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ABSTRACT

Spaceflight systems can enable advanced mission concepts that can help expand

our understanding of the universe. To achieve the objectives of these missions, spaceflight

systems typically leverage guidance and control systems to maintain some desired path

and/or orientation of their scientific instrumentation. A deep understanding of the natural

dynamics of the environment in which these spaceflight systems operate is required to

design control systems capable of achieving the desired scientific objectives. However,

mitigating strategies are critically important when these dynamics are unknown or poorly

understood and/or modelled. This research introduces two neural network methodologies

to control the translation and rotation dynamics of spaceflight systems. The first method

uses a neural network to perform nonlinear estimation in the control space for both trans-

lational and attitude control. The second method uses an observer with a neural network

to perform estimation outside the control space, and input-output feedback linearization

using the estimated dynamics for both translational and attitude control. The methods are

demonstrated for attitude control through simulation and hardware testing on the Wallops

Arc-Second Pointer, a high-altitude balloon-borne spaceflight system. Results show that

the two new methodologies can provide improved attitude control performance over the

heritage control system. The methods are also demonstrated for translational and attitude

control of two small spacecraft in a deep space environment, where they provide improved

position and attitude control performance as compared to a traditional control method. This

work demonstrates, through simulation and hardware testing, that the two neural network

methods presented can offer improved translational and attitude control performance of

spaceflight systems where the dynamic environment may be unknown or poorly understood

and/or modeled.
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1. INTRODUCTION

The missile knows were it is at all times. It knows this because it knows where it isn’t.

By subtracting where it is from it isn’t, or where it isn’t from where it is (whichever

is greater), it attains a difference or deviation. The guidance system uses deviations

to generate corrective commands to drive the missile from a position where it is to a

position where it isn’t, arriving at a position where it wasn’t, but is now. [. . .] Simple.

Colonel (Ret) George Gril, Association of Air Force Missileers [1]

One of the overarching goals of spaceflight systems is the expansion of human

knowledge through scientific exploration of the universe. To achieve the desired scientific

objectives, spaceflight systems typically leverage guidance and control systems to maintain

some desired path and/or orientation of their scientific instrumentation. When designing

a control system for spaceflight systems, two general reference systems are considered.

The first reference system is trajectory control, which can range from stationkeeping a

spacecraft to a desired orbit or that of complex formation control of multiple spacecraft,

forming large virtual structures. In essence, the desired objective is to maintain the system

at some desired position within some frame of reference. The second reference system

consists of maintaining the relative spatial orientation of a body to achieve some desired

objective. This could be as simple as pointing a spacecraft’s scientific instrument at some

distant astronomical object, or as complex as pointing a telescope at the Sun from a dynamic

platform the system does not control. These two categories can be described by translational

and rotational dynamics. The focus of this research is to synthesize and implement a novel

approach to the translation and attitude control problem for spaceflight systems; in other

words, “how to take a complex spaceflight system in a complex dynamic environment from

a state that it isn’t, apply some corrective command, and arrive at a state that it wasn’t.

Simple.”
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1.1. MOTIVATION

Designing control algorithms for spaceflight systems is not new and incredible feats

of engineering and scientific exploration have been achieved over the decades. However,

because many of these control systems rely on having a deep understanding of the natural

dynamics of the environment in which they operate, mitigating strategies are critically

important when these dynamics are unknown or poorly understood and/or modelled. While

there exists a large body of work on robust control methods that can assure some level

of stability, one emerging field of study is the application of neural networks to nonlinear

control systems. Neural networks, originally modeling the functions of neurons in the

human brain, can be used for universal function approximation. While a large portion of

this field focuses on offline learning and application to identification systems, a subset of

the research has been applied to online learning in control systems. By learning online,

the neural network can begin to “learn” unknown dynamics or those that were poorly

understood and/or modeled. A literature review has shown that, to date, neural network

control systems have yet to be applied to the control of translational and rotational dynamics

of on-orbit spaceflight systems, though they have shown success in theoretical analysis and

experimentally in other fields such as terrestrial air and land vehicles. This research seeks

to synthesize and apply neural network control methods to spaceflight systems and to

demonstrate their feasibility not only through simulation, but also through software-in-the-

loop (SWIL) and hardware-in-the-loop (HWIL) testing on physical hardware for spaceflight

missions.

1.2. NEURAL NETWORK OVERVIEW

The utilization of neural networks for open- and closed-loop systems stems from

the original mathematical models developed in the early 1940s to describe the human

nervous system [2, 3]. Over the next few decades, these models evolved and interest in
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artificial neural networks began to grow. Specifically, it was realized that the adaptability

and learning capabilities could be applied to problems that would otherwise require signif-

icant computation. Early work focused on open-loop systems such as speech and image

recognition. As early work showed promise with these applications, interest quickly grew

and neural networks are now extensively used for classification, pattern recognition, and

function approximation. The application to closed-loop systems such a feedback control

systems started in the 1980s and research in this field continues to quickly expand as the

adaptive and learning capabilities of neural networks greatly benefit the control of complex

nonlinear systems, such as those used in aerospace applications [3].

The mathematics of artificial neural network systems stem from the mathematical

model of a single neuron, which is graphically represented in Figure 1.1. The neuron has a

series of branching dendrites that bring a variety of signals to the neurons body, the soma.

The signals are acted upon and gathered by the soma and once the total signal exceeds some

threshold, the signal is transmitted via the axon. An artificial neural network models this

biological behavior for a multitude of neurons in a unified network. To paraphrase, a series

of inputs (the basis vector) are acted upon by weighting coefficients (the weight matrices)

and filtered through an activation function within hidden layers such that a specific output is

achieved, as shown in Figure 1.2. For this work, the outputs of the artificial neural network

are the estimated dynamics, � (x), within which a spaceflight system may operate. The goal

of artificial neural networks then is to learn how to change the weighting coefficients such

that the output from the network, based on a basis vector defined by a set of input signals,

matches some desired goal. This process is typically termed as “training” a neural network

and typically requires a predefined input and output. A large body of literature exists on

these techniques for open-loop systems for classification, pattern recognition, and function

approximation [2, 4, 5].
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Figure 1.1. A single neuron acquires input signals from the dendrites and outputs data
through the axon.

Figure 1.2. An artificial neural network can be represented by a basis vector of input signals
being acted on byweighting coefficients and activation functions within hidden layers before
an output is generated.

The application of artificial networks to control systems brings several additional

complications. Many training techniques used for open-loop systems require training

through backpropagation, requiring the final output to be known. However, for a closed-

loop control system, not only is the desired output potentially unknown, the system must

operate in real time such that instability in the systems behavior is not introduced, which

could lead to potential critical hardware failures. For example, assume that the disturbance

dynamics of a spaceflight system are unknown. The neural network must be able to learn
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these dynamics in real time, without ever knowing the true dynamics apriori, while keeping

the spaceflight system closed-loop dynamics stability. Work by Lewis and Jagannathan

brought a significant level of maturity to the application of neural networks to closed-

loop control systems, showing generalized techniques and mathematical stability proofs

guaranteeing stability [3]. This work expands on some of these methods, specifically

providing practical applications to spaceflight systems.

1.3. LITERATURE REVIEW

An in-depth literature review is included in each of the papers presented.

1.4. CONTRIBUTIONS

The following objectives and contributions are presented in this work.

1. Developed the theoretical framework for the application of neural network control

methods to both translational and rotational dynamics in spaceflight systems. This

work focuses on the mathematical formulation of two neural network control methods

and how they can be applied to both translational and rotational dynamics. The

mathematics for the two formulations are presented in Papers I, II, and III.

2. Implemented neural network control methods for both translational and rotational

spaceflight systems to demonstrate the viability of the methodology while character-

izing the performance. This work focuses on the numerical simulation of two neural

network control methods when applied to various spaceflight systems to model the

performance in translational and rotational control. The simulation environment al-

lows for adding and modifying the system dynamics, enabling the observation of how

the system behaves in various conditions. Paper I presents the implementation for

attitude dynamics while Paper III presents the implementation for both translation

and attitude dynamics.
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3. Experimentally tested neural network control methods on physical hardware and

compared performance to a traditional control method. This work applies the two

neural network control methods to the rotational dynamics of a physical spaceflight

system, where hardware-in-the-loop testing was completed to verify the functionality

and benefits of the proposed methods. Results show that the two new methodologies

provide improved pointing performance over the heritage control system.

1.5. ORGANIZATION

Section 1 presents the motivation and contributions of this work.

Three papers are presented on the design, implementation, and testing of two neural

network control methodologies for spaceflight systems. Paper I presents the theoretical

framework for the two neural network methods and demonstrates through simulation the vi-

ability of the two methods for attitude control of theWallops Arc-Second Pointer (WASP), a

balloon-borne spaceflight system. Paper II presents the implementation, tuning, and testing

of the two neural network methods for attitude control of the WASP system, demonstrating

that the novel methods provide improved pointing performance through software and hard-

ware testing in a flight-like environment. Paper III further expands the two neural network

methodologies and applies them to not only the attitude dynamics of a spaceflight system,

but also to that of translational control. The paper shows through simulation that themethods

can be adapted easily to formation control of small spacecraft in a deep space environment,

achieving desired objectives for both translation and attitude control performance.

Section 2 presents future work and several potential NASA missions where these

methodologies may soon be used.

Section 3 summarizes the work and makes concluding remarks.
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PAPER

I. NEURAL NETWORK ATTITUDE CONTROL SYSTEM DESIGN FOR THE
WALLOPS ARC-SECOND POINTER

Pavel Galchenko1 and Henry Pernicka2
Missouri University of Science and Technology, Rolla, MO, 65409-0050

ABSTRACT

This research introduces two neural-network-based methodologies to control the

pointing performance and stability of the Wallops Arc-Second Pointer, a pointing system

suspended from a high altitude balloon platform. The first method uses filtered tracking

error and a two-layer neural network to perform nonlinear estimation in the control space for

the control system. The second method uses an observer and a one-layer neural network to

perform nonlinear estimation outside the controller, and input-output feedback linearization

for the control system. Lyapunov proofs are provided to show ultimately upper bounded

stability and software-in-the-loop testing was conducted to test the control systems against

the heritage proportional-integral-derivative control system. Results show that the two new

methodologies provide improved pointing performance in all tested cases.

1Ph.D. Candidate, Department of Mechanical and Aerospace Engineering, Missouri University of Science
and Technology, 400 W 13th St, Rolla, MO 65409-0050.

2Curators’ Distinguished Teaching Professor of Aerospace Engineering, Department of Mechanical and
Aerospace Engineering, Missouri University of Science and Technology, 400 W 13th St, Rolla, MO 65409-
0050.
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NOMENCLATURE

x1 =
[
\U \V \W

]T = roll, pitch, and yaw rotations [rad]

x2 =
[
lU lV lW

]T = roll, pitch, and yaw angular velocities [rad/s]

u = [ DU DV DW ]T = roll, pitch, and yaw control torques [ft-lb]

fx(x2) = known system dynamics

gx = control mapping to dynamics

%(x) = known disturbance dynamics

� = system inertia matrix [slug-ft2]

x3 = [ x31 x32 ]) = desired orientation [rad] and angular rates [rad/s]

f3 = desired dynamics

e = [ e1 e2 ]) = error states

�, � = known linear dynamics matrices

 = linear control gain matrix

��! = closed-loop dynamics

 ? = proportional [ft-lb/rad] gain

 8 = integral [ft-lb/(rad-sec)] gain

 3 = derivative [ft-lb/(rad/sec)] gains

l= = controller natural frequency [rad/s]

Z = damping ratio

U = tuning parameter

Fx, F̂x = true and estimated dynamics

�(x) = unmodeled perturbations/dynamics

f, f′ = activation function and its derivative

q (z) = basis vector

�V, �W = pitch/yaw angles from gimbal hubs (rad)

Y = bounded neural network estimation error
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,) , +) , ,̂) , +̂) = true and estimated neural network weighting matrices

,̃, +̃ = neural network weight matrices estimation error

r = filtered tracking error

_ = gain coefficient

 E,  I = controller gain matrices

uA = robustifying control

F̃x = dynamics estimation error

", # = neural network adaptation gain matrices

^ = design parameter

! = Lyapunov function

CA {} = trace operator

 2 = linear observer gain matrix

e0 = observer estimation error

Γ = observer neural network adaptation rate

�F = system bandwidth (Hz)

1. INTRODUCTION

The National Aeronautics and Space Administration’s (NASA) Balloon Program

Office (BPO) provides scientists with a High Altitude Balloon (HAB) platform to conduct

novel science in the Earth’s upper atmosphere [1, 2]. At a float altitude of 120,000 ft,

the HAB platform places experiments above 99.5% of the atmosphere (by mass), offering

scientists a space-like environment at significant reductions in cost compared to typical

spaceflight missions. Many science missions require the ability to accurately point the

scientific instruments at targets of interest to performobservations and achieve objectives [3].

The ability to point science instruments with arcsecond accuracy and stability is needed

by multiple science disciplines such as Planetary, Heliophysics, Astrophysics, and Earth
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Sciences. The Wallops Arc-Second Pointer (WASP) is one such unique pointing control

system developed by NASA’s Wallops Flight Facility (WFF), part of the Goddard Space

Flight Center (GSFC). The WASP system provides a platform to point large telescopes and

scientific instruments with sub-arcsecond accuracy and stability while suspended from a

HAB [4, 5].

TheWASP system is built around an external gondola structure, which is suspended

from a rotator gimbal attached to the HAB. The rotator provides initial targeting and coarse

azimuth tracking and stabilization for the external gondola. The outer gimbal frame is fixed

to the external gondola structure and is connected to the inner gimbal frame with a pitch

motor and encoder hub pair to provide elevation control. The inner gimbal frame connects

to the center body structure through a yaw motor and encoder hub pair and provides fine

azimuth control. This design is similar to a gimbaled inertial platform, with pitch-yaw

articulated axes. To minimize cross-coupling terms in the dynamics, the rotator provides

coarse azimuth pointing of the external gondola such that the center body is within 1 degree

of the inner gimbal frame, minimizing the disturbances seen in the fine yaw control channel.

The motor hubs include large diameter brushless direct-current (DC) torque motors to drive

the system and utilize rotating shafts to eliminate static friction in the bearings. The shafts

are counterrotated in the hub pairs to minimize residual kinetic friction. The attitude is

determined by integrating angular rates provided by a Northrop Grumman LN251, a fiber-

optic gyro-based inertial measurement unit. Absolute pointing information is provided

from a custom star tracker camera developed at WFF and a six-state extended Kalman filter

is used to provide quaternion state data to the control system. A modified proportional-

integral-derivate (PID) control law is used to compute control torques to the pitch/yaw

motor hubs to provide sub-arcsecond pointing for the center body.

The WASP platform was successfully demonstrated with a test flight in 2011 fol-

lowed by a second test flight in 2012. Science operations began in 2013 with the Hyper-

Spectral Imager for Climate Science (HySICS) mission. Two additional science flights were
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conducted in 2014, one being HySICS II [6] and the second flight being the Observatory

for Planetary Investigations from the Stratosphere (OPIS) mission [7]. The five flights

completed the development phase of the WASP platform and showed the capability of the

WASP platform. Since then, WASP has conducted an additional four science missions, in-

cluding two flights of the X-Calibur mission and the latest two science flights in 2019 for the

Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE)

mission and the Planetary Imaging Concept Testbed Using a Recoverable Experiment -

Coronagraph (Picture-C) mission [8–11].

1.1. LITERATURE REVIEW

In 1968, the STRATOSCOPE II mission set the first precedent for sub-arcsecond

pointing from a HAB observatory [3]. While the mission did not directly measure its

pointing performance, post-flight analysis of the various onboard systems showed that

the telescope was able to achieve 0.02 arcsecond pointing accuracy. The system used two

pointing control systems. This first achieved coarse pointing to an accuracy of 15 arcseconds

using an active control loop. A secondary pointing system positionally adjusted a transfer

lens from ground commands until the image was fixed in the photographic plane, leading

to the final 0.02 arcsecond pointing accuracy [12]. It should also be noted that the coarse

pointing could only occur when not imaging, as jitter and disturbances from coarse control

prevented the gathering of science data. While this precedent was set in the late 1960s,

it wasn’t until the early 2000s that arcsecond and sub-arcsecond pointing would be again

attempted and achieved from a HAB observatory (several of which are discussed here).

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) was a sub-

orbital surveying experiment to study star formation in local galaxies, conducting one test

flight and two science mission flights from 2003 through 2006 [13]. The pointing system

on the gondola was able to provide 30 arcsecond pointing in flight, while post-processing

was able to update the pointing reconstruction to within 5 arcsecond RMS. Another mission
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that brought pointing into the sub-arcsecond region was the SUNRISE mission flown in

2009 [14]. The primary control system was designed to point the telescope within 7.5 arc-

second RMS, while a secondary fine optics based system refined the pointing to within 0.05

arcseconds. During flight operations, wind gusts and external disturbances significantly

limited the performance and the longest period in which primary pointing was within the

allowed maximum ± 46 arcsecond range was only 45 minutes. Post-processing of the data

showed final secondary pointing accuracy and stability in the 0.1 arcsecond range. In 2015

a test flight of the Balloon-Borne Imaging Testbed (BIT) was conducted, which sought

to bring primary pointing into the 1-2 arcsecond RMS and proposed secondary systems

refining the pointing into the sub-arcsecond regime. The test flight was successful and

achieved 0.68 arcsecond RMS over periods of integration between 10 to 30 minutes [15].

A follow-on to the mission was proposed and hardware testing in a laboratory was con-

ducted for the addition of a secondary optical control system that would bring the pointing

to sub 0.1 arcsecond RMS [16]. The Balloon-borne Imaging Testbed, Sub- arcsecond

Telescope And BaLloon Experiment (BIT-STABLE) uses the BIT platform to bring the

instrumentation within 2 arcsecond RMS and the secondary system, STABLE, was able to

demonstrate pointing stability within the 0.1 arcsecond threshold [3]. While the system was

demonstrated successfully in the laboratory, the funding to perform in-flight testing was not

available.

Over the ten-plus years of operations of the WASP platform, the pointing perfor-

mance has been consistently demonstrated to be sub-arcsecond with the latest flights from

2019 demonstrating pointing performance down to 0.2 arcseconds RMS over long integra-

tion time periods for two separate missions. While significant improvements in the pointing

performance would likely require hardware modifications (such as the addition of reaction

wheels or improved sensing), it is still desirable to determine if pointing performance could

be improved through software modifications. For example, during the 2019 flight campaign

theWASP system would occasionally see brief excursions exceeding 0.5 arcseconds. While
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the excursion was quickly captured and brought back towards the average RMS, these excur-

sions could decrease the performance of certain science instruments. This work suggests to

augment the WASP platform with the addition of a neural network control system, which

can be activated in lieu of the traditional PID system.

1.2. SCHOLARLY CONTRIBUTIONS

This research offers several contributions to the nonlinear control field for gimbaled

pointing systems:

1. SNNARC, a two-layer neural network controller, is formulated for an inertially gim-

baled control system suspended from a high altitude balloon platform. Simulation

shows improved pointing performance is achieved as compared to the heritage PID

control system.

2. MSO, a one-layer neural network observer and an input-output feedback linearization

controller, is formulated for an inertially gimbaled control system suspended from a

high altitude balloon platform. Simulation shows improved pointing performance is

achieved as compared to the heritage PID control system.

1.3. ORGANIZATION

This work is organized as follows. In Section 2, a brief background on the dynamics

and control theory is presented, as well as a description of the heritage controller design

implemented for the WASP system. Section 3 introduces neural networks and the design

of two control methodologies utilizing neural networks. Section 4 discusses the simulation

environment and the configuration of the three control methodologies. Section 5 presents

software-in-the-loop simulation results. Finally, Section 6 gives an overview of the results

and presents future work.
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2. BACKGROUND

By defining \U, \V, \W as rotations, corresponding to roll, pitch, yaw, respectively,

about a primary orthogonal axes and lU, lV, lW as the angular velocities about these

respective axes, a typical unconstrained second-order three degrees of freedom attitude

dynamics model [17, 18] can be given by a two-vector state system as

¤x1 = �(\U, \W)x2

¤x2 = fx(x2) + %(x) + gxu
(1)

where the parameterization matrix, �(\U, \W), can be described by

�(\U, \W) =


1 − cos \U tan \W sin \U tan \W

0 cos \U sec \W − sin \U sec \W

0 sin \U cos \W


(2)

and where fx(x2) = −�−1 [x2×]�x2, x1 =
[
\U \V \W

]T, x2 =
[
lU lV lW

]T, u =

[ DU DV DW ]T, and where � is the inertia matrix (assumed constant) of the (rigid) body

with respect to the center of mass and in terms of the body-fixed axes, x1 and x2 are the

rotation and angular velocity vectors, respectively, of the body with respect to the inertial

frame, X(x) is some known disturbance dynamics, gx maps the controller dynamics to the

system, and u is the applied torque, i.e. the control input. It should be noted that �−1 is also

embedded into the disturbance dynamics X(x) and the mapping of the controller dynamics,

gx, to simplify the formulation.

A variety of models exist to describe the dynamics of two-axis gimbal systems [15,

19–21], but these can all be simplified to the form given in Eq. (1) with variations in the

definitions of the attitude parameterization, �(\U, \W), in Eq. (2), as well as definitions

of fx(x2) and X(x). The nature of the mechanical design of WASP leads to reductions in

cross-coupling terms in the gimbal dynamics, allowing for several model modifications.
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First, the center bodies roll angle is fixed and null in the gimbal frame, such that \U = 0. As

such, the parameterization matrix, �(\U, \W), can now be described by

�(\U, \W) =


1 − tan \W 0

0 sec \W 0

0 0 cos \W


(3)

where the evolution of the rotations, ¤x1, are now only dependent on the yaw state, \W,

and the angular velocity vector, x2. The mechanical design of the WASP platform with an

integrated rotator is designed such that the yaw rotation of the centerbody within the gimbal

frame is always small. In fact, during pointing operations, this angle is typically less that 1.0

degrees. This allows for a small angle approximation, whereby the parameterization matrix,

�(\U, \W), becomes the identity matrix, �3×3. The WASP platform hardware configuration

was specifically designed with this in mind, allowing of for the PID control system to treat

the pitch, \V, and yaw, \W, channels independently. Using the small angle approximation

on the updated parameterization matrix in Eq. (3) and plugging that result into Eq. (1), the

simplified dynamics are now given by

¤x1 = x2

¤x2 = fx(x2) + X(x) + gxu
(4)

where the system dynamics are in Brunovsky canonical form [22].

Due to the large mass and volume of the WASP platform and the center body, only

approximations of the model inertia values can be made. Fine balancing of the center body

occurs during integration and is typically performed through the manual addition of ballast

masses at various locations of the structure. As such, the use of a simplified model is

further justified with the addition of integrator action in the control system to compensate

for model inaccuracies and static imbalances. While significant effort has been presented for
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the formulation of the system dynamics, the new methodology introduced in this research

makes no assumptions on the details of fx(x2) and X(x) and only assumes the dynamics can

be described by the form given in Eq. (4).

2.1. ERROR DYNAMICS

In order to synthesize an accurate control system for the rotational system, it is useful

to rewrite the dynamics in terms of the error between the current and desired reference

system states. The desired states, x3 , are defined as x3 = [ x31 x32 ]) , where x31 is a

vector of desired rotations and x32 is a vector of desired angular rates. The reference system

dynamics are given as ¤x31 = x32 and ¤x32 = f3 , where f3 can be a set of desired dynamics

for the reference system. Note that for a regulatory reference system, x32 = 0 and f3 = 0.

The error states are now defined as e = [ e1 e2 ]) , where e1 = x1 − x31 and e2 = x2 − x32,

such that taking the derivative of the error vectors gives ¤e = [ ¤e1 ¤e2 ]) with

¤e1 = e2

¤e2 = fx(x) − f3 + X(x) + gxu,
(5)

defining the error dynamics used for the various controller formulations.

2.2. INPUT-OUTPUT FEEDBACK LINEARIZATION CONTROLLER DESIGN

It is desired that a controller be designed that will allow a nonlinear system to

maintain its attitude about some reference. By first considering a linear system, ¤x = �x+�u,

where � and � are known constant matrices, u is the state feedback controller given

by u = − x, and  is some gain matrix, the closed-loop system dynamics are given

as ¤x = (� − � )x. The origin of the linear closed-loop system can be shown to be
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asymptotically stable if the matrix (� − � ) is Hurwitz [23]. This is achieved by choosing

the gain matrix  such that the eigenvalues of the linear closed-loop system lie in the

left-half of the complex s-plane.

By using input-output feedback linearization [23] and carefully designing a nonlinear

controller in terms of the error dynamics in Eq. (5), it is possible to make the nonlinear

system behave in a similar manner. A controller is chosen such that

u =
1
gx

(
−fG (x) + f3 − X(x) − k?e1 − k3e2

)
(6)

where k? and k3 are proportional and derivative controller gain vectors, respectively, and

|gx | > 0. The closed-loop error dynamics in Eq. (5) are reduced to ¤e = ��! e, where

��! =


0 1

−k? −k3

 , such that the origin of the unperturbed nonlinear system will be

asymptotically stable if ��! is Hurwitz. This method of nonlinear control is the basis from

which the neural network controllers are designed.

2.3. PID CONTROLLER DESIGN

The control system for the WASP platform uses a traditional proportional-integral-

derivative (PID) controller to achieve sub-arcsecond pointing accuracy and stability. The

system is tuned as follows. First, it is assumed that the inertia of the system is diagonal with

no cross products and that the dynamics of the second-order system can bewritten separately

for the pitch/yaw channels. The system can then be described by the plant %(B) = �−1
8
/B2,

where �8 is the inertia of specified axis. By choosing a PID control input, the closed-loop

characteristic equation becomes B3 + [�−1
8
 3]B2 + [�−1

8
 ?]B + [�−1

8
 8] where  ?,  8, and

 3 are proportional, integrator, and derivative gains, respectively. Using the typical (Z, l=)

parametrization and fixing the third pole at −Ul=, the desired closed-loop characteristic

equation is given by B3 + [(2Z + U)l=]B2 + [(2ZU + 1)l2
=]B + [Ul3

=] where l= is the natural

frequency of the system, Z is the damping ratio, and U is a design parameter. The controller
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gains can now be selected to match the design characteristic equation by

 ? =
(2ZU + 1)l2

=

�−1
8

 8 =
Ul3

=

�−1
8

 3 =
(2Z + U)l=

�−1
8

(7)

where by fixing the design parameter at U = 1, the values for Z and l= are tuned to give

desired performance characteristics. It should be noted that for U = 0, the gain tuning

becomes that of a proportional-derivative (PD) controller for the same system.

3. NEURAL NETWORK DESIGN

It has been shown that with the formulation of the dynamics and the input-output

feedback linearization controller that the rotational systems error dynamics have guaranteed

asymptotic stability. However, two potentially limiting assumptions were made that must

be addressed before implementation with the WASP system can be considered. It was

assumed that the model of fG (x) is "truth" and that X(x) describes all other contributing

disturbance dynamics to the system. This is of course impossible; all models have assump-

tions and approximations, and while one can predict a number of disturbances (which are

approximations as well), it is impossible to perfectly predict and model all effects.

Controlling nonlinear systems with unmodeled dynamics is an extensively studied

field and there exists a number ofmethodologieswithwhich these issues have been addressed

in the past. These include assumptions of linearity of the system about specific operating

points [24, 25], the addition of an error integral to the control system [26], utilizing sliding

mode controllers [26, 27] and Lyapunov redesign [28], as well as the addition of neural

networks [28–31]. This research focuses on the application of neural networks as they offer

some unique advantages over other adaptive control methods.

Assume that the true dynamics are given asFx = fG (x)+X(x)+�(x), where fG (x) and

X(x) are as described in Eq. (4), and �(x) is a set of all other unmodeled dynamics. Using

neural networks, estimating the true dynamics can be attempted using F̂x. A one-layer
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neural network is given by

F̂x = ,̂
)q (z) while Fx = ,

)q (z) + Y (8)

and a two-layer neural network is given as

F̂x = ,̂
)f

(
+̂)q (z)

)
while Fx = ,

)f

(
+)q (z)

)
+ Y (9)

where f is some activation function, q (z) is the basis vector, ,) and +) are the true

weights that give the value of Fx with some bounded approximation error, Y, through

the universal function approximation properties of neural networks [22], and ,̂) and +̂)

are the approximated weights. It should also be noted that the while the basis vector,

q (z), is typically composed of the state vector, x, it may have additional elements and/or

formulations that are not part of the state but correspond to the dynamics of the system.

The two-vector state systems from Eq. (4) can now be rewritten as

¤x1 = x2

¤x2 = Fx + gxu
(10)

and the error dynamics in Eq. (5) as

¤e1 = e2

¤e2 = Fx − f3 + gxu
(11)

forming the foundation of the two neural network methodologies studied in this research.

The first method operates in terms of the error dynamics, Eq. (11), and as such

the neural network learning occurs in the control space. The second method introduces

an observer for the state dynamics, Eq. (10), and as such the neural network learning
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occurs outside the control space. Both methods can be described by a Lyapunov candidate

function and are shown in this study to be Ultimately Upper Bounded (UUB), demonstrating

Lyapunov stability.

3.1. SNNARC FORMULATION

The first method, originally developed for robotic manipulators [22], is the Sub-

arcsecond Neural Network Attitude Reference Controller (SNNARC). Its formulation here

is given generically for a two-layer neural network, Eq. (9), and can be applied to any set

of dynamics that can be written in Brunovsky canonical form. The error dynamics from

Eq. (11) are written as a filtered tracking error where

r = Λe

Λ = [ _ 1 ]
−→

r = e2 + _e1

¤r = Fx − f3 + _e2 + gxu
(12)

where _ is some positive gain coefficient and r is now a vector of scalar errors for each

control axis. It is now possible to use the estimated dynamics, F̂x, in the controller design

such that

u =
1
gx

(
−F̂x + f3 −  Er − _e2 + uA

)
where uA = − I

(Θ̂ + Θ<)
r (13)

where  E and  I are some positive controller gain matrices, |gx | > 0, and the weighting

matrices are defined as

Θ =


+ 0

0 ,

 and Θ̂ =


+̂ 0

0 ,̂

 and ‖Θ‖ ≤ Θ<

where Θ< is a user-defined bound on the norm of the weighting matrices. The closed-loop

system becomes

¤r = − Er + F̃x + uA (14)
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where F̃x is the estimation error defined by F̃x = Fx − F̂x. Neural network weight update

laws are selected as
¤̂, = "

(
f̂ − f̂′+̂)q (z)

)
r) − ^ ‖r‖ ",̂

¤̂+ = #q (z) r),̂) f̂′ − ^ ‖r‖ #+̂
(15)

where " and # are positive definite matrices, f̂ = f
(
+̂)q (z)

)
, f̂′ = f′

(
+̂)q (z)

)
, and ^

is a design parameter such that ^ > 0.

To prove the stability of the system, the candidate Lyapunov function is selected as

! =
1
2

r)r + 1
2
CA

{
,̃)"−1,̃

}
+ 1

2
CA

{
+̃)#−1+̃

}
(16)

where CA {} is the trace operator. By taking the time derivative of the Lyapunov function in

Eq. (16) and using the definitions of r and ¤r in Eq. (12) and Eq. (14), respectively, and the

weight update law in Eq. (15), stability in a compact set about the origin can be shown [31].

The full proof is shown in the appendix, demonstrating that the Lyapunov function is UUB

in both ‖r‖ and
Θ̃ and thus showing Lyapunov stability of the proposed SNNARCmethod.

This completes the formulation of the first neural network control strategy.

3.2. MSO FORMULATION

The second method, originally developed for estimating unmodeled dynamics [32–

34], utilizes a Modified State Observer (MSO) and an input-output feedback linearization

controller. First the dynamics in Eq. (10) are reduced to a single vector system as the

dynamics that are estimated occur in the angular velocity states. The system is rewritten as

a one-vector state system as

¤x = Fx + gxu (17)
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where ¤x = ¤x2, or the derivative of the angular rates, from the previous formulation. For this

system, an observer can be designed as

¤̂x = F̂x + gxu +  2 (x − x̂) (18)

where x̂ is the estimated state and  2 is some gain matrix. As with with SNNARC, F̂x

can be approximated by a neural network. A single layer neural network, Eq. (8), has been

used in the past to learn and estimate the nonlinear dynamics for the observer. The state,

Eq. (17), and observer, Eq. (18), are rewritten in terms of observer error, e0 = x − x̂, such

that the observer error dynamics are given as

¤e0 = − 2e0 + ,̃)q (z) + Y (19)

where q (z) is the basis vector and ,̃ is the error between the true weights and estimated

weights such that ,̃ = , − ,̂ . The neural network weight update law is given as

¤̂, = Γq (z) e)0 − ^ ‖e0‖ Γ,̂ (20)

where Γ is the adaptation rate and ^ is the modification factor, which bound the weights and

provides robustness. The stability of the system in Eq. (19) can be shown with the candidate

Lyapunov function

! =
1
2

e)0e0 +
1
2
CA

{
,̃)Γ−1,̃

}
(21)

where CA {} is the trace operator. By taking the time derivative of the Lyapunov function

in Eq. (21) and using the definitions of e0, ¤e0 in Eq. (19), and the weight update law in

Eq. (20), stability in a compact set about the origin can be shown [31]. The proof is shown

in the appendix, demonstrating that the Lyapunov function is UUB in both ‖e0‖ and
,̃

and thus shows Lyapunov stability of the observer in the proposed MSO method.
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This formulation of the observer not only provides a state estimate, but also is able

to estimate the nonlinear dynamics driving the system. It should also be noted that this

formulation is independent of the controller design; estimation can occur with any controller

paradigm. As such, it can be enabled before control is even applied to the system.

Once the nonlinear dynamics, F̂x, are estimated by the neural network, an input-

output feedback linearization controller given by

u =
1
gx

(
−F̂x + f3 −K?e1 −K3e2

)
(22)

can be applied to the two-vector system in Eq. (11) such that the closed-loop system

dynamics become

¤e1 = e2

¤e2 = −K?e1 −K3e2 + ,̃)q (z) + Y
→ ¤e = ��! e + 3

where ��! =


0 1

−K? −K3

 and 3 =


0

,̃)q (z) + Y


(23)

where 3 is bounded by ‖3‖ ≤ ‖3< ‖. By using the candidate Lyapunov function

! =
1
2

e)%e (24)

and taking its time derivative using the definition of ¤e in Eq. (23) and where % satisfies

the equation �)% + %� = −&, stability in a compact set about the origin can be shown if

‖e‖ ≥ 2_<0G (%)3<
_<8= (&) . The proof is shown in the appendix, demonstrating that the Lyapunov

functions in Eq. (21) and Eq. (24) are UUB in ‖e‖, ‖e0‖, and
,̃ and thus shows Lyapunov

stability of the proposedMSOmethod. This completes the formulation of the second neural

network control strategy.
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4. WASP IMPLEMENTATION

The initial verification and validation of the pointing system was performed using

high fidelity simulations through software-in-the-loop (SWIL) testing. The WASP system

was simulated using NASA’s high fidelity Portable Object Simulation (PortOSim) flight-

control simulation framework. The framework is able to interface with the flight software

and provides data to the software as if in flight. PortOSim uses JPL ephemeris models

in conjunction with custom models for the individual sensors and actuators aboard WASP,

which introduces noise to the sensor measurements and actuator commands. The SWIL

simulation is performed through the ground support equipment (GSE) and software, creating

an environment similar to flight. During flight operations, once the HAB system andWASP

is released and begins ascending, ground operators are on standby until the system reaches

a float altitude above 100,000 ft. Once WASP is at or near float, mission operations begin

such as uncaging WASP, initiating an inertial hold, and finally target acquisition for science

operations. In SWIL testing, the simulation begins at float conditions with the WASP

system uncaged and in an inertial hold, leaving the user to begin mission operations starting

at target acquisition. The system defaults to using the heritage PID control system for its

initial inertial hold.

The SNNARC andMSO algorithmswere written into two separate controller classes

within the C++ flight software. The GSE allows the user to select the desired control

system, allowing quick switching between the various controllers. Two cases were tested

in the SWIL environment in preparation for the PICTURE-C mission. The simulation

environment had the WASP platform track one of the inertial science targets, focusing on

pointing performance and stability. A nominal case was run with the assumed WASP and

telescope inertia values and disturbance environment anticipated for themission. The inertia

values were assumed to be �1 = 92, �2 = 572, and �3 = 554 in slug-ft2, corresponding

to roll, pitch, and yaw axes, respectively. The second case applied various changes to the

disturbance environment such as center-of-gravity (CG) misalignment and bearing friction
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noise. Each controller was tuned for sufficient performance in the nominal case and then

tuning was held constant. A comparison between PID, SNNARC, and MSO performance

and stability was performed and is presented.

4.1. PID SETUP

The heritage PID system was tuned until the desired performance for the Picture-

C mission was achieved. It is desired that pointing remain sub-arcsecond and that the

bandwidth of the controller is set sufficiently low so as to not interfere with the science

optics control systems, which operate at high bandwidths. The WASP platform bandwidth

is approximated as �F = l=
2c where the bandwidth is given in the frequency space (�I). By

default, the typical bandwidth is set to �F = 0.4 �I and the damping ratio is set to Z = 0.9.

The final gains for all the parameters are given as approximately  ? = 14200,  3 = 5630,

and  8 = 12700.

4.2. SNNARC SETUP

The SNNARC algorithm was initialized in the flight software as follows. The inputs

into the filtered tracking error, r, are the pitch, \4V, and yaw, \4W, pointing errors and the

inertial angular velocities of those channels, lV and lW, respectively. The basis vector,

q (z), was selected as q (z) =
[
\4V \4W lU lV lW �V �W

])
where U corresponds

to the roll channel, V corresponds to the pitch channel, W corresponds to the yaw channel, and

�V,W are the gimbal angles within the motor pitch/yaw hubs. The neural network weights

for ,̂ and +̂ were initialized as null matrices. While the input and output dimensions of the

weights are fixed, a two-layer neural network allows for an infinite number of hidden nodes.

For this application, it was found that 40 hidden nodes gave sufficient performance without

significantly affecting the CPU performance. The sigmoid activation function was chosen,

where f(G) = 1
1+4−G .
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Initial gain tuning of  E and _ were completed with the neural network portion of

the controller disabled and by looking at the relationship with a PD controller. By using

the gain tuning algorithms defined in Eq. (7) and selecting the design parameter U = 0, a

PD control system is given where  ? =
l2
=

�−1
8

and  3 = 2Zl=
�−1
8

. The relationship between  E/_

and  ?/ 3 is given by �−1
8
 ? =  E_ and �−1

8
 3 =  E + _, where it can be shown that a real

solution for  E and _ only exists for Z ≥ 1. The relationship is given by

 E = l=Z +
√
Z2 − 1 and _ = l=Z −

√
Z2 − 1 (25)

where  E = _ for Z = 1. This methodology was chosen for a more intuitive approach to

gain tuning, similar to the heritage system, such that tuning can be understood in terms of

system bandwidth. Because the damping ratio is typically near being critically damped, the

tuning for when Z < 1 is given by  E = _ = l=Z , which gives a close approximation for

the equivalent  ?/ 3 values. Using this methodology without the neural network enabled,

the selected  E and _ gains give the controller a stable response similar to a PD controller

where there is a bias in the pointing error due to disturbances. The neural network was

then enabled and tuned until sufficient performance was achieved. Final tuning gains for all

the parameters were determined as  E = 5.0265, _ = 5.0265, " = 1.2, # = 1.2, ^ = 0.1,

Θ< = 0.01, and  I = 0.001, where the equivalent PD gains are  ? = 14000 and  3 = 2760.

4.3. MSO SETUP

Whereas the SNNARC algorithm is limited to estimation in its control channels only,

theMSO algorithm estimation occurs as an observer, and, as such, can measure the full state

of the system. This has potential advantages where dynamics in the roll channel may affect

the dynamics in the others. The observer states are given as x̂ = [l̂U l̂V l̂W]) , which
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correspond to the estimated inertial roll, pitch, and yaw angular rates, respectively. When

the MSO algorithm is first enabled, the estimated states are set to the current measured state

vector x = [lU lV lW]) .

The MSO algorithm is setup in a similar manner to SNNARC so that a fair compar-

ison can be made. The same basis vector, q (z) =
[
\4V \4W lU lV lW �V �W

])
, is

used and the neural network weights, ,̂ , are initialized as null. Because theMSO algorithm

uses only a single neural network, the size of the weight matrix is fixed by the input/output

size and no hidden nodes are present. For tuning of the linear controller gains, as with

SNNARC, the design parameter in Eq. (7) is set as U = 0 and gains are tuned using l=

and Z such that  ? =
l2
=

�−1
8

and  3 = 2Zl=
�−1
8

in Eq. (22). Once the PD performance is stable,

the neural network is enabled and tuned until sufficient performance was achieved. Final

tuning gains for all the parameters are given as  ? = 14000,  3 = 2760,  2 = 10, Γ = 120,

and f = 0.001.

5. SIMULATION RESULTS

With the controller tuning configured, the parameters were input into a configuration

file that gets loaded in the flight software on startup. The flight software interfaces with

PortOSim, creating a flight-like simulation environment. The simulation was allowed to

run a few minutes to permit settling of any initial transients in the system. The three control

methods were then tested for approximately ten minutes for three cases including nominal

environment, elevated disturbance environment, and severe disturbance environment. The

elevated disturbance environment moves the center of mass of the centerbody relative to the

gimbal center such that there is a 0.25 ft-lbs imbalance along each axis while for the severe

disturbance environment the imbalance is 0.5 ft-lbs along each axis. Disturbances in the

shaft rotation motors cause a sinusoidal disturbance in pointing, while disturbances in the

upper atmosphere winds increase the pendulous motion imparted to the platform from the

high-altitude balloon dynamics. The models and dynamics are internal to the PortOSim
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environment, with tuning of the disturbance magnitude being controllable. As compared to

the nominal configuration, the elevated disturbance environment doubles the magnitude of

the disturbances, while the severe disturbance environment increase the disturbance by an

order of magnitude.

5.1. PID RESULTS

For the nominal configuration, the PID control system performed well. Over a ten

minute period of pointing, the control system was able to maintain an RMS error value of

0.254 arcseconds in pitch (\4V) and 0.266 arcseconds in yaw (\4W), as seen in Figure 1. This

performance is on a par with previous SWIL testing of other missions.

With the system baselined for the nominal case, the two disturbance cases were run.

In the elevated disturbance case, the RMS error value increased to 0.387 arcseconds in pitch

and 0.402 arcseconds in yaw, while the severe disturbance environment increased the RMS

error values to 0.725 arcseconds in pitch and 0.735 arcseconds in yaw, as seen in Figure 2.

Figure 1. The performance of the PID control system for the nominal case is demonstrated
giving an RMS error value of 0.254 arcseconds in pitch (\4V) and 0.266 arcseconds in yaw
(\4W).
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While the elevated disturbance environment only resulted in a marginal degradation

of performance, the loss in performance for the severe case was significant, where the

pointing exceed the one arcsecond pointing boundary. The science requirements for this

mission require that pointing remains within one arcsecond, indicating that the selected

control tuning is insufficient for these severe conditions. While the flight software allows

for modifying controller gains in real time, it is desired that the system can remain within

mission requirements without user intervention.

(a) (b)

Figure 2. The performance of the PID control system under elevated disturbance (a) has
an RMS error value of 0.387 arcseconds in pitch (\4V) and 0.402 arcseconds in yaw (\4W),
while for the severe disturbance (b) an RMS error value of 0.725 arcseconds in pitch (\4V)
and 0.735 arcseconds in yaw (\4W).

5.2. SNNARC RESULTS

In the nominal configuration, the SNNARC control system performed marginally

better compared to the PID system. Over a ten minute period of pointing, the control system

was able to maintain an RMS error value of 0.198 arcseconds in pitch and 0.212 arcseconds

in yaw, as seen in Figure 3. This is about a 0.05 arcsecond improvement compared to the PID
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Figure 3. The performance of the SNNARC control system for the nominal case is demon-
strated giving an RMS error value of 0.198 arcseconds in pitch (\4V) and 0.212 arcseconds
in yaw (\4W), showing a slight improvement as compared to the heritage PID control system.

(a) (b)

Figure 4. The performance of the SNNARC control system under elevated disturbance (a)
has an RMS error value of 0.200 arcseconds in pitch (\4V) and 0.211 arcseconds in yaw
(\4W), while for the severe disturbance (b) an RMS error value of 0.332 arcseconds in pitch
(\4V) and 0.348 arcseconds in yaw (\4W).
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control system. In the elevated disturbance case, the RMS error value was 0.200 arcseconds

in pitch and 0.211 arcseconds in yaw, while for the severe disturbance environment the

RMSerror values increased to 0.332 arcseconds in pitch and 0.348 arcseconds in yaw, as

seen in Figure 4. It can be seen that for the elevated disturbance case, there was almost

no change in the pointing performance from the SNNARC algorithm. Even with the

severe case, there was only a marginal degradation of performance, with the pointing still

outperforming the PID system in the elevated disturbance case.

5.3. MSO RESULTS

In the nominal configuration, the MSO control system performed slightly better

compared to the SNNARC system. Over a ten minute period of pointing, the control system

was able to maintain an RMS error value of 0.182 arcseconds in pitch and 0.200 arcseconds

in yaw, as seen in Figure 5.

Figure 5. The performance of the MSO control system for the nominal case is demonstrated
giving an RMS error value of 0.182 arcseconds in pitch (\4V) and 0.200 arcseconds in yaw
(\4W), showing a slight improvement as compared to the heritage PID control system and
the SNNARC system.
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In the elevated disturbance case, the RMS error value actually improved to 0.162

arcseconds in pitch and 0.170 arcseconds in yaw, while for the severe disturbance environ-

ment the RMS error values remained near the nominal case at 0.201 arcseconds in pitch and

0.232 arcseconds in yaw, as seen in Figure 6. It can be seen that for the elevated disturbance

case, there was actually a slight improvement in pointing. With the severe case, there was

almost no degradation of pointing performance as compared to nominal, outperforming

both the PID and SNNARC algorithms.

(a) (b)

Figure 6. The performance of the MSO control system under elevated disturbance (a) has
an RMS error value of 0.162 arcseconds in pitch (\4V) and 0.170 arcseconds in yaw (\4W),
while for the severe disturbance (b) an RMS error value of 0.201 arcseconds in pitch (\4V)
and 0.232 arcseconds in yaw (\4W).

5.4. RESULTS DISCUSSION

Under nominal conditions, all control systems performed as expected with only

marginal improvements in the performance of the SNNARC and MSO control systems

as compared to PID. Under these conditions, all three systems converged to steady state

quickly, with no significant difference in settling times. This in itself gives confidence in

the application of the SNNARC and MSO methodologies, indicating that they could, at

a minimum, match the performance of the heritage control system. The expected benefit
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of the two methodologies, however, lies in their ability to compensate for unpredicted

nonlinear dynamics. This capability is clearly seen when the disturbance environment is

changed from the nominal. While the performance of the PID system began to degrade,

both SNNARC and MSO maintained similar performance under elevated disturbances.

The MSO algorithm actually produced a slight improvement in performance, which is

likely related to increased measured dynamics leading to an improvement in the nonlinear

estimation. As the disturbance environment continued to increase, the PID performance

continued to degrade until the performance was no longer adequate. The SNNARC control

system performance had only a marginal degradation of performance at the maximum

disturbance tested, whereas the MSO algorithm had almost no degradation. In fact, the

performance of the MSO algorithm at maximum disturbance exceed that of the PID system

at nominal. As in the nominal case, it was found that all three control systems had similar

settling times, reaching steady state values in only a few seconds.

The difference in performance between the three control systems is readily apparent

by examining an empirical cumulative distribution function (CDF), as seen in Figure 7 for the

pitch channel (yaw exhibits similar behavior). The empirical CDF, � (G), is the proportion

of the values in G less than or equal to @, where G is the pointing error in arcseconds and @

is a value in G. It can be seen that the CDF is nearly constant for the MSO case and changes

minimally for SNNARC as the disturbance environment is increased. However, the CDF

moves significantly to the right for the PID system, illustrating the degradation in pointing

performance.

While it is understood that the neural network learning leads to significant improve-

ments in pointing as compared to the PID system, the differences between the two neural

network methods are a little more nuanced. The MSO method is at a slight advantage as its

estimation occurs, in essence, outside the control space. In fact, the MSOmethod is looking

at all three angular velocity channels and estimating their dynamics, whereas the SNNARC

method can only estimate the disturbances in the control channels. Along with this extra
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Figure 7. The empirical cumulative distribution function shows that MSO and SNNARC
have minimal changes in pitch pointing performance, whereas the PID control system
degrades quickly.

channel, the estimation through an observer produces a filtering effect as the tracking error

does not drive the learning. Together, this has given the MSO method a slight advantage in

pointing performance as compared to SNNARC.

6. CONCLUSION

This research has implemented two new control methodologies to the Wallops Arc-

Second Pointer system for High Altitude Balloon platforms. The SNNARC methodology

uses a filtered tracking error and a two-layer neural network to estimate nonlinear dynamics

within the control space. The MSO methodology uses an observer and a one-layer neural
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network to estimate the nonlinear dynamics outside the control space and then used input-

output feedback linearization to control the system. Lyapunov-based proofs show that both

control system were ultimately upper bounded. The two new control systems were written

into separate C++ classes and implemented into the flight software. Software-in-the-loop

testing was conducted using the NASA PortOSim simulation environment, which provides

a flight-like dynamics environment. The heritage PID control system and the two new

methodologies were tested for a nominal case and two disturbance cases. It was found that

while all three performed similarly for the nominal case, the two new methodologies were

able tomaintain their performancewhile the PID systemperformance degraded significantly.

This research has shown that the addition of a neural network to a gimbal controlled inertial

pointing system suspended from a high-altitude balloon platform can provide improved

performance as compared to traditional heritage pointing systems.

With the theoretical framework formulated, flight software written, and software-in-

the-loop testing completed, future work revolves around hardware testing in preparation for

science operations of the the second Picture-C mission. The mission is expected to fly in the

Fall 2021 BPO balloon campaign from Fort Sumner, New Mexico. Once launched, the two

new control methodologies will be tested against the heritage PID system to confirm that

increased pointing performance is achieved while performing science mission operations.

APPENDIX

1. SNNARC LYAPUNOV PROOF

Before F̃x is defined, additional parameters are first defined. Let

f̃ = f

(
+)q (z)

)
− f

(
+̂)q (z)

)
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and take the Taylor series expansion of f about +̂)q (z).

f

(
+)q (z)

)
= f

(
+̂)q (z)

)
+ f′

(
+̂)q (z)

) (
+)q (z) − +̂)q (z)

)
+ H.O.T.

f

(
+)q (z)

)
= f

(
+̂)q (z)

)
+ f′

(
+̂)q (z)

) (
+̃)q (z)

)
+ H.O.T.

Then

f̃ = f

(
+̂)q (z)

)
+ f′

(
+̂)q (z)

) (
+̃)q (z)

)
+ H.O.T. − f

(
+̂)q (z)

)
f̃ = f′

(
+̂)q (z)

) (
+̃)q (z)

)
+ H.O.T..

For simplicity, define

f = f

(
+)q (z)

)
and f̂ = f

(
+̂)q (z)

)
and f̂′ = f′

(
+̂)q (z)

)
such that

f̃ = f̂′+̃)q (z) + H.O.T.

We can now take the filtered tracking error from Eq. (14), temporarily remove uA ,

and apply the definitions above such that the closed-loop filtered tracking error now becomes

¤r = − Er+,)f

(
+)q (z)

)
−,̂)f

(
+̂)q (z)

)
+ n → ¤r = − Er+,)f−,̂) f̂+ n

and to this add and subtract,) f̂

¤r = − Er +,)f − ,̂) f̂ +,) f̂ −,) f̂ + n

¤r = − Er +,) (f − f̂) +
(
,) − ,̂)

)
f̂ + n

¤r = − Er +,) f̃ + ,̃) f̂ + n
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and then add and subtract ,̂) f̃

¤r = − Er +,) f̃ + ,̃) f̂ + ,̂) f̃ − ,̂) f̃ + n

¤r = − Er +
(
,) − ,̂)

)
f̃ + ,̃) f̂ + ,̂) f̃ + n

¤r = − Er + ,̃) f̃ + ,̃) f̂ + ,̂) f̃ + n

¤r = − Er + ,̃) f̂ + ,̃) f̃ + ,̂) f̃ + n

and then substitute in the definition of f̃

¤r = − Er + ,̃) f̂ + ,̃)
(
f̂′+̃)q (z) + H.O.T.

)
+ ,̂)

(
f̂′+̃)q (z) + H.O.T.

)
+ n

¤r = − Er + ,̃) f̂ + ,̃) f̂′+̃)q (z) + ,̃)H.O.T. + ,̂) f̂′+̃)q (z) + ,̂)H.O.T. + n

¤r = − Er + ,̃) f̂ + ,̃) f̂′+̃)q (z) + ,̂) f̂′+̃)q (z) +
(
,̃) + ,̂)

)
H.O.T. + n

¤r = − Er + ,̃) f̂ + ,̃) f̂′+̃)q (z) + ,̂) f̂′+̃)q (z) +
(
,) − ,̂) + ,̂)

)
H.O.T. + n

¤r = − Er + ,̃) f̂ + ,̃) f̂′+̃)q (z) + ,̂) f̂′+̃)q (z) +,)H.O.T. + n

¤r = − Er + ,̃) f̂ + ,̃) f̂′
(
+)q (z) − +̂)q (z)

)
+ ,̂) f̂′+̃)q (z) +,)H.O.T. + n

¤r = − Er + ,̃) f̂ + ,̃) f̂′+)q (z) − ,̃) f̂′+̂)q (z) + ,̂) f̂′+̃)q (z) +,)H.O.T. + n

¤r = − Er + ,̃)
(
f̂ − f̂′+̂)q (z)

)
+ ,̃) f̂′+)q (z) + ,̂) f̂′+̃)q (z) +,)H.O.T. + n

¤r = − Er + ,̃)
(
f̂ − f̂′+̂)q (z)

)
+ ,̂) f̂′+̃)q (z) +

(
,̃) f̂′+)q (z) +,)H.O.T. + n

)
¤r = − Er + ,̃)

(
f̂ − f̂′+̂)q (z)

)
+ ,̂) f̂′+̃)q (z) + l

where l = ,̃) f̂′+)q (z) +,)H.O.T. + n

¤r = − Er + F̃x where F̃x = ,̃
)

(
f̂ − f̂′+̂)q (z)

)
+ ,̂) f̂′+̃)q (z) + l

and where it can be shown [22] that the higher order terms in l are bounded by

‖l‖ ≤ �0 + �1
Θ̃ + �2 ‖r‖

Θ̃ .
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Replace back the robustifying portion of the control, uA , such that the final closed-

loop system is given by

¤r = − Er + ,̃)
(
f̂ − f̂′+̂)q (z)

)
+ ,̂) f̂′+̃)q (z) + l + DA

Byusing this closed-loopfiltered tracking error and theweight update law inEq. (15),

take the derivative of the Lyapunov function in Eq. (16) piecewise for simplicity where

! = !1 + !2 + !3

!1 =
1
2

r)r

!2 =
1
2
CA

{
,̃)"−1,̃

}
!3 =

1
2
CA

{
+̃)#−1+̃

}
,

therefore

¤!1 =
1
2

(
¤r)r + r) ¤r

)
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1
2
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F̃
)

x r + r) F̃x

)
¤!1 = −r) Er + CA
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1
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(
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)
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)}
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{
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}
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+ CA
{
r)

[
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and because CA {��} = CA {��}

¤!1 = −r) Er + CA
{
,̃)

(
f̂ − f̂′+̂)q (z)

)
r)

}
+ CA

{
,̂) f̂′+̃)q (z) r)

}
+ r) (l + DA)
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then
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}
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where
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+̃ 0

0 ,̃

 and Θ̂ =
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0 ,̂

 .
Because Θ̂ = Θ − Θ̃, the trace component can be rewritten as
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and using the properties of the CA {} operator and the bound ‖Θ‖ < Θ< it can be shown that

CA
{
Θ̃) Θ̂

}
≤

Θ̃Θ< − Θ̃2

CA
{
Θ̃) Θ̂

}
≤

Θ̃ (
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Θ̃)
and using the property r)r = ‖r‖2 gives

¤! ≤ − E ‖r‖2 + ^ ‖r‖
Θ̃ (

Θ< −
Θ̃) + r) (l + DA) .

The robustifying control and bound can now be inserted on the disturbance, l, such that
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^

2
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− �0 −
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}
where �3 = Θ< +

�1
^

¤! ≤ − ‖r‖
{
 E ‖r‖ + ^

(Θ̃ − �3
2

)2
− �1

}
where �1 = �0 +

^

4
�2

3

. Stability is finally shown in a compact set about the origin if either ‖r‖ > XA or
Θ̃ > XΘ,

which are given as

XA =
�1
 E

and XΘ =
�3
2
+

√
�1
^
.

This demonstrates that the Lyapunov function is Ultimately Upper Bounded (UUB)

in both ‖r‖ and
Θ̃ and thus shows Lyapunov stability. This completes the proof.

2. MSO LYAPUNOV PROOF - PART ONE

By using the weight update law in Eq. (20) and the closed-loop observer error in

Eq. (19), the derivative of the Lyapunov function in Eq. (21) is taken piecewise for simplicity

where

! = !1 + !2

!1 =
1
2

e)0e0

!2 =
1
2
CA

{
,̃)Γ−1,̃

}
,
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therefore

¤!1 =
1
2

(
¤e)0e0 + e)0 ¤e0

)
→ ¤!1 = −e)0 2e0 +

1
2
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F̃
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x e0 + e)0 F̃x
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+1

2
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x e0 + e)0 F̃x

)}
¤!1 = −e)0 2e0 + CA
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e)0 F̃x

}
¤!1 = −e)0 2e0 + CA

{
e)0

[
,̃)q (z) + Y

]}
and because CA {��} = CA {��}

¤!1 = −e)0 2e0 + CA
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,̃)q (z) e)0

}
+ e)0Y

then
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}
¤!2 = −CA
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,̃),̂
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so that combining gives
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Because ,̂ = , − ,̃ , the trace component can be rewritten as

CA
{
,̃)

(
, − ,̃

)}
→ CA

{
,̃),

}
− CA

{
,̃),̃

}
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and using the properties of the CA {} operator and the bound ‖, ‖ < ,< gives

CA
{
,̃),̂

}
≤

,̃,< −
,̃2

CA
{
,̃),̂

}
≤

,̃ (
,< −

,̃)
and using the property e)0e0 = ‖e‖20 and the bound of the approximation error Y ≤ Y< gives
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,< −
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by removing − ‖e‖0 and completing the square
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4
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Stability is finally shown in a compact set about the origin if either ‖e0‖ > X40 or
,̃ > X, ,

which are given as

X40 =
�1
 2

and X, =
1
2
,< +

√
�1
^
.

This demonstrates that the Lyapunov function is Ultimately Upper Bounded (UUB)

in both ‖e0‖ and
,̃ and thus shows Lyapunov stability. This completes the proof.
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3. MSO LYAPUNOV PROOF - PART TWO

By using the closed-loop observer error in Eq. (23), the derivative of the Lyapunov

function in Eq. (24) is taken where

¤!1 =
1
2

(
¤e)e + e) ¤e

)
→ ¤!1 =

1
2

e)
(
�)% + %�

)
e + e)%3

¤!1 = −
1
2

e)&e + e)%3

¤!1 ≤ −
1
2
_<8= (&) ‖e‖2 + ‖e‖ _<0G (%)3<

¤!1 ≤ − ‖e‖
(
1
2
_<8= (&) ‖e‖ + _<0G (%)3<

)
where stability is shown in a compact set about the origin if ‖e‖ > X4 , which is given as

X4 = 23<
_<0G (%)
_<8= (&)

.

This demonstrates that the Lyapunov function is Ultimately Upper Bounded (UUB)

in ‖e‖ and thus shows Lyapunov stability. This completes the proof.
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II. NEURAL NETWORK ATTITUDE CONTROLLER HARDWARE TESTING
FOR THE WALLOPS ARC-SECOND POINTER

Pavel Galchenko3 and Henry Pernicka4
Missouri University of Science and Technology, Rolla, MO, 65409-0050

ABSTRACT

This research implements, tunes, and tests two neural-network-basedmethodologies

to control the pointing performance and stability of the Wallops Arc-Second Pointer, a

pointing system suspended from a high altitude balloon platform. The first method uses

filtered tracking error and a two-layer neural network to perform nonlinear estimation in

the control space for the pointing control system. The second method uses an observer

and a one-layer neural network to perform nonlinear estimation outside the controller, and

input-output feedback linearization for the pointing control system. The two neural network

methods are tested against the heritage proportional-integral-derivative control system over

a threemonth testing campaign on flight hardware in preparation for a science flight. Results

show that the two new methodologies can provide improved pointing performance over the

heritage control system.

NOMENCLATURE

x1 =
[
\U \V \W

]T = roll, pitch, and yaw rotations [rad]

x2 =
[
lU lV lW

]T = roll, pitch, and yaw angular velocities [rad/s]

u = [ DU DV DW ]T = roll, pitch, and yaw control torques [ft-lb]

3Ph.D. Candidate, Department of Mechanical and Aerospace Engineering, Missouri University of Science
and Technology, 400 W 13th St, Rolla, MO 65409-0050.

4Curators’ Distinguished Teaching Professor of Aerospace Engineering, Department of Mechanical and
Aerospace Engineering, Missouri University of Science and Technology, 400 W 13th St, Rolla, MO 65409-
0050.
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fx(x2) = known system dynamics

gx = control mapping to dynamics

%(x) = known disturbance dynamics

� = system inertia matrix [slug-ft2]

x3 = [ x31 x32 ]) = desired orientation [rad] and angular rates [rad/s]

f3 = desired dynamics

e = [ e1 e2 ]) = error states

�, � = known linear dynamics matrices

 = linear control gain matrix

��! = closed-loop dynamics

 ? = proportional [ft-lb/rad] gain

 8 = integral [ft-lb/(rad-sec)] gain

 3 = derivative [ft-lb/(rad/sec)] gains

l= = controller natural frequency [rad/s]

Z = damping ratio

U = tuning parameter

Fx, F̂x = true and estimated dynamics

�(x) = unmodeled perturbations/dynamics

f, f′ = activation function and its derivative

q (z) = basis vector

�V, �W = pitch/yaw angles from gimbal hubs (rad)

Y = bounded neural network estimation error

,) , +) , ,̂) , +̂) = true and estimated neural network weighting matrices

,̃, +̃ = neural network weight matrices estimation error

r = filtered tracking error

_ = gain coefficient

 E,  I = controller gain matrices
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uA = robustifying control

F̃x = dynamics estimation error

", # = neural network adaptation gain matrices

^ = design parameter

! = Lyapunov function

CA {} = trace operator

 2 = linear observer gain matrix

e0 = observer estimation error

Γ = observer neural network adaptation rate

�F = system bandwidth (Hz)

1. INTRODUCTION

The Wallops Arc-Second Pointer (WASP) is a pointing system platform, devel-

oped by National Aeronautics and Space Administration’s (NASA) Wallops Flight Facility

(WFF), part of the Goddard Space Flight Center (GSFC), for high-altitude balloon missions

operated by the Balloon Program Office (BPO) [1–3]. High-altitude balloons provide sci-

entists with a platform to conduct novel science in the Earth’s upper atmosphere, with float

altitudes typically above 100,000 ft [4]. This offers scientists a space-like environment,

being above 99.5% of the Earth’s atmosphere (by mass), while providing significant reduc-

tions in cost compared to traditional spaceflight missions. The WASP platform is capable

of accurately pointing scientific instruments with sub arcsecond accuracy and stability, en-

abling scientific observations for multiple science disciplines such as Heliophysics, Earth

Sciences, Astrophysics, and Planetary Sciences.

The WASP platform completed two successful test flights between 2011 and 2012

and began science operations in 2013. Over the ten-plus years of operations of the WASP

platform, the team has conducted flights for seven science missions and has continuously
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demonstrated performance in the arcsecond to sub-arcsecond regime [5–10]. During the

2019 campaign, theWASP platformwas able tomaintain a 0.286 arcsecond total root-mean-

square (RMS) error over a four hour period of solar observations for the BITSE mission,

and a 0.455 arcsecond total RMS error for PICTURE-C during a two hour observation of U

Lyr (Vega), the brightest star in the Lyra constellation, as seen in Figure 1. To significantly

improve the WASP pointing performance, hardware modifications are required to increase

sensing precision and actuator disturbance reduction (such as lowering the high frequency

vibrations generated by the shaft rotation motors). Another viable option is to determine if

pointing performance could be improved through software modifications such as improved

filtering and/or different control algorithms. During the 2019 flight campaign, the WASP

system would occasionally experience brief excursions exceeding 1.0 arcseconds and some

overall variance in yaw pointing performance throughout the mission. While excursions

were quickly captured and brought back toward the average RMS error, these excursions

could negatively impact the performance of certain science instruments such as imaging

instruments that need lengthy observation periods. This work builds on previous work

suggesting to augment the WASP platform with the addition of a neural network control

system, which can be activated in lieu of the traditional proportional-integral-derivative

(PID) system. Specifically, two neural network algorithms have been implemented into the

WASP flight software and hardware testing was completed during a three-month testing

campaign in preparation for a second science flight of the PICTURE-C mission.

1.1. WASP DESIGN AND HISTORY

The WASP system is built around an external gondola structure and is capable

of housing various science instruments as a centerbody. The gondola is suspended from

a rotator, which provides initial targeting, coarse azimuth tracking, and stabilization for

the external gondola. The entire system is suspended from the high-altitude balloon with

approximately 100 meters of suspension rigging (cable ladder and parachute) between the
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(a) BITSE In-Flight Performance (b) PICTURE-C In-Flight Performance

Figure 1. The performance of theWASP pointing system is presented for the BITSE (a) and
PICTURE-C (b) missions, where sub-arcsecond pointing is achieved for long observation
periods.

rotator and the balloon. TheWASPgondola and the suspended PICTURE-C sciencemission

is shown in Figure 2. The outer gimbal frame is fixed to the external gondola structure and

is connected to the inner gimbal frame with a pitch motor and resolver hub pair to provide

elevation control. The inner gimbal frame connects to the science centerbody structure

through a yaw motor and resolver hub pair and provides fine azimuth control. This design

is similar to a gimbaled inertial platform, with pitch-yaw articulated axes. To minimize

cross-coupling terms in the dynamics, the rotator provides coarse azimuth pointing of

the external gondola such that the centerbody is within 1.0 degrees of the inner gimbal

frame, minimizing the disturbances experienced in the fine yaw control channel. This also

provides full 360 degree azimuth range for the science body, providing a large range of

science targets. The motor hubs include large diameter brushless direct-current (BLDC)

torque motors to drive the system and utilize rotating shafts to eliminate static friction in

the bearings. The shafts are counterrotated in the hub pairs to minimize residual kinetic

friction. The attitude is determined by integrating angular rates provided by a Northrop

Grumman LN251, a fiber-optic gyro-based inertial measurement unit. Absolute pointing

information is provided from a custom star tracker camera developed at WFF and a six-state
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extended Kalman filter is used to provide quaternion state data to the control system. A

modified PID control law is used to compute control torques to the pitch/yaw motor hubs

to provide sub-arcsecond pointing for the centerbody.

Figure 2. The centerbody (science instrument) is attached to the inner (yaw) and outer
(pitch) gimbal frames such that the pitch-yaw motor controllers provide fine elevation and
azimuth pointing, while the rotator provides coarse azimuth pointing of the external gondola
structure and keeps the centerbody within 1.0 degrees of the inner gimbal frame.
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1.2. SCHOLARLY CONTRIBUTIONS

This study offers several contributions to the nonlinear control field as relates to

gimbaled pointing systems:

1. SNNARC, a two-layer neural network controller, is implemented, tuned, and tested

on the flight processor and hardware in a flight-like environment for the gimbaled

control system on the WASP platform.

2. MSO, a one-layer neural network observer and an input-output feedback linearization

controller, is implemented, tuned, and tested on the flight processor and hardware in

a flight-like environment for the gimbaled control system on the WASP platform.

3. Lessons learned in the implementation and tuning of the two neural network methods

on flight hardware are presented and documented for further development and for use

with future WASP (and similar) platform science mission flights.

4. The results from the two neural network methods show that improved pointing per-

formance is achieved, as compared to the heritage control system, for the gimbaled

control system on the WASP platform.

1.3. ORGANIZATION

This paper is organized as follows. In Section 2, a brief background on the dynamics

and control theory is presented, as well as a description of the heritage controller design

implemented for the WASP system. Section 3 introduces neural networks and the two

neural network control methodologies tested on the WASP hardware. Section 4 discusses

the tuning and debugging process of implementing the neural network control algorithms

with the flight software and hardware. Section 5 presents final results from hardware testing
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in a flight-like environment, as well as some edge case testing. Section 6 presents future

work, including a brief discussion of implementing the neural networks for the next WASP

mission. Lastly, Section 7 gives an overview of the results and makes concluding remarks.

2. BACKGROUND

While a variety of models exist to describe the dynamics of two-axis gimbal sys-

tems [11–14], the typical unconstrained second-order three degrees of freedom attitude

dynamics model [15] is presented here using a two-vector state system given as

¤x1 = x2

¤x2 = 5x(x2) + X(x) + 6xu,
(1)

where 5x(x2) = −�−1 [x2×]�x2, where � is the inertia matrix (assumed constant) of the

(rigid) body with respect to the center of mass and in terms of the body-fixed axes, X(x) is

some known disturbance dynamics, 6x maps the controller dynamics to the system, and u

is the applied torque, i.e. the control input. The state vectors, x1 =
[
\U \V \W

]T and

x2 =
[
lU lV lW

]T, are the rotation and angular rate vectors, respectively, of the body

with respect to the inertial frame, where \U, \V, \W are rotations about primary orthogonal

axes and lU, lV, lW are the angular velocities about these respective axes. The control

input is given as u = [ DU DV DW ]T. To simplify the formulation of the dynamics into a

general form, �−1 is embedded into the disturbance dynamics X(x) and the mapping of the

controller dynamics, 6x, in Eq. (1).

This formulation is compatible with the other dynamics models presented in liter-

ature [11–14] with variations in the definitions of 5x(x2) and X(x). Utilizing a pitch-yaw

gimbal and a rotator to keep the centerbody centered in the gimbal frames reduces cross-

coupling terms in the gimbal dynamics, allowing for the more simplified model approach.

Furthermore, due to the large mass and volume of the WASP platform and science instru-
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ments, only approximations of the total system inertia values can be made. Fine balancing

of the centerbody is achieved through the manual addition of ballast masses at various

locations of the structure. To compensate for model inaccuracies and static imbalances,

the heritage system adds integrator action to the control system. The new methodology

introduced in this research uses neural networks to estimate the dynamics while making

no assumptions on the details of 5x(x2) and X(x) and only assumes the dynamics can be

described by the form given in Eq. (1).

2.1. CONTROLLER BASELINE

To develop a control algorithm, the dynamics are rewritten in terms of the error

between the current and desired reference system states, where the desired states, x3 , are

defined as x3 = [ x31 x32 ]) , where x31 is a vector of desired rotations and x32 is a

vector of desired angular rates. The reference system dynamics are given as ¤x31 = x32 and

¤x32 = 53 , where 53 can be a set of desired dynamics for the reference system. Note that for

a regulatory reference system (such as tracking an inertial stellar target for the PICTURE-C

mission), x32 = 0 and 53 = 0. The error states are now defined as e = [ e1 e2 ]) , where

e1 = x1 − x31 and e2 = x2 − x32, such that taking the derivative of the error vectors gives

¤e = [ ¤e1 ¤e2 ]) with

¤e1 = e2

¤e2 = 5x(x) − 53 + X(x) + 6xu,
(2)

defining the error dynamics used for the various controller formulations.

It is known that a linear closed-loop system can be shown to be asymptotically stable

if the closed-loop matrix is Hurwitz [16]. By using input-output feedback linearizaiton [16]

and carefully designing a nonlinear controller in terms of the error dynamics in Eq. (2), it

is possible to make the nonlinear system behave in a linear manner. A controller is chosen

such that u = 1
6x

(
− 5G (x) + 53 − X(x) −K?e1 −K3e2

)
, where K? and K3 are proportional
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and derivative controller gain vectors, respectively, and |6x | > 0. The closed-loop error

dynamics in Eq. (2) are reduced to ¤e = �2; e, where �2; =


0 1

−K? −K3

 , such that the

origin of the unperturbed nonlinear system will be asymptotically stable if �2; is Hurwitz.

This method of nonlinear control is the basis from which the neural network controllers are

designed.

2.2. PID CONTROLLER DESIGN

The heritage control system for the WASP platform uses a PID controller and

assumes that the inertia of the system is diagonal, where �8 is the inertia of specified axis,

decoupling the dynamics of the pitch/yaw channels. The system can then be described

by the plant %(B) = �−1
8
/B2, where by choosing a PID control input, the closed-loop

characteristic equation is given by B3 + [�−1
8
 3]B2 + [�−1

8
 ?]B + [�−1

8
 8], where  ?,  8, and

 3 are proportional, integrator, and derivative gains, respectively. Using the typical (Z, l=)

parametrization and fixing the third pole at −Ul=, the desired closed-loop characteristic

equation is given by B3 + [(2Z + U)l=]B2 + [(2ZU + 1)l2
=]B + [Ul3

=] where l= is the natural

frequency of the system, Z is the damping ratio, and U is a design parameter. The controller

gains can now be selected to match the design characteristic equation with

 ? =
(2ZU + 1)l2

=

�−1
8

 8 =
Ul3

=

�−1
8

 3 =
(2Z + U)l=

�−1
8

(3)

where by fixing the design parameter at U = 1, the values for Z and l= are tuned to give

desired performance characteristics. It should be noted that for U = 0, the gain tuning

becomes that of a proportional-derivative (PD) controller for the same system.
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3. NEURAL NETWORK DESIGN

In formulating the input-output feedback linearization controller, it was assumed

that the model of 5G (x) is "truth" and that X(x) describes all other contributing disturbance

dynamics to the system. As errors are inherent in all models and all disturbances cannot

be accounted for, consideration for unmodeled dynamics must be made. While controlling

nonlinear systems with unmodeled dynamics is an extensively studied field [17–24], this

research focuses on the application of neural networks as they offer some unique advantages

over other adaptive control methods.

The true dynamics can be given as Fx = 5G (x) + X(x) + Δ(x), where 5G (x) and X(x)

are as described in Eq. (1) and Δ(x) is a set of all other unmodeled dynamics. Using

neural networks the true dynamics can be represented by Fx = ,
)q (z) + Y for a one-layer

network and Fx = ,
)f

(
+)q (z)

)
+ Y for a two-layer network, where f is some activation

function, q (z) is the basis vector (a vector of inputs into the neural network), and ,)

and +) are the true weights that give the value of Fx with some bounded approximation

error, Y, through the universal function approximation properties of neural networks [25].

As the true weighting matrices are unknown, the estimated dynamics, F̂x, are given as

F̂x = ,̂
)q (z) for a one-layer network and F̂x = ,̂

)f
(
+̂)q (z)

)
for a two-layer network,

where ,̂) and +̂) are the approximated weights.

The two-vector state systems from Eq. (1) are rewritten as

¤x1 = x2

¤x2 = Fx + 6xu
(4)

and the error dynamics in Eq. (2) as

¤e1 = e2

¤e2 = Fx − 53 + 6xu
(5)
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forming the foundation of the two neural network methodologies studied in this research.

The first method operates in terms of the error dynamics, Eq. (5), and as such the neural

network learning occurs in the control space. The second method introduces an observer

for the state dynamics, Eq. (4), and as such the neural network learning occurs outside the

control space. Both methods can be described by a Lyapunov candidate function and are

shown to be Ultimately Upper Bounded (UUB), demonstrating Lyapunov stability.

3.1. SNNARC FORMULATION

The first method, originally developed for robotic manipulators [25], is the Sub-

arcsecond Neural Network Attitude Reference Controller (SNNARC). The error dynamics

from Eq. (5) are written in terms of filtered tracking error, r, such that r = e2 + _e1 and

¤r = Fx − 53 + _e2 + 6xu, where _ is some positive gain coefficient and r is now a vector of

scalar errors for each control axis. It is now possible to use the estimated dynamics, F̂x, in

the controller design such that

u =
1
6x

(
−F̂x + 53 −  Er − _e2 + uA

)
where uA = − I

(Θ̂ + Θ<)
r (6)

where  E and  I are some positive controller gain matrices, |6x | > 0, and the weighting

matrices are defined asΘ =


+ 0

0 ,

 , Θ̂ =

+̂ 0

0 ,̂

 , and ‖Θ‖ ≤ Θ<. Using the control from
Eq. (6) in the filtered tracking error, r, the closed-loop system becomes

¤r = − Er + F̃x + uA (7)

where F̃x is the estimation error defined by F̃x = Fx − F̂x. Neural network weight update

laws are selected as
¤̂, = "

(
f̂ − f̂′+̂)q (z)

)
r) − ^ ‖r‖ ",̂

¤̂+ = #q (z) r),̂) f̂′ − ^ ‖r‖ #+̂
(8)



61

where " and # are positive definite matrices that give the learning rate, f̂ = f
(
+̂)q (z)

)
,

f̂′ = f′
(
+̂)q (z)

)
, and ^ is a modification factor such that ^ > 0.

To prove the stability of the system, the candidate Lyapunov function is selected

as ! = 1
2r)r + 1

2 CA
{
,̃)"−1,̃

}
+ 1

2 CA
{
+̃)#−1+̃

}
, where CA {} is the trace operator. By

taking the time derivative of the Lyapunov function and using the definitions of r and the

closed-loop form of ¤r in Eq. (7), and the weight update law in Eq. (8), stability in a compact

set about the origin can be shown, demonstrating that the Lyapunov function is UUB in both

‖r‖ and
Θ̃ and thus showing Lyapunov stability of the proposed SNNARC method [24].

3.2. MSO FORMULATION

The second method, originally developed for estimating unmodeled dynamics [26–

28], is the Modified State Observer (MSO). The method utilizes an observer to estimate the

dynamics and then uses the estimated dynamics in an input-output feedback linearization

controller. First the dynamics in Eq. (4) are reduced to a single vector system as estimation

occurs only in the angular rate states such that ¤x = Fx + 6xu, where ¤x is the derivative of

the angular rates (¤x2 from the previous formulation). For this system, an observer can be

designed as

¤̂x = F̂x + 6xu +  2 (x − x̂) (9)

where x̂ is the estimated state and  2 is some gain matrix. The dynamics, F̂x, can be

approximated by a one-layer neural network in a manner similar to SNNARC. The state and

the observer in Eq. (9) are rewritten in terms of observer error, e0 = x − x̂, such that the

observer error dynamics are given as

¤e0 = − 2e0 + ,̃)q (z) + Y (10)
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where q (z) is the basis vector and ,̃ is the error between the true weights and estimated

weights such that ,̃ = , − ,̂ . The neural network weight update law is given as

¤̂, = Γq (z) e)0 − ^ ‖e0‖ Γ,̂ (11)

where Γ is the learning rate and ^ is the modification factor, which bound the weights and

provides robustness. The stability of the system in Eq. (10) can be shown with the candidate

Lyapunov function ! = 1
2e)0e0+ 1

2 CA
{
,̃)Γ−1,̃

}
, where CA {} is the trace operator. By taking

the time derivative of the Lyapunov function and using the definitions of e0 and ¤e0 in Eq.

(10), and the weight update law in Eq. (11), stability in a compact set about the origin can

be shown, demonstrating that the Lyapunov function is UUB in both ‖e0‖ and
,̃ and thus

shows Lyapunov stability of the observer in the proposed MSO method [24].

Once the nonlinear dynamics, F̂x, are estimated by the neural network, an input-

output feedback linearization controller given by

u =
1
6x

(
−F̂x + 53 −K?e1 −K3e2

)
(12)

can be applied to the two-vector system in Eq. (5) such that the closed-loop system dynamics

become

¤e1 = e2

¤e2 = −K?e1 −K3e2 + ,̃)q (z) + Y
(13)

where

�2; =


0 1

−K? −K3

 and 3 =


0

,̃)q (z) + Y
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and where 3 is bounded by ‖3‖ ≤ ‖3< ‖. By using the candidate Lyapunov function

! = 1
2e)%e and taking its time derivative using the definition of ¤e in Eq. (13) and where %

satisfies the equation �)% + %� = −&, stability in a compact set about the origin can be

shown if ‖e‖ ≥ 2_<0G (%)3<
_<8= (&) , demonstrating that both Lyapunov functions are UUB in ‖e‖,

‖e0‖, and
,̃ and thus shows Lyapunov stability of the proposed MSO method.

4. WASP HARDWARE IMPLEMENTATION

The initial verification and validation of the neural network algorithms for the

pointing system were performed using high fidelity simulations through software-in-the-

loop (SWIL) testing, where results showed significant improvements in performance as

compared to the heritage control system. The focus of this paper is on the three-month

hardware-in-the-loop (HWIL) testing campaign in preparation for science flight operations

originally scheduled for Fall 2021. Due to unfavorable weather conditions during the short

launch period and launch window, the science launch has been rescheduled for Fall 2022.

Hardware testing is characterised by two different configurations. The first config-

uration, ground testing, is conducted with the WASP platform being seated on the ground

on either tires or jack stands. In this configuration, rotator and balloon flight train dynamics

are not present in the environment and the system is reacting against the ground. This

configuration is where the majority of testing was completed. The second configuration,

suspended system flight functional, involves suspending the rotator and the WASP platform

from a crane and lifting the entire system above the ground. This configuration results in a

flight-like configuration with the system reacting against the inertia of the flight train. Due

to the personnel required to perform lifting operations, this configuration is only tested a

few times when the majority of systems are flight ready. In both of these configurations,

the external environmental dynamics are considered heightened as compared to in-flight.

Due to the low atmospheric density at float, the external dynamics are significantly reduced

compared to ground. As a point of reference, it is typically not possible to point the WASP
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system outdoors due to even low level winds overpowering the torque authority of the

pitch/yaw motor hubs. Suspending the entire WASP system above the ground, as in the sec-

ond configuration, does provide significant changes to the dynamics, however, and closely

resembles the anticipated dynamics in flight. The rotator maintains the centerbody centered

within the external gondola structure while external disturbances and internal vibrations

lead to a swaying motion of the entire system, thereby introducing roll angular velocities

into the dynamics. The two configurations are illustrated in Figure 3 for the PICTURE-C

mission.

(a) Ground Testing (b) Suspended System Flight Functional

Figure 3. The WASP platform with the PICTURE-C mission science hardware mounted as
the centerbody is shown in the ground testing configuration (a) at CSBF, and in suspended
system flight functional configuration (b) at NASA WFF.
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The three-month testing campaign was conducted from July through September, in

preparation for a Fall 2021 launch opportunity from Fort Sumner, New Mexico. As such,

tests were distributed over a period of three months between the NASA WFF location in

Virginia and the Columbia Science Balloon Facility (CSBF) location in NewMexico. Data

were selected from ten different test dates for analysis, and a subset of that data is presented

here to demonstrate the implementation, tuning, and performance of the two neural network

algorithms. Due to the distribution of tests, the performance on each test date is dependent

on various and differing environmental conditions and only a general interpretation of

results and conclusions could be made between test dates. Comparisons of specific tuning

parameters are given for the same test dates, and several test dates compared the three

control methods directly, allowing for more direct comparisons. Test date, location, and

configuration are called out in theWASPHardware Results section to clarify the discussion.

4.1. TUNING PARAMETERS

For the heritage PID system, tuning is primarily carried out through the selection

of a closed-loop system bandwidth and damping ratio. The WASP platform bandwidth

is approximated as �F = l=
2c , where the bandwidth is given in the frequency space (�I).

By default, the typical bandwidth is set to �F = 0.4 �I and the damping ratio is set to

Z = 0.9. The inertia values were assumed to be �1 = 92, �2 = 572, and �3 = 554 in slug-ft2,

corresponding to roll, pitch, and yaw axes, respectively. The final  ?,  8, and  3 gains

are then calculated using Equation (3). For MSO, the same equation is used but with the

design parameter set to U = 0, such that the  ? and  3 values in Equation (12) are given

as  ? =
l2
=

�−1
8

and  3 = 2Zl=
�−1
8

. For the SNNARC method, a relationship was formed between

the linear gains  ?/ 3 of the MSO method and the  E/_ values of the filtered tracking

error in Equation (6). The final tuning is given by two solutions:  E = l=Z +
√
Z2 − 1

and _ = l=Z −
√
Z2 − 1 for Z ≥ 1 and  E = _ = l=Z for when Z < 1. As such, for

all three control algorithms, the linear (and integral) portion of the controllers is tuned
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directly by setting the desired bandwidth, �F, and damping ratio, Z . In terms of directly

comparing  ?/ 3 (or equivalent) values between the MSO/SNNARC and PID methods, it

was found that the values would be approximately equal at double the PID bandwidth (i.e.

 ?, MSO/SNNARC ≈  ?, PID when �F, MSO/SNNARC = 2�F, PID).

For the neural networks, the final basis vector, q (z), was selected to be q (z) =

[\4V, \4W, lU, lV, lW, �V, �W]) where U corresponds to the roll channel, V corresponds to

the pitch channel, W corresponds to the yaw channel, and �V,W are the gimbal angles within

the motor pitch/yaw hubs. The neural network weights for ,̂ (MSO/SNNARC) and +̂

(SNNARC) were initialized as null matrices. For MSO, the learning rate is governed by

Γ whereas for SNNARC the learning rate is governed by " and # . Both neural networks

have a learning rate modification factor given by ^. Beyond these similarities, the remaining

tuning parameters have no corollary between the various methods. For MSO, the only other

tuning parameter is  2, which governs the linear observer gain. For SNNARC, there is an

additional robustifying controller portion with tuning parameters  I and Θ<.

4.2. INITIAL CONTROLLER CONVERGENCE BASED ON LEARNING RATE
AND MODIFICATION FACTOR SELECTION

Initial testing of the two neural network algorithms began in July 2021 with ground

tests at NASAWFF. As Figure 4 indicates, a ground test from July 16, 2021 showed that the

initial configuration of the neural networks resulted in very slow convergence rates between

the two methods. In both tests, the heritage PID system was first used to point the system to

an inertial target and once steady state was achieved, the controller was switched to either

MSO or SNNARC. The MSO test was terminated after approximately 1.5 minutes as it

appeared that the system was converging with a steady state bias. In the SNNARC test,

it was observed that steady state behavior was achieved after approximately three minutes,

after which a total root-mean-square (RMS) error value of 0.223 arcseconds was achieved

at steady state.
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(a) MSO Initial Convergence (b) SNNARC Initial Convergence

Figure 4. Initial convergence of the MSO method (a) and SNNARC method (b) are shown
during non-suspended ground testing on July 16, 2021 at NASA WFF, demonstrating slow
convergence of both methods and steady state bias in the MSO method.

As the MSO method utilizes only a one-layer network, the selection of the basis

vector is especially critical. The pitch/yaw hub resolver angles were added to the basis

vector, leading to the final version used by both neural network methods. Once the basis

vector was updated, it was found that MSO no longer exhibited a steady state bias after

converging. For tuning the convergence rate, the learning rate, " and # for SNNARC

and Γ for MSO, were increased while the modification factor remained ^ < 1. The MSO

method also required a slight adjustment of its linear observer gain,  2. It was found that

as ^ became smaller, the convergence rate increased but with a tendency for larger steady

state errors while convergence rate increased as ^ became large.

On July 22, 2021, a suspended system flight functional test was conducted, where

pointing of the science instrument was demonstrated during an evening night test using

the inertial star target, Polaris. The updated convergence behavior is shown in Figure 5,

where it can be seen that the MSO method converged in a little over one minute while

the SNNARC method reached steady state in a little under a minute. In both methods,

the pitch channel converged rather quickly, while the yaw channel took a longer period of

time. Once converged, the MSO algorithm had a steady state total RMS error value of



68

(a) MSO Tuned Convergence (b) SNNARC Tuned Convergence

Figure 5. Convergence of the MSO method (a) and SNNARC method (b) are shown during
a suspended system flight functional on July 22, 2021 at NASA WFF, demonstrating the
improved performance after updating to the final version of the basis vector, q (z), and
tuning the learning rates, " , # , and Γ, and modification factor, ^.

0.126 arcseconds while the SNNARC method achieved 0.198 arcseconds. Both methods

outperformed the heritage PID system, which was only able to maintain a total RMS error

value of 0.282 arcseconds. While the neural network methods outperformed the heritage

PID system during this test, total system bandwidth was not yet considered and further

performance testing was conducted at a later date to understand how pushing the system

bandwidth affected the various methods.

4.3. STEADY STATE PERFORMANCE BASED ON LEARNING RATE SELEC-
TION

While the learning rates and modification factor greatly affected the time for initial

convergence, it was also desirable to understand how the learning rate affected steady state

performance. Results from ground testing conducted on September 12, 2021 at the flight

location at CSBF in Fort Sumner, New Mexico, are shown in Figure 6. During this test,

the air conditioning in the building was operating, resulting in reduced overall pointing

performance as compared to other test dates. The baseline controller parameters were
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(a) MSO Learning Rate Adjustment (b) SNNARC Learning Rate Adjustment

Figure 6. The learning rate of theMSOmethod (a) is increased from Γ = 24→ 42→ 71→
92 → 120 and the SNNARC method (b) is increased from "/# = 0.42 → 0.8 → 1.2,
where each change in learning rate is designated by a vertical dashed black line.

used and once the system was at steady state, the learning rate was slowly increased. It

can be seen that as the learning rate is increased, there is only a marginal performance

increase in the overall pointing behavior. It should be noted that in a more quiescent

environment, increasing the learning rate exhibited a slightly higher improvement in steady

state performance, though still not significant as compared to adjusting the bandwidth, as

demonstrated next. This shows that beyond improving the convergence rate, there is not a

large benefit in increasing the learning rate to improve steady state performance.

4.4. STEADY STATE PERFORMANCE BASED ON BANDWIDTH SELECTION

The largest factor in improving the overall pointing performance was through the

increase of the overall system bandwidth. It should be noted that while this is simple in

terms of the PID system, this approach is somewhat more nuanced and nebulous for the

two neural network methodologies. As the systems are nonlinear and designed outside of

the classical control domain, there are no direct analogies for system bandwidth. For the

PID system, increasing the bandwidth results in changes to the  ?,  8, and  3 gains, where
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(a) MSO Bandwidth Tuning (b) SNNARC Bandwidth Tuning

Figure 7. The system bandwidth is increased for the MSO method (a) from �F = 0.8 →
1.0 → 1.2 �I and for the SNNARC method (B) from �F = 0.8 → 0.9 → 1.0 → 1.2 →
1.4 �I, where each change in bandwidth is designated by a vertical dashed black line.

for the neural network methods there are only increases in the equivalent  ? and  3 gains

and the neural network gains remain constant. As such, even though a relationship was

demonstrated between bandwidth selection and the equivalent  ?/ 3 values, it cannot be

said that the overall system bandwidths are the same. However, the trend in increasing

and/or decreasing system bandwidth through tuning the gains is evident. Figure 7 shows

that as the bandwidth is increased, the pointing performance is drastically improved for the

two methodologies. These test data are also from the September 12, 2021 ground testing,

where the disturbance environment was increased due to the active air conditioning system.

A similar increase in bandwidth was implemented for the PID system, until the boundaries

of stability were reached. The PID system achieved a total RMS error value of 0.193

arcseconds whereas the MSO only achieved 0.264 arcseconds, while the SNNARC method

was able to achieve 0.169 arcseconds. An in-depth discussion of these results is presented

in Section V.

From previous flight experiences using the heritage PID system, it is known that

once the bandwidth is sufficiently high, instabilities in the system begin to occur. The

controller begins reacting to the noise in the system as well as starting to interact with
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the structure, leading to an overall degradation of pointing performance and eventually the

system becoming unstable. It was desired to understand when and how system instability

would be presented using the neural network methods. The PID system was first tested to

establish a baseline during the September 12, 2021 ground test with the air conditioning

system active. The bandwidth of the systemwas slowly increased until instability presented,

then the bandwidth was reduced to a stable set and stability reestablished. Once the system

was at steady state, the control method was switched to the MSO method and the process

repeated. The results in the pointing and angular rate data for the PID method and MSO

method are shown in Figure 8, where the systems’ behavior at the instability point is

(a) PID Pointing Error (b) MSO Pointing Error

(c) PID Angular Rates (d) MSO Angular Rates

Figure 8. The system bandwidth is increased for the PID method (a, c) and the MSO
method (b, d) until the system becomes unstable showing the behavior of pointing (a, b) and
angular rates (c, d) to give an understanding of how instability is presented. Each change in
bandwidth is designated by a vertical dashed black line.
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presented. While not shown, the SNNARC method behaved in a similar manner. It was

found that as the bandwidth was increased, the first sign of instability began showing in

the angular rates roll channel. The signal showed an increase in the noise and jitter, with

a tendency for the signal to become slowly amplified. In the early stage of the symptoms,

the angular rate jitter slowly increased and then stabilized, repeating this process a few

times. At this stage, pointing initially remained stable. However, this borderline behavior

was only briefly sustained before the growth in jitter became unbounded and instability

was observed in the pointing behavior. As the WASP platform typically receives live

data between approximately 10 to 50 Hz, it is generally possible to detect when instability

begins occurring and allow for the operator to either switch controllers or lower the system

bandwidth. The data show that the neural network methodologies exhibit a similar behavior

to the heritage PID system in terms of how instability in the system is presented. This will

assist operators during in-flight tuning of the control method and help in troubleshooting.

5. WASP HARDWARE RESULTS

To summarize the overall performance of the two neural networks in comparison to

the heritage PID system, three specific test sets were analyzed. Two suspended system flight

functional tests were used to determine expected flight performance, with one test conducted

at NASA WFF, Virginia, on July 22, 2021 and the other test at CSBF, New Mexico, on

September 7, 2021. Both tests were conducted during the night, utilizing the entire sensor

suite including the star tracker. Pointing was conducted with the science team running

their instrumentation at the same time. The environmental disturbance dynamics were

generally quiescent (building air conditioning was disabled), though still likely higher as

compared to expected flight conditions. The test fromCSBF did have increased environment

disturbances as compared to NASA WFF due to outdoor low winds level winds causing

small drafts within the testing hanger. As the gain tuning was not yet finalized between the

two test dates, results are compared to each other on only the date conducted. The third
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Figure 9. Disabling and enabling the neural network demonstrates that the neural network is
correctly estimating the nonlinear dynamics and perturbations. Without the neural network
a large steady state error is introduced.

test date used for performance analysis was on September 12, 2021, where ground testing

was conducted with the building air conditioning actively running, giving a significantly

increased disturbance environment.

Before presenting the overall performance of the neural network methods, it is

useful to demonstrate the functionality of the neural network itself. It is known that errors

in dynamics and/or unaccounted perturbations lead to a bias in a nonlinear system without

an integral controller. To demonstrate that the neural network is properly estimating the

dynamics, a case was run in which the neural network was allowed to reach steady state,

and then the neural network portion of the controller was disabled, leaving only the linear

portion enabled. The results are presented in Figure 9, where turning off the neural network

causes a large bias in the steady state error, as expected. Once the neural network is enabled

again, the system converges back to the original steady state.
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(a) MSO Performance (b) SNNARC Performance

Figure 10. The performance of the MSO method (a) is compared to the performance of
the SNNARC method (b) during a suspended system flight functional on July 22, 2021 at
NASA WFF, demonstrating that the MSO method can achieve improved pointing stability
as compared to the SNNARC method when both systems’ bandwidths are set relatively
high.

5.1. POINTING STABILITY

To demonstrate pointing stability, only the suspended hang tests were considered.

During the first hang test on July 22, 2021, the bandwidth of the neural networks was set

relatively high as compared to the PID system, so only the neural network controllers were

compared to each other as shown in Figure 10. The MSO algorithm had a steady state total

RMS error value of 0.126 arcseconds and the SNNARCmethod achieved 0.198 arcseconds.

During the September 7, 2021 hang test, the bandwidths were approximately the same and

kept low such that a more direct comparison between the three methods could be made, as

shown in Figure 11. In this test, the PID system was able to maintain a total RMS error

of approximately 0.689 arcseconds, while both the MSO and SNNARC methods achieved

0.605 arcseconds.

Though it appears that the MSO method exhibited similar performance to the

SNNARC method during the second hang test, an interesting result is noticed when obser-

vation times are monitored instead of total RMS error. A period of 360 seconds of steady
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(a) PID Performance (b) MSO Performance (c) SNNARC Performance

Figure 11. The performance of the PID method (a), MSO method (b), and SNNARC
method (c) are compared during a suspended system flight functional on September 7,
2021 at CSBF, demonstrating that the neural network methods can outperform the PID
system at low bandwidths. The MSO method exhibits a slight performance increase over
the SNNARC method.

(a) MSO Method (b) SNNARC Method

(c) PID Method

Figure 12. The probability, � (G), to maintain observation lengths at various thresholds in
total arcseconds of RMS error values is presented for the MSO (a), SNNARC (b), and PID
(c) methods taken during a suspended system flight functional test on September 7, 2021
demonstrating that the neural network methods outperform the heritage PID system.
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state performance was analyzed for the three methods, focusing on how long the control

system could maintain the pointing within a certain threshold. The data are given by � (G)

(y-axis), which represents the probability that an observation length (x-axis) could be main-

tained before a violation occurs at various thresholds specified in arcseconds of total RMS

error, as shown in Figure 12. It is interesting to note that at smaller thresholds, below 2.0

arcseconds, the MSO method is able to maintain significantly longer observation durations

as compared to both the SNNARC and PID methods. However, when looking at values at

and above 2.0 arcseconds, the probability of violating the threshold during an observation

period is higher. Between the two suspended pointing tests, this demonstrates that while the

MSO method is able to maintain a tighter pointing performance compared to the SNNARC

method, it is more prone to brief excursions beyond desired thresholds. It was also found

that by increasing the system bandwidth, the MSO method typically showed an even larger

improvement in performance as compared to the SNNARC and PID methods, though this

result was only during quiescent periods as discussed next. From these results, it is evident

that the two neural networks are capable of outperforming the heritage PID system, with the

MSO method perhaps having a slight edge over the SNNARC method when considering

the average total RMS error.

5.2. HIGH DISTURBANCE ENVIRONMENT

From the high disturbance environment ground testing on September 12, 2021 in

which the building air conditioning was allowed to run, it was found that while the PID

system achieved a total RMS error value of 0.193 arcseconds and the SNNARC method

achieved 0.169 arcseconds, the MSOmethod only achieved 0.264 arcseconds. This test was

the last datewhere specific algorithm testingwas conducted in preparation for the PICTURE-

C launch opportunity. It is interesting to note that while the MSO method had always

outperformed the PID and SNNARC algorithms during quiescent testing periods, it appears

that in a highly dynamic environment (the air conditioning created strong drafts within the
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hanger) the performance begins to degrade more quickly as compared to SNNARC and PID.

This is even more evident when considering the observation periods that could be achieved

at various thresholds. It is clear from Figure 13 that while the SNNARC method continues

to outperform the PID method in terms of observation lengths, the MSO performance is

significantly degraded. This behavior was also observed on another occasion during the

threemonth testing campaign. It is surmised that the two-layer network utilized by SNNARC

is more capable of learning various disturbances without needing further modification of

the basis vector. One-layer networks are very sensitive to the selection of the basis vector,

and as such it is likely that the MSO method would require additional inputs into the basis

vector to assist the learning in a highly dynamic environment.

(a) MSO Tuned Convergence (b) SNNARC Tuned Convergence

(c) PID Tuned Convergence

Figure 13. The probability, � (G), is presented to maintain observation lengths at various
thresholds in total arcseconds of RMS error values for the MSO (a), SNNARC (b), and PID
(c) methods in a high disturbance environment, taken from ground testing on September 12,
2021 demonstrating that while the SNNARC method continues to outperform the heritage
PID system, the performance of the MSO method begins to degrade quickly.
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5.3. INDUCED PENDULOUS DYNAMICS DISTURBANCE ENVIRONMENT

When the high-altitude balloon platform is at float, the balloon frequently experi-

ences accelerations in response to changing float winds. This translates to changes in the

pendulous dynamics of the WASP platform, the flight train, and the high-altitude balloon.

To understand the behavior of the various control methods under this disturbance environ-

ment, tests were conducted at NASA WFF during a suspended system flight functional on

July 22, 2021. Once the system was stabilized and maintained at steady state for a few

minutes, an operator then gently pushed the external gondola, simulating the change in pen-

dulous dynamics from a potential impulsive wind gust. The system pointing performance

was monitored to see howwell the centerbody could remain aligned with the desired inertial

target, Polaris. The performance of the various methods is shown in Figure 14 for the PID,

SNNARC, and MSO methods. The primary motion input into the system is observed in

the roll channel angular rates, though this also translates into yaw and pitch disturbances

in the pointing performance. It can be seen for the PID system that the pointing error

jumps into the 1.5 arcsecond range and that significant jitter is introduced into the pitch

channel. Though the PID system returned to steady state after a few minutes, the pitch

channel continued to show some jitter. When the controller was switched to SNNARC at

this point, the jitter in the pitch channel was removed as the system reached steady state.

After steady state was achieved with the SNNARC method, an additional push was given

to the external gondola to see how the SNNARC method performed. It is seen that the

error only increased to about 1.0 arcseconds before the system began to converge back to

steady state. A similar test for MSO was conducted that evening, which showed an even

smaller pointing error and more rapid convergence. It is predicted that the MSO method,

which, unlike the SNNARC method, monitors and predicts disturbances in the roll channel

in addition to pitch and yaw, makes it more resilient to disturbances that may occur from

roll dynamics. This test shows that both neural network methods are capable of withstand-

ing disturbances resulting from the pendulous dynamics change from wind gusts and both
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(a) PID Impulsive Disturbance (b) PID/SNNARC Switch (c) SNNARC Impulsive Distur-
bance

(d) MSO Impulsive Disturbance (e) MSO Angular Rate

Figure 14. An impulse disturbance is introduced into the PID system (a) to baseline
performance before switching to the SNNARC method (b), which further reduced the
disturbance. Similar impulsive disturbances were introduced to the SNNARC method (c)
and MSO method (d), where the the disturbance in the roll channel (e) is clearly seen.

appear to significantly outperform the heritage PID system, boding well for their in-flight

performance at float environment. As the disturbance input into the system was given by a

human operator, it is acknowledged that variations in the amount of impulsive force input

into the system may have been present. However, this test was conducted multiple times by

a skilled operator and as such this result can be generalized.
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6. FUTURE WORK

The three-month testing campaign in preparation for the Fall 2021 flight operations

for the PICTURE-C science mission showed that the two neural network methods may

provide improved pointing performance to the WASP mission. The WASP platform was

flight-ready in the middle of September and multiple launch attempts were made through

early October. Due to unfavorable weather conditions during the short launch window, the

PICTURE-C flight was canceled for 2021 and the flight was rescheduled for Fall 2022.

However, a number of areas for improvement have been identified over the course of testing

and these improvements are planned for implementation for the next flight opportunity. The

next mission that will be flown is XL-Calibur, which is an X-ray polarimetry mission, and is

currently in the integration phase at NASA WFF in preparation for a Spring/Summer 2022

flight from Sweden. This science instrument is significantly larger than PICTURE-C, with

its inertia approximately an order of magnitude larger, as can be seen in Figure 15. While

the full assembly is not yet complete and the system is not yet in its flight configuration,

preliminary testing of the pointing system was conducted on October 25, 2021. During

this testing, both the SNNARC and MSO methods were tested and compared to the PID

system. Both methods were able to outperform the PID system, with the MSO method

achieving the best performance with an impressive RMS error of only 0.048 arcseconds

in pitch and 0.055 arcseconds in yaw. Not only has this shown the improved performance

of the neural network methods, it shows that these control methodologies are viable for a

variety of centerbody configurations.

One area for improvement identified is adding the ability to track a geodetic target.

The current WASP software only provides a target reference position and assumes that the

target inertial rates are zero. However, for a geodetic target the system will be following

Earth’s rotation rate, and as such non-zero target inertial angular rates are present. The

heritage PID system is able to accommodate these non-zero rates through the integrator and

adequate pointing is still achieved. However, the MSO and SNNARC methods require the
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Figure 15. WASP XL-Calibur.

knowledge of the target angular velocities and as such a bias in pointing currently appears

when tracking a geodetic target. An additional step in the flight software will be added to

the two neural network methods to calculate the desired inertial angular rates so that the

two methods can track a geodetic target.

Another area for improvement relates to changing targets. During missions such as

PICTURE-C, it is desirable to track different inertial targets and to switch between them

during the course of operations. The heritage PID system utilizes rate limiting in the

controller as well as a saturation limit to the integrator to prevent integrator windup when

switching targets. TheMSO and SNNARCmethods do not currently have this functionality,

and as such large maneuvers executed when switching targets could lead to instability. This

was especially noted in the SNNARC method, where the tracking error drives the neural

network estimation. A sudden large error induced by switching targets led to instability in

the neural network learning and the control system diverged. Though a temporary solution

was found by reducing the learning rate to maintain system stability, a more elegant solution

is desired. The MSO method, which learns based on observer error, was able to remain



82

stable throughout such a maneuver. Initial testing did show instability, but this was traced to

missing saturation limits being applied to the control method. As such, when the controller

generated a torque beyond the capacity of the pitch/yaw motor hubs, the produced torque

did not match the input torque into the observer and the system diverged. Once torque

saturation was applied, the system remained converged even when the maximum torque

was applied. By introducing a rate limit, the transient performance between targets could

be improved without needing to reduce the learning rates.

During the initial pointing tests for the XL-Calibur mission, an operator accidentally

bumped the centerbody and SNNARC, the control system running at the time, started to

become unstable. Previous impulsive disturbance testing only applied a disturbance to the

external gondola, and this behavior had not been noted in the past. It was found that this

behavior was related to a high learning rate. Once the learning rate was reduced, the pointing

remained stable even after intentional impulse disturbances were given to the centerbody.

While this type of disturbance is not anticipated during flight, it is a useful aspect to study.

When the learning rate was reduced the overall pointing performance remained similar,

so future testing will examine the balance between initial neural network convergence,

steady state behavior, and resilience to impulsive disturbances. As most missions have long

periods of observation, initial convergence speed is not as critical as compared to steady

state performance and disturbance rejection.

Unlike the SNNARC method, the MSO method only utilizes a one-layer neural

network and is much more sensitive to the selection of a basis vector. This was particularly

evident in the high environmental disturbance testing where the SNNARC method was

able to outperform the MSO method. It is desirable to consider if adding a two-layer

network, similar to SNNARC, will improve the overall performance of the MSO method.

One potential draw back in adding additional layers to the neural network is an increase in

required computational power. From prior testing, running the flight software with the PID
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method on the flight processor utilized only 24 percent of the CPU, while the MSO method

used about 28 percent. The SNNARCmethod, which uses a two-layer network, used almost

50 percent of the CPU, nearly doubling the required computational power needed.

7. CONCLUSION

This research effort implemented, tuned, and tested two new control methodolo-

gies for the Wallops Arc-Second Pointer system for high-altitude balloon platforms. The

SNNARC methodology, which uses a two-layer neural network, estimates nonlinear dy-

namics within the control space. The MSO methodology, which uses an observer and a

one-layer neural network, estimates nonlinear dynamics outside the control space and uses

input-output feedback linearization to control the system. The heritage PID control system

and the two new methodologies were tested over a period of three months in preparation

for a science mission originally scheduled to fly Fall 2021. It was found that the two neu-

ral network methods generally outperformed the heritage PID system. The MSO method

typically exhibited the best pointing performance, particularly at higher bandwidths, in the

majority of the tests conducted and is expected to be the superior method during flight at

the 120,000 ft float altitude. It was found that the MSO method did suffer in performance

when the disturbance environment was significant while the SNNARCmethod continued to

outperform the PID system. Though such high disturbances are not anticipated in flight, this

demonstrates where the two-layer neural network architecture from the SNNARC method

may be superior to a one-layer neural network architecture. This research has shown that

the addition of a neural network to a gimbal-controlled inertial pointing system suspended

from a high-altitude balloon platform can provide improved performance as compared to

traditional heritage pointing control systems. The testing campaign has identified a number

of improvements that could be implemented into the two methodologies and these will be

pursued as the WASP platform continues to be used for high altitude balloon missions.
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III. NEURAL NETWORK CONTROL SCHEMES ENABLING DEEP SPACE
SMALL SPACECRAFT DISTRIBUTED SYSTEM MISSIONS

Pavel Galchenko5 and Henry Pernicka6
Missouri University of Science and Technology, Rolla, MO, 65409-0050

ABSTRACT

Two neural network control schemes are introduced in the context of small space-

craft precision formation flight missions in deep space environments, with the goal of

enabling distributed system missions. The first neural network method uses tracking error

to estimate system perturbations while the second neural network method uses an observer

for estimation and input-output feedback linearization for control. Two spacecraft in pre-

cision formation flight were simulated in a libration point orbit and achieved the desired

science objectives of a notional advanced science mission concept. The two neural net-

work schemes provide improved position and attitude control performance while offering

significant savings in propellant consumption as compared to the traditional proportional-

integral-derivative control method.

NOMENCLATURE

G, H, I = spacecraft position states in CR3BP [km]

¤G, ¤H, ¤I = spacecraft velocity states in CR3BP [km/s]

DG , DH, DI = translation control accelerations [N]

lB = angular velocity of CR3BP rotating frame [rad/s]

5Ph.D. Candidate, Department of Mechanical and Aerospace Engineering, Missouri University of Science
and Technology, 400 W 13th St, Rolla, MO 65409-0050.

6Curators’ Distinguished Teaching Professor of Aerospace Engineering, Department of Mechanical and
Aerospace Engineering, Missouri University of Science and Technology, 400 W 13th St, Rolla, MO 65409-
0050.
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A1, A2 = distance of primary/secondary bodies to spacecraft [km]

A�1, A�2 = distance of primary/secondary bodies to barycenter [km]

`1, `2 = gravitational parameter of primary/secondary bodies [m3/s2]

@1, @2, @3, @4 = spacecraft attitude quaternion

\U, \V, \W = spacecraft roll, pitch, and yaw rotations [rad]

lU, lV, lW = spacecraft roll, pitch, and yaw angular velocities [rad/s]

DU, DV, DW = roll, pitch, and yaw control torques [Nm]

5x(x) = known system dynamics

6x = control mapping to dynamics

X(x) = known disturbance dynamics

� = system inertia matrix [kg m2]

%sun = solar radiation pressure at spacecraft position

=sun = solar constant at 1.0 AU

As→� = distance between spacecraft and Sun [AU]

r̂s→� = spacecraft-to-Sun unit vector

'8diff , '
8
spec = coefficient of diffuse/spectral reflection

"B/2 = mass of the spacecraft [kg]

F8SRP, L8SRP = force [N] and torque [Nm] disturbance from SRP

�8 = area of the spacecraft ith side [km2]

n8
�

= normal outward unit vector of the spacecraft ith side

r8press = center of mass to the center of pressure vector [km]

x31, x32 = desired position/orientation [km or quaternion]

x31, x32 = desired velocity or angular rate [km/s or rad/s]

53 = desired dynamics

e = [ e1 e2 ]) = error states

�2; = closed-loop dynamics

 ? = proportional gain [(km/s2)/km] or [Nm/rad]
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 8 = integral gain [(km/s2)/(km-sec)] or [Nm/(rad-sec)]

 3 = derivative gain [(km/s2)/(km/sec)]] or [Nm/(rad/sec)] gains

l= = controller natural frequency [rad/s]

Z = damping ratio

U = tuning parameter

Fx, F̂x = true and estimated dynamics

Δ(x) = unmodeled perturbations/dynamics

f, f′ = activation function and its derivative

q (z) = basis vector

Y = bounded neural network estimation error

,) , +) , ,̂) , +̂) = true and estimated neural network weighting matrices

,̃, +̃ = neural network weight matrices estimation error

_ = gain coefficient

uA ,  I = robustifying control and gain

F̃x = dynamics estimation error

", # = neural network adaptation gain matrices

^ = design parameter

! = Lyapunov function

CA {} = trace operator

 2 = linear observer gain matrix

e0 = observer estimation error

112, 122, 132 = leader/chief spacecraft body axes

11 5 , 12 5 , 13 5 = follower spacecraft body axes
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1. INTRODUCTION

Advances in hardware capabilities of the small spacecraft platform have begun to

enable deep space missions typically reserved for large monolithic spacecraft [1]. Small

spacecraft are able to play an increasing role in advanced mission concepts for distributed

system mission architectures with cost, size, mass, and power savings as compared to

traditional largemonolithic spacecraft [2]. To achieve the objectives of thesemissions, often

a number of small spacecraft are needed to maintain a tight flight formation for scientific

observations, requiring precision translation and attitude control. With the maturity of the

small spacecraft platform and the recent development of micropropulsion systems designed

for such architectures, the required tight formation tolerances can now be achieved [3]. This

study addresses the design of robust and precise control solutions to enable the use of these

technologies in precision formation flight.

1.1. LITERATURE REVIEW

A number of advanced mission concepts require precision formation flight (PFF)

in a deep space environment for distributed system mission architectures. Planet finding

missions such as theTerrestrial Planet Finder (TPF) [4] andDarwin [5] seek to create infrared

interferometers using multiple spacecraft in PFF to emulate powerful telescopes to search

for distant planets. The Micro-Arcsecond X-Ray Interferometry Mission (MAXIM) [6]

seeks to observe and study black hole phenomena while the Laser Interferometer Space

Antenna mission [7] seeks to study gravitational waves. Other missions such as the NASA

Stellar Imager [8] seek to use small spacecraft in PFF to create a virtual telescope for

observation of stellar surfaces. Each of these unique missions intends to utilize swarms of

spacecraft in PFF to enable advanced mission concepts that would otherwise be infeasible

for large monolithic spacecraft due to size, mass, and power requirements.
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Three-body dynamics, often described by the Circular Restricted Three-Body Prob-

lem (CR3BP) equations, give rise to libration points (locations relative to two primary bod-

ies where dynamic forces/accelerations acting on a spacecraft are in equilibrium). These

points offer unique advantages to deep space missions because they allow for spacecraft

to enter and remain in orbit at these locations with only modest station-keeping effort,

facilitating long duration scientific missions. However, missions like MAXIM and Stellar

Imager require relative position control in the millimeter to submillimeter range [9, 10].

To achieve these tolerances, micropropulsion systems must be capable of producing thrust

values in the nano- to millinewton ranges. Marchand and Howell studied a variety of con-

trol strategies to quantify propulsion requirements for advanced missions such as MAXIM

and TPF [11]. Using the CR3BP model as well as an ephemeris model, it was found that

thrust levels ranged from nano- to millinewtons for large monolithic spacecraft, as well

as requiring nearly continuous control when attempting to achieve submillimeter position

control. While studies by Howell and Marchand found the potential existence of natural

formations at libration points [12], additional development is needed before continuous or

impulsive control strategies can be replaced by such formations.

Previous studies have explored continuous and impulsive controllers for PFF through

linear, nonlinear, and adaptive control techniques. An optimal nonlinear controller tech-

nique, Θ-D, was used by Xin et al. to bring relative position error into the submillimeter

range [13, 14]. Li used a combination of linear quadratic regulator control with neural

network learning to accommodate the nonlinearities in the basic dynamics and achieve

range error levels in the order of tens of millimeters [15]. By using nonlinear control and

robust adaptive methods, Xu was able to keep formation errors in the sub-kilometer range

by estimating the spacecraft mass and bounds of the disturbances experienced [16]. Similar

adaptive techniques used by Queiroz were able to estimate the mass and disturbances to

reduce relative errors into the submeter range [17]. Work by Gurfil with nonlinear con-

trol techniques along with neural networks reduced relative errors into the submillimeter
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range [18]. Other continuous techniques include distributed adaptive synchronization con-

trol laws [19], Hamiltonian structure-preserving (HSP) controllers [20], and control systems

using solar sails [21, 22]. While these methods show promise for long duration missions,

relative position errors are typically in the meter range, exceeding typical requirements

for PFF missions. While continuous controllers provide acceptable relative position per-

formance, jitter and propellant budgets onboard the spacecraft are increased compared to

impulsive methods. Work by Qi used an impulsive control strategy, which was able to

maintain the spacecraft in a bounded relative position error corridor as small as 100 cen-

timeters [23]. However, this case was limited to CR3BP dynamics without consideration

of other disturbances outside of thruster errors. Ghafoor and Galchenko showed that an

error corridor of 1.0 millimeters can be achieved using an event-triggered neural network

control system using notional thrusters, but did not consider contributions from attitude

dynamics [24].

Kane conducted initial research into the stability of attitude dynamics in the CR3BP,

showing that stability is similar to that of two-body dynamics when considering the trian-

gular equilibrium points. However, the collinear libration points have decreased stability

margins, especially when considering the L1 and L2 equilibrium points [25], assuming the

typical convention where L1 is between the two primary bodies, L2 is near the secondary

(less massive) primary body, and L3 is near the first primary body. These points are of

special interest for distributed system missions, as missions such as LISA, TPF, and Stel-

lar Imager seek to utilize Lissajous and halo orbits naturally found at these equilibrium

points. Guzzeti expanded the research on stability, developing a general framework for

attitude dynamics in the CR3BP as well as identifying trajectory design techniques using

attitude dynamics [26, 27]. While variances in orbital position from perturbations resulted

in minimal effects on attitude dynamics, relatively small variations in attitude from pertur-

bations induced large variations in orbital dynamics. As the CR3BP often exhibits chaotic

behavior, instabilities in spacecraft control can be quickly introduced if attitude dynamics
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are not considered. While most work on formation control at libration points has focused

on only translational control, this research addresses both translation and attitude control

in the CR3BP using two neural network control schemes with the intent to enable small

spacecraft distributed system mission architectures in a deep space environment.

1.2. SCHOLARLY CONTRIBUTIONS

This research offers several contributions in the field of precision formation flight

control in the CR3BP:

1. SNNARC, a two-layer neural network controller scheme, is reformulated for both the

translational and rotational dynamics of a small spacecraft in the CR3BP.

2. MSO, originally a one-layer neural network observer and an input-output feedback

linearization controller, is expanded to a two-layer neural network observer and is

reformulated for both the translational and rotational dynamics of a small spacecraft

in the CR3BP.

3. Simulation results show significant improvements in position and attitude perfor-

mance metrics, along with cost savings in propellant consumption, using the two

neural networks schemes as compared to traditional control techniques.

1.3. ORGANIZATION

This paper is organized as follows. In Section 2, a brief background on the dynamics

and control theory is presented. Section 3 introduces neural networks and the design of two

neural network control schemes. Section 4 discusses the problem formulation, simulation

environment, and controller tuning. Section 5 presents simulation results of the two neural

network control schemes compared to a classic proportional-integral-derivative control

system. Section 6 summarizes the results and presents concluding remarks.
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2. BACKGROUND

In this study, a notional deep space mission is considered at the Sun-Earth/Moon L2

libration point. The translational and rotational dynamics and relevant perturbations in this

environment that were considered are presented, along with a brief overview of relevant

control theory.

2.1. TRANSLATIONAL DYNAMICS

In deep space mission analysis, a three-body dynamic model is often used, where

two primaries are the dominate gravitational masses and the third mass is the spacecraft

of interest. The general three-body problem remains unsolved analytically, and as such

simplifying assumptions are typically made. First, it is assumed that the (infinitesimal)

mass of the spacecraft does not produce a gravitational force sufficient to affect the motion

of the primary gravitational bodies. Second, the two primary gravitational bodies are in

circular orbits about their center of mass, the barycenter, which lies between the two primary

bodies. By defining a rotating frame with the origin at the barycenter such that the ĜB axis

is oriented toward the secondary body and the ĤB axis is normal to the ĜB axis within the

orbital plane, a synodic coordinate frame is formed. By formulating the dynamics in terms

of this rotating frame, the classic CR3BP is formulated [28] and can be rewritten into a

two-vector state system as

¤x1 = x2

¤x2 = 5x(x1, x2) + X(x) + 6xu
(1)
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where

5x(x1, x2) =



2lB ¤H + l2
BG −

`1 (G+A�1)
A3

1
− `2

(
G−A�2

)
A3

2

−2lB ¤G + l2
B H −

`1H

A3
1
− `2H

A3
2

− `1I

A3
1
− `2I

A3
2


x1 =


G

H

I


x2 =


¤G

¤H

¤I


u =


DG

DH

DI


A1 =

[(
G + A�1

)2
+ H2 + I2

] 1
2

A2 =

[(
G − A�2

)2
+ H2 + I2

] 1
2

and where `1 and `2 are the gravitational parameters of the primary and secondary bodies,

respectively, lB is the angular velocity of the rotating frame, A�1 is the distance from the

barycenter to the primary body and A�2 is the distance from the barycenter to the secondary

body, X(x) is some known disturbance that perturbs the system, 6x maps the controller

dynamics to the system, and u is the control acceleration. A graphical representation of the

CR3BP is shown in Figure 1.

Figure 1. The rotating synodic coordinate frame, [ĜB ĤB ÎB] is defined such that it rotates
about the inertially fixed barycenter frame, [Ĝ� Ĥ� Î�], which allows for the simplification
of the equations of motion for the spacecraft.
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2.2. ROTATIONAL DYNAMICS

By using a quaternion attitude representation, the typical unconstrained second-

order three degrees of freedom attitude dynamics model [29] can be given by a two-vector

state system as

¤x1 =
1
2
Ξ(x1)x2

¤x2 = 5x(x2) + X(x) + 6xu
where Ξ(x1) =



@4 −@3 @2

@3 @4 −@1

−@2 @1 @4

−@1 −@2 −@3


(2)

and where 5x(x2) = −�−1 [x2×]�x2, x1 = [ @1 @2 @3 @4 ]T, x2 =
[
lU lV lW

]T,

u = [ DU DV DW ]T, and where � is the inertia matrix (assumed constant) of the (rigid)

body with respect to the center of mass and in terms of the body-fixed axes, x1 and x2 are

the quaternion and angular velocity vectors, respectively, of the body with respect to the

inertial frame, X(x) is some known disturbance dynamics, 6x maps the controller dynamics

to the system, and u is the applied torque, i.e. the control input. It should be noted that

�−1 is also embedded into the disturbance dynamics X(x) and the mapping of the controller

dynamics, 6x, in Eq. (2) to simplify the formulation.

2.3. SOLAR RADIATION PRESSURE DYNAMICS

Spacecraft trajectories in deep space can be significantly perturbed by solar radiation

pressure (SRP) [28, 29]. One model for SRP is given by

%sun =
=sun

2 A2
s→�

(3)
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where=sun is the solar constant at one astronomical unit, which ranges between 1,361W/m2

and 1,363 W/m2 based on the solar cycle, 2 is the speed of light, and As→� is the distance

between the spacecraft and Sun in astronomical units. The spacecraft is modeled as having

six uniform sides and the force generated by SRP from Eq. (3) on the ith side is quantified

by

F8SRP = −%sun�
8

[
2
(
'8diff

3
+ '8spec cos \8SRP

)
n8� + (1 − '

8
spec)r̂s→�

]
max(cos \i

SRP, 0) (4)

where �8 is the area of the ith side, '8diff is the coefficient of diffuse reflection, '8spec

is the coefficient of spectral reflection, n8
�
is the normal outward unit vector of the ith

side, r̂s→� is the spacecraft-to-Sun unit vector expressed in terms of the body frame, and

cos \8SRP = n8
�
· r̂s→�. The addition of the max(cos \i

SRP, 0) term eliminates forces generated

on the sides where the normal vector is orientated away from the Sun [28, 29].

The disturbance forces from Eq. (4) acting on the sides of the spacecraft from the

SRP perturbations are then summed and the disturbance acceleration is given as

X(x) =
[
0 0 0

∑#
8=1 �

8
SRP,G

∑#
8=1 �

8
SRP,H

∑#
8=1 �

8
SRP,I

])
"−1
B/2 (5)

where # is the number of sides modeled on the spacecraft and "B/2 is the mass of the

spacecraft. In this study, the spacecraft is modeled as a rectangular prism where # = 6.

To quantify how SRP disturbance forces (using Eq. (4)) perturb the attitude of the

spacecraft, the torque generated by SRP is calculated as

LSRP =

6∑
8=1

r8press × F8SRP (6)
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where r8press is the vector from the spacecraft center of mass to the center of pressure of the

ith side of the spacecraft [29]. It should be noted that for this SRP disturbance formulation,

the translational and rotational dynamics are effectively coupled. Changes in attitude affect

the magnitude and direction of the translational disturbance, while changes in translation

affect the magnitude and direction of rotational disturbances.

2.4. CONTROL THEORY OVERVIEW

To develop a control algorithm for translational and attitude control, the dynamics

are rewritten in terms of the error between the current and desired reference system states.

The desired states, x3 , are defined as x3 = [ x31 x32 ]) , where x31 is a vector of the desired

position or attitude quaternion and x32 is a vector of the desired velocity or rotational rates.

The reference system dynamics are given as ¤x31 = x32 and ¤x32 = 53 , where 53 is a set

of desired dynamics for the reference system. Note that for a regulatory reference system,

x32 = 0 and 53 = 0. The error states for translational and attitude control are then defined

as e = [ e1 e2 ]) , where e2 = x2 − x32 for both systems.

For translation, the error state for position is given by e1 = x1 − x31, such that taking

the derivative of the error vectors gives ¤e = [ ¤e1 ¤e2 ]) with

¤e1 = e2

¤e2 = 5x(x) − 53 + X(x) + 6xu
(7)

defining the error dynamics used for the translational controller formulations.

For the quaternion attitude controller, e1 is defined as %x1, which is given as

%x1,1:3 = Ξ
) (x31)x1

XG1,4 = x)1 x31

where Ξ) (x31) =



@34 −@33 @32

@33 @34 −@31

−@32 @31 @34

−@31 −@32 −@33


(8)
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such that taking the derivative of e1 gives

% ¤x1 =
1
2
Ω (x2) %x1 where Ω (x2) =


− [x2×] x2

−x)2 0

 (9)

where [x2×] is the skew symmetric cross product matrix of the angular velocities, x2. Using

the definition of e2 and its derivative, the error dynamics for the rotational system can now

be given as

¤e1 =
1
2
Ω (x2) e1

¤e2 = 5x(x2) − 53 + X(x) + 6xu
(10)

defining the error dynamics used for the rotational controller formulations. While the

error kinematics between the two systems differ somewhat, it is shown in the literature that

using the definitions of e1 and e2 of the respective systems, stability can be shown with

a candidate Lyapunov function using input-output feedback linearization [29]. While the

remainder of the paper expresses the error dynamics in terms of Eq. (7), differences in the

attitude formulation are mentioned as necessary.

It is known that a linear closed-loop system can be shown to be asymptotically stable

if the closed-loop matrix is Hurwitz [30]. By using input-output feedback linearization and

carefully designing a nonlinear controller in terms of the error dynamics in Eq. (7), it is

possible to make the nonlinear system behave in a linear manner. A controller is chosen

such that u = 1
6x

(
− 5G (x) + 53 − X(x) −K?e1 −K3e2

)
, where K? and K3 are proportional

and derivative controller gain vectors, respectively, and |6x | > 0. The closed-loop error

dynamics in Eq. (7) are reduced to ¤e = �2; e, where �2; =


0 1

−K? −K3

 , such that the

origin of the unperturbed nonlinear system will be asymptotically stable if �2; is Hurwitz.

This method of nonlinear control is the basis from which the neural network controllers are

designed.
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3. NEURAL NETWORK DESIGN

In formulating the input-output feedback linearization controller, it was assumed

that the model of 5G (x) is “truth” and that X(x) describes all other contributing disturbance

dynamics to the system. As inaccuracies are inherent to all models and all disturbances

cannot be accounted for, consideration of unmodeled dynamics must be made. While

controlling nonlinear systems in the presence of unmodeled dynamics is an extensively

studied subject [24, 29–33], this research focuses on the application of neural networks as

they offer some unique advantages over other adaptive control methods.

The true dynamics can be expressed as Fx = 5G (x) + X(x) + Δ(x), where 5G (x) and

X(x) are as described in Eq. (1) and Eq. (2) andΔ(x) is a set of all other unmodeled dynamics.

Using neural networks the true dynamics can be represented by Fx = ,
)f

(
+)q (z)

)
+ Y

for a two-layer network, where f is some activation function, q (z) is the basis vector (a

vector of inputs into the neural network), and ,) and +) are the true weights that give

the value of Fx with some bounded approximation error, Y, through the universal function

approximation properties of neural networks [34]. While a one-layer neural network can be

used, a two-layer neural network has the benefit of satisfying the persistence of excitation

condition [34]. As the true weighting matrices are unknown, the estimated dynamics,

F̂x, are given as F̂x = ,̂
)f

(
+̂)q (z)

)
for a two-layer network, where ,̂) and +̂) are the

approximated weights.

The two-vector state system from Eq. (1) can be rewritten into a common form as

¤x1 = x2

¤x2 = Fx + 6xu
(11)

along with the error dynamics from Eq. (7) as

¤e1 = e2

¤e2 = Fx − 53 + 6xu
(12)
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forming the foundation of the two neural network methodologies studied in this research.

The first method operates in terms of the error dynamics, Eq. (12), and as such the neural

network learning occurs in the control space, where the learning is driven by the tracking

error. The second method introduces an observer for the state dynamics, Eq. (11), and

as such the neural network learning occurs outside the control space, where the learning

is driven by the observer error. Both methods can be described by a Lyapunov candidate

function and are shown to be Ultimately Upper Bounded (UUB), demonstrating Lyapunov

stability.

3.1. SNNARC FORMULATION

The first method, originally developed for robotic manipulators [34], is formulated

fromGalchenko’s work on the Subarcsecond Neural Network Attitude Reference Controller

(SNNARC) [33]. Whereas the previous formulation utilized a filtered tracking error andwas

applied to a specific attitude control problem, this updated formulation uses the original error

dynamics from Eq. (12) and generates a control input in terms of a traditional proportional

derivative formulation. The control input is given by

u =
1
6x

(
−F̂x + 53 −  e + uA

)
where uA = − I

(Θ̂ + Θ<)
e (13)

and where |6x | > 0 and  is a diagonal matrix such that  =


 ? 0

0  3

 , where  ? and

 3 correspond to proportional and derivative gains. For the rotational system, the error, e,

is given by e =
[
e1,1:3 e2

])
. A robustifying control component, uA , is added where  I is

some positive controller gain matrix and the weightingmatrices are defined asΘ =


+ 0

0 ,

 ,
Θ̂ =


+̂ 0

0 ,̂

 , and ‖Θ‖ ≤ Θ<. Substituting the control function from Eq. (13) in the error
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dynamics from Eq. (12), the closed-loop system becomes

¤e = − e + F̃x + uA (14)

where F̃x is the estimation error defined by F̃x = Fx − F̂x, or by F̃x = ,̃
)f

(
+̃)q (z)

)
+ Y in

terms of weights. The neural network weight update laws are selected as

¤̂, = "

(
f̂ − f̂′+̂)q (z)

)
e) − ^ ‖e‖ ",̂

¤̂+ = #q (z) e),̂) f̂′ − ^ ‖e‖ #+̂
(15)

where q (z) is the basis vector, " and # are positive definite matrices that give the learning

rate, f̂ = f
(
+̂)q (z)

)
, f̂′ = f′

(
+̂)q (z)

)
, and ^ is a modification factor such that ^ > 0.

To demonstrate the stability of the system, the candidate Lyapunov function is

selected as ! = 1
2e)e + 1

2 CA
{
,̃)"−1,̃

}
+ 1

2 CA
{
+̃)#−1+̃

}
, where CA {} is the trace operator.

By taking the time derivative of the Lyapunov function and using the definitions of e and

the closed-loop form of ¤e in Eq. (14), and the weight update law in Eq. (15), stability

in a compact set about the origin can be shown utilizing methods similar to those in the

literature [30, 33]. This demonstrates that the Lyapunov function is UUB in both ‖e‖ andΘ̃ and thus shows Lyapunov stability of the reformulated SNNARC method.

3.2. MSO FORMULATION

The second method, originally developed for estimating unmodeled dynamics [35–

37] and used by Galchenko for attitude control of a gimbaled pointing system [33], is the

Modified State Observer (MSO). The method utilizes an observer to estimate the dynamics

and then uses the estimated dynamics in an input-output feedback linearization controller.

While the original implementation for attitude control only utilized a one-layer neural

network and a single state vector for estimation (that being the angular rate states), the

updated formulation utilizes the full state for both translational and attitude dynamics as
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well as expanding the neural network estimator to a two-layer neural network. An observer

for the state dynamics in Eq. (11) can be given as

¤̂x1 = x̂2

¤̂x2 = F̂x + 6xu +  2 [_ (x1 − x̂1) + x2 − x̂2]
(16)

where x̂ is the estimated state,  2 is some gain matrix, and _ is some scalar gain such

that ‖ 2‖ > ‖_�3×3‖, where �3×3 is an identity matrix. Note that for the rotational system,

(x1 − x̂1) is defined using %x̂1,1:3 = Ξ) (x̂1)x1 as in Eq. (8). The dynamics, F̂x, can

be approximated by a two-layer neural network in a manner similar to SNNARC. The

state from Eq. (11) and the observer in Eq. (16) are rewritten in terms of observer error,

e0 = _ (x1 − x̂1) + x2 − x̂2, such that the observer closed-loop error dynamics are given as

¤e0 = −_ 2 (x1 − x̂1) − ( 2 − _�3×3) (x2 − x̂2) + F̃x (17)

where F̃x is the estimation error defined by F̃x = Fx − F̂x, or by F̃x = ,̃
)f

(
+̃)q (z)

)
+ Y in

terms of weights. The neural network weight update laws are selected as

¤̂, = "

(
f̂ − f̂′+̂)q (z)

)
e)0 − ^ ‖e0‖ ",̂

¤̂+ = #q (z) e)0,̂) f̂′ − ^ ‖e0‖ #+̂
(18)

where q (z) is the basis vector, " and # are positive definite matrices that give the learning

rate, f̂ = f
(
+̂)q (z)

)
, f̂′ = f′

(
+̂)q (z)

)
, and ^ is a modification factor such that ^ > 0.

The stability of the system in Eq. (17) can be shown with the candidate Lyapunov

function ! = 1
2e)0e0 + 1

2 CA
{
,̃)"−1,̃

}
+ 1

2 CA
{
+̃)#−1+̃

}
, where CA {} is the trace operator.

By taking the time derivative of the Lyapunov function and using the definitions of e0 and ¤e0

in Eq. (17), and the weight update law in Eq. (18), stability in a compact set about the origin
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can be shown utilizing methods similar to those in the literature [30, 33]. This demonstrates

that the Lyapunov function is UUB in both ‖e0‖ and
Θ̃ and thus shows Lyapunov stability

of the observer in the proposed MSO method.

Once the nonlinear dynamics, F̂x, are estimated by the neural network, an input-

output feedback linearization controller given by

u =
1
6x

(
−F̂x + 53 −K?e1 −K3e2

)
(19)

can be applied to the two-vector system in Eq. (12) such that the closed-loop system

dynamics become

¤e1 = e2

¤e2 = −K?e1 −K3e2 + ,̃)f
(
+̃)q (z)

)
+ Y

→ ¤e = �2; e + 3

where �2; =


0 1

−K? −K3

 and 3 =


0

,̃)f
(
+̃)q (z)

)
+ Y


(20)

where 3 is bounded by ‖3‖ ≤ ‖3< ‖. By using the candidate Lyapunov function ! = 1
2e)%e

and taking its time derivative using the definition of ¤e in Eq. (20) and where % satisfies

the equation �)% + %� = −&, stability in a compact set about the origin can be shown if

‖e‖ ≥ 2_<0G (%)3<
_<8= (&) , demonstrating that both Lyapunov functions are UUB in ‖e‖, ‖e0‖, andΘ̃ and thus shows Lyapunov stability of the proposed MSO method.

4. PROBLEM FORMULATION

A number of distributed system mission concepts can typically be described by a

virtual structure. The typical virtual structure has a central node, defined as the reference

node (i.e., the leader), and a number of nodes defined by fixed locations from the reference

node. The shape of the virtual structure can be defined as desired; for example, the Stellar

Imager mission proposes a parabolic virtual structure to emulate a parabolic telescope
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mirror [8]. This structure remains fixed over periods of science observations and its

reference node follows the natural motion of some desired trajectory, such as a halo orbit.

Each spacecraft can then be assigned to a relative node bywhich theymaintain their position.

By maintaining their position, formation flight is realized. The virtual structure concept is

shown in Figure 2, where =ref is the reference node and where =1, =2, ... are relative nodes at

fixed locations, given by A1, A2, ..., respectively, from the reference node. As the structure is

virtual, the shape can change based on science requirements and objectives; e.g., the Stellar

Imager mission proposes various separation distances to vary the focal length of the virtual

parabolic telescope [38].

Figure 2. The fixed virtual structure (View I) is defined with the reference node on the halo
trajectory, with relative nodes (View II) placed at fixed locations from the reference node.
By placing and maintaining spacecraft at these relative nodes, formation flight is realized.

The case study defined considers the Stellar Imagermission concept [38] to formulate

a realistic mission baseline. Formation flight at the Sun-Earth/Moon L2 libration point is

considered, with a halo orbit as the reference trajectory. A reference virtual node, defined as

the leader of a formation of an arbitrary number of spacecraft, is placed along the reference

trajectory. The leader spacecraft stationkeeps its position at this reference node. For the

remaining spacecraft in the formation, the relative nodes are fixed vectors from the leader

spacecraft. As such, each spacecraft in the virtual structure follows the motion of the leader
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instead of the reference node. However, the virtual structure matches the nominal definition

if the control objective is achieved. The follower spacecraft will maintain some defined

relative position from the leader spacecraft. Following the Stellar Imager design, a relative

node was placed at a fixed separation of 5000 meters along the rotating Ĝ-axis and 250

meters along the Ĥ-axis and Î-axis from the leader spacecraft. This formation can be easily

expanded to any number of spacecraft, each with their own relative position from the leader

spacecraft, such that a virtual structure is formed. Using a leader spacecraft and a single

follower spacecraft to demonstrate the relative position and attitude control is sufficient to

show the concept feasibility, and it is a key objective of this study enabled by the two neural

network schemes proposed.

4.1. REFERENCE TRAJECTORY DESIGN

The halo orbit is a natural orbit that exists within the context of the CR3BP, with

stationkeeping methods needing to be applied occasionally to maintain the orbit. While

the orbit is “unnatural” in higher fidelity models such as the elliptic restricted three-body

problem or an ephemeris-based model, a separate dynamical representation of the reference

trajectory is not needed in this study because the system dynamics are modeled as “truth” in

the CR3BP. As such, the reference trajectory is determined using the CR3BP EOMs given

by

¤xA1 = xA2

¤xA2 = 5A (xA1 , xA2)
where xA1 =


GA

HA

IA


xA2 =


¤GA

¤HA

¤IA


and 5A (xA1 , xA2) =



2lB ¤HA + l2
BGA −

`1 (GA+A�1)
A3
A1

− `2
(
GA−A�2

)
A3
A2

−2lB ¤GA + l2
B HA −

`1HA
A3
A1
− `2HA

A3
A2

− `1IA
A3
A1
− `2IA

A3
A2



(21)
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such that the propagated dynamics of the spacecraft only differ in the addition of a control

input and using the true state instead of the reference. The initial conditions for the reference

trajectory are numerically computed using the well-known differential corrector approach

that generates a halo orbit when propagated forward in time.

This study considers a naturally occurring halo orbit in the CR3BP at the Sun-

Earth/Moon L2 point. The error dynamics for the leader spacecraft is given as

e1 = x1 − xA1 and e2 = x2 − xA2
(22)

where xA is the state of the reference node of the virtual structure in terms of the rotating

barycentric reference frame. The error dynamics for the ith follower spacecraft is given as

e81 = x81 − x;A1 − r8A1 and e82 = x82 − x;A2
(23)

where x;A is the state of the leader spacecrat and r8A1 is the fixed position vector from the

leader spacecraft to the ith relative node of the virtual structure.

4.2. SPACECRAFT AND THRUSTER MODEL

The spacecraft considered in this study are modeled after the preliminary design

presented in the Stellar Imager final report [38]. For a typical spacecraft, the center of

pressure is generally close to the geometrical centroid or designed to be near the center of

mass [39]. However, the design of the spacecraft for Stellar Imager requires large solar

panels and deployable communication arrays, which can significantly affect the center of

pressure location. Spacecraft models for the leader and follower used in this study are shown

in Figure 3, where the body-fixed 1̂12-axis of the leader/chief spacecraft is always pointed

away from the Sun, while the body-fixed 1̂1 5 -axis of the follower spacecraft is continuously

oriented towards the leader spacecraft. The center of pressure is defined by the geometry
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of each spacecraft’s model, while the center of mass is located at the geometrical center

of the primary hubs (yellow in hue). An additional 50 millimeter deviation to the center

of mass is added from the centroid along each ith spacecraft’s side to account for typical

design tolerances. Depending on the spacecraft orientation relative to the Sun, the center of

pressure to center of mass distance can be as high as 0.2 meters for the follower spacecraft.

The force and torque from Eq. (5) and Eq. (6), respectively, generates a conservatively high

force and torque disturbance to demonstrate the efficacy of the proposed neural network

schemes.

(a) (b)

Figure 3. The leader spacecraft (a) points its primary body 1̂12-axis anti-Sun while the
follower spacecraft (b) points its primary 1̂1 5 -axis at the leader spacecraft and rotates about
1̂1 5 -axis such that the secondary 1̂3 5 -axis points towards the Sun as closely as possible.

Marchand and Howell have shown that for tight precision control, thrusters need to

be capable of producing thrust in the nano to millinewtons range [11]. Thruster systems

are in development that have the potential of producing thrust in the nano to micronewton

range (such as plasmonic force propulsion [31, 32, 40, 41]), but this study considers the

10s to 100s of micronewtons range as such technology is readily available and has flight

heritage [3]. Here, a single thruster capable of producing between 10 to 350 micronewtons

of thrust was implemented in simulations, where the control effort either becomes saturated



110

if it exceeds the thruster capability or does not actuate if the desired control is below the

minimum thrust value. The proposed Stellar Imager design [38] used a configuration of

eight thrusters to provide both net-zero torque for translational control and net-zero force for

attitude control. While the baseline mission also considers momentum wheels, this study

shows that the mission objectives can be achieved using only the micronewton thrusters.

4.3. BASELINE PID CONTROLLER DESIGN

To show the viability and benefits of using the two neural network schemes, a PID

control system is defined as a baseline for performance comparisons. The system can then

be described by the plant %(B) = "−1
B/2/B

2, where by choosing a PID control input, the

closed-loop characteristic equation is given by B3 + ["−1
B/2 3]B

2 + ["−1
B/2 ?]B + ["

−1
B/2 8],

where  ?,  8, and  3 are proportional, integrator, and derivative gains, respectively. Using

the typical (Z, l=) parametrization and fixing the third pole at−Ul=, the desired closed-loop

characteristic equation is given by B3 + [(2Z +U)l=]B2 + [(2ZU + 1)l2
=]B + [Ul3

=] where l=

is the natural frequency of the system, Z is the damping ratio, and U is a design parameter.

The controller gains can now be selected to match the design characteristic equation with

 ? = (2ZU + 1)l2
="B/2  8 = Ul

3
="B/2  3 = (2Z + U)l="B/2 (24)

where by fixing the design parameter at U = 1, the values for Z and l= are tuned to give

desired performance characteristics. It is noted that for U = 0, the gain tuning becomes that

of a proportional-derivative (PD) controller for the same system.

4.4. PID TUNING

The baseline PID system was tuned until the desired performance was achieved,

with relative position errors being submillimeter and attitude errors in the arcsecond range.

It was found that by fixing two parameters at U = 1 and Z = 0.9, that desired performance



111

could be achieved by tuning only the natural frequency, l=. For the leader spacecraft, the

natural frequency was l= = 4 × 10−4 for translation and l= = 4 × 10−2 for attitude. For the

follower spacecraft, the natural frequency was given by l= = 4 × 10−3 for translation and

l= = 4 × 10−2 for attitude. Using these parameters and the tuning laws defined in Eq. (24),

the  ?,  8, and  3 gains are selected.

4.5. SNNARC TUNING

To approximate a similar bandwidth between the various control methods, the

two neural networks tuning process was based on the PID tuning method. For each

spacecraft, the U, Z , and l= parameters were selected as in the PID method to get the

equivalent  ? and  3 gains. The basis vector for the translational system was selected

as q (z) = [G H I ¤G ¤H ¤I]) . The basis vector for the attitude system was selected

as q (z) =
[
\U \V \W lU lV lW

]) where U corresponds to the roll channel, V

corresponds to the pitch channel, and W corresponds to the yaw channel. The neural

network weights for ,̂ and +̂ were initialized as null matrices. While the input and output

dimensions of the weights were fixed, a two-layer neural network allows for an infinite

number of hidden nodes. For this application, it was found that ten hidden nodes gave

sufficient performance without significantly affecting the CPU performance. The sigmoid

activation function was chosen, where f(G) = 1
1+4−G .

The neural network portionwas then tuned until sufficient performancewas achieved.

For the leader spacecraft, the translational gains were set to " = 8 × 10−4, # = 8 × 10−4,

^ = 0.1, Θ< = 1 × 10−10, and  I = 0.1, while for attitude they were set to " = 1 × 10−7,

# = 1 × 10−7, ^ = 0.1, Θ< = 1 × 10−10, and  I = 0.1. For the follower spacecraft, the

translational gains were set to " = 2 × 10−4, # = 2 × 10−4, ^ = 0.1, Θ< = 1 × 10−10,

and  I = 0.1, while for attitude they were set to " = 1 × 10−8, # = 1 × 10−8, ^ = 0.1,

Θ< = 1 × 10−10, and  I = 0.1.
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4.6. MSO TUNING

The tuning of theMSO neural network scheme’s input-output feedback linearization

portion was matched with the PID method, were U, Z , and l= were kept constant such that

the  ? and  3 values matched for both spacecraft between the PID and MSO methods. For

the attitude controller, the  8 gain was slowed by a factor of 10 to allow the observer to

learn before the integrator error could accumulate. At this stage, both methods produced

identical results with the observer disabled.

The MSO neural network portion of the algorithm was setup in a similar manner

to SNNARC so that a meaningful comparison could be made. As such, the same basis

vector, q (z), was used for both translation and attitude and the neural network weights,

,̂ and +̂ , were initialized as null matrices with ten hidden nodes. The neural network

portion was then tuned until the estimated state converged with the measured state. The

estimated dynamics were then fed into the controller, completing the tuning process for the

MSO scheme. For the leader spacecraft, the translation gains were set to  2 = 1 × 10−1,

" = 1 × 10−2, # = 1 × 10−2, ^ = 1 × 10−2, and _ = 1 × 10−3, while for attitude they were

set to  2 = 1 × 10−2 " = 2 × 10−8, # = 2 × 10−8, ^ = 1 × 10−2, and _ = 1 × 10−3. For

the follower spacecraft, the translation gains were set to  2 = 1 × 10−1, " = 1 × 10−2,

# = 1×10−2, ^ = 1×10−2, and _ = 1×10−3, while for attitude they were set to 2 = 1×10−1

" = 1 × 10−8, # = 1 × 10−8, ^ = 1 × 10−2, and _ = 1 × 10−3.

5. SIMULATION RESULTS

To demonstrate the functionality of the two neural network schemes, the trajectories

of the leader spacecraft, following the reference node, and the follower spacecraft, following

the leader spacecraft, were simulated for the duration of one complete halo orbit (approx-

imately 182 days). Even though the force generated by SRP is only on the order of tens

of nanonewtons, this disturbance causes a large deviation in both the leader and follower
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spacecraft trajectories when the control system was not active, as shown in Figure 4. It is

interesting to note (and not surprisingly) that even though the two spacecraft are in relative

close proximity to each other at the start of the uncontrolled simulation (approximately 5

km separation), the differential forces experienced due to different spacecraft masses and

geometries result in completely different trajectories after a single orbit. This helps illus-

trate the chaotic dynamics of this nonlinear system and demonstrates the need for precision

control methods to achieve submillimeter control needed for advanced mission concepts.

Figure 4. The leader spacecraft (blue) and follower spacecraft (red) with inactive control
systems results in diverging trajectories compared to the desired halo trajectory (black) due
to SRP.

To evaluate the various control schemes, identical initial conditions were used

with the control tuning described. Both spacecraft were initiated with an initial error of

approximately five meters from the desired relative position and up to five degrees error in

roll, pitch, and yaw as compared to desired. Both spacecraft trajectories were simulated
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for a duration of one day, a time period in which all methods were able to achieve steady

state performance. In addition to measuring the translation and pointing performance, the

propellant consumption was also computed.

5.1. PID RESULTS

The simulation results when implementing the PID control scheme are presented

first to establish a baseline for comparison. The performance of both spacecraft for position

and velocity are presented in Figure 5 and Figure 6, respectively. It can be seen that both

(a) (b)

Figure 5. Relative position error performance for the leader spacecraft (a) and follower
spacecraft (b) using the PID control system.

(a) (b)

Figure 6. Relative velocity error performance for the leader spacecraft (a) and follower
spacecraft (b) using the PID control system.
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spacecraft can maintain a submillimeter relative position using the PID system. The numer-

ical tolerance of the MATLAB simulation platform is quickly reached for the translational

control along the Ĝ-axis. This is due to the scale of the CR3BP primaries. The position

along the Ĝ-axis is on the order of 1 × 108 kilometers and as MATLAB retains only 16

digits of precision, the minimum measurable distance is approximately 0.02 millimeters.

As such, the results appear step-like when assessing the relative position control of the two

spacecraft in Figure 5. Though numerical precision is reached, some important conclusions

can still be reached. First, though it is shown that submillimeter control can be reached

with the classical PID system, it can be seen that there remains a significant amount of jitter

in the velocity states. The total ΔV consumed for translation control over a ten day period

was 4.0922 × 10−2 m/s for the leader spacecraft and 1.4460 × 10−1 m/s for the follower

spacecraft.

(a) (b)

Figure 7. Attitude error performance for the leader spacecraft (a) and follower spacecraft
(b) using the PID control system.

The performance of both spacecraft for attitude and angular velocities are presented

in Figure 7 and Figure 8, respectively. It can be seen that the leader spacecraft is able to

achieve tens of arcseconds of error range, while the follower spacecraft could only maintain
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an arcminute error range. The total ΔV consumed for attitude control over the one day

period was 5.6465 × 10−3 m/s for the leader spacecraft and 1.0983 × 10−1 m/s for the

follower spacecraft.

(a) (b)

Figure 8. Attitude rate error performance for the leader spacecraft (a) and follower spacecraft
(b) using the PID control system.

5.2. SNNARC RESULTS

The simulation results when implementing the SNNARC control scheme are pre-

sented for both spacecraft for position and velocity in Figure 9 and Figure 10, respectively.

It can be seen that both spacecraft can maintain submillimeter relative position and reach

the numerical precision limits of the simulation framework, similar to the PID system. The

total ΔV consumed for translational control over a ten day period was 4.3297 × 10−2 m/s

for the leader spacecraft and 1.4190 × 10−1 m/s for the follower spacecraft. While the

translational performance and ΔV results appear similar to the PID method, it was expected

that the SNNARC method would have improved performance if the precision of the simu-

lation could be increased. This is suggested by the velocity states in Figure 10, where the

SNNARC method has a reduced amount of jitter in the leader spacecraft as compared to

the PID method in Figure 6.
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(a) (b)

Figure 9. Relative position error performance for the leader spacecraft (a) and follower
spacecraft (b) using the SNNARC control system.

(a) (b)

Figure 10. Relative velocity error performance for the leader spacecraft (a) and follower
spacecraft (b) using the SNNARC control system.

The difference in performance is clearly observable in the attitude control perfor-

mance, where numerical precision tolerances were not encountered. The performance of

both spacecraft in attitude and angular velocities is presented in Figure 11 and Figure 12,

respectively. It can be seen that both the leader and follower spacecraft are able to achieve

subarcseconds of error, significantly outperforming the PID method. The total ΔV con-
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sumed for attitude control over a ten day period was 4.8545 × 10−3 m/s for the leader

spacecraft and 3.7213 × 10−2 m/s for the follower spacecraft, a significant reduction in

propellant consumption compared to the PID method.

(a) (b)

Figure 11. Attitude error performance for the leader spacecraft (a) and follower spacecraft
(b) using the SNNARC control system.

(a) (b)

Figure 12. Attitude rate error performance for the leader spacecraft (a) and follower
spacecraft (b) using the SNNARC control system.
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The disturbance estimation performance results from the neural network portion

of the SNNARC control scheme are presented for both spacecraft for force and torque

perturbations in Figure 13 and Figure 14, respectively. It is seen that, in general, the

perturbation estimation does not appear to match the expected values other than for the

(a) (b)

Figure 13. Force perturbation estimation error performance for the leader spacecraft (a)
and follower spacecraft (b) using the SNNARC neural network.

(a) (b)

Figure 14. Torque perturbation estimation error performance for the leader spacecraft (a)
and follower spacecraft (b) using the SNNARC neural network.
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position of the leader spacecraft. This is the result of how the leader and reference tra-

jectories are defined. For the leader spacecraft, its desired reference dynamics match the

spacecraft’s simulated states when the error is null. However, this is not the case for the

follower spacecraft. Because the reference dynamics are defined by a fixed distance from the

leader spacecraft, the “natural” velocity from those dynamics would result in the spacecraft

deviating from the desired trajectory. As these are the reference dynamics that are utilized,

the neural network compensates for the mismatch. This is because the SNNARC method-

ology learns based on the tracking error. As such, the bias introduced is fixed by estimating

it as an additional perturbation. This is also the case for the attitude perturbation estimation

observed in Figure 14, where the assumed desired attitude dynamics and desired angular

velocities are null. However, there can be small variances in true desired angular velocities,

near null, that are in part coupled with the performance of the translational controller. The

neural network, being fed the attitude tracking error, is able to compensate for the bias by

estimating an additional perturbation in attitude. This phenomenon is further explored for

both translation and attitude using the MSO control scheme, where an integrator corrects

for the bias while the observer is better able to estimate the perturbations.

5.3. MSO RESULTS

The simulations results when implementing the MSO control scheme are presented

for both spacecraft for position and velocity in Figure 15 and Figure 16, respectively. It can

be seen that both spacecraft maintain submillimeter relative position and reach the numerical

precision limits of the simulation framework just as the PID and SNNARC methods did.

The total ΔV consumed for translational control over a ten day period was 4.0922 × 10−2

m/s for the leader spacecraft and 1.4458× 10−1 m/s for the follower spacecraft, showing the

results are comparable to the PID and SNNARCmethods. Similar to the SNNARCmethod,

the resulting velocity states, as shown in Figure 16, exhibit reduced jitter as compared to the
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PID method in Figure 6. So while the overall relative position results are similar to the PID

method, it is anticipated that the results would show improved performance once numerical

precision issues could be resolved.

(a) (b)

Figure 15. Relative position error performance for the leader spacecraft (a) and follower
spacecraft (b) using the MSO control system.

(a) (b)

Figure 16. Relative velocity error performance for the leader spacecraft (a) and follower
spacecraft (b) using the MSO control system.

The performance in attitude control for the MSO method is nearly identical to

the SNNARC methodology. The performance of both spacecraft for attitude and angular

velocities is presented in Figure 17 and Figure 18, respectively. It can be seen that both the

leader and follower spacecraft achieve subarcseconds of error, significantly outperforming
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the PID method. The total ΔV consumed for attitude control over a ten day period was

4.8503×10−3 m/s for the leader spacecraft and 3.7137×10−2 m/s for the follower spacecraft,

a significant reduction in propellant consumption compared to the PID method and similar

to the SNNARC method.

(a) (b)

Figure 17. Attitude error performance for the leader spacecraft (a) and follower spacecraft
(b) using the MSO control system.

(a) (b)

Figure 18. Attitude rate error performance for the leader spacecraft (a) and follower
spacecraft (b) using the MSO control system.

The state estimation performance results from the observer portion of the MSO

control scheme are presented for both spacecraft for position and attitude in Figure 19 and

Figure 20, respectively. It can be seen for the position estimation that the precision limits of
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the simulation environment are quickly reached and after approximately 20 minutes, steady

state shows no estimation error within the allowable numerical precision for both spacecraft.

For the attitude state estimation, steady state is reached within approximately four hours

with estimation errors in the 2 × 10−6 arcseconds range.

(a) (b)

Figure 19. Position estimation error performance for the leader spacecraft (a) and follower
spacecraft (b) using the MSO neural network.

(a) (b)

Figure 20. Attitude estimation error performance for the leader spacecraft (a) and follower
spacecraft (b) using the MSO neural network.

To achieve such tight tolerances, the estimated dynamics are propagated using

a fourth-order Rung-Kutta (RK4) method. While using an Euler’s integration method

worked appropriately for attitude dynamics, the chaotic nature of the CR3BP required a
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higher tolerance integration method to achieve satisfactory estimation performance. As

such, an RK4 integration method was used for propagating both the estimated translational

and estimated attitude dynamics.

The disturbance estimation performance results from the observer portion of the

MSO control scheme are presented for both spacecraft for force and torque perturbations

in Figure 21 and Figure 22, respectively. The force and torque estimation converges to

steady state within approximately four minutes for both spacecraft, though the estimation

of the torque disturbance for the leader spacecraft took approximately 20 minutes. Both

spacecraft exhibited similar steady state performance, with the force disturbance estimation

being within 1 × 10−5 nanonewtons for the leader spacecraft and 2 × 10−4 nanonewtons

for the follower spacecraft, while the torque disturbance estimation was within 2 × 10−6

nanonewtons for both spacecraft. It is interesting to note that while the MSO control

scheme was able to estimate perturbations, the method required an integral control portion

to compensate for a bias introduced between the state dynamics and desired dynamics.

The neural network in the SNNARC method was able to automatically compensate for this

bias at the expense of estimating a perturbation that deviated from the truth. Even with this

distinction, both methods were nearly identical in position and attitude control performance.

(a) (b)

Figure 21. Force perturbation estimation error performance for the leader spacecraft (a)
and follower spacecraft (b) using the MSO neural network.
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(a) (b)

Figure 22. Torque perturbation estimation error performance for the leader spacecraft (a)
and follower spacecraft (b) using the MSO neural network.

6. CONCLUSION

Two neural network schemes were introduced, updated, and shown to achieved

desired science performance objectives in both position and attitude control for an advanced

mission concept modeled after the Stellar Imager mission. The SNNARCmethodology was

updated by replacing the filtered tracking error with a proportional-derivative approach to

the linear tuning gains, allowing for a more traditional approach to controller gain tuning.

The MSO methodology was updated from a one-layer neural network to a two-layer neural

network, state estimation was expanded to full-state, and integrator action was added to

accommodate biases in reference state and reference dynamics formulation. Both neural

network methodologies outperformed the traditional PID method, even though system

bandwidth was approximately the same. The SNNARC methodology allowed for a simpler

approach to achieving the control objective, where the estimator was able to accommodate

the perturbations and bias in reference state dynamics at the same time. However, this

method can prevent perturbation reconstruction. The MSO methodology allowed for a

complementary control design approach, where the perturbation estimation augments a

traditional PID approach to improve overall control performance. The method, however,
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required an RK4 integrator for state estimation, which could increase onboard computation

requirements. Not only did the two neural network schemes outperform the PID method in

terms of control objectives, both were able to provide significant cost savings in terms of

propellant consumption. It is noted that, while not specifically simulated, it is expected that

similar results would be observed at the other collinear libration points, for other primary

systems, in other multi-body regimes, and in higher fidelity models. Both neural network

methods are viable methods for performing precision formation flight and attitude control

in a deep space environment, with both presenting potential advantages over each other

depending on the mission requirements.
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SECTION

2. FUTURE WORK

With the successful testing of the two neural networks on the Wallops Arc-Second

Pointer, as well as demonstrating the functionality on advanced mission concepts such as

formation control of large virtual structures in a deep space environment, a significant

amount of development is planned for future work. As the work is ongoing, presented

below is a subset of the recent accomplishments and future applications.

2.1. XL-CALIBUR

The next high-altitude balloon-borne mission that will be flown by NASA Wallops

Flight Facility (WFF) is XL-Calibur, which is an X-ray polarimetry mission that will study

high-energy emissions from deep space sources such as black-hole systems and neutron

stars. The mission finished the initial integration phase in December 2021 at NASA WFF

in preparation for a Spring/Summer 2022 flight from Sweden. This science instrument is

significantly larger than any previousWASP flight, with its inertia approximately an order of

magnitude larger as compared to previous missions. The XL-Calibur and WASP platform

are shown in Figure 2.1 during the initial integration phase at NASA WFF.

During the integration period, the two neural network methods were tested and

refined on the flight hardware. For both the SNNARC andMSOmethods, a desired velocity

derivation was added to enable tracking a geodetic target. Both methods were able to

track the geodetic target with sub-arcsecond precision without any observable steady-state

bias, and both were able to outperform the heritage control system. The MSO method

was able to achieve the best performance with an impressive RMS error of only 0.048

arcseconds in pitch and 0.055 arcseconds in yaw during one of the testing dates. The MSO
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algorithm was also revised to add the addition of a velocity limit to the control system.

By refining how the proportional and derivative gains are applied, a limit on the angular

velocity could be achieved. This enables using high gains for learning while maintaining

a slew maneuver without compromising learning or pointing performance. In particular,

with both the velocity limit enabled and the desired velocity tracking enabled for geodetic

targets, the MSO method was able to slew with near zero bias, whereas the heritage control

system exhibited a large lagging bias during slews. Not only does this demonstrate the

improved performance of the neural network methods over the heritage approach, it also

shows that these control methodologies are viable for a variety of configurations for the

WASP platform.

Figure 2.1. The WASP platform with the XL-Calibur mission science hardware mounted
as the centerbody is shown in suspended system flight functional configuration at NASA
WFF.
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2.2. PICTURE-C

Due to the delay in the science flight of the PICTURE-C mission, a new flight

opportunity is planed for Fall 2022. Having demonstrated the benefits of velocity limiting on

theMSOmethodology, it is desirable to also implement this for the SNNARCmethodology.

The removal of the filtered tracking error when demonstrating the SNNARC methodology

for the two spacecraft in a a deep space environment has enabled applying a similar approach.

The linear gain tuning of SNNARC is now similar to theMSOmethod, and as such a similar

approach to velocity limiting can now be implemented. Testing with XL-Calibur has shown

that currently, performing a slew using the SNNARC method causes instability. It is

predicted that velocity limiting will help prevent instability in the learning, which is driven

by error. The PICTURE-C mission plans to observe multiple inertial stellar targets and

would benefit from improved pointing stability offered by the two neural network methods.

Currently, the operational planning requires switching the control law from SNNARC, if

that is being used, prior to performing a slew and then switching back to SNNARC once on

target again. This introduces the potential of human-factor errors, so enabling SNNARC to

be able to perform slews is greatly desirable. This work is planned to be completed for the

Picture-C mission during Summer 2022.

2.3. CODEX

The COronal Diagnostic Experiment (CODEX), which is scheduled to launch to the

International Space Station (ISS) in 2023, seeks to improve the performance of its pointing

system utilizing the two neural network methods presented in this research [32]. It will be

mounted to the ExPRESS Logistics Carrier (ELC 3), as shown in Figure 2.2, which was

added to the ISS in May 2011. The CODEX mission seeks to study coronal mass ejections
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(CME), which are abrupt and explosive ejections of coronal plasma from the surface of the

Sun. These CMEs can interact with Earth’s magnetic field causing geomagnetic storms,

potentially harming spacecraft and terrestrial infrastructure.

Figure 2.2. CAD Representation of CODEXmounted to the ISS on the ExPRESS Logistics
Carrier.

While the NASA team has extensive experience in developing and operating point-

ing systems for a high-altitude balloon platform, the transition to spaceflight offers new

challenges that must be considered. For example, one source of disturbance occurs from the

ISS’s own control system used to hold a local vertical, local horizon (LVLH) orientation.

This motion of the ISS, in addition to general vibrations of the ISS mechanical structure,

translate as motion disturbances to the CODEX platform. To meet budget and schedule

constraints, several changes to the platform were also introduced, including the removal of

the inertial measurement unit (IMU) and rotating shafts in the azimuth and elevation motor

hubs. The rotating shafts allowed the motor hubs to operate without considerations of static

friction, which must now be accounted for in the new design. Similarly, the removal of the

IMU requires filtering to derive the body rates of the telescope.
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A traditional PID controller has been baselined for the mission, which has worked

well for the team in previous pointing systems for the WASP platform. The team is

considering the addition of either the SNNARC and/or MSO methodology to supplement

the control system as both a technology demonstration and potential substitute if scientific

objectives can be improved. The flight software for the control system has already been

written and testing with software-in-the-loop (SWIL) simulations has been successfully

conducted, showing significant improvements in pointing performance as compared to the

heritage controller, as shown in Figure 2.3. Furthermore, the software has been compiled to

the flight hardware and hardware-in-the-loop (HWIL) testing has begun. As this spaceflight

system is higher risk, it is desired to further test the two neural network methods in a

flight-like environment, and as such the WASP platform serves as the perfect candidate.

The hardware testing and in flight performance characterizations will offer valuable lessons-

learned to help further improve and refine the two neural network methodologies.

(a) Heritage PID Controller (b) SNNARC Performance (c) MSO Performance

Figure 2.3. Both the SNNARC (b) and MSO (c) methods provide significant improvements
in steady state performance as compared to the heritage PID (a) control system in CODEX
SWIL testing.

2.4. DISTRIBUTED SYSTEM MISSIONS

Enabling Distributed System Mission (DSM) architectures for advanced mission

concepts has become a priority for NASA Goddard Space Flight Center (GSFC). In fact,

investigating and enabling formation control for SmallSat constellations for the DSM archi-

tecture has led to funding through the Internal Research & Development program at GSFC.
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While the work is still ongoing, development has already begun in enabling a variety of mis-

sion and control architectures in a high fidelity environment. As part of that work, a version

of theMSO neural networkwas tested in the GeneralMissionAnalysis Tool (GMAT), where

the guidance and control system algorithm used the CR3BP model presented in Paper III.

However, due to the GMAT high-fidelity simulation environment, the “truth” environment

is n-body, and as such, the desired halo orbit no longer naturally occurs. Initial testing of

the neural network method has shown that even in an n-body environment, where even the

libration point itself is time variant, the neural network successfully learned the dynamics

and the control system was able to maintain precision formation flight. The development

work has transitioned to using NASA 42, as this high-fidelity simulation environment offers

the ability of simulating attitude dynamics in addition to translational dynamics, a capabil-

ity GMAT does not currently have. As part of the work planned, it is desired to include a

variety of control strategies to the development, including the two neural network methods

presented here. Furthermore, the NASA 42 software allows for the modeling of sensors,

navigation algorithms, and actuator hardware such as thrusters and reaction wheels. All

these capabilities can further enable high-fidelity simulations for spacecraft utilizing the

DSM architecture, where the two neural networks presented can be greatly beneficial.
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3. SUMMARY AND CONCLUSIONS

This research has shown that advanced mission concepts can be achieved for space-

flight systems using neural networks. Two neural network methodologies were synthesized,

implemented, tested, and refined in both simulation and hardware testing, showing not only

the viability of the method, but also the benefits as compared to other heritage control

methods. The SNNARC methodology was introduced with both a filtered tracking error

and a traditional proportional-derivative formulation, while using a two-layer neural net-

work to estimate nonlinear dynamics within the control space, to control both translational

and rotational dynamics of a spaceflight system. The MSO methodology introduced both

a one-layer and two-layer neural network that operated within an observer to estimate the

nonlinear dynamics outside the control space, and then used input-output feedback lin-

earization to control both translational and rotational dynamics of the spaceflight system.

Lyapunov-based proofs were presented that showed both control systems were ultimately

upper bounded. Simulations showed that both neural network methodologies offered im-

proved attitude control of the Wallops Arc-Second Pointer as well as offering improved

position and attitude control of two spacecraft in formation control in a deep space environ-

ment. Finally, hardware testing of the two neural network methods on the WASP platform,

a high-altitude balloon-borne spaceflight system, showed that the methods outperformed

the heritage control system. Through the use of neural network methods, control perfor-

mance can be improved for spaceflight systems when their dynamics are unknown or poorly

understood and/or modelled.



138

REFERENCES

[1] Gril, G., “GLCM Guidance System,” Association of Air Force Missileers, Vol. 5,
No. 4, 1997, p. 5.

[2] Lippmann, R., “An introduction to computingwith neural nets,” IEEEASSPMagazine,
Vol. 4, No. 2, 1987, pp. 4–22. https://doi.org/10.1109/MASSP.1987.1165576.

[3] Lewis, F. L., Jagannathan, S., and Yesildirek, A., Neural Network Control of Robot
Manipulators and Nonlinear Systems, Taylor and Francis, 1999.

[4] Simpson, P., Artificial Neural Systems: Foundations, Paradigms, Applications, and
Implementations, Neural networks, Elsevier Science Limited, 1990.

[5] Hush, D., and Horne, B., “Progress in supervised neural networks,” IEEE Signal Pro-
cessing Magazine, Vol. 10, No. 1, 1993, pp. 8–39. https://doi.org/10.1109/79.180705.

[6] Garde, G. J., and Fairbrother, D. A., “The NASA Balloon Program - Positioning For
the Future,” Proceedings of the 2015 AIAA Balloon Systems Conference (June 2015,
Dallas, TX), 2015, pp. 1–8. https://doi.org/10.2514/6.2015-2907.

[7] Fairbrother, D. A., “2017 NASA Balloon Program Update,” Proceedings of the
2017 AIAA Balloon Systems Conference (June 2017, Denver, CO), 2017, pp. 1–8.
https://doi.org/10.2514/6.2017-3090.

[8] Jones-Wilson, L., Susca, S., Diaz, C., Chang, H., Duffy, E., Effinger, R., Lewis,
D., Liewer, K., Lo, K., Ochoa, H., Perez, J., Rizvi, A., Seubert, C., Umsted,
C., Borden, M., Clark, P., Massey, R., and Porter, M., “A Sub-Arcsecond Point-
ing Stability Fine Stage for a High Altitude Balloon Platform,” Proceedings of the
2017 IEEE Aerospace Conference (March 2017, Big Sky, MT), 2017, pp. 1–15.
https://doi.org/10.1109/AERO.2017.7943590.

[9] Stuchlik, D. W., “The Wallops Arc Second Pointer - A Balloon Borne Fine Pointing
System,” Proceedings of the 2015 AIAA Balloon Systems Conference (June 2015,
Dallas, TX), 2015, pp. 1–15. https://doi.org/10.2514/6.2015-3039.

[10] Stuchlik, D. W., and Lanzi, R., “The NASA Wallops Arc-Second Pointer (WASP)
System for Precision Pointing of Scientific Balloon Instruments and Telescopes,”
Proceedings of the 2017 AIAA Balloon Systems Conference (June 2017, Denver, CO),
2017, pp. 1–8. https://doi.org/10.2514/6.2017-3609.

[11] Kopp, G., Smith, P., Belting, C., Castleman, Z., Drake, G., Espejo, J., Heuerman,
K., Lanzi, J., and Stuchlik, D., “Radiometric flight results from the HyperSpectral
Imager for Climate Science (HySICS),” Geoscientific Instrumentation, Methods and
Data Systems, Vol. 6, 2017, pp. 169–191. https://doi.org/10.5194/gi-6-169-2017.



139

[12] Hurford, T. A., Mandell, A., Reddy, V., and Young, E., “Observatory for Planetary
Investigations from the Stratosphere,” Proceedings of the 46th Lunar and Planetary
Science Conference (March 2015, The Woodlands, TX), 2015, pp. 1–2.

[13] Mendillo, C. B., Hewawasam, K., Howe, G. A., Martel, J., Cook, T. A., and
Chakrabarti, S., “The PICTURE-C exoplanetary direct imaging balloon mission:
first flight preparation,” Techniques and Instrumentation for Detection of Exoplanets
IX, Proceedings of the 2019 International Society for Optics and Photonics Con-
ference (August 2019, San Diego, CA), Vol. 11117, SPIE, 2019, pp. 101 – 111.
https://doi.org/10.1117/12.2529710.

[14] Mendillo, C. B., Hewawasam, K., Martel, J., Potter, T., Cook, T. A., and
Chakrabarti, S., “The PICTURE-C Exoplanetary Imaging Balloon Mission: First
Flight Preparation,” Techniques and Instrumentation for Detection of Exoplanets
IX, Proceedings of the 2021 International Society for Optics and Photonics Con-
ference (August 2021, San Diego, CA), Vol. 11823, SPIE, 2021, pp. 125 – 133.
https://doi.org/10.1117/12.2594749.

[15] Gopalswamy, N., Newmark, J., Yashiro, S., Mäkelä, P., Reginald, N., Thakur, N.,
Gong, Q., Kim, Y. H., Cho, K. S., Choi, S. H., Baek, J. H., Bong, S. C., Yang, H. S.,
Park, J. Y., Kim, J. H., Park, Y. D., Lee, J. O., Kim, R. S., and Lim, E. K., “The
Balloon-Borne Investigation of Temperature and Speed of Electrons in the Corona
(BITSE): Mission Description and Preliminary Results,” Solar Physics, Vol. 296,
2021. https://doi.org/10.1007/s11207-020-01751-8.

[16] Abarr, Q., Awaki, H., Baring, M., Bose, R., De Geronimo, G., Dowkontt, P., Errando,
M., Guarino, V., Hattori, K., Hayashida, K., Imazato, F., Ishida, M., Iyer, N., Kislat,
F., Kiss, M., Kitaguchi, T., Krawczynski, H., Lisalda, L., Matake, H., Maeda, Y.,
Matsumoto, H., Mineta, T., Miyazawa, T., Mizuno, T., Okajima, T., Pearce, M.,
Rauch, B., Ryde, F., Shreves, C., Spooner, S., Stana, T.-A., Takahashi, H., Takeo,
M., Tamagawa, T., Tamura, K., Tsunemi, H., Uchida, N., Uchida, Y., West, A.,
Wulf, E., and Yamamoto, R., “XL-Calibur – a Second-Generation Balloon-Borne
Hard X-Ray Polarimetry Mission,” Astroparticle Physics, Vol. 126, 2021, p. 102529.
https://doi.org/10.1016/j.astropartphys.2020.102529.

[17] McCarthy, D. J., “Operating Characteristics of the Stratoscope II Balloon-Borne Tele-
scope,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 5, No. 2, 1969,
pp. 323–329. https://doi.org/10.1109/TAES.1969.309922.

[18] Pascale, E., Ade, P. A. R., Bock, J. J., Chapin, E. L., Chung, J., Devlin, M. J., Dicker, S.,
Griffin, M., Gundersen, J. O., Halpern, M., Hargrave, P. C., Hughes, D. H., Klein, J.,
MacTavish, C. J., Marsden, G., Martin, P. G., Martin, T. G., Mauskopf, P., Netterfield,
C. B., Olmi, L., Patanchon, G., Rex, M., Scott, D., Semisch, C., Thomas, N., Truch, M.
D. P., Tucker, C., Tucker, G. S., Viero, M. P., and Wiebe, D. V., “The Balloon-Borne
Large Aperture Submillimeter Telescope: BLAST,” The Astrophysical Journal, Vol.
681, No. 1, 2008, pp. 400–414. https://doi.org/10.1086/588541.



140

[19] Barthol, P., Gandorfer, A., Solanki, S. K., Schüssler, M., Chares, B., Curdt, W.,
Deutsch, W., Feller, A., Germerott, D., Grauf, B., Heerlein, K., Hirzberger, J., Kolleck,
M., Meller, R., Müller, R., Riethmüller, T. L., Tomasch, G., Knölker, M., Lites, B. W.,
Card, G., Elmore, D., Fox, J., Lecinski, A., Nelson, P., Summers, R., Watt, A.,
Martínez Pillet, V., Bonet, J. A., Schmidt, W., Berkefeld, T., Title, A. M., Domingo,
V., Gasent Blesa, J. L., del Toro Iniesta, J. C., López Jiménez, A., Álvarez-Herrero,
A., Sabau-Graziati, L., Widani, C., Haberler, P., Härtel, K., Kampf, D., Levin, T.,
Pérez Grande, I., Sanz-Andrés, A., and Schmidt, E., “The Sunrise Mission,” Solar
Physics, Vol. 268, 2011, pp. 1–34. https://doi.org/10.1007/s11207-010-9662-9.

[20] Romualdez, L. J., Damaren, C. J., Li, L., Galloway, M. N., Hartley, J. W., Netterfield,
C. B., Clark, P., andMassey, R. J., “Precise Pointing and Stabilization Performance for
the Balloon-Borne Imaging Testbed: 2015 Test Flight,” Proceedings of the Institution
of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 231, No. 4,
2017, pp. 713–727. https://doi.org/10.1177/0954410016641451.

[21] Borden, M., Lewis, D., Ochoa, H., Jones-Wilson, L., Susca, S., Porter, M., Massey, R.,
Clark, P., and Netterfield, B., “Thermal, Structural, and Optical Analysis of a Balloon-
Based Imaging System,” Publications of the Astronomical Society of the Pacific, Vol.
129, 2017. https://doi.org/10.1088/1538-3873/129/973/035001.

[22] Markley, F. L., and Crassidis, J. L., Fundamentals of Spacecraft Attitude Determina-
tion and Control, Springer, First Edition, 2014.

[23] Slotine, J. E., and Li, W., Applied Nonlinear Control, Prentice Hall, 1995.

[24] Abdo, M., Vali, A. R., Toloei, A., and Arvan, M. R., “Research on the Cross-Coupling
of a Two Axes Gimbal System with Dynamic Unbalance,” International Journal of
Advanced Robotic Systems, Vol. 10, 2013, p. 357. https://doi.org/10.5772/56963.

[25] Ekstrand, B., “Equations of Motion for a Two-Axes Gimbal System,” IEEE Trans-
actions on Aerospace and Electronic Systems, Vol. 37, No. 3, 2001, pp. 1083–1091.
https://doi.org/10.1109/7.953259.

[26] Liu, S., Lu, T., Shang, T., and Xia, Q., “Dynamic Modeling and Coupling Charac-
teristic Analysis of Two-Axis Rate Gyro Seeker,” International Journal of Aerospace
Engineering, Vol. 2018, 2018. https://doi.org/10.1155/2018/8513684.

[27] Kahlil, H. K., Nonlinear Control, Pearson, First Edition, 2015.

[28] Darling, J. E., Legrand, K. A., Galchenko, P., Pernicka, H. J., DeMars, K. J., Shirley,
A. T., McCabe, J. S., Schmid, C. L., Haberberger, S. J., and Mundahl, A. J., “Devel-
opment and Flight of a Stereoscopic Imager for Use in Spacecraft Close Proximity
Operations,” Proceedings of the 39th Annual AAS Rocky Mountain Section Guidance
and Control Conference (February 2016, Breckenridge, CO), Vol. 157, 2016, pp.
489–500.



141

[29] Davis, J., Galchenko, P., Jennings, D., and Pernicka, H. J., “Development and Valida-
tion of a GNC Algorithm Using a Stereoscopic Imaging Sensors in Close Proximity
Operations,” Proceedings of the 2017 AAS/AIAA Astrodynamics Specialist Conference
(August 2017, Stevenson, WA), Vol. 162, 2018, pp. 3149–3161.

[30] Galchenko, P., and Pernicka, H. J., “Precision Control of Microsatellite Swarms Using
Plasmonic Force Propulsion,” Proceedings of the 2018 AAS/AIAA Astrodynamics
Specialist Conference (August 2018, Snowbird, UT), Vol. 167, 2018, pp. 935–954.

[31] Jennings, D., Davis, J., Galchenko, P., and Pernicka, H. J., “Validation of a GNCAlgo-
rithm Using a Stereoscopic Imaging Sensor to Conduct Close Proximity Operations,”
Proceedings of the 41st Annual AAS Rocky Mountain Section Guidance and Control
Conference (2018, Breckenridge, CO), Vol. 164, 2018, pp. 47–58.

[32] Galchenko, P., and Pernicka, H. J., “Precision Control of Microsatellite Swarms Using
Plasmonic Force Propulsion,” Proceedings of the 2018 AAS/AIAA Astrodynamics
Specialist Conference (August 2018, Snowbird, UT), Vol. 167, 2019, pp. 935–954.

[33] MacKunis, W., Leve, F., Patre, P., Fitz-Coy, N., and Dixon, W., “Adaptive
Neural Network-Based Satellite Attitude Control in the Presence of CMG Un-
certainty,” Aerospace Science and Technology, Vol. 54, 2016, pp. 218–228.
https://doi.org/10.1016/j.ast.2016.04.022.

[34] Ghafoor, A., Galchenko, P., Balakrishnan, S. N., Pernicka, H., and Yucelen, T.,
“ETNAC Design Enabling Formation Flight at Liberation Points,” Proceedings of
the 2019 American Control Conference (July 2019, Philadelphia, PA), 2019, pp.
3689–3694. https://doi.org/10.23919/ACC.2019.8814922.

[35] Galchenko, P., Pernicka, H. J., and Balakrishnan, S. N., “Pointing System Design
for the COronal Diagnostic Experiment (CODEX) using a Modified State Observer
and a Neural Network Controller,” Proceedings of the 2020 AAS/AIAA Astrodynamics
Specialist Conference (August 2020, South Lake Tahoe, CA), 2021, pp. 645–660.

[36] Rajagopal, K., Mannava, A., Balakrishnan, S., Nguyen, N., and Krishnaku-
mar, K., “Neuroadaptive Model Following Controller Design for Non-Affine and
Non-Square Aircraft Systems,” Proceedings of the 2009 AIAA Guidance, Navi-
gation, and Control Conference (August 2009, Chicago, IL), 2009, pp. 1–21.
https://doi.org/10.2514/6.2009-5737.

[37] Mannava, A., Balakrishnan, S., Tang, L., and Landers, R., “Optimal Tracking Control
of Motion Systems,” IEEE Transactions on Control Systems Technology, Vol. 20,
2012, pp. 1548–1558. https://doi.org/10.1109/TCST.2011.2168608.

[38] Harl, N., Rajagopal, K., and Balakrishnan, S. N., “Neural Network Based Modified
State Observer for Orbit Uncertainty Estimation,” Journal of Guidance, Control, and
Dynamics, Vol. 36, No. 4, 2013, pp. 1194–1209. https://doi.org/10.2514/1.55711.



142

[39] Selva, D., and Krejci, D., “A survey and assessment of the capabilities of Cube-
sats for Earth observation,” Acta Astronautica, Vol. 74, 2012, pp. 50–68.
https://doi.org/https://doi.org/10.1016/j.actaastro.2011.12.014.

[40] Le Moigne, J., “Distributed Spacecraft Missions (DSM) Technology Development
at NASA Goddard Space Flight Center,” 2018 IEEE International Geoscience and
Remote Sensing Symposium (July 2018, Valencia, Spain), 2018, pp. 293–296.
https://doi.org/10.1109/IGARSS.2018.8519065.

[41] Yost, B., and Weston, S., “State-of-the-Art of Small Spacecraft Technology,” Tech.
rep., Small Spacecraft Systems Virtual Institute, Ames Research Center, Moffett Field,
California, 2017.

[42] Noecker, C., and Kilston, S., “Terrestrial Planet Finder: the search for life elsewhere,”
1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403), Vol. 4, 1999,
pp. 49–57. https://doi.org/10.1109/AERO.1999.792078.

[43] Cockell, C. S., Herbst, T., Léger, A., and et. all, “Darwin—an experimental astronomy
mission to search for extrasolar planets,” Experimental Astronomy, Vol. 23, No. 1,
2009, pp. 435–461. https://doi.org/10.1007/s10686-008-9121-x.

[44] Gendreau, K. C., Cash, W. C., Shipley, A. F., and White, N., “MAXIM Pathfinder
x-ray interferometry mission,” X-Ray and Gamma-Ray Telescopes and Instruments
for Astronomy, Proceedings of the 2019 International Society for Optics and Pho-
tonics Conference (March 2000, Munich, Germany), Vol. 4851, 2003, pp. 353–364.
https://doi.org/10.1117/12.461316.

[45] Shaddock, D. A., “An Overview of the Laser Interferometer Space Antenna,” Publi-
cations of the Astronomical Society of Australia, Vol. 26, No. 2, 2009, p. 128–132.
https://doi.org/10.1071/AS08059.

[46] Carpenter, K. G., Schrĳver, C. J., Karovska, M., and SIMission Concept Development
Team, “The Stellar Imager (SI) project: a deep space UV/Optical Interferometer
(UVOI) to observe the Universe at 0.1 milli-arcsec angular resolution,” Astrophysics
and Space Science, Vol. 320, 2009, pp. 217–223. https://doi.org/10.1007/s10509-008-
9815-6.

[47] Gendreau, K. C., Cash, W. C., Gorenstein, P., Windt, D. L., Kaaret, P., and Reynolds,
C., “MAXIM: the black hole imager,” UV and Gamma-Ray Space Telescope Sys-
tems, Proceedings of the 2019 International Society for Optics and Photonics Con-
ference (June 2004, Glasgow, United Kingdom), Vol. 5488, 2004, pp. 394–402.
https://doi.org/10.1117/12.551250.

[48] Carpenter, K. G., Schrĳver, C. J., and Karovska, M., “The Stellar Imager (SI) vision
mission,” Advances in Stellar Interferometry, Proceedings of the 2019 International
Society for Optics and Photonics Conference (May 2006, Orlando, Florida), Vol.
6268, 2006, pp. 610–621. https://doi.org/10.1117/12.669713.



143

[49] Marchand, B. G., and Howell, K. C., “Control Strategies for Formation Flight In
the Vicinity of the Libration Points,” Journal of Guidance, Control, and Dynamics,
Vol. 28, No. 6, 2005, pp. 1210–1219. https://doi.org/10.2514/1.11016.

[50] Howell, K. C., and Marchand, B. G., “Natural and non-natural space-
craft formations near the L1 and L2 libration points in the Sun–Earth/Moon
ephemeris system,” Dynamical Systems, Vol. 20, No. 1, 2005, pp. 149–173.
https://doi.org/10.1080/1468936042000298224.

[51] Xin, M., Balakrishnan, S. N., and Pernicka, H. J., “Multiple spacecraft formation
control with Θ-D method,” IET Control Theory & Applications, Vol. 1, 2007, pp.
485–493. https://doi.org/10.1049/iet-cta_20050410.

[52] Xin, M., Balakrishnan, S. N., and Pernicka, H. J., “Position and Attitude Control of
Deep-Space Spacecraft Formation Flying Via Virtual Structure and Θ-D Technique,”
Journal of Dynamic Systems, Measurement, and Control, Vol. 129, No. 5, 2007, pp.
689–698. https://doi.org/10.1115/1.2764509.

[53] Li, P., Cui, P., and Cui, H., “An improved nonlinear control strategy for deep space
formation flying spacecraft,” Acta Mechanica Sinica, Vol. 25, No. 6, 2009, pp. 847–
856. https://doi.org/10.1007/s10409-009-0274-2.

[54] Xu, M., Zhou, N., and Wang, J., “Robust adaptive strategy for stationkeeping of Halo
orbit,” 2012 24th Chinese Control and Decision Conference (May 2012, Taiyuan,
China), 2012, pp. 3086–3091. https://doi.org/10.1109/CCDC.2012.6244486.

[55] Queiroz, M. S. d., Kapila, V., and Yan, Q., “Adaptive Nonlinear Control of Multiple
Spacecraft Formation Flying,” Journal of Guidance, Control, and Dynamics, Vol. 23,
No. 3, 2000, pp. 385–390. https://doi.org/10.2514/2.4549.

[56] Gurfil, P., Idan, M., and Kasdin, N. J., “Neurocontrol of Spacecraft Formation Flying
in the Elliptic Restricted Three-Body Problem,” AIAA Guidance, Navigation, and
Control Conference and Exhibit (August 2002, Monterey, California), 2002, pp. 1–11.
https://doi.org/10.2514/6.2002-4962.

[57] Wang, W., Mengali, G., Quarta, A. A., and Yuan, J., “Distributed adaptive
synchronization for multiple spacecraft formation flying around Lagrange point
orbits,” Aerospace Science and Technology, Vol. 74, 2018, pp. 93–103.
https://doi.org/10.1016/j.ast.2018.01.007.

[58] Xu, M., Liang, Y., and Fu, X., “Formation flying on quasi-halo orbits in restricted
Sun–Earth/Moon system,” Aerospace Science and Technology, Vol. 67, 2017, pp.
118–125. https://doi.org/https://doi.org/10.1016/j.ast.2017.03.038.

[59] Shahid, K., and Kumar, K. D., “Formation Control at the Sun-Earth L2 Libration Point
Using Solar Radiation Pressure,” Journal of Spacecraft and Rockets, Vol. 47, No. 4,
2010, pp. 614–626. https://doi.org/10.2514/1.47342.



144

[60] Wang, W., Baoyin, H., Mengali, G., and Quarta, A. A., “Solar sail cooperative
formation flying around L2-type artificial equilibrium points,” Acta Astronautica,
Vol. 169, 2020, pp. 224–239. https://doi.org/10.1016/j.actaastro.2019.10.028.

[61] Qi, R., Xu, S., and Xu, M., “Impulsive Control for Formation Flight About Libration
Points,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, 2012, pp.
484–496. https://doi.org/10.2514/1.54383.

[62] Kane, T. R., and Marsh, E. L., “Attitude stability of a symmetric satellite at the
equilibrium points in the restricted three-body problem,” Celestial mechanics, Vol. 4,
No. 1, 1971, pp. 78–90. https://doi.org/10.1007/BF01230323.

[63] Guzzetti, D., and Howell, K. C., “Natural periodic orbit-attitude behaviors for rigid
bodies in three-body periodic orbits,” Acta Astronautica, Vol. 130, 2017, pp. 97–113.
https://doi.org/10.1016/j.actaastro.2016.06.025.

[64] Guzzetti, D., and Howell, K. C., “Attitude dynamics in the circular restricted
three-body problem,” Astrodynamics, Vol. 2, No. 2, 2018, pp. 87–119.
https://doi.org/10.1007/s42064-017-0012-7.

[65] Vallado, D. A., Fundamentals of Astrodynamics and Applications, Microcosm Press,
Fourth Edition, 2013.

[66] Galchenko, P., and Pernicka, H. J., “Precision Formation Flying and Spacecraft Point-
ing Using Plasmonic Force Propulsion,” Proceedings of the 2017 AAS/AIAA Astro-
dynamics Specialist Conference (August 2017, Stevenson, WA), Vol. 162, 2017, pp.
2985–2997.

[67] Carpenter, K. G., Schrĳver, C. J., and Karovska, M., “SI – The Stellar Imager,” Tech.
rep., Vision Mission Study Report, NASA Goddard Space Flight Facility, 2017.

[68] Wertz, J. R., Everett, D. F., and Puschell, J. J., Space Mission Engineering: The New
SMAD, Microcosm Press, First Edition, 2011.

[69] Rovey, J. L., Yang, X., Friz, P. D., Hu, C., and Glascock, M. S., “Plasmonic force
propulsion revolutionizes nano/picosatellite capability,” Tech. rep., NASA Innovative
Advanced Concepts Phase I Final Report, 2014.

[70] Rovey, J. L., Friz, P. D., Hu, C., Glascock, M. S., and Yang, X., “Plasmonic Force
Space Propulsion,” Journal of Spacecraft and Rockets, Vol. 52, No. 4, 2015, pp.
1163–1168. https://doi.org/10.2514/1.A33155.



145

VITA

Pavel Galchenko was born in Oleksandriya, Ukraine and was raised by his parents,

Fiodor and Valentina Galchenko. After graduating from Green Ridge High School in

Missouri in 2003, he enrolled in State Fair Community College in Sedalia, Missouri, where

he received his Associate of Arts in General Studies and Associate of Applied Science in

Machine Tool Technologies in May 2006. He continued his undergraduate education at the

University of Central Missouri where he received his Bachelor of Science in Nursing in

December 2009. In January 2011, Pavel changed careers to pursue an engineering degree

from the Missouri University of Science and Technology, where he received his Bachelor

of Science in Aerospace Engineering in May 2015. After completing a summer internship

with NASA Jet Propulsion Laboratories, he began his Ph.D. in Aerospace Engineering at the

Missouri University of Science and Technology in August 2015. During his graduate career,

he worked as a Graduate Research Assistant on a NASA Innovative Advanced Concepts

project as well as teaching a lab course as a Graduate Teaching Assistant. In February 2019,

he received a NASA Pathways position, where he worked for NASAWallops Flight Facility

and NASA Goddard Space Flight Center as he continued working towards completing his

degree. Pavel received his Ph.D. in Aerospace Engineering from Missouri University of

Science and Technology in May 2022. He began his full time employment with NASA

Wallops Flight Facility, a part of NASA Goddard Space Flight Center, as an Aerospace

Engineer in the Guidance, Navigation, and Control and Mission Systems Engineering

Branch.


	Theoretical and experimental application of neural networks in spaceflight control systems
	Recommended Citation

	tmp.1657910882.pdf.POVkj

