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ABSTRACT 

 

A more efficient and increasingly popular volumetric error compensation method 

for machine tools is to compute compensation tables in axis space with tool tip volumetric 

measurements. However, machine tools have high-order geometric errors and some 

workspace is not reachable by measurement devices, the compensation method suffers a 

curve-fitting challenge, overfitting measurements in measured space and losing accuracy 

around and out of the measured space. Paper I presents a novel method that aims to 

uniformly interpolate and extrapolate the compensation tables throughout the entire 

workspace. By using a uniform constraint to bound the tool tip error slopes, an optimal 

model with consistent compensation capability is constructed. In addition to machine tools, 

industrial robots, are also becoming popularly used in manufacturing field. However, 

typical robot volumetric error compensation methods only consider constant errors such as 

link length and assembly errors while neglecting complicated kinematic errors such as 

strain wave gearing and out of rotating plane errors. Paper II presents a high-order joint-

dependent model which describes both simple and complicated robot kinematic errors. A 

laser tracker with advantages of rapid data collection and a self-oriented position 

retroreflector are used for data collection. The experimental results show that nearly 20% 

of the robot kinematic errors are joint-dependent which are successfully captured by the 

proposed method. Paper III continues using the high-order joint-dependent robot error 

model while utilizing a new retroreflector with the ability of measuring robot position and 

orientation information simultaneously. More than 60% of measurement time is saved. 

Both position and orientation accuracy are also further improved. 
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1. INTRODUCTION 

 

Volumetric error compensation techniques have been well developed and 

increasingly adopted in industrial field, aiming to improve the absolute positioning 

accuracy of machine tools and industrial robots. While the compensation techniques are 

more mature and standardized for machine tools, the manufacturing of large monolithic 

parts keeps demanding for a more uniform and accurate compensation over a wider 

machine tool workspace. For industrial robot, its increasing applications in precision 

manufacturing also push the compensation process to become more accurate and efficient. 

This section serves to introduce basic volumetric error compensation techniques and 

challenges for machine tools and industrial robots. Improvements that this dissertation has 

made to this area will also be introduced. 

 

1.1. VOLUMETRIC ERROR COMPENSATION FOR MACHINE TOOLS 

One of the largest error source of machine tool volumetric inaccuracy comes from 

geometric errors, which include imprecise link length, offsets, imperfect assembly and 

wear of linkages. Those errors are typically corrected by mechanically adjusting the 

machine or through compensation. Based on previous research work, three-axis machine 

tools have 21 basic geometric errors [1] and five-axis machine tools have 41 basic 

geometric errors [2]. With the development of metrology equipment, techniques for 

identifying and compensating those errors have been well studied and developed. Typically, 

there are three steps to implement a compensation for machine tools: kinematic modeling, 

measurement of axis errors and error compensation [3]. In the second step, depending on 



2 

 

the way of using the metrology instruments to measure and identify the basic geometric 

errors, two types of compensation methods are classified, direct measurement methods and 

indirect measurement methods. In direct measurement methods, each single geometric 

error such as linear positioning error, straightness error and angular error of individual axes, 

is directly measured. The key point in the process of direct measurement methods is to set 

up the instrument (e.g., laser interferometer) appropriately such that the measured axis is 

isolated without the involvement of other axes’ motion. While the details of direct 

measurement methods are well reviewed in [4, 5] and most of them are widely adopted by 

machine tool manufacturers [6], a complete compensation process is always very time-

consuming. Unlike direct measurement methods, indirect measurement methods measure 

and analyze the tool tip volumetric inaccuracy which is treated as a contribution of all 

geometric errors. The advantage of indirect measurement methods is that all geometric 

errors can be identified simultaneously. Also, indirect measurement methods can build the 

kinematic error model in many different ways such as using the homogeneous 

transformation matrix (HTM) [1], using screw theory [7] and product of exponential 

models [8]. Further, a wider array of metrology instrument options is available for indirect 

measurement methods including ball bars [9, 10], R-test [11, 12], touch-trigger probes [13, 

14], laser trackers [15, 16] and machining tests [17]. The details of indirect measurement 

methods are also well described in [3, 4]. Since there are more choices of error models and 

metrology instruments comparing with direct measurement methods, indirect 

measurements methods are more popularly studied in academic field.  

While the volumetric error compensation techniques have been well developed in 

both industrial and academic fields, the trend of manufacturing large monolithic parts is 
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continuously giving challenges to this topic [18]. The demand for a larger compensation of 

machine tool workspace is thus arising. Laser tracker systems, which consists of a laser 

tracker and retroreflectors, with advantages of rapid data collection and ability to 

maximumly measure the machine tool workspace, are often utilized for measurement 

collection especially for large machine tools. Figure 1.1 shows a setup of a laser tracker 

and a retroreflector in a machine tool work cell.  

 

 

 

Figure 1.1. Setup of laser tracker and retroreflector in a machine tool work cell. 

 

The laser tracker system enables a large measurement space within the machine 

tool workspace. However, some workspace is still not measurable due to the avoidance of 

physical contact and break of laser beam. So the error information from the unmeasured 

space cannot be identified with actual measurements. It is known that machine tool error 
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identification is basically a curve fitting process. For direct measurement methods, it is an 

explicit process as error is directly measured and fitted for each individual one. However, 

for indirect measurement methods, this process becomes implicit and obfuscated as all 

errors are identified simultaneously. Since some space does not have measurements, 

appropriate interpolation and extrapolation are needed to extend the identified error models 

to the entire machine tool workspace. Further, machine tools generally have high-order 

geometric errors. In [19], the angular errors are modeled with second-order polynomial 

functions for a three-axis machine tool. In [20], errors are fitted to third order polynomials 

as a function of axis position. In the two proposed models described in [18], error models 

with the sixth and eighth order polynomials give the best performance, respectively. 

Inappropriate interpolation and extrapolation of high-order polynomial will cause Runge’s 

phenomenon [21] and lead to poor error description over the unmeasured workspace. The 

error model and thus the compensation accuracy will be inconsistent. Since a uniform 

compensation accuracy is needed especially for large monolithic part manufacturing, a 

method of constructing an optimally-fitted error model over the entire workspace is needed. 

Paper I in this dissertation gives such a method to address this problem. By investigating 

the relationship between single geometric errors and tool tip volumetric errors, and using 

a typical five-axis machine tool kinematic error model, an optimal method of interpolating 

and extrapolating kinematic error model for machine tools is proposed. Experimental 

results are also presented.  
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1.2. VOLUMETRIC ERROR COMPENSATION FOR INDUSTRIAL ROBOTS 

Industrial robots have often been considered and used to build flexible automation 

platforms for many applications with its advantages of low cost and high flexibility [22]. 

While they are primarily applied for repeatable tasks such as palletizing and packaging, 

they are now increasingly used in many light machining tasks such as deburring and light 

drilling. The difference is that some tasks (e.g., palletizing and packaging) use the high 

repeatability property of robots while some other tasks (e.g., deburring and light machining) 

need the robot to have a high positioning accuracy. However, previous experiments have 

shown that robot accuracy can be an order of magnitude worse than its repeatability [23]. 

Thus, an effective method of compensating robot errors is needed. 

The majority of robot inaccuracy comes from kinematic errors and research on this 

topic has been well studied for decades. As summarized in [24], there are three types of 

kinematic error compensation methods for robots, which are open-loop, closed-loop and 

screw axis measurement methods. Open-loop methods require an external metrology 

system to measure robot poses. All kinematic errors will be identified simultaneously by a 

nonlinear optimization with the measurements. This is similar as the indirect measurement 

methods for machine tools. Close-loop methods, in contrast to open-loop methods, do not 

require any external metrology instruments. Robot end effector will be attached to the 

ground to form a closed kinematic chain and error model parameters will be identified by 

reading joint angles. The third method, screw-axis measurement method, is to determine 

the actual kinematic relationship between consecutive axes. No complicated nonlinear 

optimization is needed. 
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Most kinematic error compensation methods focus on open-loop methods and 

screw measurement methods. As summarized in [25], a complete robot calibration process 

consists of four sequential steps, which are modeling, measurement, identification and 

compensation. This process is also similar as the calibration process for machine tools. 

Since robot does not have classified basic errors and robot kinematic errors are not directly 

measured, identification is regarded as an individual step in robot calibration. The first step, 

kinematic error modeling, is to mathematically describe the actual kinematic motion of 

robot with error parameters. Many model structures have been established by researchers 

including  Denavit and Hartenberg (DH) model [26], Hayati model [27], S-model [28] and 

product of exponential model [29]. The second step, measurement, is to collect robot end 

effector position and orientation information at different robot poses. Different 

measurement devices have been used for data collection. These include Coordinate 

Measuring Machines (CMM) [30], telescoping ball bars [31], camera-based system [32, 

33] and laser tracker systems [34, 35]. Those measurements will then be matched with the 

kinematic error model and the error parameters will be identified in the identification step. 

Different optimization algorithms such as least square [23], Levenberg-Marquardt [36] and 

maximum likelihood estimation [37] have been successfully used by researchers. The last 

step is to implement actual compensation with the identified error model. Unlike most 

machine tools controllers which offer a function of online compensation, most robot 

controllers can only do off-line programming, which is to add corrections to the nominal 

joint command to reach to the desired position and orientation. Since the inverse kinematics 

of the error model is super complicated to be solved analytically, numerical algorithms 
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have to be used. Inverse Jacobian method, a representative gradient search method, is often 

used to compute compensated joint commands [23].  

Although a variety of modeling methods have been proposed, there are still 

limitations. First, link length error, assembly error and joint zero-reference offsets are 

summarized to be the main sources of kinematic errors [38]. However, those errors have 

not been appropriately described in one model. Also, a majority of the work only considers 

the simple kinematic errors such as link length and alignment errors which are often 

modeled as joint-independent. A representative method is Circle Point Analysis, which 

determines the offsets of DH and Hayati model parameters [39, 40]. Many joint-dependent 

errors such as strain wave gearing errors, in and out of joint rotating plane errors and 

backlash errors are often ignored, limiting the compensation accuracy. Those errors also 

play important roles in reducing robot accuracy. Thus, a generalized model, which 

considers both simple and complicated kinematic errors is needed. Paper II in this 

dissertation poses such a robot kinematic error model, describing both joint-independent 

and joint-dependent errors. By classifying and modeling different kinds of basic robot 

kinematic error sources, a generalized model is then proposed. A laser tracker system 

including a laser tracker and an Active Target is used to measure robot data. A maximum 

likelihood estimator and the inverse Jacobian method are used to identify modeled errors 

and compute compensated joint commands. Experimental results are presented, showing 

that 20% of robot kinematic errors are joint-dependent. 

The proposed method in Paper II has not only been demonstrated in lab tests, but 

also achieved a great success in compensating robots for industrial collaborators. From 

2013 to 2016, this method had been applied to compensate 6 robots from 5 companies 
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including Bell Helicopter Textron Inc., Toyota Bodine, Automated Precision Inc. (API), 

FANUC America and GE Power, Bangor. Before using the proposed calibration method, 

Bell Helicopter had to spend 2.5 weeks teaching a robot to debur a gear. After applying the 

calibration method and using off-line programming, only hours are needed to finish 

deburring a gear while satisfying the engineering specifications. Also, a calibration 

software package of the proposed method in Paper II is being commercialized with API to 

expand its contribution. 

Paper III continues improving robot calibration accuracy and efficiency based on 

Paper II. In previous work with utilizing laser tracker for data collection, Spherical 

Mounted Retroreflectors (SMRs) or Active Targets (ATs) are attached to the robot end 

effector [34, 41]. However, they can only determine position information. To acquire robot 

orientation information, each robot pose has to be measured multiple times where the SMR 

or AT has to be placed at a different location on the end effector each time. This 

dramatically increases the measurement time. Extra fixturing and measurement errors are 

also introduced for each measurement set. A new device that can measure robot position 

and orientation information simultaneously is thus needed. Paper III in this dissertation 

presents a robot error compensation method with such a new device, which is called 

SmartTRACK Sensor (STS). A new kinematic error model is presented which considers 

the entire closed-loop measurement system including a laser tracker, robot and STS. Both 

deterministic errors (robot kinematic errors) and stochastic errors (robot repeatability, 

position and orientation measurement errors) are described in the proposed model. 

Experimental results are presented, showing that the error model accuracy is further 

improved while the measurement time is also reduced.   
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PAPER 

 

I. INTERPOLATION AND EXTRAPOLATION OF OPTIMALLY-FITTED 

KINEMATIC ERROR MODEL FOR FIVE-AXIS MACHINE TOOLS 

 

Le Ma, Douglas A. Bristow and Robert G. Landers 

 

ABSTRACT 

 

Machine tool geometric errors are frequently corrected by populating compensation 

tables that contain position-dependent offsets to each commanded axis position. While 

each offset can be determined by directly measuring the individual geometric error at that 

location, it is increasingly popular and potentially more efficient to compute the 

compensation using a volumetric error model derived from measurements across the entire 

axis space. Interpolation and extrapolation of measurements, once explicit in direct 

measurement methods, become implicit and obfuscated in the curve fitting process of 

volumetric error methods. The drive to maximize model accuracy while minimizing 

measurement sets can lead to significant model errors in portions of the workspace at or 

beyond the range of metrology equipment. In this paper, a novel method of constructing 

machine tool volumetric error models is presented in which interpolation and extrapolation 

errors are constrained. Using a typical five-axis machine tool compensation methodology, 

a constraint bounding the tool tip modeled error slope is added to the error model 

identification process. By including this constraint over the whole space, the geometric 

errors over the interpolation space are still well-identified. Also, the extrapolated model 
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performance is improved to be consistent with the behavior of the geometric error model 

over the interpolation space. The methodology is applied to an industrial five-axis machine 

tool. In the experimental implementation, for 25 measurements outside of the measured 

region, an unconstrained model increases the mean residual from 0.321 to 0.451 mm, while 

the constrained model reduces the mean residual to 0.191 mm, a 40.5% reduction. 

 

1. INTRODUCTION 

 

The accuracy of machine tools is critically important in many industrial 

applications. Generally, accuracy is achieved by using various metrology instruments to 

measure link lengths, offsets, and alignments that generate errors in the kinematic models, 

and then correct the errors by mechanically adjusting the machine, altering the kinematic 

model, or generating compensating position command algorithms [1–3]. While the 

kinematic offsets and alignments can be directly measured, it is increasingly common and 

efficient to use multiple measurements to indirectly identify the offsets and alignments as 

groups using various curve-fitting methods. Indirect measurement methods measure and 

analyze tool tip volumetric inaccuracy which is treated as a contribution of all geometric 

error sources. Using mathematical optimization algorithms, all errors can be identified 

simultaneously. For five-axis machine tools, typical metrology instruments for indirect 

methods include ball bars [4, 5], R-test [6, 7], touch-trigger probes [8, 9], laser trackers [10, 

11] and machining tests [12]. The above indirect measurement methods are reviewed and 

discussed in [13].  
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Curve-fitting is an essential element in indirect measurement methods for kinematic 

compensation, although not a topic well addressed in the literature. In curve fitting, the 

finite measurements are extended across the entire working volume by the fitted curve, 

interpolating to regions surrounded by measurements and extrapolating to regions outside 

of the point cluster. While most curve fitting methods focus on the accuracy of the fitted 

curve at the measurement locations, accuracy in interpolated and extrapolated regions is 

highly dependent on the curve fitting method. In this paper a method of controlling the 

fitting process to ensure the fitted curves generate realistic solutions over the interpolation 

and extrapolation spaces is proposed.  

Extrapolation is essential for machine tool compensation because geometric errors 

can only be identified over a limited range of the machine tool’s workspace due to the 

design and size of the metrology instruments. For devices such as Ball bar, R-test, and 

touch-trigger probes, they have to maintain contact with the machine tool’s spindle and 

table, limiting the space for measurement collection. For other metrology instruments such 

as laser interferometers and laser trackers, no contact between the spindle and the 

instrument is needed and, thus, measurements can be collected over a much larger volume. 

However, limitations still exist. Figures 1 and 2 give two examples. In Figure 1, the 

minimum commanded Z axis when machining is lower than the minimum commanded Z 

axis when collecting data. Thus, all of the compensation tables having Z axis values less 

than the minimum commanded Z axis when collecting data cannot be populated unless the 

geometric error functions are simply extrapolated. The minimum commanded Z axis can 

be decreased, as shown in Figure 2, if the machine tool spindle is attached to an A or B 

rotary axis. However, the cutting tool will be in a different orientation. Therefore, the 
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measured and unmeasured “spaces” for machine tools with more than three axes is more 

easily visualized in the joint space as opposed to the physical space. In addition to the 

collision avoidance, the measured region is also limited due to line of sight constraints 

when a laser tracker or an interferometer is used for data collection. Figure 3 shows the 

example from [14] that a five-axis machine tool measurements in some space are not 

collected due to collision avoidance and line of sight constraint. As shown in Figure 3, the 

top plot illustrates the consequence of Figure 2 and the bottom plot illustrates the 

consequence when the laser beam is blocked by the machine tool spindle. 

The compensation table over the unmeasured “space” can be simply set to zero. In 

this case the geometric errors that exist at these points will be uncompensated, resulting in 

part geometry errors. The geometric error model can also be simply extrapolated by the 

interpolated curves. However, machine tool geometric error models are often described by 

polynomials. In [15], the angular errors are modeled with second-order polynomial 

functions for a three-axis machine tool. In [16], errors are fitted to third order polynomials 

as a function of axis position. In the two proposed models described in [14], error models 

with the sixth and eighth order polynomials give the best performance, respectively. 

Polynomial curve fitting possesses good interpolation characteristics. But it also has very 

poor extrapolation properties [17]. The poor extrapolation phenomenon is especially 

obvious for high-order polynomial curve fitting. Although polynomial curve fitting 

provides small error approximation to the data, the fitting accuracy deteriorates rapidly 

outside the range of the data [18] due to the increase of the magnitude of the fitted curve 

slope. In [19], the authors found that a larger slope is a main factor that lowers the 

extrapolation accuracy. An illustrative example is given in Figure 4 in which 13 simulated 
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measurements (with measurement errors) are fitted with a continuous modeled function. 

The slope of the modeled function changes rapidly and unrealistically when extrapolated, 

causing the inaccuracy to continually increase as the modeled function is further 

extrapolated. Therefore, a method of controlling the poor extrapolating behavior and thus 

improving extrapolated model accuracy is needed for machine tool geometric error models. 

In addition to the unmeasured “space” limitation, the curve fitting also suffers an 

interpolation process since indirect measurement methods use continuous polynomials to 

fit discrete measurements. Low order polynomials will make the model less accurate on 

the collected data while high order polynomials are easy to overfit the measurements and 

thus lose accuracy. An example of using low and high order functions fitting 13 simulated 

measurements are shown in Figure 5. When a low order function is used, the fitting 

accuracy is not desired. When a high order function is used, the actual measurements can 

be fitted very well. However, for the space between the actual measurements, the fitted 

function has an oscillation which is known as Runge’s phenomenon when high order 

function is used for interpolation [20]. Thus, the interpolation of machine tool geometric 

error models between actual measurements should also be carefully considered and treated.  

This paper proposes a method to interpolate and extrapolate machine tool geometric 

error models throughout the entire machine tool workspace. Based on an error model 

proposed in [14], an analytical form of the tool tip modeled error slope is described using 

all of the single axis error slopes. By using a uniform constraint to bound the magnitude of 

the tool tip modeled error slope, all single axis errors derivatives and thus magnitudes will 

be constrained. A systematic methodology is given to determine the constraint value. 
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Compared with the unconstrained model, the proposed constrained model provides a more 

uniform error description over the entire machine tool workspace. 

 

 

Figure 1. Illustration of Z axis unmeasured space for a three axis machine tool. 

 

 

Figure 2. Illustration of coupling between B and Z Axes for a five axis machine tool. 
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Figure 3. Illustration of collision avoidance and line of sight constraints. 

 

 

Figure 4. Function fitting with appropriate order. 

 

 

Figure 5. Low and high order functions fitting. 
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The rest of this paper is organized as follows. Section 2 gives the geometric error 

compensation methodology used in this paper. Section 3 proposes a constraint design used 

to construct constrained models. Section 4 gives the experimental results implemented on 

an industrial 5-axis machine tool, and a comparison between the unconstrained and 

constrained models is described and analyzed. The paper is summarized and conclusions 

are drawn in Section 5. 

 

2. GEOMETRIC ERROR COMPENSATION BACKGROUND 

 

While there are many methods to compensate machine tool geometric errors, this 

paper utilizes a table-based compensation methodology given in [14]. Most machine tool 

controllers offer a set of compensation tables that map a single axis commands to small 

corrections to a single axis positions in real time. This section describes the model used for 

table-based compensation which is named as axis perturbation model. The description of 

actual measurements and the identification of model parameters are also given. 

 

2.1. GEOMETRIC ERROR MODEL CONSTRUCTION 

Using the zero reference model in [21] to describe the Linear Homogeneous 

Transformations (LHTs) [22] between the coordinate systems of two axes, the nominal 

kinematics of an n-axis machine tool is 

 ( ) ( ) ( ) ( )1 1 2 2nom n nq q q=F q T T T , (1) 

where Fnom describes the nominal orientation and position of the machine tool’s last frame 

with respect to the machine tool base frame, q = [q1 q2 ... qn]
T is the nominal axis command 
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vector, and Ti is the nominal LHT from the (i−1)th axis coordinate system to the ith axis 

coordinate system. The compensation tables offered by the machine tool controller are 

look-up tables that depend on the input nominal axis commands and contain a small 

adjustment for the nominal axis commands [14]. The axis perturbation model is such a kind 

of kinematic error model that can be used to efficiently generate the compensation tables. 

The axis perturbation kinematic model is given by, 

 ( ) ( )( )AP nom= +F q F q δq q , (2) 

where FAP describes the uncompensated machine and δq(q) = [δq1(q) δq2(q)… δqn(q)]T is 

a perturbation in the command vector with δqi as the error for command qi. Compensation 

tables can be trivially generated as -δq(q) such that the machine recovers nominal 

kinematics using the compensated input ( )ˆ = −q q δq q , or ( ) ( )ˆ
AP nom=F q F q . 

Based on the structure of common machine tool compensation tables, each 

correction is described as the sum of n perturbation functions, 

 ( ) ( ) ( ) ( )1 1 2 2i i i in nq f q f q f q = + + +q , (3) 

where fij(qj) is a table function (if it exists) that maps the error of axis j onto the correction 

for the command position of axis i. To capture both constant and complex errors, each 

function is mathematically described with a set of sufficient order polynomials. Here, a 

basis set of functions called Chebyshev polynomials given on a normalized scale are used. 

Given a parameter l in the interval [-1 1], a Chebyshev polynomial has the form, 

 ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 m mC a g a g a g a g    = + + + + , (4) 

where 
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 ( ) ( ) ( ) ( ) ( ) ( )2

0 1 2 1 11,  ,  2 1, , 2m m mg g g g g g        + −= = = − = − , (5) 

m is the Chebyshev polynomial order and a0, a1, a2, ..., am are the polynomial coefficients. 

Thus, each perturbation function can be represented by mth order Chebyshev polynomials 

as 

 ( ) ( ) ( ) ( )0, 1, 1 2, 2 ,ij j ij ij j ij j m ij m jf q a a g q a g q a g q= + + + + , (6) 

where  

 
( )

( )
,min

,max ,min

2
1

j j

j

j j

q q
q

q q

−
= −

−
, (7) 

is the jth linearly mapped axis command by scaling the axis range to the interval [-1 1] and 

qj,min and qj,max are the minimum and maximum jth axis commands, respectively. 

 

2.2. MEASUREMENT 

A laser tracker coupled with an active retroreflector attached to the machine tool 

spindle is used to measure machine position. To describe the measurements, a complete 

closed kinematic loop between the laser tracker and retroflector is needed. Considering the 

measurement errors and the potential axis positioning errors, the measured machine 

position can be described as, 

 ( ) ( )a mf mf AP tl+ +p = T E F pq q ν ξ , (8) 

where Tmf is the nominal transformation from the laser tracker frame to the machine tool’s 

base frame, Emf is the correction of Tmf, ν is a stochastic axis positioning error vector, ptl is 

a tool length vector from the machine to the retroreflector, and ξ is a measurement error 

vector. Figure 6 gives a schematic description of the actual measurement with respect to 
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the laser tracker frame. The base frame correction, Emf, is described with a fixed six degree 

of freedom error matrix, 

 

,0 ,0 ,0

,0 ,0 ,0

,0 ,0 ,0

1

1

1

0 0 0 1

Z Y X

Z X Y

mf

Y X Z

  

  

  

− 
 

−
 =
 −
 
 

E , (9) 

where εX,0, εY,0, εZ,0 are small rotations and δX,0, δY,0, δZ,0 are small translations about the X, 

Y and Z axis. The fixed tool length vector, ptl, is 

  0 0 1
T

tl t tl = +p , (10) 

where lt is the measured tool length between the origin of the machine tool’s last frame and 

the tool tip and δt is the correction of lt. The retroreflector can only determine 3-D positional 

information. To compensate for orientation error, two sets of measurements are taken, each 

time with the retroreflector mounted on a tool with a different length. Each group of two 

measurements uses the same axis commands and, thus, lie on the same spindle axis 

orientation. 

 

 

Figure 6. Measurement model schematic showing frames. 
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2.3. MODEL IDENTIFICATION 

An optimization algorithm based on the implicit loop method [23] is used to 

determine the error model parameters. An advantage of this method is that axis positioning 

errors and measurement errors can be directly incorporated. They are assumed to be 

independent and follow normal distributions. These errors are identified in the optimization 

process and, thus, are separate from the machine tool’s geometric errors. 

Let Σν and Σξ, respectively, be the covariance matrices for the axis positioning and 

measurement errors, respectively. Considering N measured machine tool poses, the 

kinematic errors are identified by minimizing the following function [24], 

 ( )
1

* * * 1 1

1
, , ,

1

, , , min
N

N
T T

N k k k k

k

− −

=

  = +   ν ξ
ν ν b

ν ν b ν Σ ν ξ Σ ξ , (11) 

subject to the implicit loop constraint, 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

, ,1 ,1,1

,2 , ,2 ,2

,1

,2

,

,

T

a k mf mf nom tlk

k

k a k mf k t

k k

mf o

k k k

k k kn km l

 −  + +

+ +
= =   

−    

p T E F pξ
ξ

ξ p

q b q δq b q ν b

q b q qT F pδq b νE b
, (12) 

where 
,1 ,2

T
T T

k k k
 =  ξ ξ ξ  is the measurement error vector and ,1 ,2

T
T T

k k k
 =  ν ν ν  is the axis 

positioning error vector for the kth pose measured by the retroreflector mounted on two 

tools with different lengths, b is the error parameter vector including the polynomial 

coefficients in the modeled machine tool kinematics, six static errors in Emf, and the tool 

length errors δl,1 and δl,2 corresponding to the two tool length vectors ptl,1 and ptl,2, 

respectively. 
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3. CONSTRAINED GEOMETRIC ERROR MODEL 

 

As previously introduced, larger slopes are a main factor that reduces extrapolation 

accuracy. In Figure 4, when extrapolating the modeled function, the magnitude of the 

modeled function slope becomes larger and the model accuracy becomes poor. In addition, 

in Figure 5, when a high order modeled function is used, the magnitude of the modeled 

function slope is also larger than the actual function and the model accuracy is also poor. 

In [19], the authors found that lowering slopes will decrease the magnitude of the 

extrapolated function and improve extrapolation reliability. Thus, while using high order 

model functions will improve the description for the collected measurements, a constraint 

on the modeled function slope is needed to guarantee the accuracy of the model function 

over the entire workspace. In this section, a constraint that aims to control all perturbation 

function slopes over the whole workspace will be developed. A procedure to utilize this 

constraint for geometric error model construction will also be given. 

 

3.1. CONSTRAINT DESIGN 

Let the nominal and modeled transformations from the machine tool’s base frame 

to the machine tool’s last frame, respectively, be 

 
1 3 1

nom nom

nom



 
=  
 

R p
F

0
, (13) 

 
1 3 1

AP AP

AP



 
=  
 

R p
F

0
, (14) 
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where Rnom and RAP are the nominal and modeled rotations from the machine tool’s base 

frame to the machine tool’s last frame, respectively, pnom and pAP are nominal and modeled 

positions of the machine tool’s last frame with respect to the machine tool’s base frame, 

respectively. Let the measured tool length vector be 

  0 0
T

tl tl=p . (15) 

To connect the rotation and position information in one representation, the nominal and 

modeled tool tip positions with respect to the machine tool’s base frame used, 

 ,t nom nom tl nom= +p R p p , (16) 

 ,t AP AP tl AP= +p R p p . (17) 

For a five-axis machine tool with axis sequence XYZCB, taking the gradient of (16) and 

(17) with respect to the axis command vector q, respectively, 

 
, , , , ,

,

t nom t nom t nom t nom t nom

t nom

X Y Z C Bq q q q q

     
 =  

     
q

p p p p p
p , (18) 

 
, , , , ,

,

t AP t AP t AP t AP t AP

t AP

X Y Z C Bq q q q q

     
 =  

     
q

p p p p p
p , (19) 

For the ith axis, 

 ( ),

, , , ,

t nom nom tl nom
nom i nom tl nom i

i i iq q q

  
= + = +

  
ω v

p R p p
S J R p J , (20) 

 ( ),

, , , ,

t AP AP tl AP
AP i AP tl AP i

i i iq q q

  
= + = +

  
ω v

p R p p
S J R p J , (21) 

where S(•) is a skew symmetric matrix operator, Jω,nom,i and Jω,AP,i are the ith columns of 

the angular velocity portions of the nominal and modeled Jacobian matrices, respectively, 

Jv,nom,i and Jv,AP,i are the ith columns of the linear velocity portions of the nominal and 
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modeled Jacobian matrices, respectively. The machine tool Jacobian matrix is a matrix 

relates the small changes between the axes positions in joint coordinates and the end 

effector positions in Cartesian coordinates [25]. For a vector a = [a1,a2,a3], the skew 

symmetric matrix operator of a is, 

 ( )
3 2

3 1

2 1

0

0

0

a a

a a

a a

− 
 

= −
 
 − 

S a . (22) 

To combine the nominal and model information, the difference between (20) and (21) is 

taken which gives the slope of the tool tip modeled error, et, with respect to the ith axis,  

 

( )

( ) ( )

( ) ( )( ) ( )

, ,

, , , , , , , ,

, , , , , , , ,

t nom t APt

i i

nom i nom tl nom i AP i AP tl AP i

nom i nom AP i AP tl nom i AP i

q q

 −
=

 

= + − −

= − + −

ω v ω v

ω ω v v

p pe

S J R p J S J R p J

S J R S J R p J J

. (23) 

Assuming the difference between Rnom and RAP is small enough, such that, 

 
nom APR R , (24) 

then (23) can be written as 

 

( ) ( )( ) ( )

( )( ) ( )

( )

, , , , , , , ,

, , , , , , , ,

, ,

t
nom i nom AP i nom tl nom i AP i

i

nom i AP i nom tl nom i AP i

i nom tl i

q


= − + −



= − + −

=  + 

ω ω v v

ω ω v v

ω v

e
S J R S J R p J J

S J J R p J J

S J R p J

, (25) 

where ΔJω,i is the difference between the ith columns of the angular velocity portions of the 

nominal and modeled Jacobian matrices, ΔJv,i is the difference between the ith columns of 

the linear velocity portions of the nominal and modeled Jacobian matrices. 
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3.2. JACOBIAN MATRIX 

To save space, the detailed derivation of Jω,AP, Jω,nom, Jv,AP and Jv,nom are shown in 

the appendix. Using the derived formulations, the differences in the linear and angular 

Jacobian matrices, respectively, are 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

1

1

1

XX X XY Y XZ Z XC C XB B

X Y Z C B

YX X YY Y YZ Z YC C YB B
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X Y Z C B

ZX X ZY Y ZZ Z ZC C ZB B

X Y Z C B

df q df q df q df q df q

dq dq dq dq dq

df q df q df q df q df q

dq dq dq dq dq

df q df q df q df q df q

dq dq dq dq dq

 
+ 

 
 

= + 
 
 
 +
  

vJ , (26) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( )

,

1

1

1
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 
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 
 
 +
  

− 


− 

 

ω
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



, (27) 

where 

 

( )( )
( )( )

sin 0 0

0 cos 0

0 0 1

C C

C C

q q

q q





 − +
 

= + 
 
  

q

A q . (28) 

 

3.3. CONSTRAINED MODEL CONSTRUCTION 

As shown in (26) and (27), the linear and angular Jacobian differences depend on 

the slope of each of the perturbation functions. Let (25) be rewritten as 
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 ( ), ,
t

i i nom tl i

iq


= =  +


ω v

e
h S J R p J , (29) 

which represents the tool tip modeled error change per axis unit. Note that the unit of hi is 

mm/mm for translational axes and mm/deg for rotational axes. A unification of the unit is 

needed. A unification of the unit is made, 
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( )( )
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−
=

−
=  + ω v

e e
h

h

S J R p J

, (30) 

which represents the tool tip modeled error change per half range motion for the ith axis. 

By using (30) as a constraint during model identification, the magnitude of the all 

perturbation function slopes will be regulated. Previously, (11) and (12) are used for model 

identification without any other constraint. To construct constrained geometric error 

models and control the error function slopes, a new constraint is added to the identification 

process in addition to (11) and (12) which is designed as 

 ( )
2

, , , , ,i c i X Y Z C B =h , (31) 

where c is the constraint applied to all machine tool axes throughout the entire space. 

 

3.4. CONSTRAINT VALUE DETERMINATION 

To construct a geometric error model with consistent behavior over the entire space, 

one must carefully determine the constraint value, i.e., the value c used in (31). A large c 

will fail to constrain the unrealistic model behavior while a small c will over constrain the 

error slopes, reducing the model accuracy over the whole space. Since boundary space is 
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an intermediate space between interpolation and extrapolation spaces where the 

perturbation functions are fitted with few measurements, the identification of function 

slopes is more sensitive in boundary space. Thus, a subset of data from boundary space is 

used to determine an appropriate constraint value, c, which will give a balance between 

unconstrained and over-constrained models. To locate the boundary space points in a two-

axis space, a database technique named BORDER is used here [26]. Typically, for a point 

cluster, BORDER uses three steps to determine the boundary space point. The first step is 

to find the k-nearest neighbors (kNN) for each point in the data set where k is a user defined 

and tuned integer. The second step is to count the number of reverse k-nearest neighbors 

(RkNN) and the last step is to sort the points according to the RkNN number. As boundary 

space points tend to have fewer RkNN, user can choose any number of boundary points 

from the sorted sequence.  

An example is given in the following to explain how BORDER works. Figure 7 

gives a cluster of 8 points that are labeled with point number. The integer, k, is an arbitrarily 

defined value. Use k = 2 for this example and the 2-nearest neighbors for each point are 

given in Table 1. In the second column of Table 1, p2 is the 2-nearest neighbor of p1, p3 

and p4. Thus, p1, p3 and p4 are the reverse 2-nearest neighbors of p2. Table 2 lists the 

reverse 2-nearest neighbors for each point. As p1, p4 and p8 have the fewest number of 

reverse 2-nearest neighbors, they are identified as the boundary points which are consistent 

with the visual observation of Figure 7. 
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Figure 7. A cluster of 8 random points [26]. 

 

Table 1. Two-nearest neighbors of each point in Figure 7.  

Query Point Two-Nearest Neighbors 

p1 p2, p3 

p2 p1, p3 

p3 p2, p4 

p4 p2, p3 

p5 p6, p7 

p6 p5, p7 

p7 p5, p6 

p8 p3, p7 
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Table 2. Reverse Two-nearest neighbors of each point in Figure 7. 

Query Point Reverse Two-Nearest Neighbors 

p1 p2 

p2 p1, p3, p4 

p3 p1, p2, p4, p8 

p4 p3 

p5 p6, p7 

p6 p5, p7 

p7 p5, p6 

p8 N/A 

 

4. EXPERIMENTAL RESULTS 

 

4.1. EXPERIMENTAL SETUP  

An industrial five-axis machine tool with axis sequence XYZCB and a Siemens 

840D controller is used for the experimental studies conducted in this paper. Figures 8 and 

9 give the picture and structural schematic of the machine tool. An Automated Precision 

Inc., T3 laser tracker is located on the machine tool table and an Active Target (AT) 

retroreflector is mounted in the spindle. The laser tracker has an accuracy of 5 μm/m and 

the AT has a deterministic accuracy of 12.5 μm. In Figure 9, lBs is the length between the 

B axis rotating center and the machine tool spindle surface. Nominally, lBs = 98 mm. The 

lengths between the spindle surface and the AT retroreflector, lst , for the two AT mountings 
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are 304.9 mm for the short length and 402.9 mm for the long length. Thus, the total tool 

length is 

 t Bs stl l l= + , (32) 

and the two tool total lengths are 402.9 mm (short tool length,98+304.9) and 500.9 mm 

(long tool length, 98+402.9). 

 

 

Figure 8. Industrial five-axis machine tool used for experimental studies. 

 

  

Figure 9. Schematic of industrial five-axis machine tool kinematics. 
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To create a set of measurements in the axis space with low discrepancy, a quasi-

random sequence is used to generate the axis commands [27]. For each tool length, 295 

quasi random measurements are collected. Table 3 gives the minimum and maximum axis 

commands and Figure 10 gives the distribution of the measurements projected in the 

various two-axis spaces.  

The 295 measurements are divided into three sets, shown in the BZ axis space in 

Figure 11. To analyze the ability of the methodology to extrapolate geometric error models, 

25 measurements at the bottom border of the BZ space are taken to be the extrapolation 

validation set. They will be used to validate the extrapolated model performance. Over the 

interpolation space, another 25 points are randomly selected to be the interpolation 

validation set. They will be used to validate the interpolated model performance. The 

remaining 245 measurements are used as the identification set for model construction. 

 

Table 3. Minimum and maximum axis commands for collected 295 measurements. 

Axis Minimum Maximum 

X (mm) 83.2 6081.1 

Y (mm) 37.2 2557.1 

Z (mm) 7.4 988.2 

C (degree) -269.7 269.9 

B (degree) -109.5 109.9 
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Figure 10. Distribution of 295 measurement points in two-dimensional axis spaces. 

 

 

Figure 11. Distribution of identification, extrapolation and interpolation validation points 

in BZ space. 

 



32 

 

4.2. UNCONSTRAINED MODEL 

As a baseline, a model will be constructed without constraint. This model will be 

referred to as the unconstrained model. According to [14], perturbation functions described 

by 6th order polynomials are appropriate for this specific machine tool. Numerical 

optimization is used to minimize (11) for model identification. Here, the MATLAB 

optimization solver fmincon is used as it is capable of including nonlinear constraints 

during the optimization process. 

The unconstrained model is constructed with the 245 identification points. Table 4 

lists the mean and maximum residuals for the identification and validation sets. Figure 12 

shows the compensation table functions, which are generated from the geometric error 

models, over the interpolation and extrapolation spaces. The model reduces the mean 

residual from 0.307 to 0.038 mm for the identification data set and 0.261 to 0.044 mm for 

the interpolation validation data set, providing 87.6% and 83.1% reductions, respectively. 

However, for the extrapolation validation data set, the constrained model increases the 

mean residual from 0.321 to 0.451 mm and the maximum residual from 0.525 to 1.909 mm. 

The reason for the poor model performance for the extrapolation validation set can be seen 

in Figure 12. For the geometric error functions that are dependent on the Z axis position, 

the behavior in the extrapolation space is not consistent with the behavior in the 

interpolation space. In this case the error slopes are much larger in the extrapolation space. 

This results in unrealistic error magnitudes in the extrapolation space and, thus, poor 

accuracy of the extrapolated model. 
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Table 4. Mean and maximum residuals for the identification and validation data sets 

(mm). 

 

 Identification set 

Interpolation 

validation set 

Extrapolation 

validation set 

Model Mean Max Mean Max Mean Max 

Nominal 0.307 0.739 0.261 0.539 0.321 0.525 

Unconstrained  0.038 0.140 0.044 0.092 0.451 1.909 

 

  

Figure 12. Compensation table functions generated from unconstrained model. 
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4.3. CONSTRAINED MODEL 

In Figure 12, the perturbation functions dependent on the Z axis position behave 

unrealistic, which is caused by the limitation in Figure 2 and Figure 3. Thus, the boundary 

space points are located in the BZ space to determine the constraint value c. BORDER is 

applied to the 245 identification points. Here, k is tuned and selected as 30. As it is preferred 

to keep most measurements as identification points and only a few measurements are 

needed to validate the constrained model performance, the first 10 boundary space points 

identified by BORDER are used and those 10 points are named as the constraint validation 

set. The remaining 235 points are defined as the sub identification set. Figure 13 gives the 

distribution of sub identification and constraint validation points. 

Using the sub identification set, constrained models are constructed with different 

constraint values. Figure 14 shows the performance of the sub identification set and the 

constraint validation set. As the constraint goes from infinity to 0.4, the maximum residual 

of the constraint validation set keeps decreasing while the mean residual of the sub 

identification set is kept nearly the same. This indicates that the interpolation space error 

curves are refitted to best fit the sub identification points and the error slopes over the 

extrapolation space are being constrained. When the constraint is set smaller than 0.4, the 

error slopes are over-constrained. As a result, the model gets worse for both sub 

identification and constraint validation sets. From the trend of maximum residual of the 

constraint validation set, c = 0.4 mm/half axis motion is picked as the best constraint for 

the final constrained model construction. Note here for other machine tools or other tool 

lengths, the constraint value may not have to be 0.4. Similar test and analysis should be 

implemented. 
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Figure 13. Distribution of sub identification and constraint validation points in BZ space. 

 

 

Figure 14. Mean and maximum residuals of the sub identification and constraint 

validation sets with different constraint values. 
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4.4. COMPARISON AND ANALYSIS 

The final constrained model is constructed with the original 245 identification 

points and c = 0.4. The model performance and the identified error curves are compared 

between the unconstrained and constrained models. Figure 15 shows the compensation 

table functions generated from unconstrained and constrained models.  

 

  

Figure 15. Compensation table functions generated from unconstrained and constrained 

models. 
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Table 5 lists the mean and maximum residuals of nominal, unconstrained and 

constrained models for the identification and validation data sets and Figure 16 gives the 

mean and maximum residuals of nominal, constrained and unconstrained models for the 

validation data sets. As shown in Figure 15, the third column errors are identified much 

flatter. The constraint successfully constrains the error slopes over the whole space. In 

Table 5 and Figure 16, unlike the poor performance of unconstrained model on the 

extrapolation validation data set, the constrained model reduces the mean residual from 

0.321 mm to 0.191 mm and the maximum residual from 0.525 mm to 0.443 mm, 

respectively. Although the residuals for the identification and interpolation validation sets 

increase from the unconstrained to constrained models, the increases on the mean residual 

(0.016 mm and 0.012 mm) are much smaller comparing to the decrease (0.26 mm) for the 

extrapolation validation set. The constrained model gives a more uniform and optimal 

description of the geometric errors. 

 

Table 5. Mean and maximum residuals of nominal, unconstrained and constrained 

models for identification and validation sets (mm). 

 

 Identification set 

Interpolation 

validation set 

Extrapolation 

validation set 

Model Mean Max Mean Max Mean Max 

Nominal 0.307 0.739 0.261 0.539 0.321 0.525 

Unconstrained  0.038 0.140 0.044 0.092 0.451 1.909 

Constrained  0.054 0.217 0.056 0.112 0.191 0.443 
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Figure 16. Mean and maximum residuals of nominal, constrained and unconstrained 

models for interpolation and extrapolation validation sets. 

 

5. SUMMARY AND CONCLUSIONS 

 

The geometric errors of machine tools are frequently corrected by indirect and 

direct compensation methods with external metrologies. Due to challenge in curve-fitting 

and the limitation of the measurement devices, the interpolated and extrapolated error 

models may bring unexpected errors to the actual machining work. A method of 

interpolating and extrapolating the error model is proposed in this paper. Based on axis 

perturbation model, the proposed method uses the tool tip modeled error slope, which is 

formed by the all perturbation function slopes, as a general constraint to correct the 

unrealistic phenomenon of the model errors. By adding the constraint during the model 

identification, the error functions are refitted such that the interpolation space errors are 

still well identified and the extrapolation space errors behave more realistic. 
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In an experimental study on an industrial five-axis machine tool, an extrapolation 

validation set is defined to validate the extrapolated model performance. For the 

unconstrained model, although the mean residuals are reduced with about 85% for the 

identification and interpolation validation data set, the residuals on the extrapolation 

validation set are increased. The maximum residual is even increased by 264%. The 

unconstrained model fails to well describe the boundary and extrapolation space errors. In 

the construction of constrained models, BORDER is used to select 10 boundary space 

points to validate model performance with different constraint values. The final constrained 

model is constructed with an uniform constraint value c = 0.4. In the comparison of the 

unconstrained and constrained models, while the unconstrained model increases the mean 

residual from 0.321 mm to 0.451 mm for the extrapolation validation set, the constrained 

model identifies more realistic errors and reduces the mean residual from 0.321 mm to 

0.191 mm with a 40.5% reduction. The comparison and analysis demonstrates that the 

proposed method is able to refit the errors throughout the whole space such that the 

geometric error model is optimally-fitted. As the interpolated model is kept well, the 

extrapolated model is also able to improve compensation performance which will be very 

applicable in actual manufacturing tasks. 
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APPENDIX 

 

From [24], the linear velocity portion of the model Jacobian matrix is 

 ,AP AP=v qJ p . (33) 

For an industrial five-axis machine tool with axis sequence XYZCB, the modeled position 

of the machine tool’s last frame with respect to the machine tool’s base frame is 

 ( ) ( ) ( )
T

AP X X Y Y Z Zq q q q q q  = + + +  p q q q . (34) 

Thus, using (33), the linear velocity portion of the model Jacobian matrix is 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

1

1

1

AP AP AP AP AP
AP

X Y Z C B

XX X XY Y XZ Z XC C XB B

X Y Z C B

YX X YY Y YZ Z YC C YB B

X Y Z C B

ZX X ZY Y ZZ Z ZC C ZB B

X Y Z C B

q q q q q

df q df q df q df q df q

dq dq dq dq dq

df q df q df q df q df q

dq dq dq dq dq

df q df q df q df q df q

dq dq dq dq dq

     
=  

     

 
+




= +


 +


v

p p p p p
J










. (35) 

Continuing to consider a five-axis machine tool with the sequence XYZCB, the modeled 

rotation transformation from the machine tool’s base frame to the machine tool’s last frame 

is 

 AP C B=R R R , (36) 

where RC and RB are the modeled rotation transformations for the C and B axes, 

respectively, 
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( )( ) ( )( )
( )( ) ( )( )

ˆ ˆcos sin 0

ˆ ˆsin cos 0

0 0 1

C C C C

C C C C C

q q q q

q q q q

 + − +
 

= + + 
 
  

q q

R q q , (37) 

 

( )( ) ( )( )

( )( ) ( )( )

ˆ ˆcos 0 sin

0 1 0

ˆ ˆsin 0 cos

B B B B

B

B B B B

q q q q

q q q q

 + +
 

=  
 − + +  

q q

R

q q

. (38) 

Taking the time derivative of RAP, 

 
( )

( )
( )

( )

( ) ( )

, , , ,

, , , ,

C B
AP B C

C Ci i B Bi i

i C B i C B

i X Y Z C B i i

C Ci i B Bi i

i i C AP

i X Y Z C B i i

d d

dt dt

q df q q df q
q q

dq dq

q df q q df q
q q

dq dq

=

=

= +

 + +   
= +     

    

  + +   
= +       

     





R R
R R R

S k R R R S j R

S k R j R

, (39) 

where 

    0 0 1 , 0 1 0
T T

= =k j . (40) 

Thus, the modeled angular velocity is, 

 
( ) ( )

,

, , , , , , , ,

C CX i B Bi i

AP AP i i i C

i X Y Z C B i X Y Z C B i i

q df q q df q
q q

dq dq= =

 + +   
= = +     

    
 ω ω k R j , (41) 

where 

 

( )( )
( )

( )( )
( )

( )

,

sin

cos , , ,

Bi i

C C

i

Bi i

AP i C C i

i

Ci i

i

df q
q q

dq

df q
q q q i X Y Z

dq

df q

dq





  
− +  

  
 

 
 = + = 
  
 
 
 
 

q

ω q , (42) 
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( )( )
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1
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C C

C

BC C

AP C C C C

C
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C
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q q

dq
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( )

( )

,
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ˆcos 1

BB B

C C

B

BB B

AP B C C B

B

CB B

B

df q
q q

dq

df q
q q q

dq
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  
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 

 
 = + + 
  
 
 
 
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q

ω q . (44) 

The angular velocity portion of the model Jacobian matrix is thus, 

 
, , , , ,

,

AP X AP Y AP Z AP C AP B

AP

X Y Z C Bq q q q q

 
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 

ω

ω ω ω ω ω
J . (45) 

The linear and angular velocity portions of the nominal Jacobian matrix are given when 

the errors and slopes are zero in (44) and (54), 

 ,

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

nom

 
 

=
 
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vJ , (46) 
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II. MODELING AND CALIBRATION OF HIGH-ORDER JOINT-

DEPENDENT KINEMATIC ERRORS FOR INDUSTRIAL ROBOTS 

 

Le Ma, Patrick Bazzoli, Patrick M. Sammons, Robert G. Landers and  

Douglas A. Bristow 

 

ABSTRACT 

 

Robot positioning accuracy is critically important in many manufacturing 

applications. While geometric errors such as imprecise link length and assembly 

misalignment dominate positioning errors in industrial robots, significant errors also arise 

from non-uniformities in bearing systems and strain wave gearings. These errors are 

characteristically more complicated than the fixed geometric errors in link lengths and 

assembly. Typical robot calibration methods only consider constant kinematic errors, thus, 

neglecting complex kinematic errors and limiting the accuracy to which robots can be 

calibrated. In contrast to typical calibration methods, this paper considers models 

containing both constant and joint-dependent kinematic errors. Constituent robot kinematic 

error sources are identified and kinematic error models are classified for each error source. 

The constituent models are generalized into a single robot kinematic error model with both 

constant and high-order joint-dependent error terms. Maximum likelihood estimation is 

utilized to identify error model parameters using measurements obtained over the 

measurable joint space by a laser tracker. Experiments comparing the proposed and 

traditional calibration methods implemented on a FANUC LR Mate 200i robot are 

presented and analyzed. While the traditional constant kinematic error model describes 
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79.4% of the measured error, the proposed modeling framework, constructed from 

measurements of 250 poses, describes 97.0% of the measured error. The results 

demonstrate that nearly 20% of the kinematic error in this study can be attributed to 

complex, joint-dependent error sources. 

Key words: Industrial robots; Strain wave gearing; Calibration; Maximum likelihood 

estimation 

 

1. INTRODUCTION 

 

Industrial robots are highly flexible and repeatable automation platforms effective 

for a number of manufacturing tasks [1]. In some applications, a robot is programmed 

through a “teach” mode [2], in which the robot is manually positioned through a series of 

points. The robot can return to any of those points, within its repeatability, at any time by 

recalling them from memory. For these applications, repeatability is the critical design 

parameter while accuracy is not as critical. In other manufacturing applications, such as 

deburring and light machining, the robot will be commanded to arbitrary positions and 

orientations [3], thus, its repeatability and accuracy are both important. However, robot 

accuracy can be an order of magnitude worse than its repeatability due to various sources 

of errors such as component manufacturing and assembly errors, as well as joint deflection 

errors [4-6]. Thus, a rapid and effective method for calibrating robots is essential. 

Research regarding robot calibration has been studied and well-developed over the 

past three decades. While the majority of the work focuses on kinematic model-based 

calibration, non-kinematic errors (such as elastic deformation) also play important roles in 
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reducing robot accuracy [7]. In [8], kinematic calibration methods were classified into 

open-loop, closed-loop and screw-axis measurement methods. In open-loop methods, 

external metrology systems are used to take measurements. Two examples of open-loop 

calibration methods are given in [9] and [10], in which a laser tracker and a single 

telescoping ballbar, respectively, were used for data collection. In closed-loop methods, 

external measurement devices are not needed. The robot endpoint is attached to the ground 

such that a mobile closed-loop kinematic chain is formed if the robot is redundant to the 

endpoint constraint. Then kinematic model parameters are identified using joint angle 

readings. The methodology and applications of this methodology are given in [11]. In 

screw-axis measurement methods, kinematic errors are calibrated by determining the actual 

transformation relationship between consecutive joints. A typical screw-axis measurement 

method is Circle Point Analysis (CPA) [12], two examples of which are given in [13,14]. 

Although a wealth of research has been conducted in robot kinematic calibration, a 

majority of the work only considers ideal rigid body motion and consists of identifying 

constant joint offsets. While a joint-independent error kinematic model may be sufficient 

to describe geometric errors resulting from structural errors in the robot assembly (e.g., 

link-length or alignment errors), many complex kinematic errors, such as periodic gear 

errors, cannot be sufficiently captured. Strain wave gearings, commonly used in industrial 

robots due to their high reduction ratio, light weight and compact size [15,16], are known 

to have complicated position-dependent errors caused by manufacturing tolerances, 

alignment errors and the gear tooth placement errors on both the circular and flexible 

splines [17]. Flexing of bearings will also result in non-parallel coupling of gearboxes, 

causing the end effector to be out of plane, higher at some positions and lower at other 
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positions [18]. Assembly inaccuracies, gear tooth errors and wear combine to cause 

position dependent and periodic kinematic errors [19]. The small magnitude of the 

kinematic errors in strain wave gearings will be amplified by serial links to the end effector, 

resulting in large, very complex robot errors. More precise models are needed to better 

describe these complex kinematic errors and, thus, improve post calibration performance. 

A new robot kinematic calibration method capable of capturing both fixed and 

complex kinematic errors is developed in this paper. Six Degree of Freedom (DoF) error 

transformation matrices between consecutive joints, having joint-dependent error terms 

modeled by high-order polynomials, are used to construct a joint-dependent kinematic 

error model capable of describing complex geometric errors [20]. A laser tracker, having 

the advantages of rapid measurement speed and the ability to gather most, if not all, of the 

measurements in a single setup, is used for data collection. Then, error model parameters 

are identified with a maximum likelihood estimation algorithm [21], and a gradient search 

inverse kinematic compensation algorithm [22] is used for compensation. 

The rest of this paper is organized as follows. Section 2 categorizes and models 

different robot kinematic errors. Section 3 proposes a high-order, joint-dependent 

kinematic error model. Identification and compensation methods are provided in Section 

4. Section 5 provides the experimental results for a FANUC LR Mate 200i robot. Circle 

Point Analysis is also implemented as a representative traditional calibration method. A 

comparison of CPA with the proposed method is described and analyzed in Section 6. The 

paper is summarized and conclusions are drawn in Section 7. 
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2. ROBOT KINEMATIC ERROR MODELING 

 

2.1. CHARACTERIZATION OF ROBOT KINEMATIC ERRORS 

Let 1i

i

−
T  represent a transformation from Frame i-1 to Frame i and parameterize 

1i

i

−
T  according to the Denavit-Hartenberg (DH) convention [23] as, 

 ( ) ( ) ( ) ( )1i

i RZ i TZ i TX i RX id a − =T T T T T , (1) 

where TRj is a rotation matrix about axis j, TTj is a translation matrix along axis j, and θi, 

di, ai and αi are model parameters. Using the DH frame assignment convention, a rotary 

joint can be written as 

 ( )1

, ,i i i

i

i RZ i d aq 

− =T T T , (2) 

where qi is the joint command of link i and, 

 ( ) ( ) ( ), ,i i id a TZ i TX i RX id a =T T T T , (3) 

is a fixed homogeneous transformation. Robot kinematic errors (e.g., link length error, 

misalignment, pitch error) will cause differences between the actual and nominal 

transformations. Appropriate mathematical descriptions of those errors are essential in the 

construction of robot kinematic error models. Several robot kinematic error sources are 

described and their corresponding error models are constructed as follows. 

2.1.1. Rotating Center Offset Errors. The nominal transformation 1i

i

−
T  starts  

from the rotating center of Frame i-1. Existence of assembly errors will cause an offset 

between the actual and nominal rotating center. In this case, the actual transformation from 

Frame i-1 to Frame i, 1i

i

−
T , is 
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 ( ) ( )1 1

,

i i

i i RC i i iq q− −=T E T , (4) 

where 
,RC iE  is a fixed error translational transformation describing the ith joint rotating 

center offset, 

 

, ,

, ,

,

, ,

1 0 0

0 1 0

0 0 1

0 0 0 1

RC X i

RC Y i

RC i

RC Z i







 
 
 =
 
 
 

E , (5) 

and δRC,j,i is the translational error along the jth axis. Figure 1(a) gives a geometric 

description of a rotating center offset where Frame Xi-1Yi-1Zi-1 denotes the nominal Frame 

i-1 and Frame 1 1 1i i iX Y Z− − −
    denotes the actual Frame i-1. 

2.1.2. Mastering Errors. The location of the zero position, referred to as   

mastering, is set by aligning the robot through one of several procedures such as zero 

degree or single axis mastering. However, a robot might lose the mastering data and 

remastering can introduce a small change in the zero location. With this fixed small change, 

the actual transformation is 

 ( ) ( ) ( )1 1

0 0 , ,i i i

i i

i i i i i RZ i i d aq q q q q 

− −= + = +T T T T , (6) 

where Δqi0 is a fixed mastering error for joint i. Figure 1(b) shows the transformation due 

to mastering errors. 

2.1.3. Link Length and Assembly Errors. Imprecise manufacturing of link  

parts and assembly misalignment errors will cause a fixed offset of the nominal link lengths 

(i.e., di and ai) and angles between joints (i.e., qi and αi). The resulting transformation due 

to the errors in the link lengths and angles between joints can be represented by 
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( ) ( ) ( ) ( ) ( )

( )

1

, , ,i i i

i

i i RZ i ia TZ i i TX i i RX i i

RZ i ia d a LA i

q q q d d a a

q q 

 − = +  + + +

= +

T T T T T

T T E
, (7) 

where Δqia, Δdi, Δai and Δαi are fixed link length and assembly errors and ELA,i is a fixed 

link length and assembly error transformation, 

 ( ) ( ) ( ) ( )
1

, , ,i i iLA i d a TZ i i TX i i RX i id d a a  
−

= +  +  + E T T T T . (8) 

Figure 1(c) describes the transformations due to these errors using the DH convention. 

2.1.4. Pitch Errors. Pitch error is an error in the gearing that is caused by  

the runout of the gear flank groove. The pitch error will affect the nominal gear ratio such 

that the nominal joint command, qi, will be amplified or attenuated. Further, the gear teeth 

may not be ideally evenly distributed; therefore, the pitch error may also be a function of 

the gear angle. In this case, the actual transformation will be 

 ( ) ( )( )1

, ,i i i

i

i i RZ i i d aq r q q 

− =T T T , (9) 

where r(qi) is a joint-dependent correcting ratio for pitch error. Figure 1(d) illustrates the 

transformation due to pitch errors. 

2.1.5. Strain Wave Gearing Errors. Strain wave gearings are widely used in  

robotic transmission systems. A strain wave gearing, shown in Figure 2, is comprised of 

three components: a flexible spline, a wave generator and a circular spline. The wave 

generator, inserted into the flexible spline, will rotate as the input. Although strain wave 

gearings have the advantages of compact size, small weight and high gear ratio, they tend 

to have positional errors as a function of the motor position. The authors in [19] found that 

strain wave gearing errors consist of a basic kinematic error component and a second 

position-dependent error component caused by inherent torsional flexibility. This strain 
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wave gearing position error will induce a joint-dependent planar error for the robot joint 

output. According to [19], a Fourier series expansion can be used to express the kinematic 

errors of strain wave gearing as a function of the joint command, 

 ( ) ( ) ( )( )1

, , , ,

1

cos
i i i i i i

k
i

i i RZ i k i k d a RZ i i i d a

j

q q h k q q q q  −

=

 
= + + = + 

 
T T T T T , (10) 

where hk, ω and φk are the amplitude, frequency and phase shift, respectively, of the Fourier 

expansion and Δqi(qi) represents the strain wave gearing error that is dependent on the joint 

command, qi. Figure 1(e) shows the transformation modeling strain wave gearing errors. 

 

 

Figure 1. Schematic description of various robot kinematic errors.  
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Figure 2. Strain wave gearing schematic. 

 

2.1.6. Out of Plane Errors. Out of plane link deformations exist when a non- 

uniform load is applied on the output shaft. As a result, the true link end position may be 

higher than the desired link end position at some angles and lower at other angles. This out 

of plane error is also joint-dependent and can be described as 

 ( ) ( ) ( )1

, ,i i i

i

i i out i RZ i d aq q q 

− =T E T T , (11) 

where outE (qi) is the out of plane error transformation matrix, 

 ( )
( ) 3 1

1 3 1

out i

out i

q
q 



 
=  
 

R 0
E

0
, (12) 

and Rout(qi) describes the out of plane orientation error. Figure 1(f) provides a schematic 

description of the transformation caused by out of plane errors. 

2.1.7. Backlash Errors. Backlash is known to occur when the rotating direction  

changes [24] due to imperfect meshing of gear teeth. For a revolute joint, offsets will occur 

between the actual and nominal positions. Often, backlash is modeled as a constant error 

with the same magnitude for both the forward and backward motions. However, backlash 

errors are often joint-dependent. Figure 3 is a plot of the angular errors, calculated with 

Circular Spline

Flexible Spline

Wave 

Generator
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respect to the middle of the measurements, when the fifth joint of an industrial robot 

(described below) is approached from the forward and backward directions. The results 

illustrate how backlash can change with the joint angle. Thus, transformation due to 

backlash error is described by 

 ( ) ( )( ) ( )( )1 1

, ,i i i

i i

i i i i i ib i RZ i i ib i d aq q s q q q s q q 

− −= +  = + T T T T , (13) 

where Δqib(qi) is the joint-dependent backlash error and 

 
1, forward motion

1, backward motion
is


= 

−
. (14) 

Figure 1(g) gives the schematic description of the transformation error due to backlash 

where Frame qi qi qiX Y Z    denotes the actual position after the rotation from the nominal 

position qi. 

 

  

Figure 3. Angular errors from forward and backward motions of Joint 5. 

 

2.2. GENERAL KINEMATIC ERROR MODEL 

The robot error sources are summarized in Table 1. Combining the effects of the 

error sources results in a generalized error model of the form, 
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 ( ) ( ) ( )1 1

, ,,i i

i i G i i i i i LA iq q s q− −=T E T E , (15) 

where ( ), ,G i i iq sE  is a generalized joint-position and direction dependent correction. 

 

Table 1. Robot kinematic error sources and corresponding model descriptions. 

Kinematic Error Model Description 

Rotating Center Offset Errors ( ) ( )1 1

,

i i

i i RC i i iq q− −=T E T  

Mastering Errors ( ) ( ) ( )1 1

0

i i

i i RZ i i iq q q− −= T T T  

Link Length and Assembly Errors ( ) ( ) ( )1 1

,

i i

i i RZ ia i i LA iq q q− −= T T T E  

Pitch Errors ( ) ( )( ) ( )1 1i i

i i RZ i i i iq r q q q− −=T T T  

Strain Wave Gearing Errors ( ) ( )( ) ( )1 1i i

i i RZ i i i iq q q q− −= T T T  

Out of Plane Errors ( ) ( ) ( )1 1i i

i i out i i iq q q− −=T E T  

Backlash Errors ( ) ( )( ) ( )1 1i i

i i RZ i ib i i iq s q q q− −= T T T  

 

3. HIGH-ORDER JOINT-DEPENDENT KINEMATIC ERROR MODEL 

 

For an n-joint robot, the nominal kinematic model can be represented as 

 ( ) ( ) ( ) ( )0 1 1

1 1 2 2

n

n n nq q q−=F q T T T , (16) 

where Fn is the nominal transformation from the robot base frame to Frame n and q = [q1, 

q2,…,qn]
T is the nominal joint command vector. Using the generalized error model (15), 

the actual transformation of an n-joint robot is,  



57 

 

 

( )

( ) ( ) ( ) ( )

0 1 1

1 2

0 1

,1 1 1 1 1 ,1 , ,

Joint 1 Joint 

, ,

n

a n

n

G LA G n n n n n LA n

n

q s q q s q

−

−

=

=

F q T T T

E T E E T E , (17) 

Adjacent error transformations can be combined as 

 ( ) ( )1

, 1 ,, ,i

i i i LA i G i i iq s q s−

−=E E E , (18) 

yielding the complete kinematic error description, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 1 1

1 1 1 1 1 2 2 2 2 2, , ,n n

a n n n n nq s q q s q q s q− −=F q E T E T E T , (19) 

where ELA,0 = I. Note here the last joint correction is removed since it will depend on tool-

specific mounting variations. For small kinematic errors, the error kinematics between 

links can be approximated as [20], 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
1

1 ,

, 1
,

1

0 0 0 1

Z i i Y i X i

i Z i i X i Y i

i i i

Y i X i Z i

q s q q

q s q q
q s

q q q

  

  

  

−

 − 
 

− 
 −
 
 

E , (20) 

where εX, εY and εZ are small rotations around the X, Y and Z axes, respectively, of Frame 

i-1 and δX, δY and δZ are small translations along the X, Y and Z axes, respectively, of Frame 

i-1. Since axis Zi is the rotating axis, the effect of backlash errors are included in the 

rotational error function εZ. 

To capture both the fixed and joint-dependent errors, a basis set of sufficient order 

is used. Here, Chebyshev polynomials on a normalized base are used. Given a parameter λ 

in the interval [-1 1], a Chebyshev polynomial has the form, 

 ( ) ( ) ( ) ( )0 1 1 2 2 m mC a a c a c a c   = + + + + , (21) 

where 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3

0 1 2 3

4 2

4 1 1

1,  ,  2 1,  4 3 , 

8 8 1, , 2m m m

c c c c

c c c c

       

      + −

= = = − = −

= − + = −
, (22) 

m denotes the order of the Chebyshev polynomial and a0, a1, a2, …, am are the polynomial 

coefficients. Thus, the error terms can be represented by mth order Chebyshev polynomials 

as  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 1 2 2

0 1 1 2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

j i j j i j i mj m i

j i j j i j i mj m i

q a a c q a c q a c q

q b b c q b c q b c q





= + + + +

= + + + +
, (23) 

where j denotes the axis (i.e., X, Y and Z) and 

 
( )

( )
,min

,max ,min

2
ˆ 1

i i

i

i i

q q
q

q q

−
= −

−
, (24) 

denotes the ith linearly mapped joint command where the joint range is scaled to the interval 

[-1 1], and qi,min and qi,max are the minimum and maximum joint angles, respectively. Thus, 

the zero order term in (23) can be regarded as the constant error description for joint i-1 

and other terms are the joint-dependent errors for joint i. In this framework, modeling of 

the error kinematics between joints corresponds to selecting a sufficient order m and 

appropriate model coefficients, a0j, a1j, …, amj, b0j, b1j, …, bmj. 

 

4. MEASUREMENT, IDENTIFICATION AND COMPENSATION 

 

4.1. MEASUREMENT 

A laser tracker is used to obtain the 3-D Cartesian coordinates of a spherical tool 

attached to the robot end effector. Figure 4 shows the measurement system setup. The 

kinematic error model in (19) consists of transformations from the robot base frame to 
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Frame n. As measurements of the tool tip are collected with respect to a metrology frame, 

a static transformation from Frame n to the tool tip and a static transformation from the 

metrology frame to the robot base frame are needed. Two sources of error in the 

measurement are considered. The first is in the measurement of the tool tip and is treated 

as a measured Cartesian error. The second is in the robot positioning repeatability error, 

which is treated as a joint positioning error. Incorporating these elements into the robot 

kinematic model, the measured position with respect to the metrology frame, ( )m

ap q , is 

 ( ) ( )0

m m n

a a T ++p qF ν= T pq ξ , (25) 

where 
0

m
T  is a transformation from the metrology frame to the robot base frame, ν is a 

stochastic joint-positioning error, n

Tp  is a tool length vector and ξ is a measured Cartesian 

error. Figure 5 gives a schematic structure of the measurement model. By setting the 

metrology frame close to the robot base frame, the transformation, 
0

m
T , can be described 

with small fixed rotation and translation errors, 

 

,0 ,0 ,0

,0 ,0 ,0

0

,0 ,0 ,0

1

1

1

0 0 0 1

Z Y X

Z X Ym

Y X Z

  

  

  

− 
 

−
 =
 −
 
 

T . (26) 

The tool length vector, n

Tp , is also fixed, and is 

 

,

,

,

1 1

TX X X T

TY Y Y Tn

T

TZ Z Z T

p l

p l

p l







+   
   

+
   = =
   +
   
   

p , (27) 

where pTX, pTY and pTZ are the translations along the X, Y and Z axes, respectively, of Frame 

n, lX, lY and lZ are the estimated translations and δX,T, δY,T and δZ,T are small corrections of 
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the estimated values. Figure 6 gives the description of the tool length vector in Frame n. 

Since the measurement tool can only collect position information, error measurements 

using the same set of joint commands are collected in three measurement tool 

configurations to determine the robot orientation error information. Figure 7 shows the 

three configurations of the measurement tool with the robot in its zero position. 

 

 

Figure 4. Measurement system setup. 

 

 

Figure 5. Measurement model schematic structure. 
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Figure 6. Tool length vector in robot’s last frame. 

 

 

Figure 7. Three measurement tool configurations in robot’s zero position. 

 

4.2. MAXIMUM LIKELIHOOD IDENTIFICATION 

The method of identifying model error parameters used in this paper is based on 

the implicit loop algorithm described in [21], using a maximum likelihood estimator. An 

advantage of this method is that both positioning repeatability and measurement error are 

considered in order to avoid over-fitting model parameters to the measurement data. 

Consider N measured robot poses, qk, k=1,…,N, acquired with t=1,2,3 tool 

configurations and denote the collected measurement with respect to the measurement 

frame, m, as ( ), ,a k k

m

tp q . Denote the tool length for each tool configuration, with respect to 

the end effector frame, n, as 
,

n

T tp , and robot joint positioning errors as νk,t. Collect the base 
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frame alignment errors in 
0

m
T  as, 

 ,0 ,0 ,0 ,0 ,0 ,0

T

base X Y Z X Y Z      =  b , (28) 

the tool length errors for each tool configuration in 
,

n

T tp  as, 

 , ,1 , ,1 , ,1 , ,2 , ,2 , ,2 , ,3 , ,3 , ,3

T

T X T Y T Z T X T Y T Z T X T Y T Z T         =  b , (29) 

and the robot kinematic error parameters in Fa as, 

 1 2

T
T T T

J J J Jn
 =  b b b b , (30) 

where bJi are themselves a collection of the Chebyshev polynomials coefficients in 1i

i

−
E . 

Assume that the model structure developed above contains all kinematic error descriptions 

of the actual robot. Then, for the appropriate model parameters, the measurement error for 

all three tool configurations can be collected at each pose as, 

 

( ) ( )
( ) ( )
( ) ( )

,1

,2

,3

, ,1 0 ,1,1

,2 , ,2 0 ,2

,3 , ,3 0 ,3

m m n

a k a Tk

m

k

m n

k k a k a T

m m n

a

k k k

k k

k a k T

k

k k

 − 
  

= = −  
   −   

+

+ 

+

p T F pξ

ξ ξ p

q q ν

q q ν

q q

T F p

ξ p T F pν

, (31) 

where 
0

m
T , aF , and 

,

n

T tp  implicitly include the base frame errors, Chebyshev kinematic 

errors, and tool length errors, respectively. Now, collect joint positioning error for each 

pose as, ,1 ,2 ,3

T T T

kk k k

T

 =  ν ν ν ν , and assume joint positioning error and meausrement 

error follow known normal distributions. Let Σν and Σξ be the covariance matrices for the 

collected joint positioning and measurement error at each pose, respectively, which are 

given by, 
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where 
Ji , i=1,…,n is the standard deviation of the ith joint positioning error and 

m  is the 

standard deviation for the measurement error.  

The maximum likelihood estimation of the kinematic error model is obtained by 

minimizing the inverse-covariance weighted stochastic errors as, 

 ( ) ( )
1

1 1

1
, , ,

1, ,

, , , , , min
N

base J T

N
T T

N base J T k k k k

k

V − −

=

= + ν ξ
ν ν
b b b

ν ν b b b ν Σ ν ξ Σ ξ , (33) 

subject to the implicit loop constraint, (31). Numerical optimization is used to obtain the 

minimum, and thus, the kinematic error model. To improve optimization speed and 

accuracy, an analytical gradient of the optimization function (33) can be utilized. The 

analytical solution for the gradient is given by, 
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     ν ν b b b
, (34) 

where each component of the gradient is solved in the following four subsections. 

4.2.1. Partial Derivative of Joint Positioning Error. For the ith joint positioning  

error of the kth command, the partial derivatives of the joint positioning errors for all three 

measurement tool configurations are 
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where , ,

mod

v i tJ  is the linear velocity portion of the model Jacobian with the tth measurement 

tool orientation. The details of , ,

mod

v i tJ  are shown in the appendix. 

4.2.2. Partial Derivative of Base Frame Error. Let αj denote the jth element  

of bbase. Then, the partial derivative of the base frame error is 

 1 0 0 00
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where 
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k t a T t t+= =qF νp p , (39) 

and 0

m

j





T
 is a straightforward derivative of 

0

m
T . 

4.2.3. Partial Derivative of Joint Kinematic Error. Letting the order of the 

Chebyshev polynomials used to model the error components be m, the error parameters in 

bJi is 
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Letting bJi,j denote the jth element of bJi, the partial derivative of the joint kinematic error 

is 
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where 
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4.2.4. Partial Derivative of Tool Length Error. Letting bT,j denote the jth element  

of bT, the partial derivative of the tool length error is 
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 where 

 ( )0 , , 1,2,3k k t

m

k a t+= =q νW T F . (45) 

 

4.3. COMPENSATION 

Compensation for the modeled robot errors can be accomplished using the inverse 

Jacobian method described in [22]. Letting qnom represent the nominal joint command, a 

compensated joint command qnew is calculated such that 

 ( ) ( )a new n nom=F q F q . (46) 

The initial estimate of qnew is q0 = qnom. For the rth estimate, qr, there exists a residual error 

transformation, Ωr 
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Based on (47), an error vector is computed as 
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where the left and right partitions, respectively, are the position and orientation errors 

between nominal and actual transformations. This position and orientation error in 

Cartesian space can be transformed to the joint command error by 

 ( )
1r r

nomd d
−

=q J q e , (49) 

where dqr is the corresponding joint command error for der and ( )nomJ q  is the Jacobian 

matrix. Then, the updated joint command is 

 
1r r rd+ = +q q q . (50) 

Equations (47)-(50) are repeated until a suitable tolerance is satisfied 

 
2

rd tolq , (51) 

where tol is the stopping tolerance which, for example, can be set to be the joint encoder 

resolution. When the tolerance is satisfied, the compensated joint command is 

 f

new =q q . (52) 

where qf is the final estimated joint command. 
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5. EXPERIMENTAL RESULTS 

 

5.1. EXPERIMENTAL SETUP 

A FANUC LR Mate 200i robot with a RJ3 controller is used for the experimental 

studies conducted in this paper. A photograph of the robot is shown in Figure 8 and a 

schematic of its kinematic structure is shown in Figure 9. The DH parameters for the 

FANUC LR Mate 200i are listed in Table 2. 

 

 

Figure 8. Photograph of FANUC LR Mate 200i robot side view with links lengths. 

 

 

Figure 9. Schematic of FANUC LR Mate 200i kinematic structure with joint frames and 

rotation directions. 
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Table 2. FANUC LR Mate 200i DH parameters. 

Frame θi (deg) di (mm) ai (mm) αi (deg) 

1 q1 0 150 -90 

2 q2 – 90 0 250 180 

3 q2 + q3 0 75 -90 

4 q4 -290 0 90 

5 q5 0 0 -90 

6 q6 -80 0 180 

 

 

 

5.2. MEASUREMENT COLLECTION 

Measurements are acquired using an Automated Precision, Inc. model R-20 Radian 

laser tracker and model AT1 Active Target spherical tool. Manufacturer specifications list 

the standard deviation of the laser tracker measurement as σ = 2.5 μm/m. The following 

experiments are conducted with a measurement range of 1.5 to 2.5 m, depending on the 

position and orientation of the robot.  Variation in accuracy over the 1 m range is small 

enough to be neglected.  Therefore, the accuracy of the laser tracker at the average distance 

of 2 m is used. Further, standard deviation along the measurement frame in the X, Y and Z 

axes are assumed to be the same and independent. Thus, a standard deviation of σm=5×10-

3 mm is used. The manufacturer specifications for the spherical tool report an accuracy of 

±12.5 μm, which is treated as deterministic. Thus, all the experimental data and model 

results in following sections are treated to have a minimum error of ±12.5 μm.  
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Measurements are acquired to fully cover the joint space where the tool tip is visible 

to the laser tracker. Table 3 lists the minimum and maximum limits of the measured space. 

Across this space, measurements are generated with a quasi-random distribution. Quasi-

random numbers, such as the Niederreiter sequence, have low discrepancy, meaning that 

there are smaller gaps and less clustering of the measurement locations [26] than sequences 

generated with a pseudo random sequence, especially when the sequence sample size is 

small. Table 4 gives the estimated tool length vectors described in Figures 6 and 7. 

 

Table 3. Measured range of each joint. 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

Minimum -100º -30º -30º -180º -90º -180º 

Maximum 100º 100º 100º 180º 90º 180º 

 

 

 

Table 4. Estimated tool length vectors of three measurement tool configurations. 

Orientation 1 2 3 

lx (mm) 33.06 57.26 -33.96 

ly (mm) 57.73 -33.86 -57.23 

lz (mm) 161.22 161.22 161.22 

 

5.3. REPEATABILITY 

A robot’s repeatability is a fundamental limitation of how well the robot can be 

calibrated. The ISO 9283 standard provides a technical procedure to determine the 
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repeatability of industrial robots [27]. Following the procedure in the ISO 9283 standard, 

the repeatability of the FANUC LR Mate 200i is determined to be ±0.03 mm. 

 

5.4. ESTIMATION OF JOINT VARIANCE 

Joint variance, 2

,Ji t , describes the variation of the positioning repeatability when 

only joint i is commanded to the same position repeatedly. In this work, the variance of the 

normal distribution fitted to the angular errors between each measurement and the 

measurement’s center is taken to be the joint variance. For the ith joint, M positions are 

measured, each of which is measured twice from the same direction of approach. Within 

the rotation plane, let two measurements for the jth position be denoted (xi,j1, yi,j1) and (xi,j2, 

yi,j2). The center measurement is 

 ( ) , 1 , 2 , 1 , 2

, ,, ,
2 2

i j i j i j i j
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x x y y
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. (53) 

Thus, the angular errors θi,j1 and θi,j2, respectively, between the measurements and center 

is 
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. (54) 

A normal distribution is then fitted using all of the angular errors for the ith joint. The 

variance of the fitted normal distribution is the ith joint variance. The same procedure is 

repeated for the opposite direction of motion. Figure 10 shows the distributions of the fitted 

angular errors. Table 5 lists the estimated joint variances for each joint in both their forward 

and backward directions for M = 9. 
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Figure 10. Normal distributions of angular errors for forward and backward motions of 

each joint. 

 

5.5. MODEL IDENTIFICATION 

One issue in model identification is the determination of the order of polynomials 

that is appropriate to describe the kinematic error functions. Lower order sequences will 

fail to sufficiently describe the complexity of the complex kinematic errors (e.g., strain 

wave gearing errors), while higher order sequences will tend to over fit the identification 
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data set, leading to poor estimation outside of this set. Another issue is the number of 

measurements that should be collected. If not enough measurements are taken, the 

kinematic error model parameters cannot be properly estimated; however, taking too many 

measurements will decrease the calibration procedure efficiency. Note that modeling 

higher order kinematic errors will necessitate the collection of additional identification data. 

To determine the appropriate order of the Chebyshev polynomials and the proper number 

of measurements to take, models are constructed using sequences from 1st to 10th order 

with 150, 250 and 350 quasi-random measurements as the identification data set. A 

separate set of 300 quasi-random measurements are collected as a validation set, which is 

used for validating the model performance. Figure 11 shows the mean residuals for the 

identification (ID) and validation (Val) sets with different order polynomials and number 

of identification measurements (ID Meas). 

From Figure 11, one can see that while identification set residuals decrease with 

increasing polynomial order, the same is not true for the validation set residuals. High order 

models with small data sets have a higher validation residual compared to low order models 

with the same data set, and indication that the model is over fitting the data set (e.g. 9th 

order polynomial models compared to 3rd order polynomial models using 150 identification 

measurements). The polynomial order and identification set are selected to achieve the 

smallest mean residual in the validation set. For the data set in Fig. 11, a 6th order model 

with 350 measurements achieves that lowest residual. However, the validation residual for 

250 measurements provides nearly the same performance (only 0.006 mm higher residual), 

while at the same time using significantly less measurement data. Thus, 250 measurements 

with a 6th order polynomial are selected and used in the following analysis. Note that these 
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results will likely depend on the specific robot under investigation and a similar analysis 

will be required to determine the appropriate number of measurements and polynomial 

order for other robots. 

 

Table 5. Estimated joint variances for FANUC LR Mate 200i. 

Joint Forward (deg2) Backward (deg2) 

1 3.6×10-6 2.6×10-6 

2 3.6×10-7 2.5×10-7 

3 8.4×10-6 2.0×10-6 

4 3.0×10-5 1.4×10-5 

5 2.7×10-5 5.6×10-5 

6 5.6×10-4 3.6×10-4 

 

 

 

Figure 11. Mean residuals for identification and validation data sets with different 

number of measurements and error model polynomial orders. 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

Polynomial Order

M
e

a
n

 R
e

s
id

u
a

l 
(m

m
)

 

 
150 ID Meas

Val with 150 ID Meas

250 ID Meas

Val with 250 ID Meas

350 ID Meas

Val with 350 ID Meas



74 

 

The final model is constructed using three data sets, one for each measurement tool 

configuration, of 250 measurements for each set using a sequence of 6th order Chebyshev 

polynomials. Another 300 measurements for the third tool configuration are used as the 

validation set. Using the identified model error parameters, the joint-dependent error terms 

are calculated using the identification procedure described above. Figure 12 shows the 

rotational (εX, εY and εZ) and translational (δX, δY and δZ) joint-dependent errors for all six 

joints. Both rotational and translational errors show joint-dependency. The variation of εX 

and εY, especially for Joints 1 and 2, indicates an obvious joint-dependent out of plane error. 

Another rotational error, εZ, has a constant offset from zero for all six joints, a result 

of mastering errors. The joint-dependent components in εZ can be described by pitch and 

strain wave gearing errors. Those two error sources also cause joint-dependent backlash 

errors, indicating a joint-dependent, direction-dependent in plane error. The translational 

errors are a combination of rotating center and link length errors. The joint-dependency of 

translational errors is due to the eccentricity in the strain wave gearings. From the 

combination of rotational and translational errors, not only do the rotating axes have in 

plane and out plane joint-dependent errors, the actual rotational centers are also wobbling 

around their nominal center positions. 

Since it is a challenge to find the true maximum residual throughout the measured 

space and the 300 validation points may not contain that point, a Gamma distribution is 

fitted to the model residuals. The residual at 99% of the Gamma distribution, which is 

termed here as the Gamma 99% residual, is used as another measure to show the 

performance of the validation set. Figure 13 shows the definitions of the mean residual, 

maximum residual and Gamma 99% residual for the validation data set. Table 6 and 
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Figures 14 and 15 show the performance of the constructed model. Table 6 lists the 

residuals for the identification and validation data sets. Figures 14 and 15 show the nominal 

and modeled residuals for the identification and validation data sets, respectively. The 

mean residual is reduced 97.8% for the identification set and 97.0% for the validation set. 

 

 

Figure 12. Rotational and translational kinematic error model terms for each joint. 
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Figure 13. Definitions of mean residual, maximum residual and Gamma 99% residual for 

validation data set. 

 

  

Figure 14. Nominal and modeled residuals for identification data set. 
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Table 6. Mean, maximum and Gamma 99% residuals for identification and validation 

data sets. 

 

 Mean Maximum Gamma 99% 

Residual 

Value 

(mm) 

Percent 

Decrease 

Value 

(mm) 

Percent 

Decrease 

Value 

(mm) 

Percent 

Decrease 

Identification 

Set Nominal 

3.360 N/A 9.458 N/A N/A N/A 

Identification 

Set Modeled 

0.074 97.80% 0.216 97.72% N/A N/A 

Validation Set  

Nominal 

3.418 N/A 8.210 N/A 8.721 N/A 

Validation Set  

Modeled 

0.104 96.96% 0.261 96.82% 0.277 96.82% 

 

 

5.6. COMPENSATION 

Compensation is implemented for the 300 points in the validation set. New data are 

collected using the compensated commands and the residuals between the actual and 

nominal positions are calculated. Table 7 and Figure 16 show the compensation results for 

the validation set. The percentage decrease is 96.96% for the mean modeled residual and 

97.02% for the mean compensated residual with only 0.06% difference, showing that 

compensated performance is very consistent with the model results. 
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Figure 15. Nominal and modeled residuals for validation data set. 

 

Table 7. Mean, maximum and Gamma 99% nominal, modeled and compensated residuals 

for validation data set. 

 

 Mean Maximum Gamma 99% 

Residual 

Value 

(mm) 

Percent 

Decrease 

Value 

(mm) 

Percent 

Decrease 

Value 

(mm) 

Percent 

Decrease 

Nominal  3.418 N/A 8.210 N/A 8.721 N/A 

Modeled  0.104 96.96% 0.261 96.82% 0.277 96.82% 

Compensated  0.102 97.02% 0.287 96.50% 0.264 97.00% 

 

 

6. EFFECTS OF JOINT-DEPENDENT ERRORS 

 

In order to evaluate the magnitude of joint-dependent errors as compared to 

traditional joint-independent kinematic errors, an alternative calibration methodology for 

fixed-parameters errors (rotating center, mastering, etc.) is performed. 



79 

 

 

Figure 16. Nominal and compensated residuals for validation data set. 

 

6.1. CIRCLE POINT ANALYSIS 

Circle Point Analysis (CPA) is a common calibration method that models fixed 

kinematic errors. The basic idea of CPA is to determine the actual rotating axis of a joint 

and measure the kinematic parameters defining the transformation between consecutive 

joints. In CPA, a circle can be fitted using measurements collected for a single rotating 

joint. The rotation axis will pass the fitted circle’s center and be normal to the circle plane. 

By constructing new frames for all of the joints’ rotation axes, the actual kinematic 

transformation parameters can be determined between consecutive frames. Following 

previous work done in [13,14], CPA is implemented on the industrial robot considered in 

this study. 

Measurements are taken for the motion of each joint separately with evenly 

distributed joint commands. Table 8 lists the measured range, angle step and number of 

measurements for the CPA identification set. Six circles are fitted and actual frames are 

constructed. The actual kinematic transformation parameters (i.e., DH and Hayati-
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Mirmirani conventions parameters) are calculated and listed in Table 9. With the CPA 

identified parameters, nominal and modeled residuals are calculated for the CPA 

identification set and the results are shown in Table 10. 

 

Table 8. Measured range, angle step and number of points in CPA identification data set. 

 Joint 1 

(deg)  

Joint 2 

(deg) 

Joint 3 

(deg) 

Joint 4 

(deg) 

Joint 5 

(deg) 

Joint 6 

(deg) 

Start -100 -30 -30 -180 -90 -180 

End 98 50 100 180 90 180 

Angle Step 3 2 2 5 3 5 

Points 67 41 66 72 61 72 

 

6.2. CALIBRATION METHODOLOGY COMPARISON AND ANALYSIS 

A comparison between the CPA and proposed industrial robot calibration 

methodologies is conducted for two validation data sets. The first validation set consists of 

60 quasi-random points on each circle used in the CPA methodology, which is denoted the 

CPA validation set. The second validation set, which spans the entire visible joint range, is 

the validation set of 300 points used above to analyze the performance of the proposed 

methodology, and is denoted the quasi-random validation set. Table 11 shows the mean 

and maximum residuals for the CPA validation set, and Figure 17 shows the nominal, CPA 

and proposed methodology modeled residuals for the CPA validation set. The residuals for 

the quasi-random validation set for both calibration methodologies are shown in Table 12  
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Table 9. Nominal and CPA modeled parameters of FANUC LR Mate 200i. 

Parameter Nominal Modeled 

θ1 (deg) q1 q1-0.022 

θ2 (deg) q2– 90 q2-90.055 

θ3 (deg) q3 q3+0.381 

θ4 (deg) q4 q4-0.537 

θ5 (deg) q5 q5-0.320 

d1 (mm) 0 -0.061 

d3 (mm) 0 0.133 

d4 (mm) -290 -290.444 

d5 (mm) 0 -0.050 

a1 (mm) 150 149.72 

a2 (mm) 250 250.058 

a3 (mm) 75 75.177 

a4 (mm) 0 0.136 

a5 (mm) 0 -0.106 

α1 (deg) -90 -90.060 

α2 (deg) -180 -179.990 

α3 (deg) -90 -89.992 

α4 (deg) 90 89.986 

α5 (deg) -90 -90.027 

β2 (deg) 0 -0.008 
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Table 10. Mean and maximum nominal and CPA modeled residuals for CPA 

identification data set. 

 

 Nominal Residual (mm) CPA Modeled Residual (mm) 

Joint Mean Maximum Mean Maximum 

1 2.571 2.611 0.176 0.329 

2 2.506 3.445 0.356 0.807 

3 3.488 5.200 0.790 2.380 

4 4.493 6.129 0.039 0.076 

5 2.841 3.157 0.103 0.262 

6 3.003 3.524 0.035 0.043 

 

 

Table 11. Mean and maximum nominal, CPA and proposed methodology modeled 

residuals for CPA validation data set. 

 

 Nominal Residual 

(mm) 

CPA Modeled 

Residual (mm) 

Proposed Method 

Modeled Residual (mm) 

Joint Mean Maximum Mean Maximum Mean Max 

1 2.601 3.641 0.181 0.296 0.074 0.167 

2 2.513 3.456 0.350 0.822 0.071 0.294 

3 3.389 5.073 0.692 2.212 0.098 0.189 

4 4.419 6.121 0.039 0.072 0.082 0.154 

5 2.830 3.161 0.102 0.273 0.096 0.355 

6 2.981 3.528 0.033 0.043 0.084 0.122 
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and Figure 18. The CPA methodology has similar performance for the data in the CPA 

validation data set as it did for the CPA identification data set (see Table 10). However, 

unlike the CPA methodology, the proposed calibration methodology is able to reduce the 

residuals on Joints 2 and 3 to the same level as other joints. For the quasi-random validation 

data set, the proposed method also shows better performance and captures nearly 20% more 

errors than the CPA methodology regarding the mean residual. 

 

  

Figure 17. Nominal, CPA and proposed methodology modeled residuals for CPA 

validation data set. 

 

Table 12. Mean, maximum and Gamma 99% nominal, CPA and proposed methodology 

modeled residual for the quasi-random validation data set (mm). 

 

 Mean Residual Maximum Residual Gamma 99% 

Nominal 3.418 8.210 8.721 

CPA Method 0.705 2.061 1.875 

Proposed Method 0.104 0.261 0.277 
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Significant differences exist between the model residuals for the CPA and proposed 

methods for Joints 2 and 3 (see Figure 17). To analyze these differences, the results for 

Joint 3 are investigated in detail. Figure 19 gives a plot of the differences between the CPA 

modeled and measured positions in 3-D space and within the third joint’s rotating 2-D 

 

 

Figure 18. Nominal, CPA and proposed method modeled residuals for the quasi-random 

validation data set. 

 

plane for the CPA validation set. The data shows that the differences between the CPA 

modeled and measured positions in 3-D and 2-D spaces are nearly the same, indicating that 

almost all of the Joint 3 residuals are due to joint-dependent errors within the rotary plane. 

The full error transformation for Joint 3 is 
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where all of the error terms are described by 6th order Chebyshev polynomials. Now the 

proposed method is modified by retaining only the constant term of εZ. Figure 20 shows 

the nominal, CPA, full proposed methodology and modified proposed methodology 

modeled residuals for the CPA validation data set for Joint 3. Retaining only the constant 

terms of εZ, the performance of this modified proposed methodology is nearly the same as 

the CPA performance. This phenomenon is consistent with Figure 19 which shows that the 

in plane joint-dependent errors limit the CPA model performance. Referring to the error 

sources given in Section 1, the joint-dependent error sources can be attributed to pitch and 

strain wave gearing errors. Thus, joint-dependent errors are an important component of 

kinematic errors in industrial robots, in this case accounting for nearly 20% of the error. 

 

 

Figure 19. Differences between Joint 3 CPA modeled and measured positions in 3-D 

space and 2-D rotating plane. 
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Figure 20. Nominal, CPA, full proposed methodology and modified proposed 

methodology modeled residuals for CPA validation data set. 

 

7. SUMMARY AND CONCLUSIONS 

 

Robot kinematic errors were classified in this paper into seven categories: rotating 

center offset, mastering, link length and assembly, pitch, strain wave gearing, out of plane, 

and backlash. Each error was discussed and it was seen that many errors are joint-

dependent and better described by high-order models, as opposed to constant offsets. These 

kinematic errors were generalized by describing them with error matrices containing high-

order Chebyshev polynomials to represent individual error terms. A new robot calibration 

and compensation methodology was presented. This methodology uses position data 

measured by a laser tracker from a measurement tool mounted in three different 

orientations on a robot. Using the robot nominal kinematics augmented with the 

generalized error matrices, a maximum likelihood estimator is used to simultaneously 
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estimate the model parameters, joint variances and measurement error for the collected 

data. A Jacobian-based search method is then used to determine updated joint commands 

to compensate for the robot’s kinematic errors. 

A series of experiments were conducted using a FANUC LR Mate 200i robot. 

Robot position measurements were taken with a laser tracker and the robot repeatability, 

joint variance and measurement variance were analyzed. A variety of number of 

measurements and polynomial orders for the error terms were analyzed and it was found 

that using 250 measurements and 6th order polynomials produced accurate models using 

an efficient process. Applying the calibration procedure, the resulting robot kinematic error 

model reduced the errors seen in the identification data set by 97.8% and reduced the errors 

seen in a validation data set by 97%. Further, there was a reduction of 97% in the kinematic 

errors when applying compensation to the validation data set. 

Circle Point Analysis (CPA), a common calibration methodology, was applied to 

the individual joints. Using separate measurement data sets collected for individual joints, 

the CPA method was able to account for over 93% of the errors for Joints 1, 4, 5 and 6; 

however, it could only account for 85.8% and 77.4% of the errors for Joints 2 and 3, 

respectively. For separate validation data sets collected for each joint, the proposed method 

was able to reduce the mean errors of all six joints by at least 97%, while the CPA method 

could only reduce the errors of Joints 2 and 3, respectively, by 86% and 80%. A careful 

analysis of Joint 3 showed that it had significant in-plane, joint-dependent errors that could 

be described by pitch and strain wave gearing errors. Also, when the CPA method was 

applied to the validation data taken over the entire joint space the proposed method was 

able to capture nearly 20% more of the kinematic errors than the CPA method. Thus, this 
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paper demonstrated the importance of joint-dependent robot kinematic errors and provided 

a calibration and compensation methodology capable of describing and eliminating these 

errors. 
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APPENDIX 

 

The robot Jacobian relates velocities in joint space to the end-effector linear and 

angular velocities in Cartesian space. For an n-link robot with joint commands q = [q1 ,…, 

qn]
T, let 0,nom

endp  denote the nominal end-effector position with respect to the robot base 

frame. In this case the linear velocity portion of the Jacobian nom

vJ  is 

 0,nom nom

v end=qJ p . (56) 

The modeled linear velocity portion of the Jacobian is computed by replacing the nominal 

end-effector position with the modeled end-effector position, 

 0,mod mod

v end=qJ p , (57) 
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where mod

vJ  is the modeled linear velocity portion of the Jacobian and 0,mod

endp  is the modeled 

position of the end-effector with respect to the robot base frame. 

Let an error transformation matrix be 
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, (58) 

where 1

,

i

E i

−
R  is a general rotational error matrix and 1

,

i

E i

−
p  is a general translational error 

vector from Frame i-1 to Frame i. Let a nominal transformation from Frame i-1 to Frame i 

be 
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1 3 1

i i

i i i

i

− −
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, (59) 

where 1i

i

−
R  is a nominal rotation matrix and 1i

i

−
p  is a nominal translation vector. Thus, the 

model transformation from Frame i-1 to Frame i is 

 ( )
1 1 1 1 1
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The model rotation and translation from Frame i-1 to Frame i, respectively, are 
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Thus, the model transformation from the robot base frame to Frame n, is 

 ( )
0 0

1 1

1 1 3

ˆ ˆ

1

n
i i n n

a i i

i

− −

= 

 
= =  

 


R p
F q E T

0
, (62) 

where  
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The tool length vector, which is a translation from Frame n to the end-effector, is  

 
ˆ

0

n

n end

T

 
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 

p
p , (64) 

where ˆ n

endp  is the XYZ position of the end-effector with respect to Frame n. Thus, the 

modeled position of the end-effector is 
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Using Equation (57), the ith column of the linear velocity portion of the modeled Jacobian, 

,

mod

v iJ  is found by taking the partial derivative of the model position with respect to the ith 

joint command, 
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Expanding Equation (66) 
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where ,i mod

endp  is the model position of the end-effector with respect to Frame i and  
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There are four unknown terms in Equations (68) and (69), 
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Taking the derivatives of the rotation and translation errors, 
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where S is a skew symmetric matrix and  
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For revolute joints, the translation vector for the ith joint is 

 1 1 1i i i

i i i

− − −=p R L , (73) 

where 1i

i

−
L is a fixed link length vector. Letting Zi-1 denote the axis of rotation of Frame i-1,  
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where 
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The derivative of the translation vector is 
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Combining (70), (71), (74) and (76) with (68) and (69), the ith column of the linear velocity 

portion of model Jacobian is 
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III. ONLINE ADAPTIVE MODELING OF ROBOTIC KINEMATIC ERRORS 

USING A SIX DEGREE OF FREEDOM TRACKING SENSOR 

 

Le Ma, Douglas A. Bristow and Robert G. Landers 

 

ABSTRACT 

 

Improving robot’s positioning accuracy is important for many industrial 

applications. Measurements at different robot poses are often collected and utilized for the 

purpose of error identification and compensation. Typically, a laser tracker and 

retroreflectors are used for data collection by attaching the retroreflectors to the robot end 

effector. However, most retroreflectors can only measure the robot position information. 

To determine robot’s orientation information, each robot pose has to be measured multiple 

times with placing and measuring the retroreflector at different position on the robot end 

effector. This process dramatically increases the measurement time. Extra fixturing errors, 

robot repeatability errors and measurement errors are also introduced each time, which 

lowers the error model and thus the compensation accuracy. In this paper, a six degree of 

freedom tracking sensor, which is capable of measuring robot position and orientation 

information simultaneously, is introduced and utilized. A comparison between using the 

new sensor and position retroreflector methods is made. In addition, traditionally, models 

with different number of identification measurements have to be constructed and compared 

to find a smallest but sufficient number of points for an accurate model construction, which 

also causes inefficiency. In this paper, an online adaptive model identification method is 

proposed which iteratively updates model parameters with newly collected measurements. 
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Experiments are implemented on a FANUC LR Mate 200i robot. Using the adaptive 

modeling method, 76% modeling time has been saved to find the most appropriate number 

of identification measurements comparing with the traditional method. For the new 

tracking sensor, while the traditional device uses 4 hours to reduce the robot mean 

positional and angular residual to 0.136 mm and 0.0007 rad, respectively, the proposed 

sensor is able to reduce the mean error to 0.118 mm and 0.00045 rad with only 1.5 hours. 

Key words: Industrial robots; Laser tracker; Retroreflector; Tracking sensor; Adaptive 

model identification 

  

1. INTRODUCTION 

 

Industrial robots are widely used in highly repeatable tasks such as palletizing and 

packaging with advantages of low cost and high repeatability. In recent years, industrial 

robots also start to play more important roles in manufacturing applications such as 

deburring and light machining, which require the robot to have a more sufficient accuracy 

[1]. However, robots have kinematic errors that often make their accuracy unacceptable for 

such tasks. Thus, improving the robot accuracy is essential. Generally, there are four steps 

to calibrate robot kinematic errors [2]. First, a robot kinematic error model is constructed 

by mathematically describing the actual geometry and motion of the robot. Second, robots 

are commanded to different poses while measurement devices are used to measure robot 

positions and orientations at those poses. Third, the kinematic error parameters introduced 

in the first step are identified by matching the robot kinematic error model with the 

measurements and the last step is to utilize the error model for compensation. 
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Of the four steps, the second step, i.e., measurement, is critical important as the data 

accuracy will directly affect the error model accuracy. Further, the speed of collecting 

measurements will also determine how efficient the whole calibration process will be. To 

achieve a rapid and accurate calibration, a measurement device which can collect data 

rapidly and accurately is expected. Developments in precision instrumentation have 

provided wide options for robot metrology. Coordinate Measuring Machines (CMM), 

telescoping ball-bars, and camera-based systems have been successfully used in robot 

calibration [3-8]. Also, laser trackers, having the advantages of single setup, large 

measurement range and rapid data collection, are becoming widely adopted for data 

collection [9-13]. When a laser tracker is utilized for measurement, retroflectors such as 

Spherical Mounted Retroreflectors (SMRs) or Active Targets (ATs) are often attached to 

the robot end effector for position measurement. However, these retroflectors cannot 

measure orientation information. Multiple laser trackers measuring one retroflector 

simultaneously, or one laser tracker measuring each robot pose multiple times, where a 

retroreflector is located at a different position on the end effector for each pose are needed 

to obtain the orientation information. In [14], multiple SMRs are attached to the robot end 

effector. In [15], three AT configurations at each robot pose are measured. This 

dramatically reduces the efficiency and accuracy of the calibration process. Extra fixturing 

and measurement errors are introduced each time the retroreflector or the AT is reattached 

and measured. So, to improve the calibration efficiency and accuracy, a new device with 

the capability of determining robot position and orientation information simultaneously is 

needed. In this paper, a device with such capability, called SmartTRACK Sensor (STS), is 

introduced and utilized for robot calibration.  
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STS is a six Degree of Freedom (DoF) measurement device that is designed based 

upon AT. By incorporating two rotary encoders and a level sensor on the AT, the new 

device is capable of determining its position and orientation simultaneously. Laser tracker 

measures position information and the two encoders and level sensor measures orientation 

information. As measurement devices, both laser tracker and STS bring measurement 

errors. To consider all fixed robot errors and random measurement errors, this paper 

proposes a kinematic error model that treats the whole measurement system as a closed 

loop and considers both fixed robot kinematic errors and stochastic errors in the system, 

e.g., robot repeatability errors, laser tracker positioning errors and STS encoder and level 

sensor errors. For the three parts in the measurement system, i.e., robot, laser tracker and 

STS, a high-order joint-dependent kinematic error model is utilized. Then, by describing 

the nominal kinematics of laser tracker and STS, the measured position, encoders and level 

sensor angles are determined and modeled with the utilized robot kinematic error model. 

Also, the stochastic positioning errors from laser tracker and the stochastic angular errors 

from the two encoders and level sensor are characterized. 

Another challenge in the measurement step is to determine a least number of 

measurements which is enough for an accurate model construction. Traditionally, models 

with different number of measurements have to be constructed [15]. By comparing the 

modeling accuracy of a same validation set between different models, the most appropriate 

number of measurements which takes less time but gives desired model accuracy is 

determined. However, measurements have to be collected first and then models can be 

constructed. Extra data and unnecessary models reduce the measurement and modeling 

efficiency. In this paper, an online adaptive modeling method is proposed. Using a model 
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constructed with the first dozens of measurements, when a few measurements are collected, 

this initial model can be adaptively updated with less time comparing with constructing a 

new model. This enables the measurement and modeling step to be parallelly implemented. 

The whole calibration efficiency is thus improved.  

The rest of this paper is organized as follows. Section 2 introduces the background 

of a high-order joint-dependent kinematic error model for robot. Section 3 describes the 

nominal kinematics for laser tracker and STS, and then proposes a position and orientation 

model for the whole measurement system. An online adaptive model identification method 

and the characterization of position and orientation measurement errors are provided in 

Section 4. Section 5 provides the experimental results for a FANUC LR Mate 200i robot. 

A method with AT measurements is also implemented. A comparison between AT 

measurement method and the proposed sensor measurement method is described and 

analyzed in Section 6. The paper is summarized and conclusions are drawn in Section 7. 

 

2. ROBOT KINEMATIC ERROR MODEL BACKGROUND 

 

Robots have different sources of errors that will cause difference between actual 

and nominal kinematics. As summarized in [15], a robot suffers seven sources of simple 

and complicated kinematic errors including rotating center offset errors, mastering errors, 

link length and assembly errors, pitch errors, strain wave gear errors, out of plane and 

backlash errors. In this section, the kinematic error model proposed in [15] that 

compensates all those simple and complicated errors will be introduced and used as the 

fundamental work in this paper. 
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Let 1i

i

−
T  represent a transformation from Frame i-1 to Frame i and parameterize 

1i

i

−
T  according to the Denavit–Hartenberg (DH) convention [16] as 

 ( ) ( ) ( ) ( )1i

i z i z i x i x id a − =T Rot Trans Trans Rot , (1) 

where Rotj is the rotation matrix about the jth axis, Transj is the translation matrix along 

the jth axis and θi, di, αi and ai are the four DH parameters for the ith joint. The nominal 

kinematics for an n-joint robot can thus be represented as 

 ( ) ( ) ( ) ( )0 1 1

1 1 2 2

n

n n nq q q−=F q T T T , (2) 

where Fn is the nominal transformation from the robot’s base frame to robot’s last frame 

and q = [q1, q2, …, qn]
T is the joint command vector.  

A six Degree of Freedom (DoF) joint-dependent error matrix [17] is used to 

describe robot simple and complicated error sources, 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

0 0 0 1

Z i Y i X i

Z i X i Y i

i

Y i X i Z i

q q q

q q q
q

q q q

  

  

  

 − 
 

− =
 −
 
 

E , (3) 

where εX, εY and εZ are small rotations about the x, y and z axesnof Frame i-1 and δX, δY and 

δZ are small translations along the x, y and z axes of Frame i-1. Incorporating (3) into the 

nominal transformation matrix for each joint, the modeled transformation from Frame i-1 

to Frame i is 

 ( ) ( ) ( )1 1 1i i i

i i i i i iq q q− − −=T E T . (4) 

Thus, the modeled transformation from the robot’s base frame to the robot’s last frame is 

 ( ) ( ) ( ) ( )0 1 1

1 1 2 2

n

a n nq q q−=F q T T T . (5) 
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To capture both simple and complicated robot errors, Chebyshev polynomials, as a set of 

basis functions, are used to describe each rotational and translational errors given in (3). 

The constant terms can be regarded as descriptions of the simple robot errors rotating offset 

error, mastering error, link length and assembly errors and the other terms are descriptions 

for the complicated errors such as in plane and out of plane errors. Given a parameter λ in 

the interval [-1 1], a Chebyshev polynomial is 

 ( ) ( ) ( ) ( )0 0 1 1 m mC b c b c b c   = + + + , (6) 

where 

 ( ) ( ) ( ) ( ) ( )0 1 1 11, , , 2m m mc c c c c      + −= = = − , (7) 

b0, b1, b2, …, bm are the polynomial coefficients and m is the polynomial order. The joint-

dependent rotational and translational errors can thus be described as 

 
( ) ( ) ( )

( ) ( ) ( )

0, , 1, , 1 , ,

0, , 1, , 1 , ,

j i ij ij i m ij m i

j i ij ij i m ij m i

q b b c q b c q

q b b c q b c q

  

  





= + + +

= + + +
, (8) 

where j denotes the axis (i.e., x, y and z) and q  denotes the ith linearly mapped joint 

command by scaling the joint command range to [-1 1], 

 
( )

( )
,min

,max ,min

2
1

i i

i

i i

q q
q

q q

−
= −

−
, (9) 

and qi,min, qi,max are the minimum and maximum ith joint commands, respectively. 
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3. MEASUREMENT SYSTEM KINEMATIC ERROR MODEL 

 

A laser tracker, with advantages of rapid data collection and the ability to measure 

robot workspace in one single setup, is used to collect robot’s data. Unlike attaching 

multiple SMRs [14] to the robot end effector or measuring an Active Target [15] multiple 

times for the determination of robot’s orientation information, a new tracking sensor, called 

SmatTRACK Sensor (STS), is used to measure robot’s position and orientation 

information simultaneously. In this section, the working principle of the laser tracker and 

STS will be introduced and then a kinematic error model of the measurement system 

including the robot, laser tracker and STS will be developed. 

 

3.1. LASER TRACKER 

A laser tracker is an instrument that measures points in 3-D space rapidly. The laser 

tracker is driven by two independent rotation axes, denoted azimuth and elevation, which 

are measured by two rotary encoders. Figure 1 provides a picture of an API Radian laser 

tracker and its schematic structure. 

 

 

Figure 1. API Radian laser tracker with azimuth and elevation axes and its schematic 

structure. 



103 

 

In Figure 1, Frame xLT0yLT0zLT0 is the laser tracker base frame. Frames xLT1yLT1zLT1 

and xLT2yLT2zLT2 are the resulting frames after the azimuth and elevation rotations, 

respectively. Unlike robot kinematic error model, where the nominal joint command vector 

is the input and known, the azimuth and elevation angles, α and β, can only be determined 

by treating the laser tracker having a perfectly nominal kinematics. So, error matrix could 

not be added to the laser tracker kinematics. The nominal laser tracker kinematics are 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

cos cos sin cos sin 0

sin cos cos sin sin 0

sin 0 cos 0

0 0 0 1

LT z y 

    

    

 

=

 − 
 
 =
 −
 
 

F Rot Rot

. (10) 

 

3.2. SMARTTRACK SENSOR 

STS is designed and developed by equipping a retroreflector with two rotary 

encoders and a level sensor. Figure 2 gives a photograph of an STS. 

 

 

Figure 2. Photograph of SmartTRACK Sensor. 
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In Figure 2, xs0ys0zs0 is the STS base frame which is the determined orientation 

information. When an STS is connected with a laser tracker through the laser beam emitted 

from the laser tracker, the two independent encoders, i.e., the roll and yaw encoders, will 

automatically rotate as the STS moves, thereby adjusting the STS orientation to ensure the 

laser is always tracking the retroflector. Also, the level sensor, which is a 

microelectromechanical system (MEMS) accelerometer, will measure the inclination angle 

of the STS head with respect to the gravity vector. Then, the angle measurements from the 

encoders and level sensor and the position measurement from the retroreflector will be 

transferred to a Software Development Kit (SDK) to determine and output the location and 

orientation of Frame xs0ys0zs0. Thus, both position and orientation information are obtained 

simultaneously. Yaw and roll encoders have measurement ranges of [-180° 180°] and [-55° 

55°], respectively. The level sensor has a measured range of [-60° 60°]. The limitation of 

the level sensor measured range is due to the fact that the accelerometer will become 

insensitive when the measured inclination is approaching the direction of the gravity vector 

[18]. A picture of an STS and its schematic structure is given in Figure 3. 

 

 
Figure 3. STS with yaw and roll axes and its schematic structure. 
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In Figure 3, Frame xs0ys0zs0 is the STS base frame. Frames xs1ys1zs1 and xs2ys2zs2 are 

the two frames resulting from yaw and roll rotations, respectively. Note the level sensor is 

assembled along axis xs2; therefore, the level sensor angle, φ, is the angle between axis xs2 

and the gravity vector g. Assuming there is no offset error caused by the two rotations and 

the two encoders are independent of one another, the nominal STS kinematics are 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

cos sin cos sin sin 0

sin cos cos cos sin 0

0 sin cos 0

0 0 0 1

STS z x 

    

    

 

=

 − 
 

− =
 
 
 

F Rot Rot

. (11) 

 

3.3. MEASUREMENT SYSTEM KINEMATICS 

To use an STS and laser tracker for robot measurement collection, the STS is 

attached to the robot end effector and the laser tracker is placed in front of the robot. Figure 

4 gives a setup of the measurement system including a robot, an STS and a laser tracker. 

The schematic structure of the closed measurement system is shown in Figure 5. In Figure 

5, the measurement frame is an arbitrary frame that is placed close to the robot’s base frame 

in software environment (e.g., New River Kinematics Spatial Analyzer). STS is attached 

to the robot, giving a fixed transformation from the robot’s last frame to the STS base frame. 

Note that axis zLT2 and axis ys2 are parallel with the laser beam. Therefore, these two axes 

are collinear. 

In the measurement software environment, the measured encoders and level sensor 

angles will not be saved. The STS measurement is exported as a transformation from the 

laser tracker base frame to the STS base from, 
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Figure 4. Measurement system consisting of a robot, STS and laser tracker. 

 

 
0 0

0 0 0

0

1 3 1

LT LT

LT s s

s



 
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 

R p
T

0
, (12) 

where 0

0

LT

sR  is the measured rotation from the laser tracker base frame to the STS base 

from and 0

0

LT

sp  is the measured position from the laser tracker base frame to the STS base 

frame. 

Using the robot kinematic error model, the modeled position from the laser tracker 

base frame to the STS base frame, ( )0

0
ˆ LT

sp q , is 

 
( )

( )
0

00

0 0

0

ˆ 0
ˆ

01

1

LT

LT m ns

m a s

 
 

 
 = 
  
 
 

p q
T E F q T , (13) 

where 0LT

mT  is a known transformation from the laser tracker base frame to the 

measurement frame, 0

m
E  is a fixed transformation from the measurement frame to robot’s 

base frame, 0
ˆ n

sT  is a fixed transformation from robot’s last frame to the STS base frame, 



107 

 

  

Figure 5. Schematic structure of measurement system. 
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and 0

0

LT

sR , 0

0

LT

sp  are known the rotation and translation from the laser tracker base frame to 

the measurement frame, respectively, 
0

n

sT  is a measured transformation from the robot’s 

last frame to the STS base frame and 
0

n

sE  is a fixed correction for 
0

n

sT .  

Since STS outputs its base frame orientation, (14) to (16) can also be used to 

directly describe the measured orientation information, i.e., 0

0

LT

sR . However, there are two 

reasons that a better way of modeling the orientation information is needed. First, the laser 

tracker specification gives the accuracies of α, β and the accuracy of the measured distance 

between the laser tracker and the tracked position such that the measured position accuracy 

can be characterized. However, for STS, the specification doesn’t give the accuracies of 

the encoders, level sensor and 0

0

LT

sR . It remains to determine how accurate the measured 

orientation is and how to characterize the accuracy. Second, the STS orientation matrix is 

determined with the three independent measured angles, i.e., two encoder angels and one 

level sensor angle. Even if the accuracies of the three angles are known, the accuracy of 

the orientation matrix will be a combination of three angular errors, which gives a challenge 

to convert the accuracies of three independent angles to the accuracy of an orientation 

matrix. Thus, using the three angles, i.e., two encoder angels and one level sensor angle, 

which are ultimately the orientation error sources, as the orientation measurement 

information is a much easier way for orientation accuracy characterization. In this work, a 

method of inversing 0

0

LT

sR  back to encoders and level sensor angles is developed. Thus, the 
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output measurement in (12) is transformed back to one position and three angles. 

Correspondingly, kinematic error models for describing the three angles with robot 

kinematic errors are constructed. 

In Figure 5, assuming no center offset error is caused by the two encoder rotations, 

0 0 0

0 1 2

LT LT LT

s s s= =p p p . Since axis zLT2 and axis ys2 are collinear with the laser beam, axis ys2 

expressed in STS base frame is 

 ( )
0

1
0 0 0 0 0 0
2 2 0 2 0 0

0 2

LT
s s s LT LT s
s LT LT LT s LT

s

−

= − = − = −
p

y z R z R
p

. (17) 

From (11), 0

2

s

sy  can be written as, 

  

( ) ( )

( ) ( )

( )

0

2

sin cos

cos cos

sin

s

s

 

 



− 
 

=  
 
 

y . (18) 

Thus, from (17) and (18), 
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p
R

p
. (19) 

Solving (19) for the two encoder angles 

 
( )

( )

1 2

3

atan2 ,

asin

a a

a





= −

=
. (20) 

With ψ known, the level sensor angle is 

 ( )0 0

2arccos LT LT

s = x g , (21) 

where gLT0 is the gravity vector expressed in the laser tracker base frame, which is measured 

by a laser tracker function called “virtual level” and 
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( )
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0
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



 
 
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 
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x R x R . (22) 

To model the three angles, the measured rotation and position in (19) and (22) are replaced 

with modeled rotation and position. Corresponding to (19), the relationship between the 

modeled encoder angles and robot model is 
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. (23) 

Thus, the modeled yaw and roll encoder angles are 
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a





= −

=

q

q
. (24) 

Corresponding to (21) and (22), the modeled level sensor angle is 

 ( ) ( )( )0 0

2
ˆ ˆˆarccos LT LT

s = q x q g , (25) 

where 

 ( )

( )( )
( )( )0 0

2 0

ˆcos

ˆ ˆˆ sin

0

LT LT

s s





 
 

=  
 
  

q

x R q q , (26) 

and 0ˆ LT
g  is the modeled gravity vector in laser tracker base frame, 

 0 2 2ˆ 1
T

LT

x y x yg g g g = − −
 

g , (27) 

and gx, gy are the gravity vector elements projected on the x and y axis of laser tracker base 

frame, respectively. 
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4. ONLINE ADAPTIVE MODEL IDENTIFICATION AND MEASUREMENT 

ERROR CHARACTERIZATION 

 

4.1. ONLINE ADAPTIVE MODEL IDENTIFICATION 

Let e(q) be the difference between the measured and modeled positions and 

orientations, 

 ( ) ( ) ( )ˆ= −e q w q w q , (28) 

where 

 ( ) ( )( ) ( ) ( ) ( )0

0

T
T

LT

s    =
  

w q p q q q q , (29) 

 ( ) ( )( ) ( ) ( ) ( )0

0
ˆˆ ˆ ˆˆ

T
T

LT

s    =
  

w q p q q q q . (30) 

Considering N robot poses and treating the robot joint positioning error (single joint 

repeatability), position measurement error, and orientation measurement (i.e., encoders and 

level sensor) errors as having normal distributions, the optimal model parameters are [19], 

 
1

* * * 1 1 1
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 
  = + +  

 
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where νk is the joint positioning error for the kth pose, bN is the error parameter vector, Σν 

is the covariance matrix for robot joint positioning accuracy, Σe is the covariance matrix 

for position and orientation measurement accuracies and Σb is the covariance matrix for 

the error parameters. Let Σe be 
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where Σe,p is the covariance matrix for position measurement accuracy and Σe,ψ,θ,φ is the 

covariance matrix for orientation measurement accuracy. To determine these covariance 
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matrices, the method of measuring Σν introduced in [15] is applied in this work. The 

determination of Σb is a challenge. Larger values of Σb tend to give a tighter model, but 

also cause more challenges and issues in the convergence of (31) due to numerical 

sensitivity [20]. Here, Σb is treated as a tuning variable that can control the convergence of 

(31) and the modeling accuracy. 

In measurement step, an appropriate number of measurements which are sufficient 

to build an accurate model as well as to save measurement time needs to be determined. 

Traditionally, to determine the measurement number, models with different number of 

measurements have to be constructed after the measurement step. Models performance will 

then be compared. However, each of these models is constructed independently which 

costs much time. To improve the measurement and modeling efficiency, (31) is modified 

and an adaptive model identification technique is introduced to update the previous model 

information during the measurement process. In (31), * * *

1 , , ,N Nν ν b  are the identified joint 

positioning errors and error model parameters with N measurements. When M new 

measurements are collected, the new model is constructed with 
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, (33) 

where νN+1, νN+2, …, νN+M are the joint positioning errors for the new M measurements and 

bNM is the error parameter vector to be identified with N+M measurements. Comparing to 

(31), two changes are made. First, since * *

1 , , Nν ν  have been identified in the model with 

N measurements, they don’t have to be identified again in the new model construction. 
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Second, while bN is initially set as a vector with zeros in (31), bNM can be set as *

Nb  in (33), 

which means that the error parameters will be kept being updated based on the previous 

modeling results. Thus, comparing with the traditional method of (31), less parameters are 

identified and error parameters are set much closer to the optimal solution. 

 

4.2. POSITION MEASUREMENT ACCURACY 

A laser tracker uses the azimuth and elevation angles, as well as the distance 

between the laser tracker and the measured point, to determine the Cartesian position of 

the measured point in the laser tracker base frame. From Figure 1, the conversion process 

is 
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, (34) 

where d is the distance between the laser tracker and the measured point. For the laser 

tracker, it is known that the measured accuracy of d will decrease as d increases. The 

position measurement accuracy is thus distance-dependent. An example of the 

measurement uncertainty distribution is shown in Figure 6. The uncertain errors Δα, Δβ 

and Δd on α, β and d will result with a 3D ellipsoid measurement uncertainty. The recorded 

measurement by the laser tracker will thus be located at any position inside the green 

uncertainty ellipsoid. As Cartesian position is used in (29), it is necessary to express and 

characterize the elliptical uncertainty from α, β and d in the forms of uncertainties along 

the x, y and z axis of the laser tracker base frame. In other words, the accuracies of α, β and 

d will be converted to describe the accuracies of 0

0

LT

sx , 0

0

LT

sy  and 0

0

LT

sz . 
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Figure 6. Laser tracker position measurement accuracy. 

 

As 0

0

LT

sx , 0

0

LT

sy  and 0

0

LT

sz  have common variables, i.e., α, β and d as shown in (34), 

which all have uncertainties, the covariance matrix of the position measurement accuracy 

in Cartesian space is thus a non-diagonal matrix. Assuming the measurement errors of α, β 

and d follow normal distributions with standard deviations σα, σβ and σd, respectively, 

which are given in the laser tracker specification, Σe,p can be written as 
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Σ , (35)  

where ρij is the correlation coefficient between the position measurement error distributions 

of i and j axis, σx, σy and σz are standard deviations of the accuracies of position 

measurement in the x, y and z axis of laser tracker base frame. Since it is super complicated 

to directly derive the accuracies of 0

0

LT

sx , 0

0

LT

sy  and 0

0

LT

sz  with the given accuracies of α, β 

and d due to the nonlinear relationship in (34), a linearization is used. In this work, for a 
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given position, α0, β0 and d0, Taylor series expansion [21] of the corresponding Cartesian 

positions, ( )0

0 0 0 0, ,LT

sx d  , ( )0

0 0 0 0, ,LT

sy d   and ( )0

0 0 0 0, ,LT

sz d  , are estimated in terms 

of α0, β0 and d0. Then the method of determining covariance between normal distributions 

[22] are used to estimate the elements in (35). The expressions for σx, σy, σz  and ρij, the 

details of which are given in the Appendix, are 
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where  
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4.3. ORIENTATION MEASUREMENT ACCURACY 

Treating the measured angles from the encoders and level sensor as having errors 

that follow normal distributions, the variances of the distributions are used to describe the 

orientation measurement accuracy. In this work, K STS configurations are measured with 

M STS measurements at each configuration. The angles of the encoders and level senor are 

determined using (20) and (21).  

For the ith robot configuration, M STS measurements are taken and M groups of 

encoders and level sensor angles are calculated. Let the jth computed angles for the ith 
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configuration be denoted ψi,j, θi,j and φi,j. The average angular measurements for the ith 

configuration are 
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The errors between the measurements and averages are 
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Normal distributions are then fitted using all of the errors for the ith configuration. The 

variances, 
2

,i , 2

,i  and 
2

,i  of the fitted normal distributions are the variances at the ith 

STS configuration. Since the two encoder angles and the level sensor angle are independent 

to each other, the orientation measurement covariance matrix for the ith configuration is 

diagonal, which is  
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4.4. ROBOT REPEATABILITY  

The ISO 9283 standard provides a technical procedure to determine a robot’s 

position repeatability [23]. However, a standard for orientation repeatability does not exist. 

Since STS is able to measure robot’s orientation information, similar to the ISO procedure 
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for position repeatability, the procedure for orientation repeatability is proposed and 

measured in this work. 

Five robot poses are measured and twenty STS measurements are collected at each 

pose. Let the measured zs0 axis of the STS base frame of the jth measurement at the ith pose 

be denoted zs0,i,j, the mean of the vectors is 
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The angle between the jth measurement of the ith pose and zs0,i,j is  
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and the mean angle at the ith pose is 
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The standard deviation of the differences between the measured and mean angles is 
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Thus, the local orientation repeatability of the ith pose is defined as 

 , ,3o i i iR  = + . (45) 
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5. EXPERIMENTAL RESULTS 

 

5.1. EXPERIMENTAL SETUP 

The experimental studies are conducted on a FANUC LR Mate 200i robot. Figure 

7 shows a photograph of the robot. Figure 8 shows a schematic of its kinematic structure 

and Table 1 lists the joint DH parameters. 

 

 

Figure 7. Photograph of FANUC LR Mate 200i robot side view with links lengths (mm). 

 

 

Figure 8. Schematic of FANUC LR Mate 200i kinematic structure with joint frames and 

rotation directions. 
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Table 1. FANUC LR Mate 200i DH parameters. 

Frame θi (deg) di (mm) ai (mm) αi (deg) 

1 q1 0 150 -90 

2 q2 – 90 0 250 180 

3 q2 + q3 0 75 -90 

4 q4 -290 0 90 

5 q5 0 0 -90 

6 q6 -80 0 180 

 

 

5.2. REPEATABILITY 

Both position and orientation repeatability are measured following the ISO 

procedure in [23] and the procedure from (41) to (45) for FANUC LR Mate 200i. The 

maximum position and orientation repeatability are determined to be ±0.03 mm and 

±1.22×10-4 rad, respectively. 

 

5.3. ESTIMATE OF MEASUREMENT COVARIANCE MATRIX 

The encoders and level sensor accuracies are estimated following the procedure 

outlined in Section 4.3. Five hundred measurements are collected at each of five STS 

configurations. Figure 9 shows the five STS configurations used in this study. 

Normal distributions are fitted to the angular error data for each configuration, and 

the standard deviations are computed. Figure 10 shows the standard deviations of the three 

angular errors as functions of the level sensor angle. As shown in Figure 10, the two 
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Figure 9. Five STS configurations. 

 

encoders’ accuracies are approximately equal and constant regardless of the inclination 

angle of the level sensor. On the contrary, the level sensor accuracy is dependent on how 

the level sensor is tilted with respect to the gravity vector. This is because the sensitivity 

and accuracy of an accelerometer will decrease as φ increases [18]. The encoders 

accuracies are modeled by constants and a piecewise function with two lines is fitted to the 

level sensor accuracy. The fitted functions are  
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5.4. MEASUREMENT COLLECTION 

An Automated Precision, Inc. model R-20 Radian laser tracker and an STS are used 

for data collection. The accuracies for azimuth, elevation and distance from the 

manufacturer are, 
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Figure 10. Standard deviations of angular errors at each configuration. 
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Table 2 lists the minimum and maximum limits of the measured joint space. Over this 

space, robot commands are generated with a quasi-random distribution [24], which has the 

advantage of having low discrepancy such that smaller gaps and less clustering of 

measurements are generated. The configurations of the generated robot commands are 

where the STS is visible to the laser tracker and the level sensor is within its working range. 

 

Table 2. Measured range of each joint. 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

Minimum -100º -30º -30º -180º -90º -180º 

Maximum 100º 100º 100º 180º 90º 180º 
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5.5. ONLINE ADAPTIVE MODEL IDENTIFICATION 

Over the space in Table 2, STS measurements are collected. The first 300 

measurements are collected as the validation set. The 50 measurements after that are used 

to build the first model using (31). Third order Chebyshev polynomials are selected to 

describe the robot kinematic error terms. Then each time a new group of 25 measurements 

are collected. An adaptive model is constructed with (33) based on the previous model. 

This process is repeated until the validation set model performance is converged.  

For the purpose of model analysis, the Euclidean distances between the nominal 

and actual positions are defined as nominal positional residuals and the Euclidean distances 

between the modeled and actual positions are defined as modeled positional residuals. The 

angles between the nominal and measured zs0 axes are defined as the nominal angular 

residuals and the angles between the modeled and measured zs0 axes are defined as the 

modeled angular residuals. To find the potential maximum residual that the 300 validation 

points may not contain, a Gamma distribution is fitted to the modeled residuals. The 

residual at 99% of the Gamma distribution is are defined as the Gamma 99% residual [15].  

Non-adaptive models with each number of identification points are also constructed 

using (31) for comparison. The comparison is to check if the adaptive model is able to have 

the same model accuracy as the non-adaptive model with the same number of identification 

measurements. Figure 11 shows the mean and Gamma 99% positional residuals on the 

validation set for the adaptive models and non-adaptive models at different number of 

identification measurements. Figure 12 shows the mean and Gamma 99% angular residuals 

on the validation set for the adaptive models and non-adaptive models at different number 

of identification measurements.   
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Figure 11. Mean and Gamma 99% positional residuals on validation set for adaptive and 

non-adaptive models at different number of identification points. 

 

 

Figure 12. Mean and Gamma 99% angular residuals on validation set for adaptive and 

non-adaptive models at different number of identification points. 

 

As shown in Figures 11 and 12, starting from models with 75 identification points, 

both positional and angular residuals decrease as more identification points are added. 

After 150 measurements, the decrease of validation set residuals slows down as the number 
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of identification points is getting sufficient. The reduction on validation set residuals is 

getting smaller. Considering the balance between saving measurement time and improving 

model accuracy, 250 is determined to be the smallest number of identification points. It 

takes STS about 1.5 hours to finish the collection of both identification and validation data. 

For the modeling step, the construction of adaptive models takes 70 minutes while the 

construction of non-adaptive models takes 5 hours. Using the identified model, the joint-

dependent error terms are calculated and shown in Figure 13. 

  

 

Figure 13. Rotational and translational kinematic error model terms for each joint. 
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In Figure 13, both rotational and translational errors have joint-dependent terms. 

The variations of the rotational errors especially Joint 2 indicates a complicated kinematic 

errors from pitch errors, strain wave gear errors and out of the rotating plane errors. The 

joint-dependency on translational errors is more obvious, illustrating a wobbling motion of 

the rotating centers for all joints. Although some errors do not show joint-dependency, the 

constant offsets from zero indicate that the robot also suffers rotating center offset, 

mastering, link length and assembly errors. Tables 3 and 4, Figures 14 to 17 show the 

performance of the constructed model.  

 

Table 3. Mean, maximum and Gamma 99% positional residuals for identification and 

validation sets. 

 

 Mean Maximum Gamma 99% 

Residual 

Value 

(mm) 

Percent 

Decrease 

Value 

(mm) 

Percent 

Decrease 

Value 

(mm) 

Percent 

Decrease 

Identification 

Set Nominal 

9.218 N/A 12.087 N/A 12.797 N/A 

Identification 

Set Modeled 

0.114 98.76% 0.278 97.70% 0.288 97.75% 

Validation Set 

Nominal 

9.301 N/A 12.627 N/A 12.959 N/A 

Validation Set 

Modeled 

0.118 98.76% 0.384 96.96% 0.311 97.60% 
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Figure 14. Nominal and modeled positional residuals for identification data set. 

 

 

Figure 15. Nominal and modeled positional residuals for validation data set. 

 

 

Figure 16. Nominal and modeled angular residuals for identification data set. 
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Table 4. Mean, maximum and Gamma 99% angular residuals for identification and 

validation sets. 

 

 Mean Maximum Gamma 99% 

Residual 

Value 

(rad) 

Percent 

Decrease 

Value 

(rad) 

Percent 

Decrease 

Value 

(rad) 

Percent 

Decrease 

Identification 

Set Nominal 

0.0155 N/A 0.0227 N/A 0.0271 N/A 

Identification 

Set Modeled 

0.00045 97.10% 0.0011 95.15% 0.0012 95.57% 

Validation Set 

Nominal 

0.0157 N/A 0.0230 N/A 0.0271 N/A 

Validation Set 

Modeled 

0.0004 97.45% 0.0012 94.78% 0.0012 95.57% 

 

 

Figure 17. Nominal and modeled angular residuals for validation data set. 
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In Table 3, the constructed high-order joint-dependent model reduces the mean 

positional residual to 0.114 mm on the identification set, which is 3.8 times of the measured 

position repeatability. For angular residuals in Table 4, the mean residual on the 

identification set is reduced to 0.00045 rad, which is about 3.7 times of the measured 

orientation repeatability. Both positional and angular residuals are reduced to the same 

level comparing with the measured position and orientation repeatability. The performance 

of the validation set is similar as the identification set, indicating an appropriate model 

order and fitting of the measurements.  

 

6. COMPARISON AND ANALYSIS 

 

6.1. STS AND AT MODEL COMPARISON 

In order to evaluate the performance of the new device comparing to traditional 

devices, the method in [15] with using Active Target (AT) is implemented. Figure 18 

shows the three setups of AT on the robot at the same pose. At each setup, the same 250 

identification points are collected. The third setup of AT is used for measuring the same 

300 validation points. The whole measurement event takes about 4 hours. Third order 

Chebyshev polynomials are also used. Table 5 lists the mean, max, and Gamma 99% 

positional residuals for the AT and STS model.  

The mean and Gamma 99% modeled positional residuals of the AT model are 0.018 

mm and 0.027 mm larger than the mean and Gamma 99% modeled positional residuals of 

the STS model, respectively. The STS model has a slightly better modeled positional 

residuals than the AT model. 
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Figure 18. Three setups of AT at same robot pose. 

 

Table 5. Mean, maximum and Gamma 99% nominal, AT and STS positional residual for 

validation set. 
 

 

Mean Residual 

(mm) 

Maximum Residual 

(mm) 

Gamma 99% 

(mm) 

Nominal 10.191 12.923 13.856 

AT 0.136 0.396 0.338 

STS 0.118 0.384 0.311 

 

The angular residuals of the AT model for the validation set are not available since 

only the third setup of AT is used for validation data collection. However, the identification 

set can be used for the analysis of angular residuals. Since there are three groups of AT 

measurements at each robot pose, a triangle and thus the vector that is perpendicular to this 

triangle plane can be determined. This vector is thus the measured z axis of the robot’s last 

frame, which is used to represent the robot orientation. Using the calculated robot 

orientation, nominal robot kinematics and modeled robot kinematics, the angular residuals 
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are computed for the identification set. Table 6 gives the nominal, AT and STS modeled 

mean, maximum and Gamma 99% angular residuals for the identification set.  

 

Table 6. Mean, maximum and Gamma 99% nominal, AT and STS angular residual for 

identification set. 
 

 

Mean Residual 

(rad) 

Maximum Residual 

(rad) 

Gamma 99% 

(rad) 

Nominal 0.0155 0.0227 13.856 

AT 0.0007 0.0015 0.0016 

STS 0.00045 0.0011 0.0012 

 

As shown in Table 6, the STS model has a better performance than the AT model 

regarding the angular residuals. The mean and Gamma 99% modeled angular residuals of 

the AT model are 0.00025 rad and 0.0004 rad larger than the mean and Gamma 99% 

modeled angular residuals of the STS model, which are about 2 and 3.3 times of the 

measured robot orientation repeatability, respectively. More improvement is seen on the 

angular residuals than the positional residuals.  

 

6.2. ANALYSIS 

The previous comparison shows that the STS model has a similar performance in 

reducing the positional residuals while has a much better performance in reducing the 

angular residuals than the AT model. The modeled positional residuals are similar between 

the STS and the AT model is because STS is actually designed based on AT. They have 
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the same position measurement accuracy and they use the same kinematic error model. 

Although AT has three setups at each robot pose, the description for the position 

measurement accuracy is the same for each setup.  

For the orientation measurement accuracy, the case will be different. The reason of 

using three AT setups at each robot pose is to determine the robot orientation. As mentioned, 

the three AT measurements at each robot pose form a triangle, which also determines a 

circle. If there is no joint positioning errors and measurement errors, the triangle and the 

radius of the circle will be fixed. However, due to the existence of joint positioning error 

and measurement error, the three side lengths of the triangle vary and thus the radius of the 

circle also varies at different robot poses. Using the three groups of AT measurements with 

250 identification points at each AT setup, triangles and circles can be fitted. Then, the 

radii of those circles can be determined. The variation of the radii is thus the uncertainty 

from the joint positioning error and measurement error. Assuming all circles are placed at 

a same plane sharing the same center point and the three groups of measurements have the 

same position measurement uncertainty, Figure 19 illustrates the relationship between the 

two circles with the maximum and minimum radius and the uncertainty at each AT setup. 

Using the AT identification set, the maximum radius is determined as 66.527 mm 

and the minimum radius is 66.425 mm. Based on Figure 19, the radius of the position 

measurement uncertainty is thus 0.051 mm. In volumetric space, this uncertainty can be 

briefly treated as a ball. Thus, there will be three balls representing uncertainties at each 

robot pose. Since the actual position measurement may be located at any place inside the 

ball, at each robot pose, the actual triangle formed by three actual measurements will vary 

within the limitations of the three balls. In other words, the uncertainty of the position 
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measurement will cause an uncertainty of the triangle formed by the three position 

measurements, resulting with a wobbling of triangles within the three balls. Figure 20 gives 

an example of three possible triangles caused by the position measurement uncertainties. 

 

 

Figure 19. Relationship between maximum, minimum circle and position measurement 

uncertainty at one robot pose. 

 

   

Figure 20. Three possible triangles formed by the three position measurements. 



133 

 

In Figure 20, the balls represent the position measurement uncertainties. For each 

triangle, a vector that is perpendicular to the triangle can be determined. The maximum 

variation of all vectors is determined which is thus the orientation measurement uncertainty. 

Within the wobbling of the triangles, when two measurements are fixed, the maximum 

change of the third measurement is the diameter of the uncertainty ball. In this case, the 

angle between the two vectors that are perpendicular to the two triangles, respectively, is  

 
2 e

t

r

R
 = , (48) 

where re is the radius of the position measurement uncertainty (i.e., 0.051 mm), Rt is the 

radius of the circle fitted with three measurements. Using the distances between each two 

of the three measurements, the mean radius of all circles is 66.43 mm and the maximum 

angle is computed as γ = 0.0015 rad. Thus, the maximum angular variation of the vector 

that is perpendicular to the triangle plane, which represents the orientation measurement 

uncertainty of the AT data, is ±0.0015 rad. 

For the orientation measurement uncertainty of the STS data, from Figure 10, the 

maximum standard deviation of φ is 0.0076° while the standard deviation of θ and φ are 

0.0005°, which are small enough to be neglected comparing with the influence to 

orientation accuracy of φ. The maximum uncertainty of the level sensor, i.e., φ, is thus the 

maximum uncertainty of zs2 and thus the maximum uncertainty of zs0. So, the orientation 

measurement uncertainty, which is the 3 sigma (99.7%) value of the maximum level sensor 

accuracy, is ±0.0004 rad (±0.0228°). So, regarding the orientation measurement 

uncertainty, the maximum uncertainty of the AT data (±0.0015 rad) is 3.75 times of the 
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maximum uncertainty of the STS data (±0.0004 rad). This explains why the STS model 

has smaller modeled angular residuals than the AT model.  

 

7. SUMMARY AND CONCLUSIONS 

 

SmartTRACK Sensor (STS), which can measure robot position and orientation 

information simultaneously, is introduced in this paper. By equipping a traditional position 

retroreflector with two rotary encoders and one level sensor, and using the angles measured 

by the encoders and level sensor, STS is able to determine a coordinate frame that has a 

fixed transformation with respect to the robot’s last frame. Using a high-order joint-

dependent kinematic model, a measurement model that includes robot error model, laser 

tracker and STS nominal kinematics is proposed to describe the STS position measurement, 

two encoders and the level sensor angles. The stochastic errors in the measurement system, 

including robot repeatability error, laser tracker position measurement error and STS 

orientation measurement error are also considered and characterized. By using and 

modifying a maximum likelihood estimator, an online adaptive model identification 

method is proposed to determine the least number of identification points which uses less 

measurement and modeling time while guarantees model accuracy.  

A series of experiments were conducted on a FANUC LR mate 200i robot. First, 

the STS was attached to the robot and an API Radian laser tracker was used for data 

collection. The first 300 STS measurements were used as the validation set. A model was 

constructed with the next 50 STS measurements. Adaptive models were then constructed 

each time a new group of 25 measurements was collected. The online adaptive method was 
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shown to be able to construct models with the same performance as the non-adaptive 

models. The performance of a model with 250 identification measurements was shown. 

The model was able to reduce the mean positional errors by 98.76% and 97.10% for the 

identification and validation sets, respectively. The mean angular errors were also reduced 

by 98.73% and 97.45%, respectively.  

Another experiment comparing the model performance between an STS model and 

an AT model was implemented. Three AT setups at each robot pose were used to acquire 

robot orientation information. Although the AT model was able to reduce the positional 

errors to the same level of magnitude as the STS model, its mean modeled angular residual 

was larger than the mean modeled angular residual of the STS model by a magnitude of 2 

times of the robot orientation repeatability. An analysis was given on the position and 

orientation measurement uncertainties of STS and AT. While the AT measurements have 

the same position measurement uncertainty as the STS measurements, the maximum 

orientation measurement uncertainty of the AT data is about 3.8 times of the maximum 

orientation measurement uncertainty of the STS data. STS is able to reduce the 

measurement time as well as to further improve model accuracy. 
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APPENDIX 

 

For a given point, α0, β0, d0, using Taylor series, 0

0

LT

sx , 0

0

LT

sy  and 0
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LT

sz  can be 

approximated as 
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Similarly, for a measured point, 0 , 
0  and 

0d  which have position measurement errors, 

the measured Cartesian space positions 0

0

LT

sx , 0

0

LT

sy  and 0

0

LT

sz  have the same 

representations as (49), (50) and (51) in terms of 0 , 0  and 0d . The difference between 

measured and nominal Cartesian space positions are thus, 
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It is known that  
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Thus,  
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where 

 
( ) ( )

( ) ( )
0 0

0 0

0 0

0 0

sin , cos

sin , cos

s c

s c

 

 

 

 

= =

= =
. (58) 

Also, using the method of determining the covariance between normal distributions, the 

non-diagonal elements of (35) are computed with the coefficients in (52), (53) and (54), 
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SECTION 

 

2. CONCLUSIONS 

 

Indirect measurement compensation methods for machine tools always suffer a 

curve-fitting challenge. Measurement space is often limited and error model tends to lose 

its accuracy around and out of the measured space. To achieve a uniform and accurate 

model, a method that can optimally interpolate and extrapolate machine tool error model 

over the entire workspace is proposed in this work. Using axis perturbation model, an 

analytical relationship between tool tip volumetric error slopes and single geometric error 

slopes is constructed. By introducing a nonlinear constraint on the tool tip error slopes 

during model identification process, all single geometric error slopes are controlled and 

model parameters are optimized throughout the entire workspace. A method of determining 

the constraint value is developed. A comparison between constrained and unconstrained 

models is given, which shows that the proposed method is able to keep the interpolated 

model performance as well as to improve the extrapolated model accuracy. 

The previous volumetric error compensation methods for industrial robots also 

have limitations and challenges. Simple robot kinematic errors are focused and 

complicated errors are often neglected. Thus, the final compensation accuracy is also 

limited. Paper II gives a summary of robot kinematic error sources. The model description 

of each one is also given. Then, a general high-order joint-dependent kinematic error model, 

describing both simple error (e.g., link length and alignment errors) and complicated error 

(e.g., strain wave gearing error) is proposed. Methods for measurement, error identification 
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and compensation are given. Experimental results demonstrate that about 20% more 

kinematic errors are captured by the proposed joint-dependent comparing to the traditional 

joint-independent error model. In addition to the previous limitation in robot error 

modeling step, the measurement step also suffers a difficulty in acquiring robot’s 

orientation information. Measurement devices have to be set up multiple times to measure 

robot’s orientation which costs more time and introduces more uncertainties. To address 

this issue, a new device that can measure robot position and orientation information 

simultaneously is introduced in Paper III. A measurement model, which describes all 

kinematics in the measurement system including a laser tracker, robot and SmartTRACK 

Sensor, is proposed. Robot static kinematic errors, repeatability errors and measurement 

errors are all considered and described in the proposed model. An online adaptive model 

identification method is also proposed which improves the modeling efficiency to 

determine the most appropriate number of identification measurements. Experimental 

results demonstrate an improvement in both accuracy and efficiency with the new device 

and the proposed adaptive modeling method.   
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