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ABSTRACT Plant identification has applications in ethnopharmacology and agriculture. Since leaves are
one of a distinguishable feature of a plant, they are routinely used for identification. Recent developments
in deep learning have made it possible to accurately identify the majority of samples in five publicly
available leaf datasets. However, each dataset captures the images in a highly controlled environment. This
paper evaluates the performance of EfficientNet and several other convolutional neural network (CNN)
architectures when applied to a combination of the LeafSnap, Middle European Woody Plants 2014, Flavia,
Swedish, and Folio datasets. To normalize the impact of imbalance resulting from combining the original
datasets, we used oversampling, undersampling, and transfer learning techniques to construct an end-to-end
CNN classifier. We placed greater emphasis on metrics appropriate for a diverse-imbalanced dataset rather
than stressing high performance on any one of the original datasets. A model from EfficientNet’s family of
CNN models achieved a highly accurate F-score of 0.9861 on the combined dataset.

INDEX TERMS Leaf dataset, imbalanced dataset, convolutional neural networks, transfer learning, plant

identification.

I. INTRODUCTION
Plants with ethnopharmacological uses are a primary source
of medicine. About 80% of 122 plant-derived drugs are
related to their original ethnopharmacological purposes [1].
A fundamental step in conducting research on plant-derived
compounds is establishing the plant’s botanical identity. Med-
ical research on compounds derived from plants benefits
from an expertise in botany. Appropriate use of botani-
cal nomenclature can help avoid errors and ambiguities in
phytomedical, ethnopharmacological, and other research on
plants [2]-[5].

Plant identification is the process of comparing features of
a plant to previously collected and categorized specimens.
This process helps connect the specimen with a particular
species, which lets one recognize the specimen’s proper-
ties. The method of plant identification is instrumental to
plant taxonomy, and botanical nomenclature [2]-[5]. A faster,
automated, and more reliable method of plant species iden-
tification would be helpful in phytological research. Plant
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identification also has applications in site-specific weed man-
agement in plant agriculture, and plant phenotyping [6], [7].

Various plant organs can be used to identify a plant species,
e.g., flowers, leaves, stem, fruit, or even the entire plant. Due
to their distinctive features, leaves are particularly useful for
identifying plants. More than 100 studies have used images
of leaves to identify plants [8]. A leaf consists of a blade and
a petiole. The blade consists of the following sub-parts: apex,
margin, veins, midrib, and base, as shown in Fig. 1, that can
be used as features for classification. Several computer vision
techniques can use images of leaves to extract features that
are potentially distinct amongst different species to identify
plants [8].

Deep learning (DL) is a subset of machine learning meth-
ods. DL algorithms are inspired by biological neurons’ struc-
ture and function. DL has recently experienced rapid growth
due to increased data availability and substantial improve-
ments in hardware technologies. DL uses multiple layers of
information processing to build abstractions of data, from
which features can be extracted and patterns classified. One
of the widely used algorithms in DL is the convolutional
neural network (CNN), which is extensively used for image
classification [9]-[15]. A CNN is able to extract features in
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FIGURE 1. Parts of leaves that can be potentially used as features by
computer vision algorithms for classification.

the form of filters from the leaf images and classify plants
based on the features learned, given that the dataset is large
enough. Numerous CNN architectures have been proposed
to perform leaf classification tasks, and are tested on sev-
eral publicly available leaf datasets. These approaches have
successfully achieved high classification accuracies on the
datasets on which they were tested [8], [16]-[19]. However,
almost all of the previous work using DL has been done
on individual leaf datasets, which does not factor in the
impact of varying environments in which the images of a
particular dataset are captured, and varying phenotypes of the
same species over different regions. Many DL approaches to
leaf identification use CNNs only as feature extractors and
requires a separate classifier operation such as support vector
machines or random forests. This work focuses on using a
CNN to perform the entire classification process, rather than
just focusing on feature extraction.

This paper proposes a new leaf dataset called F2LSM
(Flavia, Folio, LeafSnap, Swedish, and MEW 2014). F2LSM
dataset was created by combining the following five pub-
licly available leaf datasets: LeafSnap [20], Middle European
Woods (MEW) 2014 [21], Flavia [22], Swedish [23], and
Folio [24]. The goal is to create a more comprehensive
dataset with appropriate botanical nomenclature. Dataset
pre-processing was performed prior to combining the datasets
to remove classes with incomplete scientific names and
classes that were judged to be poor image quality. Due to
LeafSnap and MEW 2014 datasets’ imbalanced nature and
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certain overlapping species, while combining the datasets,
a simple combination would result in a highly imbalanced
dataset. This imbalance may potentially harm a CNN'’s per-
formance by creating a bias towards the classes with more
samples. To mitigate this problem, classes with a rela-
tively large number of image samples, known as majority
classes, are undersampled. Additionally, classes with a rel-
atively small number of image samples, known as minority
classes, are oversampled [25]-[27]. The resulting F2LSM
dataset has 42420 leaf images belonging to 374 distinct
classes of plant species arranged in folders named after
their genus and species. The F2LSM dataset, along with
the code, is publicly available at the following website:
https://scholarsmine.mst.edu/research_data/8/.

One of DL’s serious problems is that it depends on a mas-
sive amount of training data compared to other traditional ML
methods. The initial layers of DL models generally extract
more elementary features such as edge and texture, and the
later layers build on top of it to extract more abstract features
pertaining to the task at hand. Transfer learning (TL) lever-
ages this property by relaxing the hypothesis that the training
data must be independent and identically distributed (i.i.d)
with the test data. Therefore, it is not required to train the
target model from scratch, which can significantly reduce the
amount of training data and time required to train a model in
the target domain [28]. This paper applies the concept of TL
by using pre-trained weights and biases of CNN architectures
trained on the ImageNet dataset [29], and then fine-tuning
them to classify the images in the F2LSM dataset. The CNN
architectures from the EfficientNet family of models, BO
to B6, are used for the classification task [15], and their
performance is compared with the following other archi-
tectures: VGG19 [12], InceptionV3 [30], ResNet50V2 [13],
DenseNet121 [31], Xception [32], and MobileNetV2 [33].
Fig. 2 summarizes the process of combining the datasets
and training a CNN. A significant number of approaches
for classifying plants based on leaf images [34]-[38] have
not considered the imbalanced nature of the datasets used,
which may reduce their effectiveness. This paper attempts to
evaluate the performance of these models by using metrics
intended for imbalanced data.

The major contributions of the paper can be summarized
as follows:

o Clean and combine five publicly available leaf datasets
into one F2LSM dataset, and make the dataset publicly
available.

o Implement undersampling and oversampling to over-
come potential bias introduced because of the imbalance
in data.

o Create an end-to-end CNN-based leaf classifier using
various CNN architectures and TL and obtain compa-
rable accuracy on the proposed dataset compared to
the state-of-the-art accuracy obtained on the individual
datasets.

« Use metrics that consider the imbalanced nature of the
dataset to test and validate the performance EfficientNet,
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FIGURE 2. Flow Diagram of the procedure. Five publicly available datasets, LeafSnap, MEW 2014, Flavia, Swedish, and Folio, are combined into a single
dataset after pre-processing. Resulting dataset is then balanced by upsampling the minority classes and downsampling the majority classes to form the
F2LSM dataset. Finally, multiple CNNs are trained on the F2LSM dataset and their performance is assessed.

and compare its performance with other well-known
CNN architectures.

The rest of the paper is structured in the following
manner. Section II briefly summarizes relevant work in the
field of plant identification. Cleaning and combining dif-
ferent datasets to create the F2LSM dataset is discussed in
section III. Section IV discusses the CNN architectures used
for training and testing the classifier. Section V discusses
the experimental setup, the metrics used, and the results.
Finally, Section VI provides conclusions and a summary of
the results.

Il. RELATED WORK
Plant species identification based on leaf images has been
an active area of research [8], [16]—[18]. Kumar et al. [20]
used features related to a leaf’s curvature to identify species
in the proposed LeafSnap dataset and achieved a top-5
accuracy of 96.8%. Fourier descriptors for leaf contours
combined with the nearest-neighbor classifier were used to
classify leaf images in the proposed MEW 2012 dataset
with an accuracy of 88.91% [21]. Wu et al. [22] proposed
the Flavia dataset with 32 different species of plants and
12 leaf features in combination with a probabilistic neu-
ral network (PNN) to achieve a classification accuracy of
90%. Features based on the geometry, eigenleaves, and grey-
level co-occurrence matrix (GLCM) were used to train a
support vector machine (SVM) classifier for leaf identi-
fication by [39]. Munisami et al. [24] used shape features
and color histogram with k-nearest neighbors to classify
plant leaves in the Folio dataset with an accuracy of 87.3%.
Chaudhry et al. [34] used the concept of contour-based 2D
shape matching to identify plant species from occluded leaf
images by using the contour information extracted from pub-
licly available leaf datasets. Kumar et al. [35] used morpho-
logical features extracted using a multilayer perceptron with
adaboosting to train a classifier and attained an accuracy rate
of 95.42% on the Flavia dataset.

Some methods use pre-trained CNN models to extract
features from leaf images and then use those features to
train ML classifiers [36], [40]. Wang et al. [37] proposed a
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novel counting-based leaf recognition method that effectively
combines all of the three significant characteristics — leaf
contour, texture, and vein — in leaf images by using ellip-
tical half Gabor, which is then convolved with grayscale
leaf images to calculate histogram of line patterns used a
descriptor to train SVM. This method achieved a classi-
fication accuracy of 98.40% on the Swedish dataset and
97.83% accuracy on the Flavia dataset. Song et al. [38] pro-
posed a novel attention branch-based convolutional neural
network (ABCNN) to identify plant species with highly
similar leaves, and was able to attain a classification
accuracy of 91.43% on a special dataset created from
LeafSnap. Raj er al. [19] proposed a dual deep learning archi-
tecture (DDLA) that combines MobileNet and DenseNet-121
architectures to extract features and then passes those features
to ML classifiers and fully connected layers (FCL). The
DDLA method [19] achieved the highest accuracy of 98.71%,
96.38%, and 99.41% on the Flavia, Folio, and Swedish
datasets, respectively.

Ill. F2LSM DATASET

A. CLEANING AND COMBINING DATASETS

The F2LSM dataset was created by combining five pub-
licly available datasets: LeafSnap [20], MEW 2014 [21],
Flavia [22], Swedish [23], and Folio [24]. Table. 1 provides a
links to a webpages where each dataset can be found, along
with information about number of classes and number of
images samples in each dataset, and a representative image
from each dataset.

1) LeafSnap DATASET

The LeafSnap dataset was first introduced as a part of a
mobile application called LeafSnap, which helps users iden-
tify plants from photographs of their leaves [20]. The species
in the LeafSnap dataset covers plants found in the North
Eastern United States. The dataset consists of two cate-
gories of images: field images (low-quality images created
by mobile devices in outdoor environments) and lab images
(high-quality images of pressed leaves from the Smithsonian
collection). This dataset is available at the following website:
http://leafsnap.com/dataset/.

VOLUME 10, 2022
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TABLE 1. Dataset’s websites along with information about number of
classes, number of image samples, and an example of an image sample
from each dataset.

Number of Number of  Representative
Dataset Dataset’s URL um fr‘o Image Image
Classes
Samples Sample
LeafSnap https://bit.ly/37fLgIP 185 30866 ‘ !J
—
MEW 2014 https://bit.ly/3NDCC8u 201 15074 ‘
Flavia https://bit.ly/3x106gn 32 1907
Swedish https://bit.ly/35zuULo 15 1125
Folio https://bit.ly/3uMtFBc 32 637

FIGURE 3. Class-specific cropping in the LeafSnap dataset.

The lab images had calibration marks on the right and
bottom edges of the images, which were not present in the
field images and in other datasets. Since partial calibration
information of this nature might not be very helpful when
the datasets are combined, it was removed from all the lab
images, as shown in Fig. 3. After cropping lab images,
we put the field and lab images in the same directory for
each respective class. The LeafSnap dataset had 27 classes,
most belonging to the genus pinus, along with some other
species with low-quality images. These images contained a
minimal amount of information that an ML algorithm can use,
and showed no difference amongst different species, Fig. 4.
We removed these 27 classes from the LeafSnap dataset.

2) MEW 2014 DATASET

The MEW 2012 dataset was first introduced in [21] for the
recognition of woody species in Central Europe. The dataset
consisted of leaf samples from 151 unique species collected
from the Czech Republic. Since then, the dataset has been
expanded to incorporate 50 more species and is now called
MEW 2014. This dataset is available at the following web-
site upon request: http://zoi.utia.cas.cz/node/662. No modi-
fications were made to this dataset when combining, before
combining it with other datasets.

3) FLAVIA DATASET
The Flavia dataset was first introduced in [22] due to a lack
of a standard plant leaf dataset and to create a classification
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FIGURE 4. Image samples of different classes removed from the
LeafSnap dataset, each image belongs to a different class.

benchmark. This dataset is available at the following website:
http://flavia.sourceforge.net/. The Flavia dataset had all its
images in a common directory, so we separated them into
directories named after their respective botanical name.

4) SWEDISH DATASET

The Swedish leaf dataset was first introduced in [23] to create
a computer vision algorithm for leaf identification for the
Swedish Museum of Natural History. The dataset is avail-
able at the following website: https://www.cvl.isy.liu.se/en/
research/datasets/swedish-leaf/. Before combining the
datasets, we removed four classes from the Swedish
dataset due to a lack of a proper scientific name.

5) FOLIO DATASET
Folio dataset has pictures taken from the farm of the
University of Mauritius [24]. The dataset consists of
20 image samples for each of the 32 species repre-
sented. This dataset is available on the UCI Machine
Learning Repository website at the following URL:
https://archive.ics.uci.edu/ml/datasets/Folio#. This dataset
was left unaltered before combining it with other datasets.
We combined these five datasets into one dataset with
374 classes, naming it the F2LSM dataset. The size of images
was primarily unaltered when combining the dataset, except
for when cropping was performed in LeafSnap dataset.
Table 2 summarizes the range of image sizes in each dataset.

B. OVERSAMPLING AND UNDERSAMPLING

The combined dataset was highly imbalanced due to the
imbalanced nature of LeafSnap and MEW 2014 datasets,
overlapping classes, and some classes with a minimal number
of images. Some classes had fewer than ten images in the
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TABLE 2. Range of image sizes in different datasets. All numbers indicate number of pixels.

Dataset Minimum  Maximum  Minimum  Maximum Smallest Largest
width width height height image/s image/s
Swedish 364 2550 652 4125 465 x 652 2412 x 4125
Folio 1141 4160 1726 4160 1152 x 1726 4160 x 3120
Flavia 1600 1600 1200 1200 1600 x 1200 1600 x 1200
MEW 2014 162 3504 115 4956 309 x 133 3504 x 4956
LeafSnap 210 800 194 800 512 x 194 800 x 800
F2LSM 162 4160 115 4956 309 X 133 3504 X 4956

combined dataset, while others had more than 300. The class
distribution of the dataset was adjusted by randomly oversam-
pling the minority classes and undersampling the majority
classes. This method helps select more samples from one
underrepresented class and creates a bias to select more from
that class than others. One of the basic ways to oversample a
class is to randomly select samples from the desired class and
create copies of the data [25].

Instead of simply creating copies of the image samples in
minority classes, we use the following method to implement
oversampling. If the minority class has N images, then each
of those images are each put through the following three
transformations to create 3N new images:

1) GAUSSIAN BLUR

A Gaussian blur is implemented by convolving an image with
a 2D Gaussian kernel. The values of the kernel are from the
Gaussian function (1), where x and y denote the position of
the pixel and o is a parameter that allows for adjustment
of the width of the blur. Each pixel’s new value would be
the weighted average of pixel’s old value and values of its
neighboring pixels. The center pixel in the convolution oper-
ation would receive the highest weight from the Gaussian ker-
nel, and the neighboring pixels will receive smaller weights
depending on how far they are from the center. This operation
blurs an image by acting as a low pass filter.

¥2+y2

1
G()C,y,O')Z ﬁe 202 (1)
O

2) UNSHARP MASKING

Unsharp masking is a linear image processing technique that
enhances the edges of an image. Itis implemented by low pass
filtering an image using a Gaussian blur and comparing it to
the original image. This difference is then scaled and added
to the original image. This operation is summarized in (2),
where x and y denote the position of the pixel, fynarmp(x,y)
is the unsharp masked image, f(x, y) is the original image,
Sfsmooth(x, ¥) is the low pass filtered image, and & is the scaling
constant.

fsharp(x» y) =f(x, Y)+k(f(x9 y) _fsmouth(xa ) 2

3) RANK FILTER

A rank filter of rank-k is a non-linear operation that sorts
the pixel values in a kernel of M pixels and assigns the k"
value to the center point in the kernel. A rank filter with
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FIGURE 5. Different image transforms applied for oversampling classes
with image samples less than 10. From left to right is the original image,
a Gaussian blurred image, a rank filtered image, and an unsharp masked
image.

k = 1 would be the min filter, k = M would be the max
filter, and k = A% would be the median filter. Random rank
values between 1 and 9 were chosen for a 3-by-3 kernel to
implement rank filtering.

Fig. 5 demonstrates the effect of implementing these trans-
forms. Undersampling can be implemented by randomly
removing image samples from the majority classes [26].
Since undersampling can potentially discard useful samples,
we only applied it to classes with more than 300 images.
Fig. 6 shows the datasets’ histogram before and after imple-
menting oversampling and undersampling. The inset in Fig. 6
shows that before sampling, there were nine classes with
number of image samples close to ten, and after sampling,
there is no class with number of image samples less than or
equal to ten.

IV. DEEP TRANSFER LEARNING

A. CONVOLUTIONAL NEURAL NETWORKS

Traditional computer vision algorithms require the designer
to indicate which key features need to be extracted and how
they can be extracted, whereas a CNN does not require
humans to identify features in the image. A CNN architecture
consists of multiple layers, including an input layer, an output
layer, convolutional layers, rectified linear unit (ReLU) lay-
ers, pooling layers, and fully connected layers, as shown in
Fig. 7. When processing the information in the forward direc-
tion, the convolutional layers convolve multiple filters with
the input volume to generate an activation map for each filter.
The convolution operation is followed by some non-linear
activation function to increase non-linear properties of the
network e.g. ReLU: f(x) = max(0,x) [9]. The pooling
layer reduces the number of parameters in the network by
non-linearly downsampling the activation maps or an image,

VOLUME 10, 2022
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FIGURE 6. Histogram with 35 bins of the number of image samples per
class before and after implementing oversampling and undersampling.

The inset demonstrates that there were nine classes with less than ten

images before sampling, and after sampling there are zero classes with
less ten image samples.

thus reducing the number of computations in the network.
After multiple convolutional and pooling layers, a classifi-
cation decision is made by fully connected layers. Once the
feed-forward part is done, the CNN optimizes each layer’s
filters through a backpropagation mechanism. These filters,
once optimized, extract important features representing the
input image.

B. TRANSFER LEARNING

The combined dataset is imbalanced, has a large number
of classes, and some of the classes have insufficient data
required to train a CNN. We use transfer learning to initialize
the CNN to help overcome the problem of insufficient and
imbalanced data to a certain extent, as it relaxes the hypoth-
esis that the training data must be i.i.d. with the test data.
Therefore, the knowledge gathered while training a CNN on a
diverse dataset like ImageNet [29] can be used while training
a CNN for other classification tasks. To implement TL, the
most commonly used method is to remove the last fully con-
nected layer of the pre-trained CNN and replace it with a fully
connected layer appropriate for the new number of classes.
In this paper different CNN architectures—EffcientNet [15]
architectures BO to B6, VGG19 [12], InceptionV3 [30],
ResNet5S0V2 [13], DenseNet121 [31], Xception [32], and
MobileNetV2 [33]-trained on the ImageNet dataset are used
for TL. We fine-tune the last few layers of the trained CNN
architectures to classify 374 classes of leaves, as shown in
Fig. 8. This technique helps significantly reduce the training
time and achieve higher accuracies, including on imbalanced
datasets. Table 5 in the Experiments section demonstrates this
improvement.

V. EXPERIMENTS, RESULTS, AND ANALYSIS

A. STRATIFIED K-FOLD CROSS VALIDATION

In order to perform robust validation, we implemented strat-
ified 5-fold cross-validation. Firstly, 10% of the dataset was
set aside as a hold-out test set. We used stratification to ensure
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TABLE 3. Image augmentation types with their respective ranges.

Augmentation type  Range

Random flip horizontal and vertical
Random rotation [-0.57, 0.57]

Random contrast [0.7, 1.3]

Random zoom [0.1, 0.3]

Random translation  [0.2,0.2]

that the test set had a population that best represented the
population of the entire dataset. Then the remaining 90% of
the dataset was split into five equal folds by using stratified
sampling to avoid sampling bias [41]. Finally, we use four
folds for training and the fifth fold for validation to train
and validate the networks. We repeated this process five
times, using each fold for validation once. Input image size
was altered based on the recommended image size for each
respective model. Before training the models, data augmenta-
tions were performed on the dataset to regularize and prevent
overfitting. Table 3 summarizes types of augmentations and
their respective ranges.

We trained added layers added to models for transfer
learning until the validation loss did not improve for ten
epochs. Once the validation loss plateaued, we unfroze the
last few layers and fine-tuned them until the validation loss
plateaued again, Fig. 9. It can also be noted that training
loss leads to the validation loss before fine-tuning begins and
then rapidly drops below the validation loss after fine-tuning
starts. This is due to the high regularization implemented in
the added layers.

B. METRICS

The combined dataset is imbalanced, as shown in Fig. 6
and hence a commonly used metric like accuracy may not
be the best indicator of overall classification performance.
This is a commonly used metric for the current task in most
approaches mentioned in [section II]. A brief description of
the metrics used and the method used to calculate them are
listed below.

Top-k accuracy is one of the metrics used to evaluate
model performance. It is the number of times the correct
class has occurred in the top k predicted classes based on
their probability scores. We also use macro-averaged vari-
ants of precision (3) and recall (5) to assess overall model
performance across all classes. Macro-averaged precision is
the average of the precisions of each class taken individually
as described in 4. The individual class precision for class /

can be calculated as follows:
TP,

TP, + FP;’
where TP is the number of True Positives and FP is the num-
ber of False Positives. Then the macro-averaged precision can
then be calculated as

3

Prec; =

Precmacro = (1/N) S, Precy. )
where N, is the total number of classes.
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FIGURE 7. A typical CNN Architecture with multiple convolutional and pooling layers followed by fully connected layers for multi-class classification.

ImageNet Trained CNN weights lma.geNe.t
dataset Classification
Dy :(> A4 i :(> T,
—
A

Dp :{> A

F2LSM Frozen layers  Fine Leaf
dataset Tuning classification
FIGURE 8. Transfer learning implemented on the F2LSM dataset. A"

parameters learned for task A (T) are transferred to task B (Tg), and B
parameters are fine-tuned.

BI:(>TB

1.0
——- Training Loss
0.8+ —— Validation Loss
----= Start Fine Tuning
0.6
%)
3
— 0.4
0.2
0.0
0 20 40 60 80 100 120 140
Epochs

FIGURE 9. Loss trend while training EfficientNet B0, before and after
fine-tuning the last few layers of the model.

In a similar fashion the macro-averaged recall is calculated
as well as described in 6.

TP;
Rec) = —— ®)
TP; + FN;
ReCpacro = (1/Ne) T Recy, (6)

where FN is the number of False Negatives.

Finally we also calculate the macro-averaged F-score. This
is the average of the individual class F-scores and is calcu-
lated using 7.

F — (/N s 2 x Prec; x Recy )
macro =L Prec; + Reep
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TABLE 4. Comparison of experimental results before and after
performing oversampling and undersampling on the dataset.

Network Before Balancing After Balancing
Top-1 Accuracy ~ F-score | Top-1 Accuracy  F-score
MobileNetV2 [33] 0.9190 0.9400 0.9327 0.9416
DenseNet121 [31] 0.9455 0.9586 0.9618 0.9663
Xceptoin [32] 0.9475 0.9657 0.9731 0.9753
Inception V3 [30] 0.9599 0.9642 0.9696 0.9719
ResNet50V2 [13] 0.9377 0.9537 0.9591 0.9624
VGG19 [12] 0.9312 0.9388 0.9458 0.9495
EfficientNet BO [15] 0.9335 0.9601 0.9590 0.9639
EfficientNet B1 [15] 0.9433 0.9618 0.9646 0.9697
EfficientNet B2 [15] 0.9462 0.9651 0.9683 0.9727
EfficientNet B3 [15] 0.9480 0.9681 0.9751 0.9778
EfficientNet B4 [15] 0.9506 0.9698 0.9771 0.9787
EfficientNet B5 [15] 0.9540 0.9728 0.9796 0.9811
EfficientNet B6 [15] 0.9593 0.9759 0.9841 0.9861

All the metrics were calculated for each fold on
the hold-out test set, and the results were reported as
W £ o (mean % standard deviation).

C. RESULTS AND DISCUSSION

This section provides the results obtained while testing the
trained networks before and after performing oversampling
and undersampling.

1) EFFECT OF OVERSAMPLING AND UNDERSAMPLING
Table 4 shows the effect of oversampling and undersampling
discussed in Section III in terms of the arithmetic means
Top-1 accuracy and F-score obtained from stratified 5-fold
cross-validation. Comparisons between all trained models
show that balancing the dataset improves both Top-1 accu-
racy and F-score; however, the improvement is much more
significant in the Top-1 accuracy metric than the F-score.
For example, for EfficientNet B6, Top-1 accuracy improved
by 1.66% after oversampling and undersampling, whereas
F-score improved only by 0.2%. This disparity demonstrates
that the F-score is a better metric when dealing with this
imbalanced dataset.

2) PERFORMANCE ANALYSIS

The models used in this paper were trained on a Dell
Precision 7920 Tower with an 8-core Intel Xeon Sil-
ver 4208 CPU @ 2.10 GHz, 64 GiB DIMM DDR4, and
Nvidia Quadro RTX 4000 GPU. Table 5 summarizes the per-
formance of different models on the hold-out test set. It can
be observed that EfficientNet B6 achieves the highest Top-1
accuracy and F-score among other models. This superior
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TABLE 5. Performance of different CNN architectures on the F2LSM dataset.

Network Parameters  Input image size | Top-1 Accuracy Precision Recall F-score
MobileNetV2 [33] 3.5M 224 %224 0.932740.0011  0.9445+0.0013  0.938740.0017  0.9416£0.0018
DenseNet121 [31] 8.1IM 224 %224 0.96184+0.0018  0.9657+0.0018  0.966910.0011  0.96634-0.0015

Xception [32] 22.9M 299 %299 0.9731+0.0015  0.9763£0.0012  0.9743+0.0009  0.975310.0017
Inception V3 [30] 23.9M 299 %299 0.9696+0.0009  0.9723£0.0014  0.9715+£0.0011  0.971940.0020
ResNet50V2 [13] 25.6M 224x224 0.9591+0.0012  0.9636£0.0011  0.9612+0.0016  0.96244-0.0020

VGG19 [12] 143.7M 224 %224 0.9458+0.0012  0.9479+£0.0011  0.9511+£0.0018  0.9495+0.0014

EfficientNet BO [15] 5.3M 224 %224 0.959040.0007  0.9659+0.0012  0.96214+0.0013  0.963940.0011
EfficientNet B1 [15] 7.9M 240240 0.96461+0.0018  0.9716+0.0019  0.96784+0.0021  0.9697+0.0017
EfficientNet B2 [15] 9.2M 260x260 0.96834+0.0011  0.9749+0.0020  0.970740.0013  0.972740.0016
EfficientNet B3 [15] 12.3M 300x300 0.9751+0.0020  0.9790£0.0013  0.9767+0.0014  0.977840.0010
EfficientNet B4 [15] 19.5M 380x380 0.9771+£0.0011  0.9796£0.0015  0.9780+0.0013  0.978740.0019
EfficientNet B5 [15] 30.6M 456 x456 0.9796+0.0007  0.9817£0.0008  0.9806+£0.0011  0.981140.0011
EfficientNet B6 [15] 43.3M 528 <528 0.9841+0.0014  0.9863-0.0009  0.9859+0.0010  0.9861+0.0009
0.99
86
85
0.98 = B4
eXception
a2 dnceptionVv3
0.97 81 FIGURE 11. Grad-Cam visualizations of a leaf image for different
g DenseNet121 networks. From left to right, MobileNetV2, EfficientNet B0, Xception, and
2 80 EfficientNet B6, networks examine more detailed features as the number
ra fesNet30v2 of parameters increase.
0.96
provide high accuracy and F-scores. Fig. 10 summarizes the
005 number of parameters versus the F-score efficiency.
3) GRAD-CAM VISUALIZATION
dMobileNetV2 . . . . . .
0.94 In order to obtain gradient-weighted class activation mapping
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Parameters [107]

FIGURE 10. Number of model parameters vs. mean F-score. The plot
shows that EfficientNet family of models perform better than other
models for leaf identification in F2LSM dataset.

performance could be because EfficientNet B6 has 43.3M
parameters, the largest input image size, and the fact that
EfficientNet models are carefully balanced in terms of height,
width, and resolution of the networks, which can lead to a
better performance [15]. EfficientNet B6 took approximately
600 hours to train, which was roughly five times more when
compared to the training time required for relatively smaller
models such as MobileNet V2 and EfficientNet BO.

Even when considering models with similar input image
sizes and a similar number of parameters, EfficientNet
models generally perform better than other models on the
F2LSM dataset. For example, EfficientNet B3 achieves
slightly better performance when compared to Xception
and Inception V3 models while using 10.6M and 11.6M
fewer parameters, respectively. Also, Efficient BO performs
comparably to ResNet50 V2 with the same input image
size while using approximately one-fifth of ResNet50 V2’s
parameters.

Due to limited computing power, we could not train the
B7 model of EffientNet. If computational complexity is a
concern, then models such as MobileNet and EfficientNet BO
can be trained to use considerably fewer parameters and still
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(Grad-CAM) visualization for any given class of image, the
image is forward propagated through the CNN part of the
model to obtain a raw score (without softmax activation)
for the class. The gradient of the desired class is set to 1,
and the remaining classes are set to 0. This signal is then
backpropagated through the CNN to compute a heat map,
which shows where the model had to look before making
a decision. This heat-map then can be superimposed on the
original image to create a Grad-CAM visualization [42].
Fig. 11 shows Grad-CAM visualizations for a leaf using the
following four models from left to the right: MobileNet V2,
EfficientNet BO, Xception, and EfficientNet B6. It can be
observed from the Grad-CAM visualizations that as either
the number of parameters or the input image size increases,
models look at more details in an image before making a
decision. The MobileNetV2 model primarily looks at the vein
structure close to the midrib in the middle portion of the leaf,
whereas EfficientNet B6 looks at significantly more detailed
features such as detailed vein structure and the edge of the
leaf before making a decision. This detailed feature extrac-
tion by the EfficientNet B6 model somewhat explains its
superior performance compared to other models used in this

paper.

4) COMPARISONS AND BENCHMARKS

The performance of the CNN architectures on the F2LSM
dataset was bench-marked by comparing its performance
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TABLE 6. State-of-the art accuracies on different datasets.

Dataset Number of classes Model Top-1 accuracy (%)
Swedish [23] 15 Dual deep learning architecture [19] 99.41 [19]
Folio [24] 32 GoogleNet [11] 99.42 [46]
Flavia [22] 32 Extreme learning machines [47] 99.10 [47]
MEW 2012 [21] 153 SVM [48] 96.54 [49]
LeafSnap [20] 185 Siamese CNN [50] 96.00 [50]
F2LSM 374 EfficientNet B6 [15] 98.41

with the accuracy obtained on the individual datasets used
to create the new dataset, as shown in Table 6. It can be
observed from the table that the Top-1 accuracy gener-
ally drops as the number of classes increases. Even though
F2LSM is a combined dataset with 374 classes (more than
twice of LeafSnap), EfficientNet B6 achieves comparable
accuracy compared to the models trained on the individual
datasets.

D. DATA AND CODE AVAILABILITY

The resulting F2LSM dataset is available for download
at https://scholarsmine.mst.edu/research_data/8/. The dataset
includes individual links to each of the 374 folders for respec-
tive classes. The python code used to implement stratified
k-fold cross-validation is also available on the website as a
zipped file named kFold.zip. The python code takes ’.csv’
file with image addresses as an input for classification.
The python code uses Pandas [43], Tensorflow [44], and
Keras [45] libraries for implementation of stratified k-fold
cross-validation of CNN architectures.

VI. CONCLUSION

This paper combines five publicly available leaf datasets into
one F2LLSM dataset. The combined dataset is highly imbal-
anced due to some of the individual datasets’ imbalanced
nature, some classes having very few image samples, and cer-
tain classes overlapping across different datasets while com-
bining. We used oversampling and undersampling to mitigate
the imbalance in the dataset. We then used TL to train several
CNN architectures for plant species identification using leaf
images in the F2LSM dataset and tested their performance
using metrics such as precision, recall, and F-score, consider-
ing the imbalanced nature of the combined dataset. Efficient-
Net B6 achieved comparable accuracy on the F2LSM dataset
compared to the state-of-the-art accuracy on the individual
datasets. F2LSM dataset, and the python code to obtain the
results presented in this paper, are available at the follow-
ing website: https://scholarsmine.mst.edu/research_data/8/.
Future work may include further expanding this dataset by
including more plant species and using leaf images for other
applications such as weed identification, plant phenotyping,
and identification of leaf diseases and pests. Also, plant iden-
tification for occluded leaves in a field would be an interesting
problem.
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