constraint Method.. 16

2.3.4. Brief Discussion. .. 16

2.4. HEURISTIC A POSTERIORI METHODS ... 17

2.4.1. Evolutionary Algorithms. ... 17

2.4.2. Particle Swarm Optimization. .. 18

2.4.3. Simulated Annealing Approaches. ... 19

2.5. INTERACTIVE METHODS .. 20

2.6. METHOD PREVALENCE AND RESEARCH DIRECTIONS 21

PAPER

I. A GEOMETRICALLY-BASED METHOD FOR EFFICIENT MANY-

OBJECTIVE DECISION-MAKING .. 24

ABSTRACT ... 24

1. INTRODUCTION .. 25

2. PRELIMINARIES.. 29

3. CURRENT METHODS ... 31

4. A GEOMETRICALLY INTELLIGENT METHODOLOGY 36

viii

5. NUMERICAL ANALYSIS ... 39

6. DISCUSSION .. 43

7. CONCLUSIONS AND FUTURE WORK .. 45

REFERENCES ... 47

II. IDEAL SORT: A TERMINABLE, EFFICIENT NONDOMINATED

SORTING ALGORITHM ... 49

ABSTRACT ... 49

1. INTRODUCTION .. 50

2. PRELIMINARIES.. 53

3. RELATED WORK... 53

3.1. COMPLETE COMPARISON METHODS .. 53

3.2. INFERRED DOMINANCE METHODS ... 55

3.3. CONSTRUCTIVE FRONT METHODS ... 57

4. THE PROPOSED ALGORITHM: IDEAL SORT .. 60

4.1. ALGORITHMIC INSPIRATION .. 60

4.2. A DOMINANCE SURROGATE ... 62

4.3. ALGORITHM DESCRIPTION ... 63

4.4. THE BENEFITS OF TERMINABILITY... 66

5. TIME AND SPACE COMPLEXITY .. 67

6. EXPERIMENTAL RESULTS ... 71

6.1. EXPERIMENTAL DATASETS .. 72

6.1.1. Cloud Dataset Generation. ... 72

6.1.2. Fixed Front Dataset Generation. .. 72

6.1.3. Evolved Dataset Generation. .. 73

ix

6.2. EXPERIMENTAL RESULTS ... 77

7. DISCUSSION .. 93

8. CONCLUSION .. 97

REFERENCES ... 98

III. DISASTER RECOVERY STRATEGY GENERATION VIA

MULTIOBJECTIVE HEURISTIC OPTIMIZATION .. 100

ABSTRACT ... 100

1. INTRODUCTION .. 101

2. OBSERVATIONS, CURRENT METHODS, AND THE DESIRED MODEL 105

2.1. PRELIMINARY DISASTER RECOVERY OBSERVATIONS 105

2.2. CURRENT METHODS ADDRESSING DISASTER RECOVERY 113

2.3. THE DESIRED MODEL.. 117

3. AN EVOLUTIONARY METHODOLOGY.. 118

3.1. REASONING ABOUT INFRASTRUCTURE SYSTEMS 118

3.2. AUTOMATED NETWORK GRAPH FORMULATION 121

3.3. OPTIMIZATION BY SIMULATION. .. 127

3.3.1. Solution Representation. .. 131

3.3.2. Crossover Operators. .. 132

3.3.3. Mutation Operators... 134

3.3.4. Evaluation by Simulation. .. 137

3.3.5. Multiobjective Selection... 142

4. DISASTER SIMULATION AND PROPOSED METHOD APPLICATION....... 143

4.1. A SIMULATED DISASTER ... 143

x

4.2. METHOD RECOMMENDATIONS AND ALTERNATIVE

RESTORATION STRATEGIES .. 149

4.2.1. Random Generation Strategy. .. 150

4.2.2. Maximum Resource Strategy. .. 150

4.2.3. Minimum Resource Strategy. ... 151

4.2.4. Most Damaged First Strategy. .. 151

4.2.5. Least Damaged First Strategy. ... 151

4.3. STRATEGY COMPARISON AND DISCUSSION 152

4.4. SCALING TO A REAL-WORLD DISASTER SCENARIO 157

5. CONCLUSIONS AND FUTURE WORK .. 160

REFERENCES ... 162

SECTION

3. CONCLUSIONS AND FUTURE WORK .. 169

BIBLIOGRAPHY ..172

VITA ..180

xi

LIST OF ILLUSTRATIONS

SECTION Page

Figure 1.1. A single-objective optimization scenario with a globally optimum solution. .. 2

Figure 1.2. A multiobjective optimization scenario with two objectives. 2

Figure 1.3. A poorly distributed multiobjective solution set with 9 alternatives. 8

Figure 1.4. A well-distributed multiobjective solution set with 9 alternatives. 9

PAPER II

Figure 1. 4-solution example population demonstrating effects of population order. 62

Figure 2. General selection operations of a generic NDS multiobjective EA. 67

Figure 3. Population with T5 solutions enabling best-case computational

performance by the Ideal Sort algorithm. .. 70

Figure 4. Example evolved dataset with 1,000 original solutions and 250 added

solutions. ... 76

Figure 5. Computational performance for cloud datasets with 10,000 solutions and

an incrementing number of objectives. ... 77

Figure 6. Computational performance for evolved datasets with 10,000 solutions

and an incrementing number of objectives.. 78

Figure 7. Computational performance for cloud datasets with an incrementing

number of solutions and a set number of objectives. .. 79

Figure 8. Computational performance for fixed front datasets with an incrementing

number of fronts and a set number of objectives. ... 83

Figure 9. Zoomed region of required runtime for fixed front datasets with an

incrementing number of fronts and a set number of objectives. 87

Figure 10. Computational performance for evolved datasets with an incrementing

number of solutions and a set number of objectives. 89

xii

PAPER III

Figure 1. Simulated disaster scene with damage to multiple critical infrastructure

systems. ... 108

Figure 2. Simplified disaster scenarios with partitioned infrastructure regions. 110

Figure 3. Disaster scenario with a partition exhibiting damage to multiple

infrastructure systems (roadway and electrical). ... 112

Figure 4. Disaster scenario with a partition exhibiting damage to multiple

infrastructure systems (roadway and water). ... 115

Figure 5. Simple network graph with four nodes and five arcs. 120

Figure 6. Disaster scenario with five roadway partitions translated to a

network graph. ... 120

Figure 7. Example network diagrams for four infrastructure systems............................ 121

Figure 8. Translation of a sample infrastructure map into a representative

infrastructure network graph. .. 123

Figure 9. Translation of a region’s sidewalk system into representative network

graphs at varying granularities. ... 124

Figure 10. Relationships between Pareto efficient solutions, dominated solutions,

and the Pareto frontier for a bi-objective optimization scenario. 129

Figure 11. High-level overview of proposed method operations. 131

Figure 12. Sample compound solution representation for proposed method. 132

Figure 13. Identification of infrastructure systems from sample geographic region

and translation to representative network graphs. ... 144

Figure 14. Tornado damage schedule, describing relative damage expectations

by map partition. .. 147

Figure 15. Multiobjective performance of recovery strategies created by proposed

and alternative solution generation methods. .. 153

Figure 16. Selected region of multiobjective performance of recovery strategies

created by proposed and alternative solution generation methods. 153

xiii

Figure 17. Pareto frontiers of solutions created by proposed and alternative

strategy generation methods. ... 154

Figure 18. Hypervolume of proposed method’s Pareto frontier between unrestricted

hypothetical bounds and a universally dominated reference point. 157

Figure 19. Potential restoration cost savings of the Joplin tornado recovery effort

when simulated scenario results are scaled using different discretionary

versus unavoidable cost breakdowns. .. 160

xiv

LIST OF TABLES

PAPER I Page

Table 1. Average Required Comparisons by Method and Test-Class. 40

Table 2. Average Required Algorithmic Runtime by Method and Test-Class. 42

Table 3. Average GIDM Algorithmic Runtime Reduction from Dynamic Method. 42

Table 4. Average Percent of Candidate Solutions Non-dominated by Test-Class. 42

PAPER II

Table 1. Time and Space Complexity of Existing Nondominated Sorting Methods........ 60

PAPER III

Table 1. Alternative restoration schedules and required restoration time for damage

exhibited in Figure 3. .. 112

Table 2. Precedence relationships between four selected infrastructure systems. 146

Table 3. Likelihood of node damage by type of infrastructure system and region

classification, as defined by Figure 14. .. 146

Table 4. Fixed and variable resource cost schedule by resource type. 148

Table 5. Multiobjective performance statistics of proposed and alternative strategy

generation methods. .. 154

1

1. INTRODUCTION

1.1. SINGLE- VS. MULTIOBJECTIVE OPTIMIZATION

An appropriate applicant to many real-world decision scenarios, multiobjective

optimization differs from single-objective optimization in a number of ways. A principal

difference lies in the nature of the resolution to problems of these distinct classes. Single-

objective optimization is concerned with the identification of a globally-optimum

solution exhibiting the best possible performance as determined by a single objective

function (Figure 1.1). Multiobjective optimization, however, is akin to problem

formulations possessing a number of conflicting objective functions that disallow the

existence of a single, globally optimal solution. Instead, the solution-space is

characterized by a set of Pareto optimal solutions wherein no solution unanimously

optimizes all objectives (Figure 1.2). Also called the Pareto efficient set or the Pareto

frontier of the solution-space, a tradeoff exists between the members of this set. Each

solution is simultaneously inferior to all other members by at least one objective and

superior to all other members by another. Without additional preference information, no

solution can be selected as the single best alternative.

These common scenarios of conflicting objectives manifest regularly in a myriad

of situations. Indeed, the operations of science, business, and life itself recurrently face

scenarios demanding the simultaneous optimization of disparate interests. Developing

and improving methods to address these prevalent situations are thus areas of

considerable research interest.

2

Figure 1.1. A single-objective optimization scenario with a globally optimum solution.

Figure 1.2. A multiobjective optimization scenario with two objectives.

3

1.2. AREAS OF APPLICATION

Multiobjective optimization has been applied to seemingly innumerable fields of

study, occupations, industries, and circumstances. While this section does not scratch the

surface of an exhaustive list of applications, a few examples are given to demonstrate the

pervasiveness of this common decision-making situation.

1.2.1. Economics. Many aspects of macro- and microeconomics involve

scenarios of competing simultaneous objectives. For instance, decisions along the

production possibilities frontier describe the relative mix of products a society can

produce (Hitch, 1953). Assuming full resource utilization, additional production of one

product can only occur at the expense of another’s production. A tradeoff then arises

between the benefit associated with the increased production of the first product and the

opportunity cost of producing less of another.

Governments and central banks use multiobjective optimization in establishing

fiscal and monetary policy. Expanding upon the latter, institutions, such as the Federal

Reserve in the United States, seek to establish policy that balances their stated objectives

of price stability, low unemployment, and steady economic growth, among others

(Federal Reserve Board, 2021; Dennis, 2002). While desired, achieving the optimum

value of each of these objectives concurrently may not be feasible. Instead, the institution

must enact policy promoting their preferred balance of these independent objectives.

1.2.2. Finance. A classic multiobjective optimization problem in the financial

realm is the risk-return tradeoff of an investment portfolio (Mukerjee et al., 2002; Subbu

et al., 2005). Specifically, investors desire their security portfolio to have a high excepted

value of returns while also having low risk, usually measured by some variation metric,

4

such as standard deviation. However, these objectives are somewhat negatively

correlated, with higher potential return values often associated with greater risk

(Lundblad, 2007). Selecting a portfolio balancing this tradeoff is then an area of

considerable interest for securities investors. A multitude of methods has been developed

to generate and select well-performing alternatives along the Pareto frontier of these

objectives (Mukerjee et al., 2002; Subbu et al., 2005; Chiam et al., 2007; Saborido et al.,

2016).

1.2.3. Engineering Design. Multiobjective optimization has been applied

regularly to engineering design problems spanning a range of disciplines. One such

example occurs in aerospace design, where increased attention to the environmental

impact of air travel has driven the design of commercial airplanes. Studies have sought to

determine combinations of design and operational decision variables that simultaneously

optimize greenhouse gas emissions and direct operating costs (Flores-Alsina et al., 2008;

Sweetapple et al., 2014). Greener planes may produce less pollutants, but often come at

the expense of increased operating costs which may be passed on to commercial

customers. The strategies generated by these optimization models thus have substantial

real-world environmental and economic impacts.

The design of sustainable buildings has employed multiobjective optimization in

establishing well-performing renewable energy strategies (Kong et al., 2015). Given a set

of renewable energy source alternatives, a multiobjective model is formulated, looking to

concurrently optimize expected primary energy needs and resource investment costs.

These models are used to guide decision-makers in determining the most advantageous

array of renewable energy systems to deploy.

5

1.2.4. Medicine. A great variety of applications have been found for

multiobjective optimization in the study of medicine. Drug design has used

multiobjective optimization extensively in balancing numerous pharmaceutically

important objectives (Nicolotti et al., 2011; Nicolaou et al., 2012; Nicolaou & Brown,

2013; Domenico et al., 2020). Conflicting directives such as effectiveness, safety,

potency, and longevity, to name a few, are used in evaluating potential candidates for

development. These optimization procedures search a vast decision-space of possible

molecular structures, seeking to find solutions that perform well by each utilized

objective.

Radiologic therapy plans are also developed using multiobjective optimization

(Yu et al., 2000; Chan et al., 2014). Here, the amount of radiation interacting with

different regions of the body is of critical importance. Concurrent objectives may look to

minimize deviations from prescribed radiation levels for distinct regions including

healthy tissues, critical tissues, and foreign masses (Aubry et al., 2006; Holdsworth,

2010). Finding an appropriate strategy, as evaluated by these objectives, can significantly

bolster the procedure’s chance of success while reducing the risk of unintended harm

(Holdsworth et al., 2011).

This short survey of multiobjective optimization application demonstrates the

amazing breadth of this paradigm’s application. As application continues and the

problems addressed become more challenging and complex, the efforts conducted to

improve multiobjective optimization methods may become more vitally and broadly

valuable.

6

1.3. MATHEMATICAL PRELIMINARIES

Here, several preliminary definitions are introduced to facilitate the understanding

and discussion of multiobjective optimization terminology and properties.

1.3.1. Multiobjective Problem Definition. Principal is the definition of a

(minimization) multiobjective optimization problem, given in Equation (1).

 min(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥))

𝑠. 𝑡. 𝑥 ∈ 𝑋

(1)

where the integer k ≥ 2 is the number of objectives and the set X is the feasible set of

decision vectors.

1.3.2. Pareto Dominance. As conflicting objectives likely rule out the existence

of a globally optimal solution, a mechanism is needed to reason about solution

performance. The principle of Pareto dominance is used to compare the attractiveness of

multiobjective solutions. Defined in Equation (2), Pareto dominance is achieved when a

solution-a performs just as well as another solution-b with respect to each objective of the

optimization, while also performing better than solution-b with respect to at least one

objective. In this scenario, solution-a is said to Pareto dominate solution-b and may be

thought of as superior to the latter, as defined by the set of objective functions.

 𝑓𝑖(𝑥𝑎) ≤ 𝑓𝑖(𝑥𝑏)∀ 𝑖 ∈ {1, 2, … , 𝑘} 𝑎𝑛𝑑 𝑓𝑗(𝑥𝑎) < 𝑓𝑗(𝑥𝑏)

𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑗 ∈ {1, 2, … , 𝑘}

(2)

If the relationships of Equation (2) exist between two solutions (xa and xb) then xa Pareto

dominates xb, assuming the minimization of each objective is aspired.

Solution-a’s dominance of solution-b may be denoted as xa ≺ xb. Alternatives

between which a dominance relationship does not exist are called nondominating

solutions.

7

1.3.3. Pareto Optimality and the Pareto Frontier. Solutions which are not

dominated by any other solution in the set are regarded as Pareto optimal or Pareto

efficient solutions. The set of all Pareto optimal solutions within the solution space is said

to constitute the Pareto frontier of the optimization problem. Collectively, these solutions

can be thought of as objectively better than all dominated solutions. However, no

member of the Pareto frontier can be thought of as globally optimal. Pareto optimality

and the Pareto frontier are defined in Equations (3) and (4), respectively.

 𝑥𝑎 ∈ 𝑋 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑖𝑛 𝑋 𝑖𝑓𝑓 ∄𝑥𝑏 ∈ 𝑋

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥𝑏 ≺ 𝑥𝑎

(3)

 𝑇ℎ𝑜𝑠𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 {𝑥𝑎 ∈ 𝑋|∄𝑥𝑏 ∈ 𝑋, 𝑥𝑏 ≺ 𝑥𝑎}

𝑐𝑜𝑚𝑝𝑟𝑖𝑠𝑒 𝑡ℎ𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟

(4)

Equipped with these definitions, the general proceedings of most multiobjective

optimization algorithms can be understood and discussed.

1.4. MULTIOBJECTIVE SOLUTION SET QUALITY

Two considerations commonly describe the quality of a set of solutions to a

multiobjective optimization problem (assuming the solution set aims to approximate the

Pareto frontier of the solution space). Firstly, the convergence of the solution set’s

multiobjective alternatives to the actual Pareto frontier is evaluated. It is desired that the

alternatives identified lie as close as possible to the true Pareto frontier. If successful, the

identified alternatives are, indeed, part of the Pareto frontier and cannot be dominated by

any feasible alternative in the objective space. Additionally, the distribution of the

solution’s multiobjective alternatives is a principal concern. A solution set is well-

distributed if it represents the expanse of the Pareto frontier, and its constituent

8

alternatives are relatively equally spaced across this expanse. Well-distributed solution

sets provide more information about the Pareto frontier and its associated tradeoffs,

allowing for a more informed and vetted alternative consideration. Figure 1.3 describes a

solution set that has a worse distribution than that of Figure 1.4. While both figures depict

solution sets with 9 Pareto efficient alternatives, the solution set of Figure 1.4 is generally

more valuable as it provides more diverse and complete information about the Pareto

frontier.

Figure 1.3. A poorly distributed multiobjective solution set with 9 alternatives.

9

Figure 1.4. A well-distributed multiobjective solution set with 9 alternatives.

1.5. DISSERTATION ORGANIZATION

This section (SECTION 1) introduced the concept of multiobjective optimization

and hinted at the scope of the paradigm’s application. Additionally, some definitions and

concepts were introduced which facilitate the understanding and discussion of

multiobjective optimization procedures.

The remainder of this dissertation is organized as follows:

SECTION 2, Multiobjective Optimization: Approaches and Critiques, introduces

several multiobjective optimization approaches from the literature, providing a brief

critical analysis of select methods.

PAPER I, A Geometrically-Based Method for Efficient Many-Objective Decision-

Making, presents a method of expediting the determination of the Pareto frontier of a

b
je
ct
iv
e

in
im
iz
e

 bjective 1 inimize

10

solution set, easing the restrictions this resource intensive procedure places on explorative

rigor.

PAPER II, Ideal Sort: A Terminable, Efficient Nondominated Sorting Algorithm,

extends the principles of Paper I, culminating in a NDS algorithm that achieves state-of-

the-art performance in some cases. Further, the concept of terminability is introduced, a

notion shown capable of improving the efficiency of other NDS algorithms from the

literature.

PAPER III, Disaster Recovery Strategy Generation via Multiobjective Heuristic

Optimization, applies a multiobjective evolutionary algorithm to disaster recovery

strategy generation. This application demonstrates the feasibility of utilizing such a

scheme in an incredibly challenging optimization scenario.

SECTION 3, Conclusions and Future Work, recounts the objective of these

investigations: to advance the concept of multiobjective evolutionary algorithms by

addressing a key limitation and demonstrating their efficacy in a challenging real-world

scenario. Some directives for future research are also presented.

11

2. MULTIOBJECTIVE OPTIMIZATION: APPROACHES AND CRITIQUES

Multiobjective optimization methods have exhibited a number of forms and

undergone a variety of transformations in approach across decades of research and

innovation. While an exhaustive survey of proposed methods is impractical, some very

prominent methods, their features, and acknowledged critiques are next discussed.

2.1. A PRIORI APPROACHES

A priori methods require the interjection of decision-maker preferences in effort

to determine members of the Pareto frontier of a multiobjective optimization problem.

These supplied preferences are generally incorporated within a priori methods to reflect

the importance decision-makers place on varying objectives (Marler & Arora, 2004).

These methods are then used to find the single Pareto efficient solution that optimizes the

preference-adhering problem. In essence, these approaches look to transform a

multiobjective problem into a single-objective problem by the introduction of the user-

supplied preferences. While a sound means of finding a member of the Pareto frontier,

this approach inherently introduces bias, as some objectives are assigned greater

importance than their counterparts. This is problematic as the true significance of

conflicting objectives may be very difficult to determine, variable with time, and/or

disagreeable to different stakeholders. While the true spirit of multiobjective optimization

is abandoned when following these a priori approaches, their ease of application,

frequency of implementation, and capability to reliably identify solutions along the

Pareto frontier warrant some further discussion.

12

2.1.1. Weighting and Scalarization Techniques. Weighting and scalarization

techniques are perhaps the most simplistic means to address multiobjective optimization

problems. These techniques use decision-maker preferences to form a single,

parameterized objective function that can be optimized to find a Pareto optimal solution.

Varying levels of complexity are applied to this objective function parameterization

procedure, ranging from a simple linear weighting of independent objectives to more

sophisticated product-based and exponential weighting strategies (Zadeh, 1963; Steuer,

1989; Yoon & Hwang, 1995; Saaty, 1977; Rao & Roy, 1989; Athan & Papalambros,

1996; Bridgman, 1992; Gerasimov & Repko, 1978). Each of these strategies introduce

decision-maker preferences that impact the optimal solution identified by the

parameterized optimization model.

2.1.2. Distance Function Methods. Distance function methods cast a

multiobjective problem as a single-objective counterpart, looking to minimize the

objective function distance between an optimal solution and some supplied

multiobjective aspiration point (Charnes et al., 1955). When the aspiration point is

unattainable (that is, an objectively better solution than can be attained given the

problems objective functions and constraints) the identified optimal solution is Pareto

optimal (Wierzbicki, 1986; Marler & Arora, 2004). Several evolutions of this distance

function approach have emerged with varying levels of intricacy and utility (Charnes et

al., 1955; Charnes & Cooper, 1957; Ijiri, 1965; Charnes et al., 1967; Charnes & Cooper,

1977; Hwang & Md. Masud, 2012; Gembicki, 1974; Ogryczak, 1994). It is important to

note that the aspiration point utilized has ramifications on the optimal solution generated;

in this way, bias is more subtly introduced by these distance function methods.

13

2.1.3. Constraint Methods. Constraint methods, sometimes called bounded

objective function methods, seek to optimize the objective function identified as most

important while ensuring that the other objective functions are within some range of

acceptability. In this way, the constraint methods transform a multiobjective problem into

a partially representative single-objective problem with additional constraints (Marler &

Arora, 2004). User preference is thus interjected in both the selection of a single objective

to optimize, and the acceptability bounds identified for objective functions translated into

constraints. While preference bias is introduced, Pareto optimal solutions can be

precipitated by constraint method application (Hwang & Md. Masud, 2012; Miettinen,

2012). Effort has been expended to develop and refine variations of these constraint

methods and provide guidance toward the selection of appropriate acceptability bounds

(Haimes et al., 1971; Goicoechea et al., 1976; Cohon, 2004; Stadler, 1988; Carmichael,

1980; Lin, 1976; Stadler & Dauer, 1992; Dauer & Krueger, 1980; Wendell & Lee, 1977;

Corley, 1980).

2.2. NO-PREFERENCE METHODS

While the discussions of Section 2.1 make clear the inherent bias introduced by a

priori preference methods, a warning is issued about the apparent remedy of no-

preference methods. No-preference methods operate under the premise that the relative

importance of objective functions cannot be accurately defined (Marler & Arora, 2004).

This argument leads to a desire to treat each objective function as equally important and

identify optimal solutions under this egalitarian prescription. Methods have been

developed following this premise, utilizing various tactics to heed each objective function

14

equally in determining a Pareto optimal solution (Yoon, 1980; Stadler, 1988; Hwang et

al., 1993; Mazumdar et al., 1991; Cheng & Li, 1996; Rao, 1987; Rao & Freiheit, 1991).

However, the assumption that each objective function is similarly important is another

form of bias, akin to assigning the same weight to each objective when scalarizing

multiple objectives functions into a single measure. Therefore, variations of no-

preference methods should not be regarded as an objective means to perform

multiobjective optimization, even if their inherent subjectivity is more subtle.

2.3. MATHEMATICAL A POSTERIORI METHODS

The a priori and no-preference methods introduced previously are, as mentioned,

not entirely veracious to the spirit of multiobjective optimization. Instead of considering

multiple objectives independently, these instead find a means to convert the original

problem into a single-objective problem that is, in some way, reflective of the

multiobjective form. Because a single-objective nature is instilled, solving the modified

problem usually results in the determination of a single optimum solution. This may be

problematic as a single solution is not informative about the tradeoffs that can be made

along the Pareto frontier of the solution space.

To remedy this shortcoming, a posteriori methods seek to supply the decision-

maker with a set of Pareto efficient alternatives from which a preferred solution can be

selected (Messac & Mattson, 2002). By delaying the articulation of decision-maker

preference, a final solution can be identified with a greater knowledge of the Pareto

efficient alternatives achievable. A posteriori methods are also helpful when the decision-

maker finds it difficult to make an explicit articulation of objective preference a priori.

15

2.3.1. Weighting Methods. To provide a set of Pareto efficient solutions, a

weighting method may be recursively applied with varying a priori preferences imposed.

In doing so, the final solution identified by each run can similarly vary. In this way, the

interjection of bias is used as a mathematical tool to generate alternatives, instead of a

means to impose decision-maker preference (as in a priori methods). If repeated enough

times, a nice set of Pareto efficient alternatives can be generated, providing some

information about the Pareto frontier (Marler & Arora, 2004). While straight-forward,

successfully implementing this multi-run strategy may be challenging. Specifically, it

may be difficult to vary the imposed weights in a manner that produces a good

representation of the Pareto frontier (Das & Dennis, 1997). Some mechanism to ensure a

good distribution of the identified solutions about the Pareto frontier would lead to a

much more informative set of alternatives for a posteriori consideration.

2.3.2. The Normal Boundary Intersection Method. The Normal Boundary

Intersection Method provides a means to obtain an evenly distributed set of Pareto

efficient points. Specifically, the method seeks to identify the portion of the boundary of

feasible objective space that contains Pareto optimal points (Das & Dennis, 1998). To do

so, a series of points along the convex hull of individual minima (CHIM) are

systematically selected. These points are then projected normally to the CHIM toward the

origin until they intersect the boundary of the feasible objective space (Das & Dennis,

1998). The determination of these intersections is completed algebraically by solving

respective optimization problems. This method, however, can return points that are not

Pareto optimal if the feasible region of the objective space is not convex. Further, this

16

method may overlook some Pareto optimal points when the number of objectives is

greater than two (Das & Dennis, 1998)

2.3.3. The Normalized Normal Constraint Method. The Normalized Normal

Constraint Method, like the Normal Boundary Constraint Method, seeks to determine a

well-distributed set of Pareto optimal solutions. This procedure first determines the utopia

point of the objective space and normalizes each objective (Messac et al., 2003). The

individual exhibited minima of each normalized objective are then used to construct the

utopia hyperplane of the objective space. A systematic weighting procedure then

identifies a supplied number of points along this plane, which are next projected onto the

boundary of the feasible objective space by solving respective optimization problems

(Messac et al., 2003). Casually resembling the Normal Boundary Intersection Method to

this point, the Normalized Normal Constraint Method finishes with a Pareto filter to

ensure that only Pareto efficient points are returned by the procedure.

2.3.4. Brief Discussion. While the a posteriori methods presented are admirable

in their ability to generate a set of Pareto efficient solutions for further consideration, they

are generally encumbered by a few considerations. Firstly, these methods require the

successive solution of single-objective sub-problems, used to reason about, and glean

information from, the true multiobjective solution space. With each run, at most a single

Pareto optimal solution is identified. While the process can be systematized to some

extent, reasonable mathematical formulation and solution efforts may need to be

expended. Further, these efforts, and the computational expense they incur, may become

problematic as the number of objectives becomes large. Additionally, some of these

17

methods rely on knowledge of the utopia point of the objective space, an entity which

may be difficult to determine in many instances (Wang et al., 2018.)

2.4. HEURISTIC A POSTERIORI METHODS

While the a priori and mathematical a posteriori methods previously introduced

have sought to modify the formulation of a multiobjective optimization problem into an

emblematic single-objective counterpart, several heuristic methods have been developed

to solve multiobjective optimization problems directly (Marler & Arora, 2004). These

heuristic approaches are often inspired by natural processes and consider each of a

problem’s objectives simultaneously, in quest of finding an approximation to the Pareto

frontier. Many of the developed approaches maintain multiple solutions throughout their

progression, finding natural application to multiobjective optimization where the Pareto

frontier is generally comprised of many nondominated alternatives. While not guaranteed

to find globally Pareto optimal solutions, these methods have proven adept at finding

multiple objectively excellent solutions in a single algorithmic run (Deb et al., 2002; Hu

& Eberhart, 2002; Bandyopadhyay et al., 2008). While a multitude of heuristic

approaches have been developed, three very prominent approach avenues are described

briefly, next.

2.4.1. Evolutionary Algorithms. Several multiobjective evolutionary algorithms

have been developed, seeking to mimic evolutionary processes such as genetic crossover

and natural selection to evolve a set of solutions toward the Pareto frontier of a solution

space (Schaffer, 1985; Murata & Ishibuchi, 1995; Deb et al., 2002). In general, a random

set of solutions defined by their decision variables are first generated and evaluated.

18

Some protocol is then used to select a subset of these solutions which will be used in the

creation of a set of offspring solutions added to the population. Through user defined

mechanisms, each of these offspring are created by combining the decision-variable

information of two or more of the solutions selected from the initial population. In this

way, new solutions may be generated that share some characteristics of the solutions used

in their formation. Additionally, a defined mutation operator may be applied that

randomly modifies some decision variable(s) within select offspring solutions to

introduce entirely new characteristics. The new population (the solutions selected from

the original population and the offspring they produced) are then subjected to a

subsequent round of selection and the process repeats itself. When a selection mechanism

is utilized that appropriately encourages the proliferation of well-performing solutions,

the population can migrate toward the Pareto frontier of the multiobjective space. After

meeting some stopping criteria, the algorithm is terminated, and a set of Pareto efficient

solutions can be identified from the final generated population. While several

mechanisms for the mentioned selection procedure have been developed, those

employing some sort of Pareto dominance ranking scheme have emerged as some of the

best performing and most widely applied (Srinivas & Deb, 1994; Horn et al., 1994;

Zitzler & Thiele, 1999; Zitzler et al., 2001; Deb et al., 2002; Deb & Jain, 2013).

2.4.2. Particle Swarm Optimization. Particle swarm optimization is another

biologically inspired optimization procedure that has been modified to solve

multiobjective optimization problems (Hu & Eberhart, 2002). Generally, particle swarm

optimization algorithms initiate a set of random solutions and maintain a mechanism to

individually migrate these points toward better performing regions of the decision space

19

(Kennedy & Eberhart, 1995). Naturally inspired, this method mimics the behavior of

flocking birds, schooling fish, and other swarm instances in their activities to find food,

avoid predators, and optimize environmental parameters (Kennedy & Eberhart, 1995).

Utilizing individual and population-held knowledge, challenging optimization scenarios

can be effectively explored via the swarms managed by these approaches. Initially

developed for single-objective optimization, alterations have been made to avoid the

convergence of the method’s agents upon a single solution. Often using clustering or

some other diversity-preserving mechanism, these modified particle swarm optimization

methods have shown the ability to discover well-distributed representations of the Pareto

frontier in multiobjective space (Hu & Eberhart, 2002; Janson & Merkle, 2005; Coello et

al., 2004; Pulido & Coello, 2004).

2.4.3. Simulated Annealing Approaches. Simulated annealing seeks to mimic

the controlled cooling of metals and other materials to manipulate their physical

properties (Kirkpatrick et al., 1983). Whereas metallurgic annealing is concerned with the

heating and slow cooling of a metal to remove internal stresses and toughen the material,

simulated annealing adopts analogous techniques to perform global optimization (Černý,

1985). In the most general sense, an arbitrary initial solution is set as the current state and

is evaluated with respect to the objective function. A neighboring solution is then selected

and similarly evaluated. If the neighboring solution is more optimal than the current state,

the algorithm moves to this neighboring solution, setting it as the new current state. If,

however, the neighbor is not more optimal than the current state, the algorithm may still

elect to move to the neighbor by some probabilistically driven mechanism. While not

described in detail here, this mechanism considers both the objective function difference

20

between the two solutions and a descending temperature parameter. When the

temperature is high, there is a greater chance the algorithm can move to a less optimal

solution; as the temperature lowers, a move of this kind becomes much less likely. At

each step of the algorithm, this temperature is reduced by a supplied convention,

resembling the cooling of a metal undergoing annealing. This ability to move to less

optimal solutions allows the algorithm to escape local optima in search of a globally

optimal solution. This procedure is repeated until the temperature is reduced to some

predefined level or other stopping criteria are met. Originally designed for single-

objective optimization, this method has been modified to handle multiobjective problems

as well (Bandyopadhyay et al., 2008; Suppapitnarm et al., 2000). Typically, this involves

the incorporation of some sort of Pareto archive to keep track of Pareto efficient solutions

discovered and provide information about the relative performance of compared

solutions.

2.5. INTERACTIVE METHODS

Interactive methods have carved out a niche within the taxonomy of

multiobjective optimization solution approaches (Mäkelä & Miettinen, 2006; Branke et

al., 2008; Miettinen et al., 2008). This iterative solution process periodically requests

decision-maker input to guide the search toward a preferred solution. This interactive

approach provides some utility as it incorporates preferences important to the decision-

maker, but does so gradually, allowing a continued search process that gives the decision-

maker updated information about the range of solutions attainable before requiring all

preferences be made. While a creative and effective tool to learn about the solution space

21

and identify preferred solutions, the results of these methods are inherently subjective and

require considerable effort from decision-makers to obtain. A survey of interactive

method concepts, variations, and utilizations was conducted by Xin et al. (2018).

2.6. METHOD PREVALENCE AND RESEARCH DIRECTIONS

Each of the above methods have received considerable attention and application,

obvious by their possession of the notoriety requisite of inclusion in this very brief

survey. While a priori methods using simple scalarization techniques have enjoyed much

usage —owing their simplistic and expedient implementation—, their deviation from a

truly multiobjective consideration and the inherent bias they introduce before any

solutions are generated have limited their applicability, veracity, and performance

(Srinivas & Deb, 1994).

Examining a posteriori alternatives, evolutionary algorithms have emerged as

some of the most widely applied, rigorously examined, and well-performing

multiobjective optimization methods (Deb et al., 2002; Zitzler et al., 2001; Srinivas &

Deb, 1994; Zitzler & Thiele, 1999). These techniques have shown the ability, in repeated

evaluations, to converge to a well-distributed set of Pareto optimal points, producing an

approximation to the Pareto frontier in a single algorithmic run (Corne et al., 2001; Deb

et al., 2002; Zitzler et al., 2001). Further, they do not require much in the way of

mathematical transformation or reformulation; all that is needed is a means to determine

the objective function values achieved by programmatically generated solutions. These

approaches also consider all objectives simultaneously, retaining the true spirit of

multiobjective optimization. Indeed, evolutionary algorithms have emerged as some of

22

the premier methods to solve multiobjective optimization problems in the literature and in

practical application.

While celebrated and well-performing, some criticisms of these biologically

inspired algorithms have emerged. Principally, the computational complexity of their

processes has been a major critique. Often, this complexity has limited the scale and

scope of problems to which these algorithms may be applied. Therefore, substantial effort

has been dedicated to improving the efficiency of these well-adopted optimization tools

(Deb et al., 2002; Tang, Cai, & Zheng, 2008; McClymont & Keedwell, 2012; Wang &

Yao, 2014; Zhang et al., 2015; Roy, Islam, & Deb, 2016; Mishra et al., 2018; Roy, Deb,

and Islam, 2019). These investigations have considerably, and advantageously, improved

the computational efficiency of multiobjective evolutionary algorithms, greatly

broadening their range of applicability.

Accordingly, two cooperative research directives are here identified, relating

specifically to enhancing the state and scope of multiobjective evolutionary algorithms:

1. Improve the computational efficiency of multiobjective evolutionary algorithms

2. Demonstrate the utility of multiobjective evolutionary algorithms by applying

them to challenging optimization scenarios

These directives are complimentary in that achievement with respect to one

sponsors effort and potential achievement in the other. For instance, improving the

computational efficiency of multiobjective evolutionary algorithms enables their

successful application to a more complete and challenging set of multiobjective

optimization scenarios. Reciprocally, the successful application of multiobjective

evolutionary algorithms to challenging optimization scenarios demonstrates their range

23

and utility, further sponsoring efforts to make them more efficient and widely applicable.

Researches demonstrating achievement toward either of these directives serve well to

further the study of multiobjective evolutionary algorithms and the broader paradigm of

multiobjective optimization.

24

PAPER

I. A GEOMETRICALLY-BASED METHOD FOR EFFICIENT MANY-

OBJECTIVE DECISION-MAKING

Samuel Vanfossan

Department of Engineering Management and Systems Engineering, Missouri University

of Science and Technology, Rolla, MO 65409

ABSTRACT

Practitioners of the systems engineering discipline are increasingly asked to make

decisions from large sets of alternative solutions while considering the conflicting

interests of diverse system stakeholders. Formulated as many-alternative, many-objective

optimization problems, a posteriori methods are often applied to these scenarios to

determine the solution alternatives that are objectively best performing according to the

diverse stakeholder preferences. Frequently operating under computational and temporal

constraints, decision-makers are often forced to consider fewer alternatives or incorporate

a smaller number of stakeholder preferences due to the inefficiencies of current a

posteriori methods. Utilizing a geometric comparison to the ideal point of the solution-

space, a method is proposed that seeks to reduce the computational and temporal expense

of determining the set of objectively superior solutions. In a numerical comparison to

current methods, the proposed was shown to exhibit improved efficiency across a range

of many-objective test-classes. Equipped with these efficiency allowances, systems

engineering decision-makers can consider more alternatives and a greater number of

stakeholder preferences without violating computational or time restrictions. These

25

liberties enable a more complete and tailored search of the solution-space, permitting the

identification of more thoroughly vetted and scrutinized objectively superior engineering

solutions.

Keywords: Pareto frontier, Pareto efficient set, many-objective decision-making,

geometric presort, ideal point comparison

1. INTRODUCTION

The systems engineering discipline frequently demands its practitioners make

decisions from large sets of alternative solutions while serving the conflicting interests of

diverse stakeholders (Crawley, Cameron, & Selva, 2016). Sponsoring this demand has

been the increased employment of model-based systems engineering. This technique

allows systems designers to develop an ever-greater number of solution alternatives

quickly, while avoiding many of the inhibitive costs associated with traditional system

development approaches (Ramos, Ferreira, & Barcelo, 2012). While this increased

exploration of the solution-space has facilitated marked advancement in creativity and

innovation, it has greatly increased the burden associated with systems engineering

decision-making. Decision-makers are now expected to consider a large number of

solution candidates in justifiably selecting the preferred alternative (Crawley, Cameron,

& Selva, 2016). Further complicating the selection process are the alluded diverse

interests that nominated system solutions must serve. As engineering endeavors become

more complex and global in scale, the parties contributing to a system’s creation, and

those expecting service from its enaction, greatly increase in number (Leybourne,

26

Kanabar, & Warburton, 2010). These stakeholders often house conflicting interests and

dissimilarly perceive system value, creating scenarios where different alternatives are the

preferred solution of different interest parties. Consider the simple example of two

stakeholders interested in the development of an aircraft. The first stakeholder may desire

the vehicle have as large a carrying capacity as possible, while the second may desire the

craft’s fuel economy be maximized. Because of the noncooperative nature of the desires,

it is unlikely that a single solution is the globally preferred choice of both stakeholders.

As the number of conflicting stakeholders increases, the likelihood that a universally

preferred alternative exists decreases (Marler & Arora, 2004) Instead, the decision-maker

will likely be faced with a set of alternatives that are variably attractive to different

stakeholders in accordance with their respective conflicting preferences.

The described scenario, characterized by a high-volume of solution candidates

and diverse stakeholder preferences, is indicative of a many-alternative, many-objective

optimization problem. This class of optimization problems is defined by the use of many

(more than 3; whereas a multiobjective problem has 2 or 3) objectives in the selection of

alternatives from a set of many candidate solutions (IEEE, 2018). In solving many-

objective optimization problems, two method classes are used. The first method class, a

priori methods, requires preference information be expressed prior to conducting the

optimization (Hwang & Masud, 1979). These methods typically involve the scalarization

of the multiple objective functions into a single function based on the information

supplied by the decision-maker. Strategies of this class include weighting or utility

function techniques, lexicographic methods, and goal programming (Srinivas & Deb,

1994). While this class of methods serves well to reduce the set of candidate solutions to

27

a fitting alternative, each variation requires extensive user input that is inherently

subjective, detracting from the veracity and robustness of generated solutions. The

second method class, a posteriori methods, operates to provide the decision-maker with

the set of alternatives objectively performing the best with regard to the independent

objective functions (Marler & Arora, 2004). This provision proves extremely useful to

the systems engineer as it reduces the consideration set of solution candidates to a

condensed set of well-performing alternatives. Further, the members of this condensed

set are superior to removed candidates according to their performance at the stated

objectives. Constructing this reduced superior set allows for greater attention and scrutiny

to be paid to the remaining candidates. This aids the decision-maker in selecting a more

informed and well-vetted alternative, while ensuring that objectively superior alternatives

are not overlooked. No preference information is required of decision-makers to establish

the superior set, insulating it from the subjectivity that plagues a priori methods.

Comprised primarily of mathematical programming-based and heuristic

strategies, the crux of many a posteriori methods is the pairwise and objective-wise

comparison of candidate alternatives to determine those constituting the superior set

(Marler & Arora, 2004). These comparisons are the mechanism enabling certification that

members of the reduced set are both relatively well-performing and not inferior to any

member of the original set of candidates. However, this mechanism, particularly when

applied to many-alternative and many-objective problems, is computationally and

temporally expensive (Roy, Islam, & Deb, 2016). This expense arises as more

comparisons are required to reduce the original candidate set to the set of superior

performers. This shortcoming proves problematic, particularly as systems engineers seek

28

to optimize the stakeholder-determined value of complex contemporary systems selected

from large pools of candidate alternatives. The effect of this deficiency is that decisions

made under computational or time constraints cannot be as thorough in their search of the

solution-space. Instead, decision-makers must reduce the quantity of alternatives

examined or the number of objectives considered when selecting a candidate solution.

Simply, the computational expense of this comparative mechanism institutes a tradeoff

between the scrupulousness of the solution search conducted and the resources required

to construct the superior set.

The author herein proposes a technique based on solution-space geometry that can

be used within a posteriori optimization methods to reduce their computational and

temporal expense. Armed with this technique, systems engineers employing a posteriori

methods can include considerably more solution alternatives and an increased number of

objective functions in determining the set of superior alternatives. This permits a more

exhaustive, incorporating, and tailored search of the candidate solution-space without

violating computational or time constraints. Through a more complete search, decision-

makers are granted the potential to identify and select solutions that more aptly and

globally satisfy the interests of the system’s diverse stakeholders.

To introduce the proposed technique, a few definitions describing many-objective

considerations are first presented. Current methodologies used in constructing the

superior set are then examined, in addition to the provision of commentary on their

efficiency and contributing factors. The proposed technique is then presented,

highlighting the logic precipitating its formulation. The proposed and current methods are

then applied to a variety of many-alternative, many-objective solution sets, testing the

29

computational and temporal expense of each. The comparative performance of the

proposed technique is then discussed, providing some explanation for its aptitude across

the different testing scenarios. Finally, a brief discussion of the technique’s limitations

and future work suggestions are provided.

2. PRELIMINARIES

To facilitate discussion of current methods and the technique proposed by the

author to hasten the discovery of the superior set, a few basic concepts are first

established. Principal is the definition of a many-objective optimization problem, given in

Equation (1).

 min(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥))

𝑠. 𝑡. 𝑥 ∈ 𝑋

(1)

where the integer k > 3 is the number of objectives and the set X is the feasible set of

decision vectors.

 Contrary to their single-objective counterparts, many-objective optimization

problems incorporate numerous distinct, and often competitive, objective functions that

can be optimized independently. Constituting the essence of many-objective decision-

making, the optimization of one objective often occurs at the expense of others. This

culminates in the nonexistence of a feasible solution that concurrently minimizes all

objective functions (Srinivas & Deb, 1994). The mechanism of Pareto dominance is

instead used to compare the attractiveness of candidate solutions, given the absence of a

universally optimizing feasible solution (Steuer, 1989).

30

 Defined in Equation (2), Pareto dominance is achieved when a solution-a

performs just as well as another solution-b with respect to each objective of the

optimization, while also performing better than solution-b with respect to at least one

objective. In this scenario, solution-a is said to Pareto dominate solution-b and may be

thought of as superior to the latter, as defined by the set of objective functions.

 𝐼𝑓 𝑓𝑖(𝑥𝑎) ≤ 𝑓𝑖(𝑥𝑏)∀ 𝑖 ∈ {1, 2, … , 𝑘}𝑎𝑛𝑑 𝑓𝑗(𝑥𝑎) < 𝑓𝑗(𝑥𝑏)

𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑖𝑛𝑑𝑒𝑥 𝑗 ∈ {1, 2, … , 𝑘}

(2)

then xa is said to Pareto dominate xb.

Solution-a’s dominance of solution-b may be denoted as xa ≺ xb. Alternatives

between which a dominance relationship does not exist are called non-dominating

solutions (Steuer, 1989).

Solutions which are not dominated by any other solution in the set are regarded as

Pareto optimal or Pareto efficient solutions (Pareto, 1906). The set of all Pareto optimal

solutions within the candidate set is said to constitute the Pareto frontier of the set. This

set describes the collection of solutions that are superior to the dominated solutions while

non-dominating to other members of the Pareto frontier (Horn, Nafpliotis, & Goldberg,

1994). Pareto optimality and the Pareto frontier are defined in Equations (3) and (4),

respectively. The Pareto frontier is synonymous with the superior set described in the

previous section.

 𝑥𝑎 ∈ 𝑋 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑖𝑛 𝑋 𝑖𝑓𝑓 ∄𝑥𝑏 ∈ 𝑋

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥𝑏 ≺ 𝑥𝑎

(3)

 𝑇ℎ𝑜𝑠𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 {𝑥𝑎 ∈ 𝑋|∄𝑥𝑏 ∈ 𝑋, 𝑥𝑏 ≺ 𝑥𝑎}

𝑐𝑜𝑚𝑝𝑟𝑖𝑠𝑒 𝑡ℎ𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟

(4)

31

These conventions work well to describe the responsibility of systems engineering

decision-makers facing the conflicting interests of diverse stakeholders. Treating

stakeholder preferences as independent objectives, the decision-maker may formulate

solution selection as a many-objective optimization problem void of a globally

optimizing alternative. It is then the task of the decision-maker to determine the set of

objectively superior (Pareto efficient) solutions which will receive increased scrutiny

before a final selection is made.

3. CURRENT METHODS

To discern the set of Pareto efficient solutions various methodologies have been

developed. Each of these require the pairwise and objective-wise comparison of

alternative solutions as discussed previously. As the number of candidate solutions

increases, these comparisons make the computational and temporal expense of

constructing the Pareto frontier much more burdensome. While an increased number of

comparisons is inevitable as solution sets expand, the scheme used in determining the

Pareto frontier can have substantial implications on the number of comparisons

necessitated.

The first methodology, which will henceforth be called the traditional method,

compares each member of the candidate solution set (S) to every other member. At each

comparison, it is determined whether the focal solution (xℓ) is Pareto dominated by the

current comparison solution (xw). If this relationship exists, the index of the comparison

solution (w) is added to the index set of counterpart solutions dominating the focal

32

solution (DSℓ). Upon the comparison of each counterpart solution to the focal, the focal

solution is added to the set of Pareto efficient solutions (PF) if its index set of dominating

solutions is empty.

After each candidate has been examined for domination as the focal solution, the

resulting set of Pareto efficient solutions describes the Pareto frontier of the solution set.

The algorithmic description of the traditional method is presented in Algorithm 1.

Algorithm 1: Traditional Method

Description: The following procedure determines the set of Pareto efficient solutions,

PF, within any given set of solutions, Ѕ.

1 Let xℓ
i denote the ith objective function value of the ℓth solution of Ѕ such that

i ≤ | Ѕℓ | and ℓ ≤ | Ѕ |.

Let DSℓ denote the index set of solutions Pareto dominating solution ℓ.

Set DSℓ = ∅ ∀ ℓ

Set PF = ∅
Set ℓ = 1

2 While ℓ ≤ | Ѕ |

3 Set w = 1

4 While w ≤ | Ѕ |

5 If w = ℓ, set w=w+1

6 Else if xw ≺ xℓ, set DSℓ = DSℓ ∪ w, w=w+1

7 Else set w=w+1

8 End

9 Set ℓ = ℓ+1

10 If DSℓ = ∅, set PF = PF ∪ xℓ

11 End

12 Return PF

Methodologies following the scheme of the traditional method have been used in

several popular publications, perhaps most notably Srinivas and Deb’s work on non-

dominated sorting in genetic algorithms (1994). These algorithms, among others,

33

commonly utilize structures resembling the traditional method for various optimization

processes including evolutionary survival and parent selection. Employed in many

applications for the facilitation of non-dominated sorting, the use of the traditional

method solely for the determination of the Pareto frontier may not make best use of

expended computation as redundant comparisons frequently occur. Several adaptations

have been developed to address this inefficiency, one of which will be introduced

following a discussion of the factors contributing to the traditional method’s

improvidence.

While the traditional method produces the Pareto frontier, the number of

comparisons required for this production can be reduced, enabling a more efficient

algorithm. Following the traditional method, the relationship between a solution-a found

to be dominated by a solution-b will later be reexamined during solution-b’s tenure as the

focal solution. Indeed, no additional information is found through this reexamination, a

redundancy that will occur between every pairwise comparison within the set. Other

inefficiencies are also present. For instance, consider a solution-a found to be dominated

by a solution-b while subsequently found to dominate a solution-c. In this scenario, 𝑥𝑏 ≺

𝑥𝑎 ≺ 𝑥𝑐, implying that 𝑥𝑏 ≺ 𝑥𝑐. While this implied relationship could have been inferred

from the information gained during solution-a’s tenure as the focal solution, it is not

reconciled by the traditional method until solution-c is investigated as the focal.

The second methodology, which will henceforth be called the dynamic method,

addresses both of the previous inefficiencies. This method begins by setting the first

solution of the candidate set (x1) as the focal solution (xℓ) and comparing it to the second

(xℓ+1) solution of the candidate set, denoted as xw. If xw is dominated by xℓ, xw is removed

34

from the candidate set and xw+1 becomes the new xw. If, instead, xℓ is dominated by xw, xℓ

is removed from the solution set. Upon the removal of xℓ, xℓ+1 is set as the new xℓ and the

new xℓ+1 is set as xw. In the event that no dominance relationship exists or xℓ and xw are

identical, no removal is made and the index w is set to w+1. Repeating this process until

w exceeds the number of solutions in the candidate set (| S |), the index ℓ is then set to

ℓ+1 and w is reset to the new ℓ+1. The indexing of ℓ is then repeated as dictated by w

until ℓ exceeds one less than the number of solutions in the candidate set (| S |−1).

When ℓ reaches this stopping criterion, the algorithm is terminated and the solutions

remaining in the candidate set comprise the Pareto frontier of the original set. The

algorithmic description of the dynamic method is presented in Algorithm 2.

Algorithm 2: Dynamic Method

Description: The following procedure determines the set of Pareto efficient solutions,

PF, within any given set of solutions, Ѕ.

1 Let xℓ
i denote the ith objective function value of the ℓth solution of Ѕ such that

i ≤ | Ѕℓ | and ℓ ≤ | Ѕ |.

Set ℓ = 1

2 While ℓ ≤ | Ѕ |−1

3 Set w = ℓ + 1

4 While w ≤ | Ѕ |

5 If xℓ
i = xw

i for all i, set w=w+1

6 Else if xℓ ≺ xw, set Ѕ = Ѕ \ {xw}

7 Else if xw ≺ xℓ, set Ѕ = Ѕ \ {xℓ}, w= ℓ+1

8 Else set w=w+1

9 End

10 Set ℓ = ℓ+1

11 End

12 Set PF = S

13 Return PF

35

The dynamic method, as described, addresses the inefficiencies of the traditional

method by removing dominated solutions from the consideration set upon the recognition

of their domination. This does not affect the output of the algorithm as any solutions that

would have been dominated by a removed solution are assuredly dominated by the

solution instigating the latter’s removal. Additionally, the dynamic method employs two-

way dominance checks, determining if the focal solution is dominated by or dominates

the pairwise solution at every comparison. Through these mechanisms the effects of the

second discussed inefficiency are reduced, enabling a smaller number of comparisons to

construct the Pareto frontier. Further, the index advancement conventions of the dynamic

method ensure that all necessary comparisons needed to ensure the Pareto efficiency of

nonremoved solutions are made, without performing the directly redundant comparisons

described by the first discussed inefficiency.

Methodologies following a scheme resembling the logic of the dynamic method

have been used in many well-cited algorithms including the Normalized Normal

Constraint Method (Messac, Ismail-Yahaya, & Mattson, 2003) and Deductive Sort

(McClymont & Keedwell, 2012). The use of this approach has shown to be effective in

reducing the number of comparisons required to generate the Pareto frontier (McClymont

& Keedwell, 2012). This allows for the consideration of more candidate solutions and a

greater number of objective functions without violating computational or time

constraints. Building upon its efficacy, an adjustment to the algorithm of the dynamic

method is now presented, aimed at further reducing the number of comparisons required

in constructing the Pareto frontier.

36

4. A GEOMETRICALLY INTELLIGENT METHODOLOGY

To understand the logic of the proposed methodology the following scenario is

first presented:

Let a set of candidate solutions be composed of four alternatives: solution-a,

solution-b, solution-c, and solution-d. Let non-dominating relationships exist between

solution-a, solution-b, and solution-c, while each of these solutions are dominated by

solution-d. If the solutions are placed in alphabetical order, the following operations are

completed by following the dynamic method algorithm:

1. Solution-a compared with solution-b, no removal

2. Solution-a compared with solution-c, no removal

3. Solution-a compared with solution-d, solution-a removed

4. Solution-b compared with solution-c, no removal

5. Solution-b compared with solution-d, solution-b removed

6. Solution-c compared with solution-d, solution-c removed

This constitutes six pairwise comparisons to determine solution-d as the only

Pareto efficient solution within the candidate set. However, if solution-d is placed as the

first alternative in the candidate set, the same algorithm is able to produce the Pareto

frontier in half the amount of comparisons:

1. Solution-d compared with solution-a, solution-a removed

2. Solution-d compared with solution-b, solution-b removed

3. Solution-d compared with solution-c, solution-c removed

37

The reduced number of required comparisons arises as the solution dominating

the highest number of counterparts (the most dominant solution) is placed first in the set.

This allows it, serving as the original focal solution, to remove dominated counterparts

early, relieving the proceedings of the non-dominating relationships examined in the first

sequence. This recognition sponsors the desire to place the most dominant solutions of

the candidate set first, increasing the likelihood that inferior candidates are removed

early, along with the unnecessary comparisons they may solicit.

Seeking to place the most dominant solutions of the candidate set at the set’s

beginning, a surrogate dominance metric must be established. This surrogate is developed

as determining the exact number of counterparts that each candidate solution dominates

requires the use of an algorithm with complexity similar to the traditional method. The

application of an algorithm of this scale would then make any efficiencies granted by

knowledge of the true domination count irrelevant, as the Pareto frontier could have been

established for the same computational expense. In establishing this proxy metric, a

consideration of the location on the solution-space that would be the most dominant is

made. To approach this location the ideal point of the candidate set is identified. The

ideal point is comprised by the optimum exhibited value of any solution in the candidate

set for each objective function. Defined by Equation (5) for a candidate solution set with

X members and k objectives, the ideal point exhibits dominance over every alternative

within the candidate set.

 𝑥𝑖
𝑖𝑑𝑒𝑎𝑙 = 𝑖𝑛𝑓

𝑥∈𝑋
𝑓𝑖(𝑥) ∀ 𝑖 = 1, . . . , 𝑘 (5)

 The ideal point, however, is likely not a real member of the candidate solution set,

as optimizing all objectives simultaneously is difficult in practice. Consider, for example,

38

the simplistic multiobjective problem of maximizing performance while minimizing cost.

Intuitively, it is very unlikely that the ideal point of maximum performance at minimal

cost is exhibited by any real alternative.

The illusory nature of the ideal point does not, however, mean that it is not useful.

Instead, it can be used as a measuring stick to anticipate the dominance that any real

solution will exhibit. This expectation is achieved by determining the scaled Euclidean

distance between the real candidate solution and the ideal point, as shown for candidate

solution-a with k objectives in Equation (6).

𝐷𝑎 = √∑ (
𝑥𝑖

𝑎 − 𝑥𝑖
𝑖𝑑𝑒𝑎𝑙

𝑥𝑖
𝑖𝑑𝑒𝑎𝑙

)

2𝑘

𝑖=1

(6)

Determining the distance to ideal point (D) value for all members of the candidate

solution set, those with the smallest D-values can be regarded as most geometrically

similar to the ideal point, xideal. Sorting the candidate solution set by ascending D-value,

the algorithm shown in Algorithm 3 seeks to use this dominance surrogate to place the

most dominating alternatives first. This proposed methodology, henceforth called the

geometrically intelligent dynamic method (GIDM), attempts to take advantage of

dominance ordering and reduce the number of comparisons required in producing the

Pareto frontier.

Identical to the dynamic method following the D-value sorting initiated in Step 0,

the GIDM attempts to remove poor performing alternatives early in the procedure by

subjecting them to frontloaded comparisons with highly dominating focal solutions. With

the less dominating solution candidates removed, the redundant comparisons they incite

39

are also removed from the procedure, enabling a more efficient construction of the Pareto

frontier.

Algorithm 3: GIDM

Description: The following procedure determines the set of Pareto efficient solutions,

PF, within any given set of solutions, Ѕ.

1 Let xℓ
i denote the ith objective function value of the ℓth solution of Ѕ such that i ≤ |

Ѕℓ | and ℓ ≤ | Ѕ |.

Let Dℓ denote the scaled Euclidean distance of the ℓth solution of S from the Ideal

Point x*.

Set S as the set S sorted by the ascending D-value of each solution.

Set ℓ = 1

2 While ℓ ≤ | Ѕ |−1

3 Set w = ℓ + 1

4 While w ≤ | Ѕ |

5 If xℓ
i = xw

i for all i, set w=w+1

6 Else if xℓ ≺ xw, set Ѕ = Ѕ \ {xw}

7 Else if xw ≺ xℓ, set Ѕ = Ѕ \ {xℓ}, w= ℓ+1

8 Else set w=w+1

9 End

10 Set ℓ = ℓ+1

11 End

12 Set PF = S

13 Return PF

5. NUMERICAL ANALYSIS

To test the efficacy of the GIDM at reducing the resources required in

establishing the Pareto efficient set, a series of random many-objective solution sets was

created. Comprising 25 test-classes, solutions sets were developed incorporating a

variable number of objectives (5, 7, 10, 12, and 15) and a variable number of candidate

40

solutions (1,000, 5,000, 10,000, 15,000, and 25,000). Objective function values for each

solution were randomly selected from the uniform distribution between zero and one. The

three defined methodologies were then presented identical solution sets within each class.

The number of solution comparisons and the algorithmic runtime required by each

method to determine the Pareto frontier was then recorded. This procedure was repeated

50 times within each class, totaling 1,250 distinct scenarios presented to each method.

 Table 1 describes the average number of alternative-to-alternative comparisons

required by each method for each of the 25 test-classes.

Table 1. Average Required Comparisons by Method and Test-Class.

While a consideration of the number of comparisons required by each method is a

good rudimentary measure of computational efficiency, temporal considerations are

perhaps more valuable. This value advantage arises as the latter is a more tangible

41

measure and also incorporates the resource expense of the presorting mechanism utilized

by the GIDM. While the improved runtime of structures using the dynamic method over

the traditional method has been well demonstrated in the literature (McClymont &

Keedwell, 2012; Wang & Yao, 2014; Roy, Islam, & Deb, 2016), a comparison of the

dynamic method to the GIDM is now made. Table 2 describes the average algorithmic

runtime required by these methods for each of the 25 test-classes. The tests were

conducted on a 3.00 GHz Intel Core i9-9980XE processor with 64 GB of RAM, running

Windows 10.

From the data in the Table 2, Table 3 displays the average reduction in runtime

required by the GIDM from the dynamic method. This data is displayed both as the

number of seconds reduced and the percent runtime reduction achieved. Reading the

table, the GIDM required 0.073 fewer seconds than the dynamic method for the 5-

objective, 1,000-alternative test-class, recognized as a 46.642% runtime reduction.

Table 4 details the average percent of candidate solutions within each test-class that exist

as non-dominated points. These solutions, which comprise the Pareto frontier, constitute

a greater proportion of the original candidate set with an increased number of objectives

and a diminished number of alternatives. The former phenomenon occurs as domination

is harder to achieve with an increased number of objective criteria (Deb & Jain, 2014).

The latter arises as an increased number of randomly generated solutions increases the

prevalence of highly-dominating and highly-dominated solutions.

42

Table 2. Average Required Algorithmic Runtime by Method and Test-Class.

Table 3. Average GIDM Algorithmic Runtime Reduction from Dynamic Method.

Table 4. Average Percent of Candidate Solutions Non-dominated by Test-Class.

43

6. DISCUSSION

Examining Table 1, it is shown that the GIDM is able to reduce the average

number of comparisons required to establish the Pareto frontier in relation to the

traditional and dynamic methods for all test-classes. The superiority of the dynamic

method over the traditional method is similarly confirmed. Shifting focus to Table 2 and

Table 3, the GIDM is additionally shown to reduce the algorithmic runtime required to

produce the Pareto frontier in comparison to the dynamic method. It is also observed that

for each objective function value tested, the GIDM generally enjoys increased runtime

superiority over its counterpart methods with an increased number of alternatives. For

example, examining 1,000 alternatives and 10 objectives, the GIDM exhibits an average

runtime reduction of 0.206 seconds from the dynamic method; however, when 25,000

alternatives are examined at the same objective function level, the reduction improves to

over 101 seconds. Similar advantage trends can be discerned for the required number of

comparisons by an analysis of Table 1. The only figure not in compliance with this

tendency is the runtime reduction value for 5 objectives and 25,000 alternatives within

Table 3. This value is smaller than its 15,000-alternative counterpart within the objective

function level, perhaps indicating a point where the resource requirements of the

presorting mechanism outweigh the benefits they enable.

In a further review of Table 3, it appears that the runtime percent reductions are

diminished as the number of objective functions increases. While the percent reductions

are reduced, the GIDM still maintains some savings even in the most troublesome case of

15 objectives and 1,000 alternatives. Additionally, the apparently contracted efficiency of

44

the GIDM with an increased number of objective functions is a product of the nature of

the candidate solution set. As discussed previously and confirmed by Table 4, a greater

number of objective functions generally corresponds to a greater proportion of the initial

candidate set exhibiting Pareto efficiency. With an expanded Pareto frontier, less

eliminations are made throughout the process, waning the efficiency that any Pareto-set-

identifying method could achieve. While an examination of the percent reductions for

these high-objective test-classes may appear underwhelming, attention is reverted to

direct runtime reduction values of Table 3, describing the concrete and not-insignificant

savings achieved by the GIDM.

 With these allowances, systems engineering decision-makers can consider more

alternatives and incorporate a greater number of objective functions without violating the

constraints imposed by computational or time limitations. Utilizing this freedom,

decision-makers can claim and conduct a more complete and tailored search of the

solution-space; strengthening their assertations of diligence and consideration when

presenting recommendations to the diverse stakeholders from which objective functions

stem. Simply, the GIDM equips systems engineering practitioners with a tool to make

better decisions when computational and temporal availability are at a premium. This

method helps assuage the need to ignore, or develop combinatory surrogates for,

stakeholder preferences or reduce the number of alternatives that receive consideration.

Consider a decision-maker using the dynamic method whose constraints only allow for

the consideration of 10,000 alternatives when 7 objective functions are used; had this

practitioner used the GIDM, the number of alternatives that could have been examined

exceeds 15,000 (see Table 2). As consideration limitations are removed, decision-makers

45

can more confidently select alternatives that are scrutinized by a greater number of

stakeholder preferences and selected from an even larger pool of candidate alternatives.

These liberties enable a more justifiable and robust recommendation to these system

interest parties.

7. CONCLUSIONS AND FUTURE WORK

Decision-makers of the systems engineering discipline are increasingly asked to

make solution selections from large sets of alternatives while serving the interests of

diverse stakeholders. Constituting a many-alternative, many-objective optimization

problem, these scenarios confront practitioners with a set of stakeholder preferences to

which no single solution alternative is globally preferred. Instead, the decision-maker is

faced with a set of solutions that are variably attractive to the different interest groups. A

posteriori methods help alleviate this burden by reducing the complete set of candidate

alternatives to those objectively best performing, the Pareto frontier. The determination

of this reduced set allows greater scrutiny to be granted to each member in making a final

decision. As the number of alternatives and objective functions used in making a decision

increases, however, the computational and temporal expense required to establish the

Pareto frontier increases dramatically. This increased resource demand limits the number

of alternatives that can be examined and the number of objective functions that can be

utilized in producing the Pareto frontier under computational and time constraints.

Decision-makers are thus forced to consider fewer alternatives or evaluate using fewer

46

objective functions, culminating in a less complete or less tailored search of the solution-

space.

Seeking to remediate some of the inefficiencies of current a posteriori methods, a

geometrically intelligent dynamic method of establishing the Pareto frontier was

proposed. A comparative study was then conducted to examine the method’s efficacy at

reducing the computational and temporal load of establishing sets of Pareto efficient

solutions. In repeated trials, across a range of candidate solution set sizes and employed

objective functions, the proposed method was shown to reduce the resources required to

produce the Pareto frontier in comparison to current methods. This improved efficiency is

useful to the systems engineering decision-maker as it allows more alternatives and a

greater number of stakeholder-preference-driven objectives to be considered within the

same computational and time restrictions. These allowances permit a more thorough and

considerate search of the solution-space, enabling the contemplation and selection of

more globally preferred and competitively examined solutions. Using this methodology,

decision-makers are more well equipped to handle the many-alternative, diverse-interest-

serving nature of contemporary solution selection scenarios.

The author notes that the numerical analysis performed used random values from

the uniform distribution to create solution objective function values. The ability of this

method should further be tested with objective values stemming from more complex and

challenging distributions or creation functions. A number of many-objective test suites

exist, serving as tremendous starting points for investigations of the kind. Several other a

posteriori methodologies also exist that were not examined in this work. It is the

immediate focus of the author to compare the GID ’s computational expectancy against

47

these nonincluded methodologies, incorporating solution sets generated by the mentioned

many-objective test suites.

REFERENCES

Crawley, E., Cameron, B., & Selva, D. (2016). Reasoning about Architectural

Tradespaces. In System architecture: Strategy and product development for

complex systems (pp. 346-372). Boston: Pearson.

Deb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm

Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving

Problems With Box Constraints. IEEE Transactions on Evolutionary

Computation, 18(4), 577-601.

Horn, J., Nafpliotis, N., & Goldberg, D. (1994). A niched Pareto genetic algorithm for

multiobjective optimization. Proceedings of the First IEEE Conference on

Evolutionary Computation. IEEE World Congress on Computational

Intelligence, 82-87.

Hwang, C., & Masud, A. S. (1979). Methods for Multiple Objective Decision Making. In

Multiple Objective Decision Making - Methods and Applications, Lecture Notes

in Economics and Mathematical Systems, 21-97. Berlin Heidelberg: Springer-

Verlag.

IEEE Computational Intelligence Society. (2018). IEEE CIS Task Force on Many-

Objective Optimisation. Retrieved March 23, 2019, from

http://www.cs.bham.ac.uk/~limx/MaOP.html

Leybourne, S. A., Kanabar, V., & Warburton, R. D. H. (2010). Understanding and

overcoming communications complexity in projects. Paper presented at PMI®

Global Congress 2010—North America, Washington, DC. Newtown Square, PA:

Project Management Institute.

Marler, R. T., & Arora, J.S. (2004). Survey of multi-objective optimization methods for

engineering. Structural and Multidisciplinary Optimization, 26(6), 369-395.

McClymont, K., & Keedwell, E. (2012) Deductive sort and climbing sort: New methods

for non-dominated sorting. Evolutionary Computation, 20(1), 1-26.

48

Messac, A., Ismail-Yahaya, A., & Mattson, C.A. (2003). "The normalized normal

constraint method for generating the Pareto frontier". Structural and

Multidisciplinary Optimization. 25(2), 86–98.

Pareto, V. (1906). Manuale di economia politica. Milano: Societa Editrice.

Ramos, A. L., Ferreira, J. V., & Barcelo, J. (2012). Model-Based Systems/ Engineering:

An Emerging Approach for Modern Systems. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), 42(1), 101-111.

Roy, P. C., Islam, M. M., & Deb, K. (2016). Best Order Sort: A New Algorithm to Non-

dominated Sorting for Evolutionary Multi-objective Optimization. Proceedings of

the 2016 on Genetic and Evolutionary Computation Conference Companion -

GECCO 16 Companion, 1113-1120.

Srinivas, N., & Deb, K. (1994). Multiobjective Optimization using Nondominated

Sorting in Genetic Algorithms. Evolutionary Computation, 2(3): 221-248.

Steuer, R. E. (1989). Multiple Criteria Optimization: Theory, Computation, and

Application. Malabar: Robert E. Krieger Publishing.

Wang, H., & Yao, X. (2014). Corner sort for pareto-based many-objective optimization.

IEEE Transactions on Cybernetics, 44(1), 92-102.

49

II. IDEAL SORT: A TERMINABLE, EFFICIENT NONDOMINATED SORTING

ALGORITHM

Samuel Vanfossan and Benjamin Kwasa

Department of Engineering Management and Systems Engineering, Missouri University

of Science and Technology, Rolla, MO 65409

ABSTRACT

Nondominated sorting is a key procedure in the operations of many

multiobjective evolutionary algorithms. Comprising most of the time required by these

biologically inspired procedures, considerable attention has been dedicated to improving

the efficiency of this critical process. Here presented is a novel, terminable nondominated

sorting algorithm, Ideal Sort, that utilizes a pre-comparison solution ordering mechanism

based on squared Euclidean distance to the ideal point of the population. The algorithm is

further enhanced by the incorporation of a termination procedure, potentially reducing the

number of fronts the algorithm has to determine. Both variations of this method (vanilla

and terminable) exhibit a worst-case time complexity of O(MN2) and demonstrate strong

experimental performance. Across a wide range of multiobjective datasets, Ideal Sort is

shown to outperform other terminable nondominated sorting algorithms and achieves

state-of-the-art performance in some instances. The investigation additionally highlights

the importance and benefit of terminability within nondominated sorting procedures, a

property demonstrated to enable considerable efficiency improvements. These findings

make the case for the restructuring of efficient nondominated sorting procedures not

equipped for terminability and the subsequent integration of this valuable property.

50

Keywords: Evolutionary algorithm, genetic algorithm, ideal sort, many-objective

optimization, multiobjective optimization, nondominated sorting, terminable

nondominated sorting, Pareto ranking

1. INTRODUCTION

An appropriate applicant to many real-world decision scenarios, multiobjective

optimization differs from single-objective optimization in a number of ways. A principle

difference lies in nature of the resolution to problems of these distinct classes. Single-

objective optimization is concerned with the identification of a globally optimum solution

exhibiting the best possible performance as determined by a single objective function.

Multiobjective optimization, however, is akin to problem formulations possessing a

number of conflicting objective functions that disallow the existence of a single, globally

optimal solution [1]. Instead, the solution-space is characterized by a subset of solutions

superior to all other alternatives of the space, but from which no member can be

considered globally preferable. Called the set of Pareto-optimal solutions (or Pareto

efficient set, or nondominated set, or Pareto frontier), these alternatives constitute those

solutions that perform objectively-best according to the objective functions while being

unable to claim universal superiority over any other member of the Pareto efficient set

[2]. The focus of many multiobjective optimization techniques is the provision of this

Pareto efficient set, from which the receiving decision-maker can make a final selection.

51

Operating on populations of solutions, evolutionary algorithms (EAs) have

emerged as a premier and natural approach avenue to handle multiobjective optimization

problems. These heuristic methods seek to mimic natural selection in evolving a set of

solutions toward the Pareto frontier of a problem [3]. Methodologies utilizing

nondominated sorting (NDS) as a mechanism for selection have emerged as some of the

most well-performing and widely applied of the published multiobjective EAs (NPGA

[4]; MOGA [5]; PAES [6]; NSGA-II [7]; SPEA2 [8]; PESA-II [9]; NSGA-III [10]).

While demonstrating aptitude, these algorithms are temporally and computationally

constrained by the resource complexity of the NDS algorithm used [11]. This dependency

culminates in the resource expense of NDS-employing EAs growing rapidly as the

number of objective functions and candidate alternatives examined increases.

An elevated resource complexity thus limits the number of objective functions

and candidate alternatives that can be utilized under the presence of temporal and

computational constraints. This limitation impacts not only the scale of optimization

problems that these methods can feasibly address, but also their applicability within

limited-resource, time-sensitive environments. Therefore, substantial effort has been

expended to develop more efficient NDS algorithms, aimed at improving the time and

computational requirements of employing multiobjective EAs [12]. These works have

focused on reducing the number of solution-to-solution comparisons and the algorithmic

runtime required to complete the NDS procedure [11]. While much progress has been

made, any efforts capable of further improving the resource complexity of NDS

procedures should receive considerable attention and application.

52

The contributions of this paper are summarized as follows:

1) A novel, terminable NDS algorithm (Ideal Sort) is presented, along with the

theoretical inspirations for its development.

2) The importance and benefit of terminability within NDS algorithms is

discussed and demonstrated.

3) The presented algorithm’s performance across a wide range of multiobjective

test sets is compared to that of several state-of-the-art methods. Ideal Sort is

shown to generally outperform other terminable methods and achieves state-

of-the-art performance in some instances.

4) A new, scalable multiobjective test set creation procedure for evolved datasets

is presented (Algorithm 2) and utilized. This procedure looks to mimic a

common scenario to which NDS algorithms are applied within multiobjective

EAs.

In the next section, some fundamental multiobjective optimization definitions and

concepts are quickly introduced. Subsequently, a review of published algorithms focused

on improving the efficiency of NDS is presented. A new methodology is then proposed,

followed by a brief examination of its theoretical complexity. The method’s experimental

performance is then compared to that of several state-of-the-art algorithms, followed by a

discussion of the results achieved. In a final section, concluding remarks and

recommendations for future work are extended.

53

2. PRELIMINARIES

A (minimization) multiobjective optimization problem with M objectives is

defined by Equation (1), where fj(x
a) is solution a’s performance with respect to objective

function j and X is the set of feasible solutions.

 𝑚𝑖𝑛(𝑓1(𝑥) , 𝑓2(𝑥), … , 𝑓𝑀(𝑥))
𝑠. 𝑡. 𝑥 ∈ 𝑋

(1)

As these objectives may be conflicting and eliminatory of a globally optimal

solution, “Pareto dominance” is used to compare solutions. Solution a is Pareto

dominated by another solution b in M objectives if the conditions of Equation (2) are met.

Solution b’s dominance of a is denoted by xb ≺ xa
.

 𝑓𝑖(𝑥𝑏) ≤ 𝑓𝑖(𝑥𝑎) ∀ 𝑖 ∈ 1,2, … , 𝑀 𝑎𝑛𝑑𝑓𝑗(𝑥𝑏) < 𝑓𝑗(𝑥𝑎)

𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗 ∈ {1, 2, . . . , 𝑀}

(2)

Solutions that are not dominated by any solution in the set are said to be Pareto

efficient or nondominated. Collectively, all nondominated members of a set comprise the

set’s first Pareto front. Solutions dominated only by one or more member of the first

Pareto front constitute the second Pareto front, and so on. NDS slates solutions of the set

into their associated Pareto fronts in this manner.

3. RELATED WORK

3.1. COMPLETE COMPARISON METHODS

Among the first prevalent multiobjective EAs to utilize NDS was Srinivas and

Deb’s Non-dominated Sorting Genetic Algorithm (NSGA) [13]. Receiving much

54

attention, this algorithm emerged as one of the seminal works on the topic of

multiobjective EAs. Capable of maintaining a well-distributed set of points while

converging to the Pareto frontier of the solution-space, NSGA employs an NDS

mechanism (which has come to be called the naïve or brute force method) that compares

each solution in the population to every other solution. At each comparison, the

dominance relationship between the pair is determined, recording an incrementing tally to

the manifest of a dominated solution. After the final pairwise evaluation is completed,

those solutions not dominated by any of their counterparts are recognized as the Pareto

efficient solutions of the population. These solutions are then temporarily removed from

the population, the dominance tallies are reset, and the process is repeated to find the next

Pareto front. While able to successfully sort the population into their nondominated

fronts, the algorithm is resource intensive, maintaining a worst-case computational

complexity of O(MN3) -where M is the number of objective functions and N is the size of

the population.

Emerging as one of the key criticisms of NSGA, its computational complexity

was addressed by one of the algorithm’s authors in a successor approach, NSGA-II [7].

The most well-cited multiobjective optimization procedure to date, NSGA-II utilizes an

approach called Fast Non-dominated Sorting (FNDS) that reduces the worst-case

computational complexity of the sorting procedure to O(MN2). This efficiency is enabled

by an expanded bookkeeping mechanism that stores the dominance relationships between

each pair of solutions in the population. Comparing each solution to every other, those

shown to be not dominated by a counterpart are recognized as members of the first Pareto

front. Editing the expanded domination records, the domination effects of these solutions

55

are then disregarded. Solutions not dominated by any member in the updated ledger are

then set as the second Pareto front. This process is repeated until every solution is

assigned to a front. Owing the dominance relationship traceability of this mechanism,

each solution only needs to be compared to each of its counterparts once. This eliminates

several of the directly redundant comparisons required by the naïve method as subsequent

fronts are found. This computational savings does come at the expense of storage,

increasing the space complexity to O(N2) from the O(N) required by its predecessor. The

improved computational complexity of NSGA-II allows it to handle large and complex

optimization problems much more feasibly than NSGA and other naïve-method-driven

algorithms. As these two methods compare each solution to every other in the population

in determining the set of Pareto fronts, they belong to a class of NDS algorithms called

complete comparison methods.

3.2. INFERRED DOMINANCE METHODS

Recognizing the increased applicability of NDS EA’s when granted improved

efficiency, several subsequent methodologies were developed to further improve the

computational complexity of NDS procedures. An approach based on Arena’s Principle

was proposed, capable of reducing computational complexity to O(MN√𝑁) [14]. This

method uses dominance relationships to dictate a solution’s tenure as an arena host.

During its tenancy, the Arena host is compared to all other solutions to determine if it is

dominated by any of its counterparts. If it is not, it is added to the Pareto efficient set and

the next arena host is selected. If the host is dominated by a counterpart, it is removed

from consideration and the dominating solution becomes the new host. Solutions

56

dominated by the arena host are additionally removed from consideration. This procedure

is continued until only the set of Pareto efficient solutions remain. Nondominated

solutions are then ignored and the process is repeated to find the next Pareto front.

Similar to FNDS, Arena’s Principle exhibits a worst-case computational complexity of

O(MN2) while boasting a lesser space complexity of O(N).

McClymont and Keedwell [15] proposed two algorithms, Climbing Sort and

Deductive Sort, aimed at reducing the computational burden of NDS while maintaining a

simple procedure to allow easy integration within existing EAs. The proposed Climbing

Sort algorithm begins by comparing solutions of the population until a dominance

relationship is established. When dominance occurs, the dominated solution is marked

and discarded. If the focal solution of the comparison is the dominated solution, its

dominating counterpart becomes the focal solution and the algorithm continues. This

process is repeated until a nondominated focal solution is found. The algorithm then

moves to the next focal solution and continues until only the set of nondominated

solutions remain. The logic of this algorithm is that once a solution has been dominated,

it cannot be a member of the efficient set, so any further comparisons to it are redundant.

Additionally, any solutions that would have been dominated by the removed solution will

be dominated by the solution prompting the latter’s removal. Called inferred dominance,

this compound idea is the crux of the Climbing Sort and Deductive Sort algorithms.

Inferred dominance lends to the improved efficiency of Arena’s Principle, as well, though

the authors did not explicitly mention the term in their proceedings. Deductive Sort

assesses each solution based on a fixed population order. By this procedure, a focal

solution is compared to solutions that occur after it within a set list of solutions. Solutions

57

dominated by the focal solution are flagged and ignored. If a solution dominates the focal

solution, the focal is similarly flagged and the focus is shifted to the counterpart

immediately below the focal solution in the ordered list. This process is completed until

all solutions have been examined, defining the nondominated set as those solutions not

marked with a flag. Climbing Sort and Deductive Sort, like Arena’s Principle must be

repeated to find subsequent Pareto fronts. Deductive Sort is demonstrated by the authors

to generally outperform Climbing Sort and Arena’s Principle, while all maintain a best- /

worst-case complexity of O(MN√𝑁) / O(MN2) and a space complexity of O(N). Corner

Sort provides some improvement to Deductive Sort by ensuring that the next focal

solution when a transition is made is in the current Pareto front [16]. This is achieved by

selecting the remaining solution touting the best value at any one objective. While Corner

Sort has been shown to outperform Deductive Sort in many scenarios, the algorithms’

computational and space complexity are identical.

These four algorithms, Arena’s Principle, Climbing Sort, Deductive Sort, and

Corner Sort, comprise prominent members of the set of NDS procedures called the

inferred dominance methods. Heralding Deductive Sort and Corner Sort as their most

efficient members, these algorithms successively determine Pareto fronts and can be

terminated after a desired number of fronts are found.

3.3. CONSTRUCTIVE FRONT METHODS

Zhang et al. [17] took a different approach to NDS in their proposition of the

Efficient Non-dominated Sort (ENS) algorithms. Instead of comparing each solution to all

other unflagged solutions in the set, the ENS algorithms compare focal solutions only to

58

the solutions already assigned to a Pareto front. If a focal solution is dominated by any

member of a front it is moved to the next front for similar testing. If the focal solution is

found to be nondominating with all members of the front, then it is added to the front and

the next solution is examined. This process is repeated until all members of a population

are assigned to a front. Presorting the population in ascending order by the first objective

function value (and lexicographically in the case of ties), there will never be a focal

solution that is dominant of any previous solutions already added to the set of Pareto

fronts. This enables the algorithms to disregard the possibility of having to move

solutions to different fronts once they are placed during their focal tenure. The

algorithmic variance between the two proposed ENS methodologies lies only in the first

front to which the focal solution is compared. The Sequential Search algorithm (ENS-SS)

begins by comparing the focal solution to the first front and progresses by the described

mechanism accordingly. The Binary Search algorithm (ENS-BS) begins the comparisons

at the median established front, seeking to bypass the comparisons stemming for common

demotions arising as the algorithm progresses to the latter parts of the sorted population.

While ENS-BS typically outperforms ENS-SS, the latter may exhibit superiority in some

instances, particularly when a small number of fronts are present. Maintaining a worst-

case complexity of O(MN2), ENS-SS exhibits a best-case computational complexity of

O(MN√𝑁) while ENS-BS achieves O(MNlogN) complexity. These algorithms are

advantaged by a space complexity of O(1) but require that all solutions be examined

before even the first Pareto front can be considered complete.

Furthering the pre-comparison sorting procedures, Roy, Islam, and Deb [11]

proposed an NDS algorithm entitled Best Order Sort (BOS). This method first sorts the

59

population according to their performance on each independent objective, assigning the

set of partial ranks that define each solution. The algorithm then iterates through the

sorted objective columns in a row-wise fashion, placing solutions into respective fronts as

they are discovered. The sorting procedure (like with the ENS algorithms) ensures that

the front to which a solution is added will not need to be altered after the initial

assignment. Further, when a solution is discovered it only needs to be compared to

solutions which have a higher partial rank with respect to the currently examined

objective. This reduces many of the unnecessary comparisons executed by the ENS

methods. BOS is able to achieve a best-case computational complexity of O(MNlogN)

and requires O(MN) storage. The method described by the authors, however, is not able

to handle duplicate solutions within the population. This shortcoming is addressed by

Mishra et al. [18] in their proposition of the Generalized Best Order Sort (GBOS)

algorithm. Their alterations enable the handling of duplicate solutions while retaining the

computational and space complexities of BOS. Two variants of GBOS are posed,

sequential search (GBOS-SS) and binary search (GBOS-BS), mirroring the strategy and

performance characteristics applied to ENS. Roy, Deb, and Islam [12] expanded upon the

BOS algorithm in their creation of Bounded Best Order Sort (BBOS). BBOS uses

adaptive binary trees to cut down on the number of fronts a solution needs to pass

through before finding the front to which it belongs. This algorithm is shown to

demonstrate great performance when the number of fronts is very large and retains the

space and time complexities of BOS.

These six algorithms, ENS-SS, ENS-BS, BOS, GBOS-SS, GBOS-BS, and BBOS

comprise members of the set of NDS procedures called the constructive front methods.

60

These algorithms each look to add solutions to their respective fronts individually and

must examine all solutions before the algorithm can be terminated. The BOS and BBOS

algorithms boast the best experimental efficiency of the constructive front methods and

are considered state-of-the-art NDS procedures.

A table summarizing the computational and space complexities of the discussed

methods is shown in Table 1.

Table 1. Time and Space Complexity of Existing Nondominated Sorting Methods.

4. THE PROPOSED ALGORITHM: IDEAL SORT

4.1. ALGORITHMIC INSPIRATION

To understand the logic of the algorithm to be proposed, the following example is

first presented:

Consider a population of four solutions: solution-a, solution-b, solution-c, and

solution-d (Figure 1). While the first three solutions are nondominating to each other,

each is dominated by solution-d. Maintaining their alphabetical ordering and employing a

terminable inferred dominance method (in this case, Deductive Sort, see [15]), the

Method
Time Complexity

Space Complexity Method Class
Base-Case Worst-Case

Naïve / Brute Force O(MN2) O(MN3) O(N) Complete Comparison

Fast Non-dominated Sort O(MN2) O(MN2) O(N2) Complete Comparison

Arena's Principle O(MN√𝑁) O(MN2) O(N) Inferred Dominance

Climbing Sort O(MN√𝑁) O(MN2) O(N) Inferred Dominance

Deductive Sort O(MN√𝑁) O(MN2) O(N) Inferred Dominance

Corner Sort O(MN√𝑁) O(MN2) O(N) Inferred Dominance

ENS-SS O(MN√𝑁) O(MN2) O(1) Constructive Front

ENS-BS O(MNlogN) O(MN2) O(1) Constructive Front

BOS / GBOS O(MNlogN) O(MN2) O(MN) Constructive Front

BBOS O(MNlogN) O(MN2) O(MN) Constructive Front

61

following domination comparisons may be conducted to determine the Pareto front of the

set:

1) solution-a to solution-b; no removal

2) solution-a to solution-c; no removal

3) solution-a to solution-d; solution-a removed

4) solution-b to solution-c; no removal

5) solution-b to solution-d; solution-b removed

6) solution-c to solution-d; solution-c removed

Here, six two-way dominance comparisons will be made to determine solution-d

as the only member of the first Pareto front. Had solution-d been placed at the head of the

ordered solutions list, the Pareto frontier could have been produced in half the number of

comparisons:

1) solution-d to solution-a; solution-a removed

2) solution-d to solution-b; solution-b removed

3) solution-d to solution-c; solution-c removed

This reduced number of comparisons is enabled by the placement of the most

dominant solution at the head of the ordered list. This placement allows solution-d to

remove its inferior counterparts early, avoiding the unnecessary comparisons they

sponsor. This capability yields a general desire to place the most dominant solutions of a

candidate set first, seeking to sidestep unnecessary comparisons, as illustrated by the

example.

62

Figure 1. 4-solution example population demonstrating effects of population order.

4.2. A DOMINANCE SURROGATE

Knowledge of a solution’s true dominance, however, cannot be affordably

attained. Determining the number exact number of solutions any one solution of the

population dominates would require a computational expense on the order of a complete

comparison method. A surrogate is, therefore, proposed to estimate the dominance a

solution may exhibit.

63

First, consider a point in the solution-space that is globally optimum, that is,

optimum by every objective. This solution would then exhibit dominance over every

other solution occupying the population. Called the ideal point, this location in the

solution space is composed of the optimum exhibited value by any solution for each

objective considered. Assuming minimization, as in (1), the ideal point (�⃗�𝑖𝑑𝑒𝑎𝑙) is defined

by Equation (3) where M is again the number of objectives and X is the population of

possible solutions.

 �⃗�𝑖𝑑𝑒𝑎𝑙 ∋ �⃗�𝑖
𝑖𝑑𝑒𝑎𝑙 = 𝑖𝑛𝑓

𝑥∈𝑋
𝑓𝑖(𝑥) ∀ 𝑖 = 1, . . . , 𝑀 (3)

While a solution matching the ideal point is not likely to exist within a

multiobjective population, the knowledge of its location can be used in establishing an

expected dominance surrogate. Here proposed is the use of the squared Euclidean

distance of a solution from the ideal point as an estimate of the solution’s Pareto

dominance. Each objective’s contribution to the distance is also divided (or scaled) by the

corresponding ideal point term to handle varying scales. The calculation of this proxy

metric for a solution-a (Ea) with M objectives is detailed in Equation (4).

𝐸𝑎 = ∑
(𝑓𝑖(𝑥𝑎) − �⃗�𝑖

𝑖𝑑𝑒𝑎𝑙)
2

�⃗�𝑖
𝑖𝑑𝑒𝑎𝑙

𝑀

𝑖=1

(4)

Determining the squared distance to the ideal point (E) for all members of the

population, those closest are considered most dominant by the surrogate measure.

4.3. ALGORITHM DESCRIPTION

Described by Algorithm 1, the proposed method makes use of the established

dominance surrogate and is relatively simple to implement. The procedure begins by

64

determining the ideal point of the population, as defined in Equation (3). Once

determined, the distance of each solution to the ideal point is calculated and the

population is sorted according to this value in an ascending fashion. The algorithm then

selects the first solution in the sorted list, marks it as a member of the current –initially,

the first– front, and begins comparing it to its counterparts in an orderly manner.

Progressing down the sorted list, if a solution is dominated by the selected solution, the

dominated candidate is marked as such and will not be a member of the current front.

Note that considerations do not need to be made for the selected solution being

dominated by a subsequent counterpart, due to the nature of the pre-comparison sorting.

For a solution to exhibit a lesser E-value than a counterpart solution, the former must be

better (smaller-valued) than the latter by at least one objective. Called a one-way

domination comparison, this characteristic is also intrinsic to Corner Sort [16], and

further implies that any solution enduring a tenure as the selected solution will be present

within the current front. These factors are largely responsible for the improved

experimental performance of Corner Sort over other inferred dominance methods.

Once a selected solution has been compared to all unmarked members of the

population, the next unmarked solution is selected, ranked within the current front, and is

compared to its remaining unmarked counterparts. When all solutions have been marked

(as dominated or members of the current front), marks are cleared from the dominated

solutions and the procedure is repeated to find the next front of the population.

These operations are repeated until every solution has been assigned to a front

(Algorithm 1: line 10) or the number of solutions assigned to fronts satisfies what is

needed for selection by the employing multiobjective EA (Algorithm 1: line 25).

65

Algorithm 1: Ideal Sort

Inputs: Population P with N solutions and M objectives; Boolean T defining if the

algorithm is to be terminated after a sufficient number of solutions are ranked.

Functions: ideal(X): Determines ideal point of population X, as defined by

Equation (3); SSED(y, z): determines squared scaled Euclidean distance between

two points y and z, as defined by Equation (4).

Output: Pareto front Rank of desired number of solutions

1 I = ideal(P) // Determine ideal point

2 for n = 1 to N // For all solutions

3 En = SSED(pn, I) // Determine SSED from nth solution of P to I

4 end

5 P ← Sort(P, E) // Sort P by ascending E-value

6 front = 1 // Initialize front to 1

7 Rank[1 : N] = null // Initialize Rank to null for all solutions

8 ranked = 0 // Initialize number of ranked solutions to 0

9 marked = 0 // Initialize number of marked solutions to 0

10 while ranked < N // While not all solutions are ranked

11 current = 1 // Initialize current solution to first

12 while marked < N // While not all solutions are marked

13 while Rank[current] != null // While the current solution is marked

14 current += 1 // Increment current

15 end

16 Rank[current] = front // Rank current as front

17 ranked += 1 // Increment ranked

18 marked += 1 // Increment marked

19 for i = current+1 : N // Rank current as front

 // If pi is not marked and is dominated by pcurrent

20 if Rank[i] == null && pcurrent ≺ pi then

21 Rank[i] = inf // Mark pi as dominated

 marked += 1 // Increment marked

22 end

23 end

24 end

 // If terminating and a sufficient number of solutions are ranked

25 if T == True && ranked ≥ N/2 then

26 ranked = N // Set ranked to N to terminate sorting

27 end

28 marked = ranked // Set marked to only ranked

29 Rank[Rank==inf] = null // Set Rank to null for dominated solutions

30 front += 1 // Increment front

31 end

32 return

66

4.4. THE BENEFITS OF TERMINABILITY

The latter method by which the algorithm may be concluded is allowable by the

terminability property of Ideal Sort. Maintained similarly by the other inferred dominance

methods introduced, this property allows the algorithm to be terminated following the

determination of any single front defining the population.

To demonstrate the benefits of this property, reference to Figure 2 is made. This

graphic provides a high-level overview of the general selection operations that an NDS

multiobjective EA may follow. For each iteration, an initial population is comprised of

solutions surviving a previous iteration’s selection and the generated offspring they

produce. Applying NDS, the fronts defining this population are then determined and used

as the primary ranking mechanism for selection. In the likely event of a tie in NDS rank

between solutions seeking to survive selection (such as those solutions comprising the

third front in Figure 2), a diversity procedure is often used to keep the required number of

solutions that maintain the best diversity about the population. Those selected by this

procedure are then passed to the generation procedure used to form the initial population

of the next iteration.

This procedure can solicit some inefficiency during the NDS operations. Consider

first that the number of solutions surviving from one iteration to another is generally

fixed (and even more generally, known). Once this desired number of solutions has been

ranked, the operations performed to rank solutions into subsequent fronts provides no

value to the larger procedure. Returning to Figure 2: after the solutions belonging to the

first, second, and third fronts have been identified, the effort dedicated to ranking

solutions into the fourth and fifth fronts is computationally and temporally wasteful.

67

Figure 2. General selection operations of a generic NDS multiobjective EA.

Therefore, algorithms exhibiting terminability may be able to see substantial

improvements to their computational and runtime efficiencies should this property be

invoked. The merit of these assertions will be evaluated in Section 7.

5. TIME AND SPACE COMPLEXITY

The time complexity of the proposed method is contributed to by four general

procedures:

1) Determining the ideal point of the population

2) Determining each solution’s E-value, describing proximity to the ideal point

3) Sorting the population by ascending E-value

4) Performing domination comparisons to determine Pareto fronts

68

Assuming minimization, finding the ideal point of a population with N solutions

and M objectives is equivalent to finding the minimum of a 1xN array, M times. As each

solution must be examined to find the minimum of each 1xN array, the number of

comparisons required will be O(N) per objective. Completing this procedure for each of

the M objectives yields a contribution of O(MN) to the overall complexity. Determining

the E-value of each solution similarly requires O(MN) operations as each of the N

solutions must be compared to the ideal point with respect to M objectives. Once the E-

value of each solution is found, the population can be sorted in-place via Heapsort with a

complexity of O(NlogN) [19].

Having established the sorted population, the time complexity of the

nondominated sorting procedure should be investigated for the worst- and best-case. The

worst-case complexity for Ideal Sort occurs when all solutions of the population are in a

single front. In such a scenario, each solution in the sorted population will be compared

to each subsequent solution. With no solution being marked as dominated, a total of

1

2
𝑀(𝑁2 −

𝑁

2
) comparisons will be required for a population with N solutions and M

objectives. This worst-case comparison complexity mirrors that of Deductive Sort [15]

but is faster as it only requires one-way domination comparisons. This worst-case

complexity also arises for the vanilla (non-terminating) implementation of Ideal Sort

when each solution occupies its own front; the terminable implementation of Ideal Sort

performs better in this case as the second half of the sorted population is not ranked into

fronts. Examining these contributing processes, the algorithm is shown to exhibit a worst-

case complexity of O(MN2).

69

The best-case for the vanilla Ideal Sort algorithm bears a relationship to the

triangular number sequence, where the nth triangular number (Tn) is the sum of the natural

numbers from 1 to n. When a population with Tn solutions is comprised by n fronts and

the number of solutions in incrementing fronts reduces by one (see Figure 3) the number

of comparisons required to rank the solutions can be reduced to the value defined by

Equation (5). Herein, CN is the number of comparisons required for a population of N

solutions with M objectives where N is the nth triangular number. This best-case

complexity additionally requires that the first encountered solution (according to E-value

sorting) in each front dominates every solution of each subsequent front. Populations of

this structure may be created at varying scales and dimensionality by following the

procedure for fixed-front dataset generation described in [15].

𝐶𝑁 = 𝑀 ∑ 𝑖(𝑖 − 1)

𝑛

𝑖 = 1

(5)

For populations with a number of solutions (N) between the nth and n+1th

triangular number, the best-case number of comparisons required occurs in select

instances where a nonincreasing number of solutions comprise incrementing fronts. In

such a case, the comparisons required (CN) is a linear interpolation between that required

for the nth and the n+1th triangular number. This is defined by (6) where �̂�𝑛 is minimum

number of comparisons required for a population size equal to the nth triangular number

(see Equation (5)) and the number of objectives is M.

𝐶𝑁 = 𝑀 (�̂�𝑛 +

𝑁 − 𝑇𝑛

𝑇𝑛+1 − 𝑇𝑛
(�̂�𝑛+1 − �̂�𝑛))

(6)

70

This required number of comparisons can be improved by incorporating

terminability, a claim evidenced by the experimental results of the subsequent section.

Ideal Sort requires O(N) space to track which solutions are dominated and the

rank assigned to each solution.

Figure 3. Population with T5 solutions enabling best-case computational performance by

the Ideal Sort algorithm.

71

6. EXPERIMENTAL RESULTS

This section compares the performance of Ideal Sort to four other NDS

algorithms: Deductive Sort [15], Corner Sort [16], Best Order Sort [11], and Bounded

Best Order Sort [12]. Additionally, simple terminability modifications are made are to

Deductive Sort and Corner Sort to examine this property’s effect on performance

characteristics. These modifications mirror that described for Ideal Sort in Algorithm 1:

Lines 25-27. As members of the constructive front class of NDS methods, the current

implementations of Best Order Sort and Bounded Best Order Sort must examine all

solutions before any front can be considered complete. Therefore, these algorithms have

not been modified to include an early termination procedure. Thus, the total number of

algorithms examined is eight, with Deductive Sort, Corner Sort, and Ideal Sort being

implemented under terminable and vanilla statuses.

These algorithms are presented with a variety of multiobjective datasets,

described within the next subsection. The number of objective comparisons to determine

domination and the total algorithmic runtime required are used to evaluate the

performance of each NDS procedure. 30 instances of each dataset are created and the

average performance of each algorithm on each dataset is presented in the Experimental

Results subsection. Each algorithm is implemented in Java and experiments are

conducted on a PC with a 3.00GHz Intel Core i9-9980XE CPU with 64 GB of RAM.

72

6.1. EXPERIMENTAL DATASETS

To compare the performance of Ideal Sort with these state-of-the-art methods, a

test suite of multiobjective datasets is developed. Instances of these datasets are presented

to each algorithm under similar conditions, enabling a comparison of the discussed

performance measures. Two standard multiobjective dataset creation methods are

utilized: cloud dataset generation and fixed front dataset generation. Additionally, a new

generation scheme is presented and implemented, aimed at emulating a common EA

scenario.

6.1.1. Cloud Dataset Generation. Cloud dataset generation methods create

random populations of solutions with objective values pulled from the uniform

distribution between zero and one. The datasets can be tailored to a desired population

size and number of objectives using the procedure defined in [16]. These datasets reflect

the scenarios incumbent of NDS procedures at the beginning of an EA implementation as

initial populations are often generated randomly [12]. Two series of cloud datasets were

created. The first maintains a constant population level of 10,000 solutions while

incrementing the number of objectives by 1 from 2 to 30 (Figure 5). The second series

conducted incrementation along two axes, increasing the population size from 1,000 to

10,000 in steps of 1,000 solutions, while also incrementing the number of objectives from

5 to 20 by a step size of 5 (Figure 7). In total, 69 different cloud dataset classes were

produced, each owning 30 unique instances for an examination total of 2,070 unique

cloud populations.

6.1.2. Fixed Front Dataset Generation. Fixed front dataset generation methods

offer further tailoring of the dataset by allowing the number of fronts within the

73

population to be controlled. Utilizing the strategy described in [16], a reasonably similar

number of solutions are placed within each of the designated number of fronts, enabling

the investigation of examined methods’ performances across a variety of dominance

scenarios. As different methods may inherently perform better given a different number

of Pareto fronts, it is important that a range of front-counts be examined. In doing so, the

demonstrated strength of consistently well-performing algorithms can be considered

more robust.

A two-axis incrementation was similarly employed in the creation of fixed front

datasets, incrementing the number of fronts by 1 from 1 to 15 in one direction and the

number of objectives by 5 from 5 to 20 in the other (Figure 8). Each population contains

10,0000 solutions. 60 classes culminate in the examination of 1,800 unique fixed front

populations.

6.1.3. Evolved Dataset Generation. The final dataset generation strategy

employed seeks to mimic the datasets presented to an NDS algorithm by EAs during

general iterations. Any non-initialization iteration of a generic EA will have a population

comprised by two classes of members. The first class constitutes those solutions from the

previous iteration that survived the selection process. The second is composed of

offspring solutions generated by combining characteristics from the surviving members

and incorporating the effects of mutation. This procedure within multiobjective EAs

enables the gradual convergence of the maintained population to the Pareto front of a

decision-space [3]. This gradual migration is emulated by Algorithm 2 as an initial

population is used to make modified “offspring” that are better or worse by one objective.

For each added solution, a root solution of the original population, used to create the new

74

member, will either dominate or be dominated by the added solution. Highly

customizable, the generated dataset and the level of migration its added members exhibit

are dependent on a few input parameters defined next.

Algorithm 2: Evolved Dataset Generation

Inputs: Population (P) dimensions: N solutions and M objectives; a: the number of

new solutions added to P as a fraction of N; b: the best objective performance

improvement exhibited by an added solution as a fraction

Functions: randi(y, z): generates a random number from the uniform distribution

between y and z

Output: Evolved dataset with N+N*a solutions and M objectives

 // Create initial front of population

1 for i = 1 to N // For all solutions

2 P(i, 1) = randi(0, 1) // Set first objective value between 0 and 1

3 for j = 2 to M-1 // For objectives 2 to M-1

4 P(i, j) = randi(0, 1)*sum(P(i, 1:j-1))

5 end

6 P(i, M) = 1-sum(P(i, 1:M-1)) // Ensure nondomination

7 end

 // Add new solutions emulating offspring

8 for k = 1 to N*a // For new solutions

9 modCol = randi(1, M) // Select column for modification

10 modVal = randi(1-b, 2-b) // b% improvement to (100-b)% regression

11 P(N+k, :) = P(k, :) // Add new solution

// odify new solution’s modColth objective value according to modVal (smaller

is better)

12 if P(k, modCol) ≥ 0 // If root is nonnegative

13 P(N+k, modCol) = P(k, modCol)*modVal

14 else // If root is negative

15 P(N+k, modCol) = P(k, modCol)*(2-modVal)

16 end

17 end

18 return

This procedure first creates a single front of N nondominating solutions with M

objectives, as defined by user input (Algorithm 2: Lines 1-7). The user additionally

supplies a desired number of additional solutions to be added to the population (a) as a

fraction (can be improper) of N. Further supplied by the user is a parameter, b, defining

75

the superiority a new solution can have when compared to a member of the original

population. Entered as a fraction, b describes the maximum improvement at any one

objective a new solution can exhibit when compared to the root solution used to create it

(i.e. a b-value of 0.15 indicates a maximum 15% improvement). This value further

defines the proportion of added solutions that will be present within the first front of the

expanded dataset. All four parameters are used in Lines 8-17 to add N*a additional

evolved solutions. An example evolved dataset utilizing the following parameters is

shown in Figure 4:

• N = 1,000

• M = 2

• a = 0.25

• b = 0.15

Figure 4 clearly shows the incorporation of a handful of evolved solutions that are

closer than the initial front to the optimal values of each objective. Each of these

solutions will dominate at least one member of the original front and belong to the new

Pareto efficient set.

An identical creation scheme to that used for cloud datasets was employed to

develop 2,070 unique evolved datasets for examination (Figure 6; Figure 10). These

populations were developed using an a-value of 1 (doubling the population as EA

reproduction procedures generally do) and a b-value of 0.1.

76

Figure 4. Example evolved dataset with 1,000 original solutions and 250 added solutions.

77

6.2. EXPERIMENTAL RESULTS

(a)

(b)

Figure 5. Computational performance for cloud datasets with 10,000 solutions and an

incrementing number of objectives. a) Required runtime. b) Required number of

dominance comparisons.

78

(a)

(b)

Figure 6. Computational performance for evolved datasets with 10,000 solutions and an

incrementing number of objectives. a) Required runtime. b) Required number of

dominance comparisons.

79

(a)

(b)

Figure 7. Computational performance for cloud datasets with an incrementing number of

solutions and a set number of objectives. a) Required runtime with 5 objectives. b)

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required

runtime with 20 objectives. e) Required number of dominance comparisons with 5

objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives.

80

(c)

(d)

Figure 7. Computational performance for cloud datasets with an incrementing number of

solutions and a set number of objectives. a) Required runtime with 5 objectives. b)

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required

runtime with 20 objectives. e) Required number of dominance comparisons with 5

objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

81

(e)

(f)

Figure 7. Computational performance for cloud datasets with an incrementing number of

solutions and a set number of objectives. a) Required runtime with 5 objectives. b)

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required

runtime with 20 objectives. e) Required number of dominance comparisons with 5

objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

82

(g)

(h)

Figure 7. Computational performance for cloud datasets with an incrementing number of

solutions and a set number of objectives. a) Required runtime with 5 objectives. b)

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required

runtime with 20 objectives. e) Required number of dominance comparisons with 5

objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

83

(a)

(b)

Figure 8. Computational performance for fixed front datasets with an incrementing

number of fronts and a set number of objectives. a) Required runtime with 5 objectives.

b) Required runtime with 10 objectives. c) Required runtime with 15 objectives. d)

Required runtime with 20 objectives. e) Required number of dominance comparisons

with 5 objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives.

84

(c)

(d)

Figure 8. Computational performance for fixed front datasets with an incrementing

number of fronts and a set number of objectives. a) Required runtime with 5 objectives.

b) Required runtime with 10 objectives. c) Required runtime with 15 objectives. d)

Required runtime with 20 objectives. e) Required number of dominance comparisons

with 5 objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

85

(e)

(f)

Figure 8. Computational performance for fixed front datasets with an incrementing

number of fronts and a set number of objectives. a) Required runtime with 5 objectives.

b) Required runtime with 10 objectives. c) Required runtime with 15 objectives. d)

Required runtime with 20 objectives. e) Required number of dominance comparisons

with 5 objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

86

(g)

(h)

Figure 8. Computational performance for fixed front datasets with an incrementing

number of fronts and a set number of objectives. a) Required runtime with 5 objectives.

b) Required runtime with 10 objectives. c) Required runtime with 15 objectives. d)

Required runtime with 20 objectives. e) Required number of dominance comparisons

with 5 objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

87

(a)

(b)

Figure 9. Zoomed region of required runtime for fixed front datasets with an

incrementing number of fronts and a set number of objectives. a) Required runtime with

5 objectives. b) Required runtime with 10 objectives. c) Required runtime with 15

objectives. d) Required runtime with 20 objectives.

88

(c)

(d)

Figure 9. Zoomed region of required runtime for fixed front datasets with an

incrementing number of fronts and a set number of objectives. a) Required runtime with

5 objectives. b) Required runtime with 10 objectives. c) Required runtime with 15

objectives. d) Required runtime with 20 objectives. (cont.)

89

(a)

(b)

Figure 10. Computational performance for evolved datasets with an incrementing number

of solutions and a set number of objectives. a) Required runtime with 5 objectives. b)

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required

runtime with 20 objectives. e) Required number of dominance comparisons with 5

objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives.

90

(c)

(d)

Figure 10. Computational performance for evolved datasets with an incrementing number

of solutions and a set number of objectives. a) Required runtime with 5 objectives. b)

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required

runtime with 20 objectives. e) Required number of dominance comparisons with 5

objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

91

(e)

(f)

Figure 10. Computational performance for evolved datasets with an incrementing number

of solutions and a set number of objectives. a) Required runtime with 5 objectives. b)

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required

runtime with 20 objectives. e) Required number of dominance comparisons with 5

objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

92

(g)

(h)

Figure 10. Computational performance for evolved datasets with an incrementing number

of solutions and a set number of objectives. a) Required runtime with 5 objectives. b)

Required runtime with 10 objectives. c) Required runtime with 15 objectives. d) Required

runtime with 20 objectives. e) Required number of dominance comparisons with 5

objectives. f) Required number of dominance comparisons with 10 objectives. g)

Required number of dominance comparisons with 15 objectives. h) Required number of

dominance comparisons with 20 objectives. (cont.)

93

7. DISCUSSION

The average total runtime (a) and the average number of dominance comparisons

required (b) for each of the examined algorithms while sorting the cloud datasets with an

ascending number of objectives is detailed in Figure 5. The figure first describes the two

constructive front methods (BOS and BBOS) as the most efficient according to both

metrics. Of the inferred dominance methods, Ideal Sort, and its terminable form (Ideal

Sort – T), consistently outperform their counterparts with respect to runtime. Further, it is

demonstrated that just the vanilla form of Ideal Sort is more efficient than even the

terminable forms of Deductive Sort and Corner Sort (Deductive Sort – T and Corner Sort

– T, respectively). Examining the number of dominance comparisons required, the

inferred dominance methods are again secondary to their constructive front counterparts.

Ideal Sort and Corner Sort grapple for the best efficiency, a contest that appears to be

based on the number of objectives. While the Corner Sort algorithms sometimes require

less comparisons, they are hampered by the complexity of repeatedly finding a corner

solution [16], allowing the Ideal Sort algorithms to consistently outperform the former

with respect to runtime. Additionally, note the tendency of terminability to lose its

superiority over the vanilla methods as the number of objectives becomes large in cloud

populations. This occurs as a greater proportion of the population becomes nondominated

[16], reducing the number of fronts whose sorting can be avoided by early termination.

These findings are mirrored by the results of the two-axis parameter variation of

cloud datasets (Figure 7). In relatively low dimensionality ((a), (b)), the Ideal Sort

methods universally outperform their inferred dominance competitors for all population

94

sizes. Further, they are much more competitive here to the constructive front methods

than in high-dimensional space. Terminable variations clearly outperform their associated

vanilla algorithms at this level of low dimensionality.

As the number of objectives is increased, a growing gap emerges between the

inferred dominance methods and the efficient constructive front methods. While Corner

Sort again eclipses Ideal Sort in terms of required comparisons as the number of

objectives becomes high, the latter maintains a consistent advantage in terms of

algorithmic runtime. As expected, the benefits of terminability diminish as the number of

objectives increases.

Performance measures corresponding to the tests on fixed front data sets are

shown in Figure 8. As other studies have demonstrated [12], the number of required

comparisons and runtime generally decrease, for a given population size and

dimensionality, as the number of fronts increases. As the number of fronts becomes

larger, the superiority of the constructive front methods over their inferred dominance

counterparts additionally becomes less pronounced. The benefits of terminability are

well-defined in this figure, as the terminable implementations outperform their vanilla

variations across all instances. While the Corner Sort algorithms again jockey with their

Ideal Sort counterparts for superiority in terms of the dominance comparisons required,

Ideal Sort and Ideal Sort – T, as before, consistently require less runtime than Corner Sort

and Corner Sort – T, respectively. The non-smooth descent of the terminable methods is

an interesting behavior highlighted; a characteristic most clearly demonstrated by

Deductive Sort – T in the higher dimension sets of Figure 8 ((c), (d)). This occurs as

scenarios with an even number of equivalently sized fronts allows termination

95

immediately after the F/2th front is determined, where F is the number of fronts. When an

odd number of fronts are present, the F/2 + 1th front must also be sorted. Populations

with an even number of like-sized fronts thus demonstrate greater improvement when

moving from vanilla to terminable implementations. While this behavior may not be

obvious from the busier regions of Figure 8, this behavior is noted for each of the

terminable algorithms examined.

Figure 9 provides a focused look at a busy region of the runtime figures of Figure

8. Eliminating the poorer performing inferred dominance methods, the best performing

(Corner Sort – T, Ideal Sort, and Ideal Sort – T) are compared to the state-of-the-art

constructive front method, BBOS. At each level of dimensionality, Ideal Sort – T is

shown to outperform BBOS beyond a certain number of fronts. Further, Corner Sort – T

is shown to outperform BBOS in many cases, though, itself, being outperformed by Ideal

Sort – T in each case. The vanilla version of Ideal Sort is also shown to approach the

runtime performance of BBOS at the very highest number of dimensions and fronts

examined. These findings support the notion of Ideal Sort as a meaningful contributor to

the arsenal of NDS algorithms. Perhaps more importantly, these findings cement the

benefits of terminability, as an algorithm (Corner Sort), never before shown to

outperform a member of the constructive front class, demonstrates superiority via the

inclusion of a termination operation. Combining the aptitudes of Ideal Sort and

terminability, Figure 9 defines perhaps the first instance of an inferred dominance method

(Ideal Sort – T) regularly outperforming a state-of-the-art constructive front procedure.

The performance characteristics for each method, when applied to the described

evolved datasets, are shown in Figure 6 and Figure 10. As with the cloud dataset

96

experiments, the two constructive front methods are shown to outperform the inferred

dominance methods in each instance. Ideal Sort and Ideal Sort – T are shown to sizably

outperform the other inferred dominance methods and exhibit only a slight disadvantage

to BOS and BBOS in terms of the number of comparisons required. This disadvantage is

manifested in the runtime requirements as well, but unlike in the cloud experiments, the

Ideal Sort algorithms become more competitive as the number of objectives increases.

This occurs as the evolved datasets do not create scenarios where most solutions are

nondominated when the number of objectives is high.

In analyzing the results of these tests, attention should be paid to the significance

of each test class. While cloud datasets are easy to implement and provide some feedback

on NDS algorithm performance, their occurrence within true multiobjective optimization

scenarios is limited. Specifically, they likely only occur at the onset of the optimization

procedure when preliminary solutions are initialized using a random generation

procedure [7]. Subsequent iterations are then likely characterized by populations with

multiple fronts, more closely resembling the fixed front populations examined. As the

multiobjective EA continues and reduces the number of Pareto fronts, a scenario akin to

the evolved datasets examined is likely to exist until the algorithm is concluded [20].

Frequently outnumbering cloud dataset scenarios within the operations of a

multiobjective EA, performance on fixed front and evolved datasets may be considered

more important and demonstrative of an NDS algorithm’s computational efficiency.

Conveniently for Ideal Sort, cloud scenarios are the only dataset class heralding

the constructive front methods as far and away superior. Under the more critical and

prevalent scenarios, Ideal Sort becomes much more competitive and can even exceed the

97

performance of the constructive front methods. These arguments have parallels to the

argument for terminability, as well; the benefits of which subside in high-dimensional

cloud space but are evident and meaningful while operating on the more critical dataset

scenarios.

8. CONCLUSION

Improving the efficiency of NDS algorithms has been a topic of considerable

interest since the introduction of the first NDS multiobjective EAs. Comprising a

majority of the time required by an employing EA, NDS procedures boasting increased

efficiency broaden the scale of problems that can be addressed using these popular

evolutionary procedures. Herein was introduced a novel, terminable NDS algorithm,

shown capable of competing with and outperforming other state-of-the-art NDS

procedures. Further, this algorithm is easier to understand and implement than many

state-of-the-art methods. Perhaps more importantly, the benefits of terminability were

introduced and demonstrated. This concept has been shown to enable considerable

efficiency improvements to NDS algorithms retaining this property. The utilization of

terminability was even shown to grant Corner Sort superiority over BBOS in some

instances, a feat not previously demonstrated by the vanilla Corner Sort algorithm. While

the namesake algorithm of this investigation, Ideal Sort, does add a novel (and in some

instances, computationally state-of-the-art) algorithm to the literature of NDS procedures,

the discussion of terminability it enticed beseeches the integration of this property into

the otherwise superior constructive front methods. While this integration may require a

98

reasonable exertion due to the structure of current constructive front algorithms, the

computational benefits such an integration may induce could be well worth the effort.

REFERENCES

Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algorithms for Multiobjective

Optimization: Formulation, Discussion and Generalization. Proc. International

Conference of Gen. Alg., San Mateo, California, 1993, pp. 416-423.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New York, NY,

USA: Wiley, 2001.

J.D. Schaffer, "Some experiments in machine learning using vector evaluated genetic

algorithms", Ph.D. dissertation, Vanderbilt University, Nashville, TN, 1984.

J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm for

multiobjective optimization,” in Proc. 1st IEEE Conf. Evol. Comput. World

Congr. Comput. Intell., vol. 1. Orlando, FL, USA, Jun. 1994, pp. 82–87.

T. urata and H. Ishibuchi, “ GA ulti-objective genetic algorithms,” in Proc. IEEE

Int. Conf. Evol. Comput., vol. 1. Perth, WA, Australia, Nov. 1995, pp. 289–294.

J. Knowles and D. Corne, “The Pareto archived evolution strategy A new baseline

algorithm for Pareto multiobjective optimisation,” in Proc. Congr. Evol. Comput.

(CEC), vol. 1. Washington, DC, USA, 1999, p. 105.

K. Deb, A. Pratap, S. Agarwal, and T. eyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–

197, Apr. 2002

E. Zitzler, . Laumanns, and L. Thiele, “SPEA Improving the strength Pareto

evolutionary algorithm for multiobjective optimization,” in Proc. Evol. Methods

Design Optim. Control Appl. Ind. Problems (EUROGEN), 2002, pp. 95–100.

 . L. Wong, “Parallel multi-objective evolutionary algorithms on graphics processing

units,” in Proc. 11th Annu. Conf. Companion Genet. Evol. Comput. Conf. Late

Breaking Papers (GECCO), Montreal, QC, Canada, 2009, pp. 2515–2522.

99

K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using

reference-point-based nondominated sorting approach, part I: Solving problems

with box constraints,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601,

Aug. 2014.

P. C. Roy, M. M. Islam, and K. Deb, “Best order sort A new algorithm to non-dominated

sorting for evolutionary multi-objective optimization,” in Proc. Genet. Evol.

Comput. Conf. Companion (GECCO), Denver, CO, USA, 2016, pp. 1113–1120.

P. C. Roy, K. Deb, and . . Islam, “An efficient nondominated sorting algorithm for

large number of fronts,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 859-869, March

2019.

N. Srinivas and K. Deb, “ ultiobjective optimization using nondominated sorting in

genetic algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221–248, Sep. 1994

S. Tang, Z. Cai, and J. Zheng, “A fast method of constructing the nondominated set

Arena’s principle,” in Proc. 4th Int. Conf. Nat. Comput. (ICNC), vol. 1. Jinan,

China, 2008, pp. 391–395.

K. cClymont and E. Keedwell, “Deductive sort and climbing sort: New methods for

non-dominated sorting,” Evol. Comput., vol. 20, no. 1, pp. 1–26, Mar. 2012.

H. Wang and X. Yao, “Corner sort for Pareto-based many-objective optimization,” IEEE

Trans. Cybern., vol. 44, no. 1, pp. 92–102, Jan. 2014.

X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach to nondominated sorting

for evolutionary multiobjective optimization,” IEEE Trans. Evol. Comput., vol.

19, no. 2, pp. 201–213, Apr. 2015.

S. Mishra, S. Mondal, S. Saha, and C.A.C. Coello, "Generalized best order sort algorithm

for nondominated sorting," Swarm and Evol. Comput., vol. 43, pp. 244-264, 2018.

J. W. J. Williams, “Algorithm 3 – heapsort,” Communications of the ACM, vol. 7, no.

6, pp. 347–348, 1964.

Y. Tian, H. Wang, X. Zhang, and Y. Jin, "Effectiveness and efficiency of non-dominated

sorting for evolutionary multi- and many-objective optimization," Complex and

Intell. Systems, vol. 3, no. 4, pp. 246-263, 2017.

100

III. DISASTER RECOVERY STRATEGY GENERATION VIA

MULTIOBJECTIVE HEURISTIC OPTIMIZATION

Samuel Vanfossan, Benjamin Kwasa, and Suzanna Long

Department of Engineering Management and Systems Engineering, Missouri University

of Science and Technology, Rolla, MO 65409

ABSTRACT

In the wake of extreme events, the response efforts conducted to restore an

affected area comprise two strategy horizons. Initially, short-term emergency procedures

are conducted, providing search and rescue facilities along with temporary relief and

medical aid. These primary measures are followed by an extended restoration period

during which the area’s infrastructure must be reinstated, returning the area to operating

capacity. It is of paramount importance that these second-stage restoration efforts be

completed as quickly and affordably as possible; reestablishing the affected area’s

internal infrastructure and external connectivity while mitigating the financial burden

these efforts assume. Determining the schedule of operations that must be conducted to

achieve this restoration is a difficult task with substantial ramifications on these time and

cost considerations. It is, therefore, critical that tools be developed to assist decision-

makers in the discovery and selection of optimal recovery strategies. Herein a

methodology is proposed leveraging agent-based simulation and multiobjective heuristic

optimization to generate a set of Pareto efficient recovery strategies. This methodology

provides decision-makers with an instrument to automatically generate well-performing

solutions, enabling the expedient and cost-effective reinstatement of disaster-affected

101

areas. Through the improved restorative efforts facilitated by these allowances, the

impact of extreme events can be effectively reduced.

Keywords: Disaster recovery scheduling, multiobjective optimization, evolutionary

algorithm, genetic algorithm, agent-based modeling, resource constrained heuristic

optimization

1. INTRODUCTION

Following a disaster event, the response efforts conducted to restore an affected

area comprise two strategy horizons. Initially, short-term emergency procedures are

conducted, providing search and rescue facilities along with temporary relief and medical

aid. These primary measures are followed by an extended restoration period during which

the area’s infrastructure must be reinstated, returning the area to operating capacity

(Ramachandran et al., 2015). While many efforts have sought to establish decision-

making procedures that guide recovery agencies’ short-term emergency procedures, the

need for methods advising the extended restoration period remains (Holguín-Veras &

Jaller, 2012; Hale & Moberg, 2005; Horner & Widener, 2011; Altay & Green, 2006;

Galindo & Batta, 2013). These methods should seek to assist decision-makers in

intelligently scheduling the activities required for restoration, enabling the re-entry of the

affected area into the broader supply chain as expediently and affordably as possible.

Differences in the monetary and temporal expenses incurred to restore a disaster-

affected area can have substantial and lasting ramifications on the communities impacted.

A primary concern is the return of the affected area to the broader supply chain as

102

affordably as possible (Çağnan & Davidson, 003; Galindo & Batta, 2013). Disaster

events are shown to cause economic hardship both immediately after the event and well

into the future (Ojha et al., 2018). It is therefore of great importance that the activities

performed to restore the affected area be carried out in way that does not unduly

compound these economic difficulties.

The direct monetary considerations of recovery efforts (labor, materials, fuel, etc.)

must also be coupled with the time-sensitive nature of other economic concerns. While an

area’s infrastructure is nonfunctioning, similarly positioned businesses may not be able to

operate. This not only results in lost income for the businesses themselves, but

diminished tax revenues and tributary commerce for the encompassing municipality.

Consider an extreme example, where an estimated $2.9 billion in gross regional product

was lost during the two-month period following the Loma Prieta earthquake that hit the

San Francisco area in October of 1989 (Brady & Perkins, 1991). Additionally, the

restoration efforts individual businesses must assume often depend on the functionality of

surrounding infrastructure and can extend beyond the horizon of public recovery

(Masoomi et al., 2018). Consequently, an elongation of the timeline required for

infrastructure restoration can prolong the period during which affected businesses are

unable to operate.

Community outmigration can further exacerbate socioeconomic losses over time.

This permanent population dislocation can stem from several factors related to the

duration of time required to reestablish community operation: namely, infrastructure

disruption and loss of employment (Masoomi et al., 2018). As these influences persuade

residents and organizations to relocate from the affected community, the businesses

103

opting to remain, and the municipality itself, can be negatively affected by the loss of the

outmigrant’s usual revenue. In this way, the length of time required to reinstitute a

disaster area’s infrastructure supply chain can impact a community long after restoration

efforts have been completed. While some studies demonstrate that the economic

depressions immediately after a natural disaster can be followed by a flurry of economic

activity during the restoration period, it’s important to note the jobs created during this

period may be transient. That is, they are largely based on contract labor and may move

to a new location once recovery efforts have been completed (Jiménez Martinez et al.,

2020).

While a strictly monetary impact may be derived for each of the previous

considerations, some tribulations related to disaster restoration time have more abstract

implications. Chief concerns among the literature are the relationships between disaster

event trauma and post-traumatic stress disorder (PTSD) and depression (Steinglass &

Gerrity, 1990; Madakasira & O'Brien, 1987; Neria et al., 2008; Qu et al., 2014, Houston,

2015). Capable of gravely impacting the lives of those they affect; the prevalence and

severity of these disorders may be related to the speed at which restoration is completed.

This relationship exists as symptoms may be triggered or worsened by reminders of a

traumatic event, e.g., an affected area not yet returned to its pre-restoration functionality

(Houston et al., 015; Carlson and Ruzek, 003). Just as an individual’s perceived trauma

may extend beyond the destructive event into the post-event chaos and recovery, there is

evidence that the duration of traumatic exposure may impact the severity and

commonality of PTSD symptoms (Neria et al., 2008; Adams, 2014; Houston et al., 2015).

Stress and depression may also manifest from disaster-induced factors such as reduced

104

business and/or unemployment during infrastructure recovery and the subsequent

personal/organizational rebuilding period (Qu et al., 2014). Intensifying these concerns is

the diminished availability of many support resources prior to restoration achievement

(Houston et al., 2015). While research has shown the importance of early and frequent

counselling following a major trauma or stressor, these services may not be widely

available until a state of normalcy is resumed (Torres-Mendoza et al., 2021). Previous

studies further acknowledge the need for long-term (multi-year) community mental

health monitoring, assessment, outreach, and services following major disasters (Houston

et al., 2015). It may then be beneficial, with respect to community health and economics,

to take steps to mitigate stress and anxiety to the extent, and with the rapidity, possible.

Expedient restoration of an impacted area’s damaged infrastructure is one critical step in

this mitigation process.

Those affected by a disaster event are also subject to many other impacts such as

time lost in school or the ability to participate in social and extracurricular activities.

Incalculable losses may be subsumed in the form of missed opportunities and experiences

for individuals instead focusing time and resources on rebuilding their damaged

ecosystems. As the true economic impact of many of these time-sensitive disaster effects

may be difficult to quantify (and, in many cases, can be of incomparable value), it is

important that both economic and temporal considerations be made in developing

recovery strategies for disaster-affected areas. Further, efforts to place a monetary value

on ramifications transcending economic consideration inherently introduce bias and

distort the problem to be addressed. This linearization of time and cost also disallows

associated tradeoff analysis which may be quite valuable to decision-makers when

105

comparing recovery strategies. Considering the crucial objectives of restoration time and

cost independently may, therefore, be more appropriate, informative, and dispassionate.

In the following section, some fundamental observations about disaster recovery

are first discussed. Current methods addressing disaster recovery are then critically

analyzed and the characteristics of a desirable strategy generation model are determined

and disclosed. Section 3 details the workings of a proposed model, demonstrating the

desireabilities previously presented. In the subsequent section, a simulated disaster region

is established and presented to the model, prompting the model’s production of suggested

recovery strategies. The recommended strategies of the model are then shared and

discussed, comparing the performance of those produced with that of intuitive

alternatives. A final section makes concluding remarks and offers some suggestions for

future work.

2. OBSERVATIONS, CURRENT METHODS, AND THE DESIRED MODEL

2.1. PRELIMINARY DISASTER RECOVERY OBSERVATIONS

To facilitate a critical analysis of current recovery literature and methods, some

observations about post-disaster scenarios are first presented. Foundational is the

mechanism through which recovery is completed. After short-term emergency procedures

are completed, teams of restoration professionals are called to the affected area to begin

repairing the damaged infrastructure (Ramachandran, 2015). These vehicles of

restoration include teams of varyingly skilled laborers —such as electricians, linemen,

machine operators, plumbers, and engineers, to name a few— and the tools, resources,

106

and literal vehicles they need to complete their restoration tasks. Teams responsible for

reinstating roadway infrastructure, for example, may include physical laborers and

equipment operators, bulldozers and other debris-clearing vehicles, and the heavy

equipment used in the repair of damaged roads and bridges. Teams dedicated to electrical

repair may include electricians and linemen, transport vehicles loaded with replacement

electrical components, and the specialty vehicles needed to access and repair overhead

and underground electrical elements. The contents of these inexhaustive lists and other

required assets move through physical space and often themselves rely on infrastructure

elements to perform repairs. They can be blocked physically by debris and other

impediments and may not be able to conduct operations in damaged locations while

required infrastructures are unavailable. These vehicles perform their operations

following a schedule of repair activities that should be organized to restore the impacted

area as quickly and affordably as possible. Creating this schedule of repairs, however, is

mired by a few complexities that can substantially impact these two objectives.

Consider the scene of Figure 1, depicting the types of damage frequently caused

by natural disasters events (Myint et al., 2008). Therein a damaged storefront sits along a

street littered with downed trees and foreign debris. Mangled electrical and

communication lines cross the roadway, close to the site where an impacted hydrant

spews water. Damage scenarios of the kind commonly arise following disaster events and

can be thought of as a complex overlay of damaged infrastructure systems. For example,

this scene may be thought of as a location in space simultaneously occupied by respective

portions of larger transportation, electrical, communications, and water systems. This

spatial overlay makes reasonable the assumption that precedence considerations be made

107

when attempting to restore the damaged infrastructure. An intuitive example of this is the

need for the roadway to be cleared before the appropriate equipment can be brought in to

repair the downed electrical and communication lines. The existence of this, and other

precedence relationships, means the amount of time required to restore the damaged

infrastructure shown in the scene is not trivial to determine. For instance, the total time

cannot be assumed to be the mere maximum of the times required to restore individual

infrastructure systems. If the maximum amount of restoration time needed for any one

system is owned by the electrical infrastructure, the total time needed will be no less than

that required for the roadway clearing plus that required for electrical repair. Estimating

the total time required as the sum of that necessitated by each infrastructure is also not

veracious as some systems may be repaired concurrently. For example, it may be

reasonable that the electrical and water infrastructure can be simultaneously restored once

the roadways have been reinstated.

The cost required to complete these restorations is similarly complicated to

determine as repair efforts will undoubtedly incur both time-dependent (variable) and

fixed expenses (Ojha, 2019). Differences in the lengths of time needed to complete

repairs, for example, require the employment of restoration vehicles for varying time

horizons. These variations correspond to disparate expenditures for things such as labor

wages, fuel and hospitality costs, and resource storage expenses, to name a few (Ojha et

al., 2021). The length of time each utilized resource is employed, then, impacts the

overall restoration cost objective. Fixed costs associated with employing a resource

similarly factor into the total restoration cost. Commonly as some form of hiring,

acquisition, or other overhead expense, a fixed cost may accompany each resource

108

employed and is not related to the length of time the resource is utilized (Ojha, 2019).

When more resources are employed, the restoration may be completed sooner; however,

more fixed costs are assumed. Thus, the amount of resources utilized similarly impacts

both restoration time and cost.

Figure 1. Simulated disaster scene with damage to multiple critical infrastructure

systems.

Another factor that needs to be explored is the accessibility of damaged

infrastructure with respect to space and time. Consider the two simplified post-disaster

scenarios represented in Figure 2; each subfigure depicts a partitioned network with

damage indicated by a red tinting of the partition and a symbol indicating the affected

infrastructure element. In each case, the impacted partitions are surrounded by a

functional region to which no damage has occurred, from which the vehicles of

restoration enter to make repairs. The first scenario, Figure 2 (a), includes five partitions

109

requiring restoration to associated roadway network sections. This damage is nearly

mirrored in Figure 2 (b), the only difference being the type of damage to the central

partition (Partition 5), now to the electrical infrastructure instead of the roadway. As

access to Partition 5 from the functional surrounding is denied by damage to the

roadways of Partitions 1-4 (in both subfigures), efforts to repair the affected

infrastructure of the central partition may be temporarily delayed. Access to this central

partition is eventually enabled by a restoration of one of the other damaged partitions.

Figure 2 (b) reveals that even if the roadway infrastructure for Partition 5 is not damaged,

efforts to restore the partition’s impacted electrical systems are similarly dependent on

the restoration proceedings of the neighboring roadway partitions. Therefore, the current

feasibilities of a location’s required restoration efforts are not only dependent on the

damage to the specific location, but also on that sustained by surrounding locations. In

short, a damaged partition may have to wait until another damaged partition is restored to

begin receiving its own infrastructure repair. Recounting the scenario of Figure 2 (b), an

additional tier of complexity is realized as the feasibility of repairing Partition 5’s

electrical infrastructure is dependent on prerequisite repairs that are not only in another

partition but are also to a completely different infrastructure system. These insights

emphasize the spatial, temporal, and interconnective dependencies of restoration efforts

and the necessity of accounting for them when scheduling post-disaster recovery efforts.

110

(a)

(b)

Figure 2. Simplified disaster scenarios with partitioned infrastructure regions. a) Disaster

scenario with five infrastructure partitions, each exhibiting damage to the region’s

roadway infrastructure. b) Disaster scenario with five infrastructure partitions, four

exhibiting damage to the region’s roadway infrastructure and one with damage to the

region’s electrical infrastructure.

111

The order in which repairs occur can also impact the total time and cost required

to restore a disaster-affected area. This is demonstrated even in the simple example of

Figure 3, where damage has befallen two partitions of a community’s infrastructure.

Partition 1 has experienced damage to both its roadway and electrical infrastructure

systems while only the roadway of Partition 2 is impacted. Each instance of damage is

also known to require one day to be restored. Both partitions may be accessed

immediately to begin repairs but recall that a partition’s roadway infrastructure should

first be functional before other systems may be repaired. Finally assume that the example

community only has the resources to repair one roadway partition at a time. If the

roadway of Partition 2 is restored first, then three days will be required to complete all

repairs. If, however, the damage to Partition 1’s roadway infrastructure is restored first,

the entire area can be reinstated in two days. In the latter scenario, damage to Partition 1’s

electrical infrastructure and Partition ’s roadway system can be simultaneously repaired

during the second day. These schedules are summarized in Table 1.

The circumstances of different overlaid-system scenarios will undoubtedly

necessitate the making of differing precedence and feasibility rules. The presence of these

relationships can yield situations where identical sets of repairs may require different

amounts of time to complete depending on the order in which they are slated. The simple

examples disclosed demonstrate the need for any model to make considerations of the

kind when scheduling and optimizing the processes of disaster-affected infrastructure

recovery.

112

Figure 3. Disaster scenario with a partition exhibiting damage to multiple infrastructure

systems (roadway and electrical).

Table 1. Alternative restoration schedules and required restoration time for damage

exhibited in Figure 3.

Schedule Partition 1 Roadway First Partition 2 Roadway First

Day 1 Repairs Partition 1 Roadway Partition 2 Roadway

Day 2 Repairs
Partition 2 Roadway,

Partition 1 Electrical
Partition 1 Roadway

Day 3 Repairs - Partition 1 Electrical

Total Time

Required
2 Days 3 Days

113

2.2. CURRENT METHODS ADDRESSING DISASTER RECOVERY

Several general mechanisms have been utilized by the limited literature

addressing post-disaster recovery planning. In many approaches, restoration curves

derived from historical disaster events are used to estimate restoration times (Applied

Technology Council, 1992; Chang, Seligson, and Eguchi, 1996; Nojima et al., 2001).

While these may provide some insight and a reasonable expectation of total recovery

time, they do little to inform decision-makers regarding recovery task scheduling and

cannot be used to optimize operations. Further, these models do not account for the

spatial and temporal variability existent between different disaster locations and scenarios

(Çağnan & Davidson, 003). Alternatively, some studies have sought to estimate the total

restoration costs required to reinstate disaster-damaged infrastructure systems (Ojha,

2019; Ojha et al., 2021). While these are useful in providing some estimation of expected

restoration costs, they are not geared toward the optimization of restoration operations or

minimizing the costs incurred.

Numerous models have proposed the use of a resource constraint model,

incorporating available resources and the amount of damage incurred to determine

restoration time (Isumi, Nomura, and Shibuya, 1985; Balantyne et al., 1990; Chang et al.,

2000). While an appropriate choice for modeling and optimization, these employments

have typically focused on a single type of infrastructure, not incorporating other

infrastructure systems and their interdependencies. Moreover, reasonable effort may be

needed to construct these formal optimization models.

Linked systems are examined in some cases, seeking to incorporate the

relationships between infrastructure systems and their effects on restoration time. A

114

linked system approach is endorsed by Zhang (1992), utilizing Markov chains to model

infrastructure restoration proceedings. Other mathematical models using a variety of

techniques have also been developed to optimize recovery efforts (Wang et al., 2005;

Minas, Simpson, and Tacheva, 2020). However, these models often lack the specificity to

provide a detailed schedule of restoration activities. Additionally, they can be highly

scenario- and disaster-specific and require extensive efforts to formulate. A more robust

procedure capable of providing a granular schedule of recovery operations while being

situationally flexible and easy to utilize would be much more valuable.

Ramachandran et al. (2015) created a framework in which publicly available

geospatial data was used to formulate a combinatorial graph of linked infrastructure

components. Incorporating an infrastructure component precedence scheme, the expected

recovery time for a given area was estimated using damage totals and the critical path

method (CPM). This method is admirable in its ability to discern the required information

from readily available data sources and its reconciliation of multiple infrastructure

components.

However, the approach may be improved by incorporating spatial and precedence

considerations into its determination of restoration time. Consider the scenario of Figure

4 where a disaster has impacted the infrastructure systems of two partitions. Note that

Partition 2 requires repairs to both the roadway and water systems within its boundaries.

Partition 1 blocks immediate admittance to its neighbor as the roadway infrastructure of

the former first needs to be restored. Assuming one day is required to restore each

damaged infrastructure system within each node, a naïve CPM assessment with no

precedence considerations may conclude that only two days are needed to recover the

115

disclosed partitions. Alternatively, consider the assessment made while adhering to

spatial and precedence relationships. Just as discussed in Section 2.1, a reasonable

assumption is that the damaged roadway of an impacted partition needs to first be

reinstated before the appropriate vehicles can be brought in to repair other

infrastructure(s). The intricacies of the scenario thus dictate that three days are needed to

repair the damaged infrastructures: one day to repair the roadway of Partition 1, one day

to repair the roadway of Partition , and a final day to restore Partition ’s water

infrastructure.

Figure 4. Disaster scenario with a partition exhibiting damage to multiple infrastructure

systems (roadway and water).

Without knowledge of the precedence and spatial relationships between the

damaged partitions, the real time required to restore this network cannot be reliably

116

determined. While Ramachandran et al. (2015) makes concessions for intricacies of this

kind by incorporating lags into their CPM formulation, the estimated delays they utilize

cannot adequately capture the complex interactive and scenario-dependent variabilities of

coupled infrastructure systems. Further, the methodology proposed by Ramachandran et

al. (2015) does not culminate in the creation of a schedule of activities needed for

restoration; instead, an estimate for the total time required for recovery is precipitated.

Masoomi and van de Lindt (2017) proposed a system wherein an area’s

infrastructure was modeled as a series of nodes and de facto arcs, overlaid on a grid-like

division of the region. In addition to the basic infrastructure elements of power and water

systems, their investigation included aggregate residential and business building data, and

the location of schools. Spatial considerations were included in their modeling efforts,

allowing this information to be used in the determination of realistic recovery strategies.

The approach employed determined a priority level for the damaged components

following a simulated disaster. Addressing the highest priority component first, the

shortest path along the spatial infrastructure network enabling this component’s

restoration is slated for completion. This is then repeated with the next highest priority

component until the area is completely restored. While this allows the determination of a

relatively utilitarian restoration schedule, a minimum total restoration time is not sought

or generally achieved.

Masoomi and van de Lindt (2017) represents one of the most complete strategies

within the literature for the creation of informed recovery schedules. This model,

however, does not consider the expense associated with different recovery strategies,

focusing instead on time required, exclusively. Additionally, restoration times are

117

calculated using fixed (or in some cases, infinite) resource amounts; a convention that

does not translate well to real-world restoration scenarios where resources are both

limited and adjustable (Almoghathawi et al., 2019). Perhaps the biggest shortcoming of

this methodology is the careful data gathering and modeling required to utilize the tool.

This represents a barrier to its use by municipalities and administrations not equipped

with the erudite knowledge needed for implementation and utilization.

While the examined models provide some utility and demonstrate many valuable

characteristics, the need for more generalizable, informative, and considerate models

remains. This assessment of the current literature is supported by many survey works,

citing the deficit of disaster recovery methods in comparison to the wealth of work

addressing emergency response tactics and disaster preparedness and mitigation

stratagems (Altay & Green, 2006; Wright, Liberatore, & Nydick, 2006; Lettieri, Masella,

& Radaelli, 2009; Simpson & Hancock, 2009; Richey et al., 2009; Galindo & Batta,

2013).

2.3. THE DESIRED MODEL

Examining the features and capabilities of models within the literature, the

characteristics of a desired model are discerned. A satisfactory model shall:

• Require only readily available data without the need for significant manual

collection or processing

• Incorporate multiple critical infrastructure component systems into a single

combinatorial methodology

118

• Consider both temporal and monetary ramifications in recommending recovery

strategies

• Maintain the ability to scale and generalize to a variety of situations and

scenarios, namely:

• Differing infrastructure component systems

• Differing regions and disaster types

• Differing area and granularity requirements

• Enable the incorporation of precedence and spatial considerations in developing a

recovery schedule

• Culminate in a granular schedule of restoration activities to be performed, along

with the expected costs and times required

• Automatically perform the processes necessary to translate from readily available

data to actionable recommendations, allowing utilization by non-erudite operators

• Allow multiple runs to be conducted easily, enabling the consideration of multiple

scenarios

3. AN EVOLUTIONARY METHODOLOGY

3.1. REASONING ABOUT INFRASTRUCTURE SYSTEMS

To allow the determination of well-performing restoration schedules, a means of

reasoning about infrastructure systems systematically is first required. Per the

observations of the previous section, the mechanism selected should allow for the

consideration of spatial and temporal characteristics, along with the discernment and

119

utilization of precedence information. The selection of a mechanism that enables

objective and standardized performance evaluation is also desirable to easily compare

competing schedules. Combinatorial graphs, such as those used by Ramachandran et al.

(2015) and Masoomi and van de Lindt (2017), are a great structure that can easily be

made to meet these criteria.

While any number of representation schemes may be used to encode the required

information within graph structures, the approach utilized by the proposed method is here

presented. Prerequisite to this discussion is a very basic understanding of graph theory;

wherein a graph is described as a set of abstractions, known as vertices (or nodes),

sharing some set of relationships as defined by associated arcs. A simple graph with four

nodes and five arcs is shown in Figure 5. In the proposed methodology, nodes will be

representative of partitions to a disaster-affected area such as those made in Figure 2,

Figure 3, and Figure 4. Arcs then describe the connection of these infrastructure systems

between partitions. For example, if a roadway travels from one partition to another, an

arc will connect the nodes associated with these partitions. Partitions not containing the

selected infrastructure are not assigned a node and are not connected by any arcs. As

illustration, the roadway infrastructure system of Figure 2 (a) is translated from

partitioned map (Figure 6 (a)) into network graph (Figure 6 (b)), below. Damage to

partitions can then be described in differences between the normal and post-disaster

network graphs. Note the difference between Figure 6 (b) and Figure 6 (c), detailing the

roadway infrastructure before and after damage to Partition 3, respectively.

120

Figure 5. Simple network graph with four nodes and five arcs.

(a) (b) (c)

Figure 6. Disaster scenario with five roadway partitions translated to a network graph. a)

Five partitions of a region’s roadway infrastructure system. b) A network graph of the

partitioned infrastructure system of Figure 6 (a). c) A network graph of the partitioned

infrastructure system of Figure 6 (a) with damage to Partition 3.

Individual graphs can then be created to describe the status of different

infrastructure systems. Using a common partition strategy, the overlay of infrastructures

within partition boundaries is easily represented. The adoption of an informative labeling

convention allows for the straight-forward and systematic integration and utilization of

spatial relationships. This approach uses a Cartesian approach to define a partition’s (and

thus, a node’s) relational geographic location. The sample region of Figure is encoded

using this scheme for four infrastructure systems (roadway (a), electric (b), water (c), and

communications (d)) in Figure 7. While the first two coordinate of each node describe

121

their location within the partitioned region, the third coordinate indexes the type of

infrastructure the node represents. These individual infrastructure graphs are additionally

combined along this third coordinate axis to enable the standardized encoding of

precedence information between different infrastructure systems. For example, in Figure

7, an edge placed between the central node of the roadway graph (Node (1, 1, 0)) and that

of the electric graph (Node (1, 1, 1)) can be used to describe the previously discussed

precedence relationship between these two system partitions. Here, Node (1, 1, 0) is a

precedence node to Node (1, 1, 1). This strategy of translating an area’s overlayed

infrastructure systems into a single combinatorial graph is critical as it allows the use of

established network optimization algorithms in reasoning about and evaluating these

connected systems.

(a) (b) (c) (d)

Figure 7. Example network diagrams for four infrastructure systems. a) Roadway

infrastructure network diagram. b) Electrical infrastructure network diagram. c) Water

infrastructure network diagram. d) Communications infrastructure network diagram.

3.2. AUTOMATED NETWORK GRAPH FORMULATION

Creating these networks graphs manually, however, would be quite tedious and

time consuming. Fortunately, the standardized nature of these combinatorial

representations allows them to be constructed and updated automatically. While it is safe

122

to assume that many municipalities are equipped with graphical information systems that

would make easy work of such a task, a barebones approach to creating these graphs

from minimal information is next presented. This mechanism can be used in the worst-

case scenario when all that is possessed is a rudimentary map of a region’s infrastructure

systems. Recall that these maps should generally be available as Ramachandran et al.

(2015) demonstrated the ability to model a region’s critical infrastructure systems from

publicly available data sources.

Using Python’s penCV computer vision library (Bradski, 2000), a selected

infrastructure map is first divided into a specified number of partitions. In Figure 8 (b) the

sample infrastructure map of the Figure 8 (a) is divided into 6 equally sized partitions.

Counting the number of pixels matching the infrastructure defining color (in Figure 8, a

nice blue), it is determined which partitions contain elements of the selected

infrastructure. Those partitions with a positive pixel count are then assigned a node via

Python’s networkx package for graphical network modeling (Hagberg et al., 008).

Partitions with a pixel count of zero do not contain the selected infrastructure and are not

assigned a node. These pixel counts can also be used to describe the prevalence of an

infrastructure system within a partition. Partitions with a greater prevalence for a

particular infrastructure system contain more elements of that system than partitions with

lower associated prevalence values. Here, elements is a general term and may describe

things like yards of wire, feet of pipe, or square feet of pavement area, dependent on the

associated infrastructure system. In Figure 8 (b), only the top-right partition fails to

receive a node. Using the Cartesian labeling convention discussed in the previous

subsection, spatial relationships are preserved and discernable. Arcs connecting these

123

nodes are next needed to complete the network graph. OpenCV is again used to automate

this process. Here, the boundaries of each partition are examined; that is, the outermost

pixel layer of each of the partition rectangles. In Figure 8 (b), the boundaries of the two

right-most partitions are highlighted yellow. The characteristics of adjoining boundary

sections are then compared, exemplified for two partitions by the two red highlighted

boundary lines in Figure 8 (b). If each of these boundary sections contains a pixel

representative of the selected infrastructure, then the two nodes associated with these

partitions are joined by an arc. With respect to this example, Node (0, 0) and Node (0, 1)

are connected in Figure 8 (c). Completing this analysis for all adjoining boundary

sections, the complete network graph of the infrastructure system is produced. This

procedure can be applied to any infrastructure system of interest and is scalable to regions

of any size.

Infrastructure Map Infrastructure Partitions Infrastructure Network Graph

(a) (b) (c)

Figure 8. Translation of a sample infrastructure map into a representative infrastructure

network graph. a) Sample infrastructure map. b) Sample infrastructure map divided into 6

infrastructure partitions. c) Network graph of sample infrastructure map.

While this network generation approach may seem rudimentary, its granularity

and veracity to actual infrastructure maps can become quite credible as the number of

partitions increases. Note how the network representation of a region’s sidewalk system

124

(Missouri University of Science and Technology, 2022) becomes more analogous to the

actual map (Figure 9 (a)) as the number of partitions increases (Figure 9 (b – e)). When

determining the number of partitions to utilize, decision-makers should consider the

sophistication of the network to be represented, the amount of effort required to

determine damage at varying granularities, and the increased algorithmic time needed to

reason about networks with a greater number of nodes.

(a)

Figure 9. Translation of a region’s sidewalk system into representative network graphs at

varying granularities. a) Sidewalk infrastructure map of a selected region. b)

Automatically generated network graph of sidewalk infrastructure with a 5-by-8 partition

granularity. c) Automatically generated network graph of sidewalk infrastructure with a

13-by-20 partition granularity. d) Automatically generated network graph of sidewalk

infrastructure with a 25-by-39 partition granularity. e) Automatically generated network

graph of sidewalk infrastructure with a 50-by-78 partition granularity.

125

(b)

(c)

Figure 9. Translation of a region’s sidewalk system into representative network graphs at

varying granularities. a) Sidewalk infrastructure map of a selected region. b)

Automatically generated network graph of sidewalk infrastructure with a 5-by-8 partition

granularity. c) Automatically generated network graph of sidewalk infrastructure with a

13-by-20 partition granularity. d) Automatically generated network graph of sidewalk

infrastructure with a 25-by-39 partition granularity. e) Automatically generated network

graph of sidewalk infrastructure with a 50-by-78 partition granularity. (cont.)

126

(d)

(e)

Figure 9. Translation of a region’s sidewalk system into representative network graphs at

varying granularities. a) Sidewalk infrastructure map of a selected region. b)

Automatically generated network graph of sidewalk infrastructure with a 5-by-8 partition

granularity. c) Automatically generated network graph of sidewalk infrastructure with a

13-by-20 partition granularity. d) Automatically generated network graph of sidewalk

infrastructure with a 25-by-39 partition granularity. e) Automatically generated network

graph of sidewalk infrastructure with a 50-by-78 partition granularity. (cont.)

127

3.3. OPTIMIZATION BY SIMULATION

Equipped with a means to systematically represent dependent infrastructure

systems, a method using this allowance to intelligently restore damaged systems of the

kind should be developed. As discussed, arranging the required repairs in a manner that

restores the damaged area as quickly and affordably as possible is critical, but no easy

task. Represented by damaged nodes, differently ordering these required repairs has been

demonstrated to yield different restoration costs and times. Seeking to simultaneously

minimize these two metrics comprises a multiobjective optimization problem with a

complex decision space. In fact, preferably ordering the repairs for each infrastructure

system may be thought of as a permutation problem similar in complexity to the classical

traveling salesman or vehicle routing problems (Bellmore & Nemhauser, 1968; Dantzig

& Ramser, 1959). Herein, the required repairs for each infrastructure system may be

arranged in n! ways, where n is the number of damaged nodes. This number becomes

incredibly large for even a relatively small number of nodes, exceeding 1 trillion possible

permutations for just 15 damaged nodes. Already a set of NP-Hard problems, these

permutations are further complicated by the intricacies they have been demonstrated to

share and the challenge of selecting appropriate resource levels to repair each

infrastructure (Karp, 1972). These considerations mean that finding feasible schedules

may be difficult and that a holistic approach must be assumed in creating a combinatorial

permutation of all required repairs.

While all possible arrangements may be assessed when given enough time, this is

impractical not only because of the quickly exploding number of permutations, but also

because of the time required to determine the feasibility of, and assess, each alternative.

128

Permutation problems of the kind have been addressed using a number of heuristics

including genetic algorithms, simulated annealing, ant colony optimization, nearest

neighbor algorithms, pairwise exchange, and variable-opt approaches, to name a few

(Razali & Geraghty, 2011; Skiscim & Golden, 1983; Manfrin et al., 2006; Monnot &

Toulouse, 014; Kizilateş & Nuriyeva, 013; Verhoeven et al., 1995; Bentley, 1990).

These inexact methods have been adopted to find very-good solutions in a reasonable

amount of time and have enjoyed considerable success. Recognizing this efficacy, a

multiobjective genetic algorithm is proposed to generate well-performing restoration

schedules for post-disaster infrastructure systems. Inspired by the processes of natural

selection and evolution, multiobjective genetic algorithms look to evolve a population of

solutions toward the Pareto frontier of an objective space (Schaffer, 1985; Srinivas &

Deb, 1994). This Pareto frontier is comprised by a set of Pareto efficient solutions from

which no solution can be selected that is better than another member of the set by all

objectives. They exist in contrast to a set of dominated solutions which are not better than

any member of the Pareto efficient set by any objective and are worse than a member of

the Pareto efficient set by at least one objective (Steuer, 1986). An illustration of this

relationship is shown in Figure 10. Unless it is comprised by only one solution, no

solution of the Pareto efficient set can be considered objectively best. Therefore, some

subjectivity must be introduced in making a final selection. However, determining a set

of Pareto efficient solutions is incredibly useful as it provides decision-makers with a set

of alternatives that are strictly not worse than any known solution and disclose useful

tradeoff information between the competing objectives.

129

Figure 10. Relationships between Pareto efficient solutions, dominated solutions, and the

Pareto frontier for a bi-objective optimization scenario.

A general overview of the proposed method is shown in Figure 11. This approach

follows a backbone resembling that of NSGA-II (likely the most widely employed

multiobjective genetic algorithm), with several modifications that allow it to handle the

task of optimizing disaster recovery schedules (Deb et al., 2002). The high-level

workings of this method are described briefly here, with intricacies discussed in greater

detail in the following subsections. After determining the required repairs and

representing this damage on the combinatorial infrastructure graph, an initial population

130

of restoration schedules (solutions) is first created. Each member of this population is

simply a randomly generated permutation of the required repairs along with randomly

assigned resource levels to address each infrastructure type. The nature and

representation of these population members is further discussed in Section 3.3.1. This

initial, or parent, population is then used to create a population of offspring via crossover

(Section 3.3.2) and mutation (Section 3.3.3) operators. The combined parent and

offspring populations are then passed to an agent-based simulation (Section 3.3.4) used to

determine the repair time and cost associated with each schedule. This procedure also

augments the schedules into feasible solutions, making sure that precedence and

accessibility constraints are not violated. This is necessary as the randomly generated

solutions (and those manufactured by offspring creation procedures) will likely exhibit

several infeasibilities without modification. These augmented solutions, along with their

elicited performance metrics are passed back to the genetic algorithm for selection

(Section 3.3.5). This procedure determines a subset of the total population which will be

used as parents in creating the next set of offspring, completing the first iteration of the

genetic algorithm. The selected solutions and the offspring they generate are then passed

to the simulation, as before, and the iterative process (the loop formed by black arrows in

Figure 11) is repeated until some stopping criteria are met. Following several iterations

and termination, the proposed method culminates in a set of feasible, automatically

generated restoration strategies for decision-maker consideration and comparison.

131

Figure 11. High-level overview of proposed method operations.

3.3.1. Solution Representation. To encode resource and schedule information

for use by the genetic algorithm and agent-based simulation, a representation scheme is

necessary. Maintaining the terminology of its biologic inspiration, this representation is

known as a chromosome. Each chromosome is comprised of a sequence of bits which

encode pieces of information about the solution. Here, a compound representation is

used. The first part of the chromosome describes the resource levels selected to restore

each type of infrastructure. Any unit may be used to describe resource levels in this initial

section. Further, multiple bits may be dedicated to address the same infrastructure

system; e.g., a bit to describe the number of workers capable of repairing low-voltage

electrical lines and a bit dictating the number of lineman able to work on high-voltage

components. The remainder of this investigation uses units of number of repair teams

assigned to each infrastructure for convenience and ease of understanding and discussion.

132

In the example of Figure 12, three infrastructure systems need repair: roadway, water,

and electricity. The first three bits of this chromosome define the number of restoration

teams assigned to repair these respective infrastructures: two teams capable of roadway

restoration, one to address the electric system, and two for water infrastructure repair.

The second portion of the chromosome has one bit for each required repair to an

infrastructure system. The order of these bits then describes the order that these repairs

are set to begin. In Figure 12, six damaged nodes are scheduled for repair in the order

shown. Note, for any application of the proposed method, this second section is a

permutation of all damaged infrastructure nodes.

Figure 12. Sample compound solution representation for proposed method.

3.3.2. Crossover Operators. Crossover is an operation within genetic algorithms

that (generally) uses two parent chromosomes to create an offspring exhibiting some

characteristics of each parent. This mimics the combination of parental genes within the

133

offspring of many biologic organisms (Holland, 1992). Because the chromosomes used in

this work have some special characteristics, as discussed in Section 3.3.1, a custom

crossover operator is be adopted. Detailed in Pseudocode 1, the crossover procedure first

selects two random chromosomes from the population of parent solutions. Two bit-

positions along the first parent chromosome are also randomly selected. If the earliest

selected bit along this sequence, call it position y, is within the range of bits dictating

resource levels (Pseudocode 1 – Line 6), a simple single-point crossover is utilized (Deb

& Agrawal, 1995). This procedure creates an offspring by combining the bits of the first

parent up to and including position y, then appends the bits of the second parent occurring

after position y. Alternatively, if the earliest selected bit occurs within the range dictating

restoration order (Pseudocode 1 – Line 10), a more sophisticated crossover protocol is

required; crossover procedures applied to this range must take care to maintain a

permutation of all required repairs. Classical approaches such as one-point, two-point,

and uniform crossover do not ensure the preservation of this property (Oliver, 1987).

Here, a procedure known as OX Crossover is utilized. Described in Pseudocode 1, this

operator is discussed in greater detail in Davis (1985).

At each generation, the crossover method of Pseudocode 1 is used to produce a

population of offspring equal in number to the parent population used in their creation. It

is hoped, through these operations, that offspring are bred which improve upon their

parent chromosomes by one or more objectives.

134

Pseudocode 1: Crossover

Functions:
 firstX(M, N): returns the first item in N not already in M

Indexing:

 list[C : D]: the Cth through Dth items of list, inclusive

Inputs:
 population: population of solution chromosomes (parents)

Outputs:
 offspring: chromosome sharing characteristics of parents

Pseudocode:
1 set r as the number of bits dictating resource levels
2 set end as the length of the chromosome representation used
3 randomly select parent1 and parent2 from population
4 randomly select two bit positions: a and b
5 set y as the minimum of a and b
6 set z as the maximum of a and b
7 if y ≤ r:
8 parent1Contribution = parent1[1 : y]
9 parent2Contribution = parent1[y+1 : end]

10 offspring = parent1Contribution + parent2Contribution
11 else:
12 offspring = parent1[0 : r]
13 parent1Contribution = parent1[y : z]
14 for i in range(y-r):

15 append firstX(parent1Contribution, parent2[r+1 : end]) to

offspring
16 append parent1Contribution to offspring
17 for j in range(z+1 : end):
18 append firstX(offspring, parent2[r+1 : end]) to offspring
19 return offspring

3.3.3. Mutation Operators. Mutation is a process within genetic algorithms used

to achieve and maintain solution diversity from one generation to the next. Analogous to

biologic mutation within living organisms, this procedure stochastically modifies

chromosomes to avoid local optima and keep the population from becoming too similar

(Holland, 1992). Mutation further allows characteristics not exhibited by any member of

the population to be injected into a chromosome, potentially allowing a new region of the

decision space to be explored.

135

 As with the crossover operator, the proposed model employs a specialized mutation

procedure to handle the used representation’s unique properties. Disclosed in Pseudocode

2, this mutation operator can introduce diversity into both the resource level and restoration

schedule sections of a population’s chromosomes. If a randomly generated number from

the uniform distribution between 0 and 1 is less than or equal to a supplied mutation rate

(mutationRate), the procedure will mutate the selected chromosome. If it is greater than

mutationRate, no mutation will occur. When mutating, if a second randomly generated

number from the same distribution is less than or equal to a supplied threshold (resWeight)

the operator will mutate the resource level portion of the chromosome. In such a case, a

random bit dictating resource level will be replaced with a random integer between one

and a user-defined cap for the associated resource (resCap). Supplied as a list, a scenario

employing three resource types with a resCap sequence of [3, 8, 6] could utilize at most 3

units of Resource 1, 8 units of Resource 2, and 6 units of Resource 3. If, however, the

second randomly generated number is greater than resWeight, the restoration schedule

portion of the chromosome is mutated by swapping the values of two randomly selected

bits from this range. For simplicity, only this swap operator is used when mutating the

restoration schedule section of a chromosome. Other operators, such as inversions or slides,

may be used, as long as they preserve the permutation nature of this section.

Note the utility of resWeight, allowing the user to dictate the general distribution

of mutation between the resource level and restoration schedule portions of a

population’s chromosomes. This control is useful as some scenarios may underserve one

of these equally important sections if mutation is left to totally random bit selection. This

136

can particularly occur when one of these chromosome portions is much longer than

another, wherein the shorter portion may be left receiving very few mutations.

Pseudocode 2: Mutation

Functions:

 swap(U, V, W): swaps the bit-values of position U and position V

within chromosome W

 random(): produces a random value from the uniform distribution

between 0 and 1

Indexing:
 list[E]: the Eth item of list

Inputs:

 population: population of solution chromosomes (parents)

 mutationRate: proportional likelihood a solution will be mutated

resWeight: the proportional likelihood a given mutation will occur to

the resource level section of the respective chromosome

 resCap: a list defining the maximum level of each potential resource

Outputs:

 mutant: chromosome which may have been mutated

Pseudocode:
1 set r as the number of bits dictating resource levels
2 set end as the length of the chromosome representation used
3 set mutant as the chromosome which may be mutated
4 if random() ≤ mutationRate:
5 if random() ≤ resWeight:
6 randomly select a bit position from 1 to r, inclusive: k

7 replace the kth bit-value of mutant with a random integer from

1 to resCap[k]
8 else:
9 randomly select a bit position from r+1 to end, inclusive: g

10 randomly select a bit position from r+1 to end, inclusive: h
11 swap(g, h, mutant)
12 return mutant

At each generation, Pseudocode 2 is applied to each chromosome within the

combined population of parents and crossover-born offspring. As a measure of preserving

elitism and diversity, Pareto efficient solutions that occupy a unique point in the objective

space are not mutated traditionally. Instead, a copy of the original version is appended to

137

the population before the original is mutated as usual. Note that this individuality is not

determined by the uniqueness of a chromosome, but by the objective performance that

chromosome achieves. This measure looks to maintain the benefits of mutation while

avoiding the loss of solutions with unmatched performance to potentially detrimental

stochastic modification.

3.3.4. Evaluation by Simulation. Agent-based simulation serves a dual purpose

within the proposed method. When presented with a chromosome, this procedure

simultaneously augments (if required) the solution to have a feasible restoration schedule

and serves as a performance evaluator, determining the time and cost required by the

chromosome to restore the disaster area. This strategy side-steps the need to manually

craft feasibility constraints which may be arduous to formulate and are variable from one

area or situation to another. Similarly, the establishment of formal objective functions is

not required, with objective values derived instead from the proceedings of the

simulation.

 To facilitate a discussion of this mechanism (Pseudocode 3), a few definitions are

first required. Within a combinatorial graph representing an area’s infrastructure systems,

a damaged node describes a partition containing damage to the infrastructure system the

node defines. Alternatively, an undamaged node represents a partition containing the

associated infrastructure while exhibiting no damage. Each node also possesses a set of

neighbors, which are the nodes of the same infrastructure type to which it is normally

connected by an arc. An accessible node has at least one undamaged neighbor that is linked

to the functional surroundings by arcs connecting undamaged nodes of the same

infrastructure type. A feasible node, finally, is one which may be restored given the current

138

state of the combinatorial graph. For a node to be feasible, it must be accessible and each

of its precedence nodes must be accessible and undamaged. While these general feasibility

rules are adopted for the current investigation, any desired ruleset may be integrated into

this flexible framework.

These statuses are easily encoded within combinatorial graphs and discerned by

network optimization techniques. To describe the impacts of a disaster event, all damaged

nodes and the arcs connected to them are removed, such as demonstrated in Figure 6.

Whether a node is accessible can be determined by a simple tree search along all arc

paths branching out from the node in question; if one of these branches reaches the

functional surroundings, the node is known to be accessible. This tree search can also be

used to determine if an accessible node is feasible by checking if each of the node’s

precedence nodes are accessible, in addition to being undamaged. When a damaged

feasible node is restored, it is readded to the combinatorial graph and arcs are drawn

between it and each of its undamaged neighbors. This reinstitution moves the overall

network closer to its pre-disaster condition and may affect the statuses of other nodes.

Through these procedures, the systematic assessment of a proposed restoration plan can

be completed by the agent-based scheme of Pseudocode 3.

Pseudocode 3: Agent-Based Simulation Evaluation

Functions:

 restore(O, Q): adds node O to graph Q and connects O to

undamaged neighbors

Indexing:
 list[E]: the Eth item of list
 list[C : D]: the Cth through Dth items of list, inclusive

Inputs:
 chromosome: restoration solution from genetic algorithm

139

 G: area combinatorial graph with damaged nodes (and associated

arcs) removed

 timeReq: matrix of time required to restore each node
 fixedCosts: list of fixed costs associated with each resource type

 variableCosts: list of costs per unit time associated with each

resource type

Outputs:

 feasChromosome: augmented chromosome with feasible restoration

schedule
 resCost: cost to restore disaster area by implementing chromosome
 resTime: time to restore disaster area by implementing chromosome

Pseudocode:
1 set r as the number of bits dictating resource levels
2 set end as the length of the chromosome representation used
3 set restorationLog as empty
4 resources = []
5 for h in range(r):
6 append r(h) agent(s) of type h to resources
7 mark each agent in resources as available
8 set jobs as the ordered list of restorations (chromosome[r+1 : end])
9 mark each job in jobs as notAssigned

10 clock = 0
11 while any job in jobs is not completed:
12 mark each idle agent as available
13 for each available agent in resources:
14 assign agent to first feasible job in jobs of appropriate type
15 mark agent as unavailable for timeReq[job] steps of clock
16 mark job as assigned
17 record job assignment to agent in restorationLog
18 if no job is currently feasible for agent:
19 mark agent as idle
20 clock += 1
21 for any job just completed by an agent:
22 restore(job, G)
23 mark job as completed
24 record job completion by agent in restorationLog
25 mark agent as available
26 resTime = clock
26 resCost = chromosome[1 : r] ● fixedCosts
28 for each agent in resources:
29 find timeUtilized by examining restorationLog
30 resCost = resCost + (timeUtilized * variableCosts[agent.type])

31
set feasChromosome as the order of job assignment in

restorationLog
32 return feasChromosome, resCost, resTime

140

The simulation begins by creating a set of resources which are responsible for

restoring the damaged infrastructure systems. Each agent within resources has an attribute,

type, defining the type of infrastructure system it may restore. The number of each type of

agent created is dictated by the resource level portion of the chromosome passed to the

simulation. Each agent is then marked as available as none have yet been assigned a

restoration task. The ordered set of jobs, or nodes requiring repair, is next gleaned from the

restoration schedule portion of the chromosome. Each job within jobs is then marked as

notAssigned, indicating that no agent has yet been dispatched to restore it.

 The time regulator of the simulation, clock, is then initialized and the task of

restoring the damaged infrastructure systems is begun. While any job remains not

completed, the procedure will look to find an available agent of the appropriate type to

complete the required repairs. Assignment occurs following the order of jobs (inherited

from the chromosome), with an available agent being assigned the first feasible job (related

to a feasible node) it is qualified to complete. Upon this assignment, the agent is marked

as unavailable for the amount of time required to complete the repairs of the assigned job,

as prescribed by timeReq. The job is then marked as assigned and the assignment is

recorded in restorationLog. If no feasible job can be found for an agent, the agent enters

an idle state until the next clock step. This assignment search is conducted for each

available agent, resulting in all resources being either unavailable or idle before the next

clock step is initiated.

 When no available resources remain, clock is stepped to the next value, signifying

the passing of one time-unit within the simulation. Upon each step of clock, an assigned

job may be completed by an agent. Upon this occurrence, the node of the combinatorial

141

graph (G) associated with the job is restored and the job is marked as completed. This

completion is also recorded in restorationLog. The agent completing the job is next marked

as available and is eligible for assignment to a new job.

 When every job is completed, the simulation is ended, and the performance metrics

of the chromosome can be determined. The amount of time required by the solution to

restore the area, resTime, is set equal to clock. The cost required by the solution to complete

the overall restoration, resCost, is then determined as the sum of all fixed and variable costs

incurred. resCost is first set equal to the dot product of the resource level portion of

chromosome and a list of the fixed costs associated with employing one unit of each

resource, fixedCosts. For instance, a scenario with chromosome-defined resource levels of

[2, 5, 1] and a fixedCosts list of [$300, $200, $250] would accumulate $1,850 of fixed

costs: 2 units * $300/unit for resource 1, 5 units * $200/unit for resource 2, and 1 units *

$250/unit for resource 3. The variable costs associated with each individual agent of

resources is then added to resCost to finalize the metric. Examining restorationLog, the

time (in clock steps) between the first assignment of a job and the last instance of

completing a job is determined for each agent. This value, timeUtilized, is then multiplied

by the cost per unit time of employing the type of agent, as prescribed by variableCosts.

The sum of this product for every agent and the fixed costs previously determined comprise

the total resCost mandated by the examined solution.

The agent-based model finally examines restorationLog to determine the actual

order in which each job was assigned. This order is the final output, feasChromosome, of

the procedure. This augmented chromosome is free of any precedence or feasibility

violations, which may have been present in the input chromosome. Returning these

142

augmented solutions, all alternatives output by the simulation are perfectly viable

restoration strategies. These feasible chromosomes are then passed back to the genetic

algorithm for selection based on their associated time and cost objective values.

3.3.5. Multiobjective Selection. To maintain a fixed population size, a subset of

all solutions returned from the agent-based model needs to be selected to serve as the

parent population of the genetic algorithm’s next generation. A popular selection method

within multiobjective genetic algorithms is to use nondominated sorting to assign an

overall fitness value to each solution, then retain those deemed most fit (Deb et al., 2002).

This fitness is determined by sorting the set of solutions into successive Pareto fronts

based on their objective values. The first Pareto front of a set of solutions are all those

solutions that are Pareto efficient. If the first Pareto front were removed from the set,

those solutions becoming Pareto efficient comprise the second Pareto front. This is done

repeatedly until all solutions are assigned a front. Solutions with the lowest front number,

or rank, are then considered by the selection mechanism as most fit.

 Starting with the first front, the selection procedure adds successive fronts of

solutions to the population to be retained until a minimum specified number of solutions

has been added. If necessary, solutions from the worst included rank are then removed by

a crowding distance operator until the exact number of specified solutions is retained.

Following these operations, the population passed to each generation of the genetic

algorithm is exactly the same size, regardless of the number of new solutions created by

crossover and mutation.

The selection mechanism of this approach follows that of NSGA-II (Deb et al.,

2002), with the exception of the nondominated sorting method utilized. While capable,

143

the Fast Nondominated Sort procedure used in NSGA-II is much less efficient than

contemporary methods. Instead, the proposed method uses Ideal Sort (Vanfossan &

Kwasa, 2022) to expedite nondominated sorting and generate the final set of restoration

strategies more quickly.

4. DISASTER SIMULATION AND PROPOSED METHOD APPLICATION

4.1. A SIMULATED DISASTER

To test the proposed method, a simulated disaster scenario was created using the

actual infrastructure maps of the nearly 2-square-mile sample region shown in Figure 13

(a). Here, four basic infrastructure systems are included: roadway, electric, water, and

communications. Following the presented procedures, the infrastructure maps (Figure 13

(b)) were partitioned by a common 13-by-16 grid, dividing each system into 208

rectangular partitions. Each partition, then, relates to an area roughly measuring 465 feet-

by-575 feet. The automated process disclosed was then used to generate the network

graph of each infrastructure system, as shown in Figure 13 (c). Finally, the networks are

combined into a single combinatorial graph through the connections prompted by the

precedence schedule of Table 2. Specifically, an arc is drawn from each node to any

precedence nodes the former relies on. As demonstrated, this precedence relationship is

made considering both infrastructure type and locality. For example, an electric

infrastructure node existing at graph location (0, 0, 1) will be connected by an arc to the

similarly located roadway infrastructure node, Node (0, 0, 0). Correspondingly, a

communications infrastructure node at this spatial location, Node (0, 0, 3), would be

144

connected to both Node (0, 0, 0) and Node (0, 0, 1). If a node is of an infrastructure type

having a precedence requirement, but the required node does not exist in the same

locality, the geographically closest node of the required precedence infrastructure is

linked as the precedence node. If a tie exists for closest required precedence node, the

candidate node defining the partition with the greatest infrastructure prevalence is chosen.

Recall that this prevalence is automatically recorded by the automated network

generation procedure of Section 3.2. Each of these processes can be performed

systematically, requiring no effort from the end-user to encode these precedence

relationships.

(a)

Figure 13. Identification of infrastructure systems from sample geographic region and

translation to representative network graphs. a) Sample region comprised of co-located

infrastructure systems. b) Infrastructure maps describing selected systems present within

the sample region of Figure 13 (a). c) Network graphs representative of the infrastructure

maps of Figure 13 (b).

145

(b)

(c)

Figure 13. Identification of infrastructure systems from sample geographic region and

translation to representative network graphs. a) Sample region comprised of co-located

infrastructure systems. b) Infrastructure maps describing selected systems present within

the sample region of Figure 13 (a). c) Network graphs representative of the infrastructure

maps of Figure 13 (b). (cont.)

146

Table 2. Precedence relationships between four selected infrastructure systems.

After constructing the combinatorial graph, the effects of a simulated disaster

were introduced. Seeking to emulate the impacts of a tornado, the damage schedule of

Table 3 and Figure 14 was used. Here, nodes of the combinatorial graph are set as

damaged according to the type of infrastructure they describe, their geographic location,

and the associated damage probabilities of Table 3. For instance, the electric

infrastructure node corresponding to Partition (7, 7) has an 80% chance of being damaged

as it exists within the Red Region of Figure 14. For each infrastructure system, the

probability of damage is greatest for nodes within the Red Region, less for those within

the Yellow Region, and even less for those in the Green Region. This is adopted to mimic

the reduced damage that may be experienced by areas an increasing distance from the

touchdown path of a tornado (Roueche & Prevatt, 2013).

Table 3. Likelihood of node damage by type of infrastructure system and region

classification, as defined by Figure 14.

Infrastructure Type Precedence Infrastructures

Roadway -

Electric Roadway

Water Roadway

Communications Roadway, Electric

Infrastructure Type
Likelihood of Node Damage

Red Region Yellow Region Green Region

Roadway 90% 75% 50%

Electric 80% 60% 40%

Water 30% 15% 10%

Communications 70% 50% 30%

147

Figure 14. Tornado damage schedule, describing relative damage expectations by map

partition.

In a real disaster scenario, the amount of damage to each node may be estimated

by observing the affected region or the application of assessment models (Spedheger et

al., 2002; Marshall, 2002; Hashemi & Alesheikh, 2011; Myint et al., 2008; Wu & Cui,

2018; Erdik et. al, 2011; Kryvasheyeu et al., 2016; Gong, 2013; Foresti, 2015). These

estimates can then be used in conjunction with resource repair rates to determine the

length of time required to repair each node (Ramachandran et al., 2015). Here, the time

required by an appropriate resource team to repair each node is simply set as a random

integer between 1 and 10. At most, then, a node will take 10 clock steps of the simulation

to restore. While a more sophisticated damage simulation method may have been used,

this basic approach easily incorporates the unpredictable and nonuniform damage that

may accompany varying types of disasters (Masoomi et al., 2018; Lu & Guan, 2017).

148

The following parameters and scenario inputs were finally supplied to the model,

prompting its generation of a set of Pareto efficient restoration strategies:

• Population Size: 100 Solutions

• Maximum Generations: 500

• Clock Step: 1 Day

• mutationRate: 0.1

• resWeight: 0.25

• resCap: [10, 10, 10, 10]

• Resources: Roadway Repair Team(s), Electric Repair Team(s), Water Repair

Team(s), Communications Repair Team(s)

• Resource Costs (fixedCosts and variableCosts) defined by Table 4

Table 4. Fixed and variable resource cost schedule by resource type.

Note, here, that arbitrary fixedCosts and variableCosts are assigned for the

example resource types. These can be easily modified to reflect the real costs incumbent

of the scenario to which the method is being applied.

Resource Type fixedCosts variableCosts

Roadway Repair Team $6,500 / Team $480 / Day / Team

Electric Repair Team $8,250 / Team $1,120 / Day / Team

Water Repair Team $6,200 / Team $800 / Day / Team

Communications Repair Team $9,000 / Team $960 / Day / Team

149

4.2. METHOD RECOMMENDATIONS AND ALTERNATIVE RESTORATION

STRATEGIES

Following 500 generations, the model returned solutions with 11 unique objective

pairings. These comprised a set of Pareto efficient solutions spanning from 65 to 457

days to complete, while incurring expenses between $1,351,150 and $1,519,950. The

objective values owned by each of these alternatives are listed here:

Format: (Restoration Time, Restoration Expense)

• (65 Days, $1,519,950)

• (67 Days, $1,512,110)

• (70 Days, $1,511,950)

• (78 Days, $1,484,350)

• (92 Days, $1,457,150)

• (93 Days, $1,452,350)

• (115 Days, $1,430,100)

• (127 Days, $1,409,400)

• (153 Days, $1,400,400)

• (229 Days, $1,370,700)

• (457 Days, $1,351,150)

While 100 unique solutions were generated, only the 11 unique objective function

pairs were precipitated. This demonstrates another complexity of the scenario, in which

two recovery schedules may produce identical objective function results. This could serve

problematic for recovery planners attempting to manually produce alternative solution

150

strategies. This potential frustration is sidestepped by the automated strategy generation

of the proposed method.

To provide some context toward the efficacy of the proposed method, a few

intuitive alternative strategies are conceived and evaluated. Each alternative is introduced

here, with performance disclosed and discussed in Section 4.3. When generating these

alternatives, it is assumed that a mechanism is possessed to ensure that only feasible

strategies are produced. A further assumption is that some procedure is available to assess

each alternative in terms of time and cost required. While easily achieved by the agent-

based simulation of the proposed method, these capabilities may not be available to

decision-makers using traditional approaches to generate recovery schedules.

Nonetheless, these facilities will be used in creating and assessing the alternative

strategies to isolate and highlight the benefits of the proposed model’s evolutionary

generation strategy.

4.2.1. Random Generation Strategy. A very basic approach is to generate

several random solutions and then pick a desirable one. This is akin to the random

population generation initiating the proposed method. There, 100 solutions were created.

4.2.2. Maximum Resource Strategy. Alternatively, decision-makers may look

to develop strategies that restore the affected area as quickly or affordably as possible.

Attempting to repair all damage as quickly as possible, the maximum number of each

resource is employed. Here, this implies the availability of 10 units of each resource (a

chromosome[1 : r] sequence of [10, 10, 10, 10]). However, the order in which nodes are

repaired will still impact overall restoration time and cost. Thus, 100 randomly generated

151

restorations schedules are followed using these maximum resource levels to get some

idea of this strategy’s performance range.

4.2.3. Minimum Resource Strategy. Seeking to complete the required

restorations as affordably as possible, the minimum number of each resource is

employed: a chromosome[1 : r] sequence of [1, 1, 1, 1]. As before, 100 random

restoration schedules were followed using this minimalist strategy to approximate its

range of performance.

4.2.4. Most Damaged First Strategy. A seemingly intuitive strategy may be to

restore those nodes sustaining the most damage (that is, those that will take the longest to

repair), first. In this way, the most burdensome repairs are completed first, allowing

resources to become available with more frequency during latter repair stages. This may

help avoid scenarios where the long restoration times of nodes with many dependent

counterparts can cause resources to sit idle, substantially extending overall completion

time. Using this front-loaded restoration order, 100 solutions with randomly generated

resource levels are created and assessed.

4.2.5. Least Damaged First Strategy. Instead, a strategy restoring the least

damaged nodes first could also be used. Ordering restorations by increasing repair time,

more nodes are restored earlier, allowing the network to resemble its undamaged state

earlier in the restoration process. This may have the beneficial property of reducing the

number of nodes that are not feasible quicker, helping avoid scenarios where resources sit

idly with no feasible repairs. Here again, 100 solutions with random resource levels were

created and assessed following this scheduling strategy.

152

4.3. STRATEGY COMPARISON AND DISCUSSION

The multiobjective performance of the solutions generated by each strategy is

shown in Figure 15. This all-solution view is presented to give an idea of the scope and

distribution of the solutions generated by each strategy. A zoomed view of a busy region

of the solution space (Restoration Time: 60 Days – 160 Days; Restoration Cost:

$1,400,000 - $2,000,00) is then shown in Figure 16, highlighting the objective superiority

of the solutions produced by the proposed method. When all generated solutions are

considered, each of those created by the proposed method are Pareto efficient. Further, all

500 solutions generated by the alternative strategies are dominated by at least one of

these Pareto efficient options. Finally, the Pareto efficient set associated with each

strategy is shown in Figure 17, demonstrating the proposed method’s ability to cover the

entire spectrum of solution performance achieved by other methods while simultaneously

producing objectively better alternatives.

While the dominance enjoyed by the proposed method’s solutions describes

objective superiority, a further investigation is made to describe the degree of this

superiority. Some summary statistics are presented, describing the multiobjective

performance and distribution of the solutions generated by each examined strategy (Table

5). The yellow highlighted values within Table 5 denote the strategy performing the best

with respect to respective summary statistics. For example, the best minimum restoration

time achieved by any strategy is owned by the proposed method, requiring 65 days.

153

Figure 15. Multiobjective performance of recovery strategies created by proposed and

alternative solution generation methods.

Figure 16. Selected region of multiobjective performance of recovery strategies created

by proposed and alternative solution generation methods.

154

Figure 17. Pareto frontiers of solutions created by proposed and alternative strategy

generation methods.

Table 5. Multiobjective performance statistics of proposed and alternative strategy

generation methods.

These summary statistics further describe the proposed method as the best

performing of all examined strategies. In fact, the proposed method boasts the best

performance by each summary statistic with respect to solution restoration cost. These

summary statistics can be misleading, however. When describing restoration time for

each examined strategy, a casual observer may deduce that the Maximum Resource

155

Strategy competes with the proposed method with respect to restoration time. Indeed,

four of the included summary statistics for restoration time exhibit best values achieved

by the Maximum Resource Strategy. However, these values are affected by the tight

distribution of this strategy’s solutions. Discernable from the tight cluster of green

diamonds in Figure 16, this dense distribution yields quartile and mean values that are

favorable, while each of these Maximum Resource Strategy solutions are in fact inferior

to some subset of proposed method solutions.

A powerful method for describing the multiobjective performance of populations

of solutions is the hypervolume indicator or S-metric (Zitzler & Thiele, 1998; Beume,

2009). This value describes the multiobjective space dominated by at least one member

of a population of solutions, bound by some universally dominated reference point. The

hypervolume indicator is perhaps the most widely adopted evaluation metric for

multiobjective population quality as it is a unary, pareto dominance-compliant

performance measure. That is, whenever a population of solutions dominates another, the

hypervolume indicator of the former is always larger. Being the case, the hypervolume

indicator values disclosed in Table 5 describe the population of the proposed method as

the best performing. Note that the reference point used in determining these hypervolume

indicators was the combination of the worst objective values observed for any solution of

any method during the investigation.

A final exercise seeks to compare the solutions found by the proposed method to a

set of hypothetical bounds for restoration time and restoration cost. In this idealized (and

assuredly unrealistic) scenario, imagine that all constraints are removed from the model.

Then, any node could be repaired at any time, without worrying about its accessibility or

156

if its precedence considerations have been met. In a scenario of the kind, the total

restoration cost could be minimized by utilizing one unit of each resource type. Therein,

fixed costs and variable costs are minimized as no constraints are present to force a unit to

sit idle. Similarly, the total restoration time could be minimized by utilizing as many

resources as possible and applying a parallel resource makespan minimization strategy

(Graham et al., 1979; Dessouky et al., 1990). Here, a resCap of [10, 10, 10, 10] was used

as this was the maximum resource allotment at the disposal of the proposed method.

These methods yielded a best-case bound for the unrestricted case of the disaster

scenario at $1,325,150 and 59 days for restoration cost and restoration time, respectively.

The most optimal restoration cost value yielded by the proposed method ($1,351,150) is

roughly 2% worse than this idealized cost bound. Examining restoration time, the best

generated value of the proposed method (65 days) is about 10% worse than its idealized

counterpart. As comparing these objectives independently is underinformative, a

multiobjective assessment is also made. Relating to the hypervolume indicator, it is of

interest to see how much of the multiobjective space between this idealized bound and

some reference point is dominated by a set of solutions. Here, again, the reference point is

the combination of the worst observed objective values conjured by any method during the

investigation is used ($6,258,050, 612 Days). Because this is a completely bounded space,

the region dominated by a set of solutions can be represented as a proportion or percentage.

The population of solutions produced by the proposed method is shown to dominate

around 97.8% of this space (Figure 18). This high coverage proportion and the proximity

of found solutions to the idealized bounds is impressive, considering the varied constraints

the proposed method must satisfy. Further, the region left undominated by the proposed

157

method’s solutions may not represent feasible space when the mentioned constraints are

considered. While the constraint cognizant bounds of the examined scenario cannot be

easily determined, the proposed method’s ability to approach and dominate the objective

space of the unrealistic bounds established is impressive.

Figure 18. Hypervolume of proposed method’s Pareto frontier between unrestricted

hypothetical bounds and a universally dominated reference point.

4.4. SCALING TO A REAL-WORLD DISASTER SCENARIO

With the merits of the proposed method demonstrated on a simulated restoration

scenario, it is of interest to investigate how the benefits realized scale to real disaster

situations. While each disaster scenario will have an intractable number of nuances and

intricacies -certainly beyond what is captured by the simple scaling procedure used here-,

158

this exercise may provide some indication of the magnitude of temporal and monetary

savings enabled by the proposed method.

 An EF5-Rated, multi-vortex tornado struck the city of Joplin, MO in May of 2011,

causing catastrophic damage to buildings and infrastructure. One of the deadliest and most

expensive natural disasters in recent U.S. history, the State of Missouri reported the

requiring of 5 days to restore the region’s critical infrastructure (Ramachandran et al.,

2015. The municipality of Joplin additionally reported the utilization of $150 million in

completing this restoration (Onstot, 2013).

To scale this real-world situation to the simulated scenario introduced previously,

the former’s restoration cost and time ($150,000,000, 5 Days) are first mapped to the

multiobjective solution space of the simulation. Suppose the procedure followed to restore

Joplin’s critical infrastructure maps to some point in the simulation space that is in the top

10% of known solutions (i.e., all solutions generated by any method of this investigation)

for both restoration cost and time. The average restoration cost and time of solutions within

this well-performing region is $1,528,576 and 71 days, respectively. Note that this

performance assumption is generous as conflicting objectives often discourage solutions

that are universally well-performing. In fact, if we look at the best 10% of known solutions

according to restoration cost, their average objective performance is $1,528,576 and 201

days. If we look at the best 10% of known solutions according to restoration time, these

objective values are $1,853,667 and 71 days. By assuming the strategy followed in

remedying Joplin’s damaged infrastructure achieved the best combination of these

independent top-decile averages, the competence of models able to find even better

solutions is strongly supported.

159

Assuming this placement of the real-world solution in the simulated objective

space, the proposed method is shown capable of producing solutions that can improve both

objectives. In fact, multiple solutions generated by the proposed method Pareto dominate

this mapped point. The best improvement, along each objective, from this mapped point to

a solution generated by the proposed method is also determined. With respect to restoration

cost, an improvement of 11.61% to $1,351,150 is discerned. This improvement is 8.45%

to 65 days when considering the objective of restoration time. When these percent savings

are scaled back to the real-world Joplin disaster, they describe potential savings of roughly

$17,415,000 and 2.11 days, respectively. This simple scaling method, though very

primitive, gives some indication of the scope of real-world benefits enabled by the

utilization of the proposed method.

The noted value for restoration cost savings assumes the entire $150,000,000

dedicated to restoring Joplin’s damaged infrastructure was discretionary in nature. Here,

discretionary is meant to describe those costs that can be controlled, such as the fixed and

variable costs considered by the simulation model. These exist in contrast to unavoidable

expenses: things attached to costs that must be assumed, such as construction materials.

This all-discretionary assumption, of course, is not veracious to actual expenditures. While

this research does not seek to determine the proportions of Joplin’s mentioned cost total

that are inevitable versus those that may be impacted by strategy decisions, Figure 19

describes the potential savings possible at different points along this discretionary-

unavoidable spectrum.

160

Figure 19. Potential restoration cost savings of the Joplin tornado recovery effort when

simulated scenario results are scaled using different discretionary versus unavoidable cost

breakdowns.

5. CONCLUSIONS AND FUTURE WORK

Following disaster events, it is crucial that a region’s critical infrastructure systems

be restored as quickly and affordably as possible. Failure to do so can have serious and

lasting negative effects on the well-being of impacted communities and the residents that

comprise them. Scheduling the granular set of recovery activities needed to complete this

restoration is a challenging task, made difficult by a variety of spatial and precedence

relationships incumbent of co-located and interdependent infrastructure systems. Further,

differences in the order that these recovery activities are completed can have drastic impact

on the length of time and cost of disaster restoration.

161

This work proposed a method to generate granular and well-performing restoration

strategies, seeking to repair an impacted region’s disaster damaged infrastructure as

affordably and quickly as possible. The multiobjective genetic algorithm with agent-based

simulation yielded fitness functions was shown to outperform other strategy generation

methods when applied to a simulated disaster. In fact, strategies generated by the proposed

method were shown to Pareto dominate all solutions produced by any of the study’s

competing methods with respect to restoration cost and time. This is preliminary evidence

of the utility of the proposed method and hints at the real-world benefits its application

could deliver. This method warrants further investigation as enhancing the restoration

processes of disaster-impacted areas is a meaningful and consequential endeavor.

 While the application here presented is focused on finding well-performing

restoration strategies for a given disaster scenario, the proposed methodology could also

be used in a resource planning capacity. For a certain region, decision-makers may easily

simulate multiple disaster scenarios and determine the performance metrics achieved by

different resource allocations. In this way, advance information about the resource levels

needed to satisfactorily address differing disaster situations may be assumed. Further,

experimentation may be conducted to see how altering specific resource allocations

impacts a strategy’s position along the cost-time tradeoff curve.

A few obvious extensions and opportunities for further study are also noted. First,

this study used entirely deterministic data. The restoration times for damaged

infrastructure elements were known with certainty, whereas there is assuredly some

stochasticity to these values in real scenarios. Modeling this stochasticity may enable

more robust objective value estimates if multiple simulations of each produced strategy

162

can be run. Further, this model does not allow resources to sit idle if there is an available

job for them to complete. While it may seem counterintuitive, the ability to have a

resource do nothing (even when feasible jobs exist) may yield reduced overall restoration

cost and/or time. Allowing this optional idle state may improve the objective function

values that can be attained by a modified model. Lastly, the proposed method is not tied

solely to applications of disaster recovery. Its premises and procedures can be applied to

any situation where interdependent systems are being constructed, modified, or repaired.

REFERENCES

Adams, Z. W., Danielson, C. K., Sumner, J. A., McCauley, J. L., Cohen, J. R., &

Ruggiero, K. J. (2015). Comorbidity of PTSD, major depression, and substance

use disorder among adolescent victims of the spring 2011 tornadoes in Alabama

and Joplin, Missouri. Psychiatry, 78(2), 170-185.

Almoghathawi, Y., Barker, K., & Albert, L. A. (2019). Resilience-driven restoration

model for interdependent infrastructure networks. Reliability Engineering &

System Safety, 185, 12-23.

Altay, N., & Green III, W. G. (2006). OR/MS research in disaster operations

management. European journal of operational research, 175(1), 475-493.

Applied Technology Council. (1992). A model methodology for assessment of seismic

vulnerability and impact distribution of water supply systems. Applied

technology council.

Ballantyne, D. B. (1990). Earthquake loss estimation modeling of the Seattle water

system. Kennedy/Jenks/Chilton.

Bellmore, M., & Nemhauser, G. L. (1968). The traveling salesman problem: a

survey. Operations Research, 16(3), 538-558.

Bentley, J. L. (1990). Experiments on traveling salesman heuristics. In Proceedings of

the first annual ACM-SIAM symposium on discrete algorithms (pp. 91-99).

163

Beume, N., Fonseca, C. M., Lopez-Ibanez, M., Paquete, L., & Vahrenhold, J. (2009).

On the complexity of computing the hypervolume indicator. IEEE Transactions

on Evolutionary Computation, 13(5), 1075-1082.

Bradski, G. (2000). The openCV library. Dr. Dobb's Journal: Software Tools for the

Professional Programmer, 25(11), 120-123.

Brady, R. J., & Perkins, J. B. (1991). Macroeconomic effects of the Loma Prieta

earthquake. Oakland, Calif.: Association of Bay Area Governments.

Çağnan, Z., & Davidson, R. (003). Post-earthquake lifeline service restoration

modeling. In Advancing mitigation technologies and disaster response for

lifeline systems (pp. 255-264).

Carlson, E. B., & Ruzek, J. (2003). Effects of traumatic experiences. National Center

for PTSD, Department of veterans affairs. (Full Text).

Chang, S. E., Rose, A. Z., Shinozuka, M., Svekla, W. D., & Tierney, K. J. (2000).

Modeling earthquake impact on urban lifeline systems: Advances and

integration. Research progress and accomplishments.

Chang, S. E., Seligson, H. A., & Eguchi, R. T. (1996). Estimation of the economic

impact of multiple lifeline disruption: Memphis light, gas, and water division

case study.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management

science, 6(1), 80-91.

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. In IJCAI (Vol.

85, pp. 162-164).

Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search

space. Complex systems, 9(2), 115-148.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary

computation, 6(2), 182-197.

Dessouky, M. I., Lageweg, B. J., Lenstra, J. K., & van de Velde, S. L. (1990).

Scheduling identical jobs on uniform parallel machines. Statistica

Neerlandica, 44(3), 115-123.

Erdik, ., Şeşetyan, K., Demircioğlu, . B., Hancılar, U., & Zülfikar, C. (011).

Rapid earthquake loss assessment after damaging earthquakes. Soil Dynamics

and Earthquake Engineering, 31(2), 247-266.

164

Foresti, G. L., Farinosi, M., & Vernier, M. (2015). Situational awareness in smart

environments: socio-mobile and sensor data fusion for emergency response to

disasters. Journal of Ambient Intelligence and Humanized Computing, 6(2),

239-257.

Galindo, G., & Batta, R. (2013). Review of recent developments in OR/MS research in

disaster operations management. European journal of operational

research, 230(2), 201-211.

Gong, J. (2013). Mobile lidar data collection and analysis for post-sandy disaster

recovery. In Computing in Civil Engineering (2013) (pp. 677-684).

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. In Annals

of discrete mathematics (Vol. 5, pp. 287-326). Elsevier.

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure,

dynamics, and function using NetworkX. In Proceedings of the 7th Python in

Science Conference (pp. 11–15).

Hale, T., & Moberg, C. R. (2005). Improving supply chain disaster preparedness: A

decision process for secure site location. International Journal of Physical

Distribution & Logistics Management.

Hashemi, M., & Alesheikh, A. A. (2011). A GIS-based earthquake damage assessment

and settlement methodology. Soil dynamics and earthquake

engineering, 31(11), 1607-1617.

Holguín-Veras, J., & Jaller, M. (2012). Immediate resource requirements after

hurricane Katrina. Natural Hazards Review, 13(2), 117-131.

Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.

Horner, M. W., & Widener, M. J. (2011). The effects of transportation network failure

on people’s accessibility to hurricane disaster relief goods a modeling

approach and application to a Florida case study. Natural hazards, 59(3), 1619-

1634.

Houston, J. B., Spialek, M. L., Stevens, J., First, J., Mieseler, V. L., & Pfefferbaum, B.

(2015). 2011 Joplin, Missouri tornado experience, mental health reactions, and

service utilization: Cross-sectional assessments at approximately 6 months and

2.5 years post-event. PLoS currents, 7.

Isumi, M., Nomura, N., & Shibuya, T. (1985). Simulation of post-earthquake

restoration of lifeline systems. International journal of mass emergencies and

disasters, 3(1), 87-105.

165

Jiménez Martínez, M., Jiménez Martínez, M., & Romero-Jarén, R. (2020). How

resilient is the labour market against natural disaster? Evaluating the effects

from the 2010 earthquake in Chile. Natural Hazards, 104(2), 1481-1533.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of

computer computations (pp. 85-103). Springer, Boston, MA.

Kizilateş, G., & Nuriyeva, F. (013). n the nearest neighbor algorithms for the

traveling salesman problem. In Advances in Computational Science,

Engineering and Information Technology (pp. 111-118). Springer, Heidelberg.

Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Van Hentenryck, P., Fowler, J.,

& Cebrian, M. (2016). Rapid assessment of disaster damage using social media

activity. Science advances, 2(3), e1500779.

Lettieri, E., Masella, C., & Radaelli, G. (2009). Disaster management: findings from a

systematic review. Disaster Prevention and Management: An International

Journal.

Lu, X., & Guan, H. (2017). Earthquake disaster simulation of civil infrastructures.

Beijing: Springer and Science Press.

Madakasira, S., & O'Brien, K. F. (1987). Acute posttraumatic stress disorder in victims

of a natural disaster. Journal of nervous and mental disease.

Manfrin, M., Birattari, M., Stützle, T., & Dorigo, M. (2006). Parallel ant colony

optimization for the traveling salesman problem. In International workshop on

ant colony optimization and swarm intelligence (pp. 224-234). Springer, Berlin,

Heidelberg.

Marshall, T. P. (2002). Tornado damage survey at Moore, Oklahoma. Weather and

forecasting, 17(3), 582-598.

Masoomi, H., & van de Lindt, J. W. (2017). Restoration and functionality assessment

of a community subjected to tornado hazard. Structure and Infrastructure

Engineering, 14(3), 275-291.

Masoomi, H., van de Lindt, J. W., & Peek, L. (2018). Quantifying socioeconomic

impact of a tornado by estimating population outmigration as a resilience metric

at the community level. Journal of structural engineering, 144(5), 04018034.

Minas, J. P., Simpson, N. C., & Tacheva, Z. Y. (2020). Modeling Emergency Response

Operations: A Theory Building Survey. Computers & Operations Research,

104921.

166

Missouri University of Science and Technology. (2022). Campus Master Plan.

Missouri S&T. Retrieved March 14, 2022, from https://masterplan.mst.edu/

Monnot, J., & Toulouse, S. (2014). The traveling salesman problem and its

variations. Paradigms of combinatorial optimization: problems and new

approaches, 173-214.

Myint, S. W., Yuan, M., Cerveny, R. S., & Giri, C. (2008). Categorizing natural

disaster damage assessment using satellite-based geospatial techniques. Natural

Hazards and Earth System Sciences, 8(4), 707-719.

Neria, Y., Nandi, A., & Galea, S. (2008). Post-traumatic stress disorder following

disasters: a systematic review. Psychological medicine, 38(4), 467-480.

Nojima, N., Ishikawa, Y., Okumura, T., & Sugito, M. (2001). Empirical estimation of

lifeline outage time in seismic disaster. In Proc. of US-Japan Joint Workshop

and Third Grantee Meeting, US-Japan Cooperative Research on Urban

Earthquake Disaster Mitigation, Seattle, WA, USA (pp. 516-527).

Ojha, A. (2019). Quantifying restoration costs in the aftermath of an extreme event

using system dynamics and dynamic mathematical modeling approaches.

Missouri University of Science and Technology. Rolla, MO (USA).

Ojha, A., Corns, S., Shoberg, T., Qin, R., & Long, S. (2018). Modeling and simulation

of emergent behavior in transportation infrastructure restoration. Emergent

Behavior in Complex Systems Engineering: A Modeling Simulation Approach,

349-368.

Ojha, A., Long, S., Shoberg, T., & Corns, S. (2021). Bottom-up resource and cost

estimation for restoration of supply chain interdependent critical

infrastructure. Engineering Management Journal, 33(4), 272-282.

Oliver, I. M., Smith, D., & Holland, J. R. (1987). Study of permutation crossover

operators on the traveling salesman problem. In Genetic algorithms and their

applications: proceedings of the second International Conference on Genetic

Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology,

Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987.

Onstot, L. I. (2013). Joplin, Missouri hit by EF-5 tornado on May 22, 2011. Fact Sheet

City of Joplin.

https://www.joplinmo.org/DocumentCenter/View/1985/Joplin_Tornado_factsh

eet

167

Qu, Z., Wang, C. W., Zhang, X., Ho, A. H., Wang, X., & Chan, C. L. (2014).

Prevalence and determinants of depression among survivors 8 months after the

Wenchuan earthquake. The Journal of nervous and mental disease, 202(4),

275-279.

Ramachandran, V., Long, S. K., Shoberg, T., Corns, S., & Carlo, H. J. (2015).

Framework for modeling urban restoration resilience time in the aftermath of an

extreme event. Natural Hazards Review, 16(4), 04015005.

Razali, N. M., & Geraghty, J. (2011). Genetic algorithm performance with different

selection strategies in solving TSP. In Proceedings of the world congress on

engineering (Vol. 2, No. 1, pp. 1-6). Hong Kong, China: International

Association of Engineers.

Richey, R. G., Natarajarathinam, M., Capar, I., & Narayanan, A. (2009). Managing

supply chains in times of crisis: a review of literature and insights. International

Journal of Physical Distribution & Logistics Management.

Roueche, D. B., & Prevatt, D. O. (2013). Residential damage patterns following the

2011 Tuscaloosa, AL and Joplin, MO tornadoes. J. Disaster Res, 8(6), 1061-

1067.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic

algorithms. In Proceedings of the first international conference on genetic

algorithms and their applications, 1985. Lawrence Erlbaum Associates. Inc.,

Publishers.

Simpson, N. C., & Hancock, P. G. (2009). Fifty years of operational research and

emergency response. Journal of the Operational Research Society, 60(sup1),

S126-S139.

Skiscim, C. C., & Golden, B. L. (1983). Optimization by simulated annealing: A

preliminary computational study for the tsp. Institute of Electrical and

Electronics Engineers (IEEE).

Speheger, D. A., Doswell, C. A., & Stumpf, G. J. (2002). The tornadoes of 3 May

1999: Event verification in central Oklahoma and related issues. Weather and

forecasting, 17(3), 362-381.

Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.

Steinglass, P., & Gerrity, E. (1990). Natural Disasters and Post‐traumatic Stress

Disorder Short‐Term versus Long‐Term Recovery in Two Disaster‐Affected

Communities 1. Journal of applied social psychology, 20(21), 1746-1765.

168

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation, and

Application. John Wiley & Sons.

Vanfossan, S., & Kwasa, B. (2022). Ideal Sort: A Terminable, Efficient Nondominated

Sorting Algorithm. Manuscript in preparation.

Verhoeven, M. G. A., Aarts, E. H., & Swinkels, P. C. J. (1995). A parallel 2-opt

algorithm for the traveling salesman problem. Future Generation Computer

Systems, 11(2), 175-182.

Wang, K., Yin, Z., Yuan, F., & Zhou, L. (2005, November). A mathematical approach

to disaster recovery planning. In 2005 First International Conference on

Semantics, Knowledge and Grid (pp. 46-46). IEEE.

Wright, P. D., Liberatore, M. J., & Nydick, R. L. (2006). A survey of operations

research models and applications in homeland security. Interfaces, 36(6), 514-

529.

Wu, D., & Cui, Y. (2018). Disaster early warning and damage assessment analysis

using social media data and geo-location information. Decision support

systems, 111, 48-59.

Zhang, R. H. (1992). Lifeline interaction and post-earthquake urban system

reconstruction. In Proceedings of 10th World Conference on Earthquake

Engineering (pp. 5475-5480).

Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary

algorithms—a comparative case study. In International conference on parallel

problem solving from nature (pp. 292-301). Springer, Berlin, Heidelberg.

169

SECTION

3. CONCLUSIONS AND FUTURE WORK

Multiobjective optimization is a powerful and accommodating tool, applicable to

an incredible variety of real-world scenarios. As the simultaneous consideration of

conflicting objectives usually disallows the existence of a globally optimum solution,

several creative techniques have been developed to resolve multiobjective optimization

problems. Perhaps the most widely applied is a class of a posteriori approaches utilizing

evolutionary algorithms to generate a set of well-distributed Pareto efficient solutions.

Specifically, evolutionary algorithms using a nondominated sorting ranking procedure

have become standard approaches. In repeated investigations, these models have

demonstrated admirable performance and garnered considerable practical, and academic,

application.

While well-performing, a primary criticism of these methods is the computational

complexity of the nondominated sorting procedure needed to evaluate solution

alternatives. The burden of this resource intensive procedure has often limited the scope

of scenarios to which nondominated sorting evolutionary algorithms can be applied in a

reasonable time. Towards a remedy, considerable effort has been dedicated to improving

the computational complexity of nondominated sorting algorithms. Success along this

directive has seen the applicability of these evolutionary procedures grow considerably.

This scope enhancement lends to the primary research edicts of this work. First,

this work has sought to improve the computational complexity of nondominated sorting

170

evolutionary algorithms. The included investigations have introduced new nondominated

sorting mechanics, shown to achieve state-of-the-art runtime performance in some

instances. With the improvements here introduced, the range of multiobjective

optimization scenarios to which evolutionary algorithms may be applied is expanded.

Through incremental works of the kind, more challenging and larger-scale problems may

be tackled by more the computationally affordable optimization proceedings enabled.

Additionally, the second mandate of this work was to demonstrate the efficacy of

multiobjective evolutionary algorithms when applied to challenging optimization

scenarios. Here, an instance of this approach-class was tasked with the multiobjective

consideration of a challenging permutation problem, further mired by numerous

feasibility and resource constraints. Demonstrating objective success, beyond what was

achieved by other intuitive strategies, another chapter has been added to the pedigree of

evolutionary algorithm utility. Researches of this kind are important as the capabilities

they describe sponsor additional efforts to improve the procedures of evolutionary

algorithms, including nondominated sorting complexity.

These cooperative research directives serve well to further the study and utility of

multiobjective evolutionary algorithms. Equipped with these powerful and innovative

methods, the pervasive scenario of multiobjective optimization can be more intelligently

and successfully addressed. Indeed, efforts improving the capabilities of multiobjective

optimization work to improve the decision-making processes that impact and drive

everyday life.

While several research extensions have been identified in individual

contributions, the two reasoned to be most impactful are reiterated, here. A principal

171

contribution of PAPER II was an introduction of the concept of terminability, by which a

nondominated sorting procedure may be stopped after a desired number of solutions have

been assigned to their appropriate Pareto fronts. Allowing the procedure to sidestep the

unnecessary sorting of highly dominated solutions that will not survive to the next

generation of the evolutionary algorithm, the algorithmic runtime of both algorithms

(nondominated sorting and the broader genetic algorithm) may be improved. This

concept of terminability was shown to considerably improve runtime performance of the

inferred dominance methods to which it was applied. This enhancement allowed methods

of this inferred dominance class to outperform the otherwise superior class of

constructive front nondominated sorting methods, in many instances. This sponsors the

desire to modify strategies of the constructive front method class to utilize terminability,

themselves. While some creativity may be required to achieve this objective, successful

attempts may be very well worth the effort.

Additionally, PAPER III introduced an evolutionary approach to generate

multidimensional network restoration solutions under a variety of precedence and other

feasibility constraints. While the case study of infrastructure network recovery following

a natural disaster was used, this approach may be applied to any scenario where

dependent combinatorial networks are to be built or repaired. Applying the methods of

the approach demonstrated may prove valuable in a variety of fields where scenarios of

this kind arise.

172

BIBLIOGRAPHY

Athan, T. W., & Papalambros, P. Y. (1996). A note on weighted criteria methods for

compromise solutions in multi-objective optimization. Engineering

optimization, 27(2), 155-176.

Aubry, J. F., Beaulieu, F., Sévigny, C., Beaulieu, L., & Tremblay, D. (2006).

Multiobjective optimization with a modified simulated annealing algorithm for

external beam radiotherapy treatment planning. Medical physics, 33(12), 4718-

4729.

Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A simulated annealing-

based multiobjective optimization algorithm: AMOSA. IEEE transactions on

evolutionary computation, 12(3), 269-283.

Branke, J., Branke, J., Deb, K., iettinen, K., & Slowiński, R. (Eds.).

(2008). Multiobjective optimization: Interactive and evolutionary

approaches (Vol. 5252). Springer Science & Business Media.

Bridgman, P. W. (1922). Dimensional analysis. Yale university press.

Carmichael, D. G. (1980). Computation of Pareto optima in structural

design. International Journal for Numerical Methods in Engineering, 15(6),

925-929.

Černý, V. (1985). Thermodynamical approach to the traveling salesman problem An

efficient simulation algorithm. Journal of optimization theory and

applications, 45(1), 41-51.

Chan, T. C., Craig, T., Lee, T., & Sharpe, M. B. (2014). Generalized inverse

multiobjective optimization with application to cancer therapy. Operations

Research, 62(3), 680-695.

Charnes, A., & Cooper, W. W. (1961). Management models and industrial

applications of linear programming. John Wiley & Sons.

Charnes, A., & Cooper, W. W. (1977). Goal programming and multiple objective

optimizations: Part 1. European journal of operational research, 1(1), 39-54.

Charnes, A., Clower, R. W., & Kortanek, K. O. (1967). Effective control through

coherent decentralization with preemptive goals. Econometrica: Journal of the

Econometric Society, 294-320.

173

Charnes, A., Cooper, W. W., & Ferguson, R. O. (1955). Optimal estimation of

executive compensation by linear programming. Management science, 1(2),

138-151.

Cheng, F. Y., & Li, D. (1996). Multiobjective optimization of structures with and

without control. Journal of Guidance, Control, and Dynamics, 19(2), 392-397.

Chiam, S. C., Al Mamun, A., & Low, Y. L. (2007, September). A realistic approach to

evolutionary multiobjective portfolio optimization. In 2007 IEEE Congress on

Evolutionary Computation (pp. 204-211). IEEE.

Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives

with particle swarm optimization. IEEE Transactions on evolutionary

computation, 8(3), 256-279.

Cohon, J. L. (2004). Multiobjective programming and planning (Vol. 140). Courier

Corporation.

Corley, H. (1980). A new scalar equivalence for Pareto optimization. IEEE

Transactions on Automatic Control, 25(4), 829-830.

Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001). PESA-II: Region-

based selection in evolutionary multiobjective optimization. In Proceedings of

the 3rd annual conference on genetic and evolutionary computation (pp. 283-

290).

Das, I., & Dennis, J. E. (1997). A closer look at drawbacks of minimizing weighted

sums of objectives for Pareto set generation in multicriteria optimization

problems. Structural optimization, 14(1), 63-69.

Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: A new method for

generating the Pareto surface in nonlinear multicriteria optimization

problems. SIAM journal on optimization, 8(3), 631-657.

Dauer, J. P., & Krueger, R. J. (1980). A multiobjective optimization model for water

resources planning. Applied Mathematical Modelling, 4(3), 171-175.

Dauert, J. (1992). Multicriteria optimization in engineering: a tutorial and

survey. Progress In Astronautics and Aeronautics: Structural Optimization:

Status and Promise, 150, 209.

Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach, part I: solving

problems with box constraints. IEEE transactions on evolutionary

computation, 18(4), 577-601.

174

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary

computation, 6(2), 182-197.

Dennis, R. (2002). Inferring policy objectives from policy actions. Federal Reserve

Bank of San Francisco. Retrieved February 27, 2022, from

https://www.frbsf.org/economic-research/publications/economic-

letter/2002/april/inferring-policy-objectives-from-policy-actions/

Domenico, A., Nicola, G., Daniela, T., Fulvio, C., Nicola, A., & Orazio, N. (2020). De

novo drug design of targeted chemical libraries based on artificial intelligence

and pair-based multiobjective optimization. Journal of Chemical Information

and Modeling, 60(10), 4582-4593.

Federal Reserve Board. (2021). Monetary Policy: What Are Its Goals? How Does It

Work? Monetary Policy Principles and Practice. Retrieved February 27, 2022,

from https://www.federalreserve.gov/monetarypolicy/monetary-policy-what-

are-its-goals-how-does-it-work.htm

Flores-Alsina, X., Rodríguez-Roda, I., Sin, G., & Gernaey, K. V. (2008). Multi-criteria

evaluation of wastewater treatment plant control strategies under

uncertainty. Water research, 42(17), 4485-4497.

Gembicki, F. W. (1974). Performance and Sensitivity Optimization: A Vector-Index

Approach. Case Western Reserve University. Cleveland, OH (USA).

Gerasimov, E. N., & Repko, V. N. (1978). Multicriterial optimization. Soviet applied

mechanics, 14(11), 1179-1184.

Goicoechea, A., Duckstein, L., & Fogel, M. M. (1976). Multiobjective programing in

watershed management: A study of the charleston watershed. Water Resources

Research, 12(6), 1085-1092.

Haimes, Y. (1971). On a bicriterion formulation of the problems of integrated system

identification and system optimization. IEEE transactions on systems, man, and

cybernetics, 1(3), 296-297.

Hitch, C. (1953). Sub-optimization in operations problems. Journal of the Operations

Research Society of America, 1(3), 87-99.

Holdsworth, C., Kim, M., Liao, J., & Phillips, M. H. (2010). A hierarchical

evolutionary algorithm for multiobjective optimization in IMRT. Medical

physics, 37(9), 4986-4997.

175

Holdsworth, C., Stewart, R. D., Kim, M., Liao, J., & Phillips, M. H. (2011).

Investigation of effective decision criteria for multiobjective optimization in

IMRT. Medical Physics, 38(6Part1), 2964-2974.

Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994, June). A niched Pareto genetic

algorithm for multiobjective optimization. In Proceedings of the first IEEE

conference on evolutionary computation. IEEE world congress on

computational intelligence (pp. 82-87). IEEE.

Hu, X., & Eberhart, R. (2002). Multiobjective optimization using dynamic

neighborhood particle swarm optimization. In Proceedings of the 2002

Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600) (Vol. 2,

pp. 1677-1681). IEEE.

Hwang, C. L., & Masud, A. S. M. (2012). Multiple objective decision making methods

and applications: a state-of-the-art survey (Vol. 164). Springer Science &

Business Media.

Hwang, C. L., Lai, Y. J., & Liu, T. Y. (1993). A new approach for multiple objective

decision making. Computers & operations research, 20(8), 889-899.

Ijiri, Y. (1965). Management goals and accounting for control. North Holland

Publishing Company.

Janson, S., & Merkle, D. (2005, August). A new multi-objective particle swarm

optimization algorithm using clustering applied to automated docking.

In International Workshop on Hybrid Metaheuristics (pp. 128-141). Springer,

Berlin, Heidelberg.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of

ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948).

IEEE.

Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598), 671-680.

Kong, D. S., Jang, Y. S., & Huh, J. H. (2015). Method and case study of multiobjective

optimization-based energy system design to minimize the primary energy use

and initial investment cost. Energies, 8(6), 6114-6134.

Lin, J. (1976). Multiple-objective problems: Pareto-optimal solutions by method of

proper equality constraints. IEEE Transactions on Automatic Control, 21(5),

641-650.

Lundblad, C. (2007). The risk return tradeoff in the long run: 1836–2003. Journal of

Financial Economics, 85(1), 123-150.

176

Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods

for engineering. Structural and multidisciplinary optimization, 26(6), 369-395.

Mazumdar, R., Mason, L. G., & Douligeris, C. (1991). Fairness in network optimal

flow control: optimality of product forms. IEEE Transactions on

communications, 39(5), 775-782.

McClymont, K., & Keedwell, E. (2012). Deductive sort and climbing sort: New

methods for non-dominated sorting. Evolutionary computation, 20(1), 1-26.

Messac, A., & Mattson, C. A. (2002). Generating well-distributed sets of Pareto points

for engineering design using physical programming. Optimization and

Engineering, 3(4), 431-450.

Messac, A., Ismail-Yahaya, A., & Mattson, C. A. (2003). The normalized normal

constraint method for generating the Pareto frontier. Structural and

multidisciplinary optimization, 25(2), 86-98.

Miettinen, K. (2012). Nonlinear multiobjective optimization (Vol. 12). Springer

Science & Business Media.

Miettinen, K., & Mäkelä, M. M. (2006). Synchronous approach in interactive

multiobjective optimization. European Journal of Operational

Research, 170(3), 909-922.

Miettinen, K., Ruiz, F., & Wierzbicki, A. P. (2008). Introduction to multiobjective

optimization: interactive approaches. In Multiobjective optimization (pp. 27-

57). Springer, Berlin, Heidelberg.

Mishra, S., Mondal, S., Saha, S., & Coello, C. A. C. (2018). GBOS: generalized best

order sort algorithm for non-dominated sorting. Swarm and Evolutionary

Computation, 43, 244-264.

Mukerjee, A., Biswas, R., Deb, K., & Mathur, A. P. (2002). Multi–objective

evolutionary algorithms for the risk–return trade–off in bank loan

management. International Transactions in operational research, 9(5), 583-

597.

Murata, T., & Ishibuchi, H. (1995, November). MOGA: multi-objective genetic

algorithms. In IEEE international conference on evolutionary

computation (Vol. 1, pp. 289-294). Piscataway, NJ, USA: IEEE.

Nicolaou, C. A., & Brown, N. (2013). Multi-objective optimization methods in drug

design. Drug Discovery Today: Technologies, 10(3), e427-e435.

177

Nicolaou, C. A., Kannas, C., & Loizidou, E. (2012). Multi-objective optimization

methods in de novo drug design. Mini reviews in medicinal chemistry, 12(10),

979-987.

Nicolotti, O., Giangreco, I., Introcaso, A., Leonetti, F., Stefanachi, A., & Carotti, A.

(2011). Strategies of multi-objective optimization in drug discovery and

development. Expert opinion on drug discovery, 6(9), 871-884.

Ogryczak, W. (1994). A goal programming model of the reference point

method. Annals of Operations Research, 51(1), 33-44.

Pulido, G. T., & Coello Coello, C. A. (2004). Using clustering techniques to improve

the performance of a multi-objective particle swarm optimizer. In Genetic and

Evolutionary Computation Conference (pp. 225-237). Springer, Berlin,

Heidelberg.

Rao, J. R., & Roy, N. (1989). Fuzzy set theoretic approach of assigning weights to

objectives in multicriteria decision making. International journal of systems

science, 20(8), 1381-1386.

Rao, S. S. (1987). Game theory approach for multiobjective structural

optimization. Computers & Structures, 25(1), 119-127.

Rao, S. S., & Freiheit, T. I. (1991). A modified game theory approach to multiobjective

optimization.

Roy, P. C., Deb, K., & Islam, M. M. (2018). An efficient nondominated sorting

algorithm for large number of fronts. IEEE transactions on cybernetics, 49(3),

859-869.

Roy, P. C., Islam, M. M., & Deb, K. (2016, July). Best order sort: a new algorithm to

non-dominated sorting for evolutionary multi-objective optimization.

In Proceedings of the 2016 on genetic and evolutionary computation

conference companion (pp. 1113-1120).

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal

of mathematical psychology, 15(3), 234-281.

Saborido, R., Ruiz, A. B., Bermudez, J. D., Vercher, E., & Luque, M. (2016).

Evolutionary multi-objective optimization algorithms for fuzzy portfolio

selection. Applied soft computing, 39, 48-63.

Schaffer, J. D. (1985). Some experiments in machine learning using vector evaluated

genetic algorithms. Vanderbilt Univ., Nashville, TN (USA).

178

Srinivas, N., & Deb, K. (1994). Multiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.

Stadler, W. (1988). Fundamentals of multicriteria optimization. In Multicriteria

Optimization in Engineering and in the Sciences (pp. 1-25). Springer, Boston,

MA.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation, and

Application. John Wiley & Sons.

Subbu, R., Bonissone, P. P., Eklund, N., Bollapragada, S., & Chalermkraivuth, K.

(2005). Multiobjective financial portfolio design: A hybrid evolutionary

approach. In 2005 IEEE Congress on Evolutionary Computation (Vol. 2, pp.

1722-1729). IEEE.

Suppapitnarm, A., Seffen, K. A., Parks, G. T., & Clarkson, P. J. (2000). A simulated

annealing algorithm for multiobjective optimization. Engineering

optimization, 33(1), 59-85.

Sweetapple, C., Fu, G., & Butler, D. (2014). Multi-objective optimisation of

wastewater treatment plant control to reduce greenhouse gas emissions. Water

Research, 55, 52-62.

Tang, S., Cai, Z., & Zheng, J. (2008, October). A fast method of constructing the non-

dominated set: arena's principle. In 2008 Fourth International Conference on

Natural Computation (Vol. 1, pp. 391-395). IEEE.

Torres-Mendoza, Y., Kerr, A., Schnall, A. H., Blackmore, C., & Hartley, S. D. (2021).

Community Assessment for Mental and Physical Health Effects After

Hurricane Irma—Florida Keys, May 2019. Morbidity and Mortality Weekly

Report, 70(26), 937.

Wang, H., & Yao, X. (2013). Corner sort for Pareto-based many-objective

optimization. IEEE transactions on cybernetics, 44(1), 92-102.

Wang, Z., Ong, Y. S., Sun, J., Gupta, A., & Zhang, Q. (2018). A generator for

multiobjective test problems with difficult-to-approximate pareto front

boundaries. IEEE Transactions on Evolutionary Computation, 23(4), 556-571.

Wendell, R. E., & Lee, D. N. (1977). Efficiency in multiple objective optimization

problems. Mathematical programming, 12(1), 406-414.

Wierzbicki, A. P. (1986). A methodological approach to comparing parametric

characterizations of efficient solutions. In Large-scale modelling and

interactive decision analysis (pp. 27-45). Springer, Berlin, Heidelberg.

179

Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., & Liu, B. (2018). Interactive

multiobjective optimization: A review of the state-of-the-art. IEEE Access, 6,

41256-41279.

Yoon, K. (1980). Systems selection by multiple attribute decision making. Kansas State

University. Manhattan, KS (USA).

Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making: an

introduction. Sage publications.

Yu, Y., Zhang, J. B., Cheng, G., Schell, M. C., & Okunieff, P. (2000). Multi-objective

optimization in radiotherapy: applications to stereotactic radiosurgery and

prostate brachytherapy. Artificial Intelligence in Medicine, 19(1), 39-51.

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE

transactions on Automatic Control, 8(1), 59-60.

Zhang, X., Tian, Y., Cheng, R., & Jin, Y. (2014). An efficient approach to

nondominated sorting for evolutionary multiobjective optimization. IEEE

Transactions on Evolutionary Computation, 19(2), 201-213.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative

case study and the strength Pareto approach. IEEE transactions on Evolutionary

Computation, 3(4), 257-271.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto

evolutionary algorithm. TIK-report, 103.

180

VITA

Samuel Alexander Vanfossan was raised in Excelsior Springs, MO, USA where

he attended Excelsior Springs High School, graduating in May of 2013. He went on to

graduate summa cum laude from Missouri University of Science and Technology in May

of 2018 with a B.S. in Engineering Management: Industrial Engineering. Immediately

following graduation, Samuel began Ph.D. studies at Missouri University of Science and

Technology as a Chancellor’s Distinguished Fellow, receiving a Ph.D. in Systems

Engineering in May of 2022. During doctoral studies, his research interests included

multiobjective and heuristic optimization, applied machine learning, and complex system

modeling and simulation. Samuel served in a variety of capacities during his graduate

career, including as a graduate research assistant within the University’s Virtual and

Augmented Systems Engineering Laboratory, and as the instructor of record for several

graduate and undergraduate courses including Operations and Production Management,

Operations Management Science, and Introduction to Operations Research.

	Advances and applications in high-dimensional heuristic optimization
	Recommended Citation

	II

