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ABSTRACT

Data outsourcing becomes an essential paradigm for an organization to

reduce operation costs on supporting and managing its IT infrastructure. When

sensitive data are outsourced to a remote server, the data generally need to be

encrypted before outsourcing. To preserve the confidentiality of the data, any

computations performed by the server should only be on the encrypted data. In

other words, the encrypted data should not be decrypted during any stage of the

computation. This kind of task is commonly termed as query processing over

encrypted data (QPED).

One natural solution to solve the QPED problem is to utilize fully ho-

momorphic encryption [1]. However, fully homomorphic encryption is yet to be

practical. The second solution is to adopt multi-server setting. However, the ex-

isting work is not efficient. Their implementations adopt costly primitives, such

as secure comparison, binary decomposition among others, which reduce the ef-

ficiency of the whole protocols. Therefore, the improvement of these primitives

reults in high efficiency of the protocols. To have a well-defined scope, the fol-

lowing types of computations are considered: secure comparison (CMP), secure

binary decomposition (SBD) and proxy re-encryption (PRE). We adopt the se-

cret sharing scheme and paillier public key encryption as building blocks, and all

computations can be done on the encrypted data by utilizing multiple servers.

We analyze the security and the complexity of our proposed protocols, and their

efficiencies are evaluated by comparing with the existing solutions.
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1. INTRODUCTION

Maintaining data is a challenging task, especially for small and medium size

businesses, because of high day-to-day operational costs. As a consequence, some

data owners may be more interested in outsourcing their data to a remote storage

(e.g., cloud). Data outsourcing becomes an essential paradigm for an organiza-

tion to reduce operation costs on supporting and managing its IT infrastructure.

However, data outsourcing raises security challenge such as protecting user pri-

vacy and data confidentiality. In general, the sensitive data need to be encrypted

before outsourcing. To preserve the confidentiality of the data, any computations

performed by the server should only be on the encrypted data. In other words,

the encrypted data should not be decrypted during any stage of the computation.

This kind of task is commonly termed as query processing over encrypted data

(QPED). One solution to solve the QPED problem is to utilize fully homomorphic

encryption [1]. However, fully homomorphic encryption is yet to be practical. The

second solution is to adopt a multi-server setting where one server has the encryp-

tion key and the other server has the encrypted data. Given a query request, the

two servers can collaborativly and securely perform the necessary computation to

achieve the task without disclosing the actual data to both servers. In addition,

the users or clients do not need to participate in any intermediate computations.

To implement multi-server based QPED, we have two orthogonal approaches:

one is to use an additive homomorphic encryption scheme (e.g.,Paillier [2]), and

the second approach is to adopt a secret sharing scheme (Shamir [1]). In both

approaches, any polynomially-bounded query processing tasks can be performed

due to the fact that given two encrypted bit [b1] and [b2], the multi-server set-

ting allows the computation of [b1 + b2 mod 2] and [b1 · b2] without disclosing

any information regarding b1 and b2. In many cases, binary level operations on
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bit-wise encrypted data are not efficient due to large circuit size. In other words,

it is computationally more efficient to perform secure computation on [x] instead

of [x]B ≡ [xl−1] . . . , [x0] where x is a l-bit value. However, for certain primitive

computations like division, exponentiation and modulo are much easier to com-

pute when the data in consideration are encrypted bit-wise. Again, if we store

the encrypted data in binary format at the first place, the size becomes too big

to be practical. In general, to process a QPED task, the task is divided into sub-

component. The output from one component becomes input to the subsequent

component. For efficiency purposes, one component requires input to be [x], and

another component requires to be [x]B . Thus, it is necessary to covert [x] into

[x]B and vice versa. Converting from [x]B to [x] is straightforward, but converting

from [x] to [x]B is a challenging task which is generally termed as secure binary

decomposition (SBD).

The concept of SBD was first introduced by Damg̊ard [3] under the secret

sharing based secure multiparty computation scheme. Let x be an l-bit value

secretly shared among n parties, each of whom has a secret share xi ∈ ZP for

1 ≤ i ≤ n. We use the notation [x]P to represent secret shares of x in the group

ZP . An SBD protocol allows the n parties to convert their secret shares of x

into secret shares of the individual bits of x. In other words, SBD takes [x]P

as its input and produces [x]B ≡ [xl−1] . . . , [x0] as its output. Since its initial

introduction, many improvements to SBD has been proposed to reduce both com-

munication and computation complexities. The most efficient bit-decomposition

protocol was proposed in [4]. The protocol transforms the bit-decomposition prob-

lem into a post-fix comparison problem. The post-fix comparison can be achieved

efficiently using a prefix-product protocol. Using the post-fix comparison, the

complexity of bit-decomposition protocol can be reduced to O(1) rounds and O(l)

multiplications.
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As in other scenario, Alice prefers only the authorized user be able to ac-

cess the database, and any other unauthorized users can not get data from the

database. Then, a new arising challenge is how an authorized user to decrypt

Alice’s ciphertext. In public key encryption shceme, the owner of secret key corre-

sponding to the public key is the only one who can decrypt the ciphertext legally.

One solution to the above new challenge is to transform the ciphertext under one

key into a new ciphertext of the same message under another key. However, the

transformation requires re-encryption of the message with a new key, implying

access to the original plaintext, which is not secure because of an untrusted party

to fulfill this transformation. Alice could simply provide her secret key to the user

or server, but this would compromise the security of Alice or put unrealistic level

of trust on the server. A proxy (server) re-encryption scheme can easily solve the

above problem.

The proxy re-encryption (PRE) cryptosystem allows a proxy, given a re-

encryption key, to transform ciphertext of a message encrypted under one public

key to another ciphertext of the same message under different public key[5, 6],

with allowing proxy to learn nothing. The goal of PRE is to securely transform

ciphertext from one key to another, without relying on any trusted parties or

compromising the security of data owner. Using the PRE scheme, the authorized

user, say Bob, can obtain the ciphertexts under his public key, and then decrypt

them using his own secret key. Because of the nature of this transformation, PRE

scheme can be applied to many applications, such as distributed storage systems,

secure email forwarding and digital right management.

Anonymous credential (AC) is a mechanism that allows a user to be au-

thenticated to a service provider without disclosing her real identity. In addition,

an AC allows the user to generate a new credential for each authentication re-

quest regardless if it is the same or different service providers. In this way, ser-

vice requests from the same user cannot be linked together. Thus, even if service
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providers collude, they still cannot discover the user’s real identify through locality

tracing techniques in a mobile environment. The AC system has been adopted ex-

tensively to provide privacy-preserving user authentication. However, the current

implementation of AC has limitations, such as ineffective credential revocation,

and weak security guarantee against replay attacks. In addition, it lacks other

desirable features like traceability to reveal malicious users.

1.1. PROBLEM DEFINITION

Let M and N denote two integer domains where M ≪ N , and size(·) be

a function that returns the number of bits to represent the input parameter. For

example, size(7) = 3. In addition, the following notations are used extensively

(note that M can replace N without altering the main meaning of the notations):

• SBD: secure bit-decomposition

• Pi: a participating party indexed by i

• [x]N : x is secretly shared in ZN .

• [x]N,B ≡ [xl−1]N , . . . , [x0]N : each bit of x is secretly shared in ZN , where

l = size(N), xl−1 denotes the most significant bit, and x =
∑l−1

i=0 2
ixi

• [x]Pi

N : the secret share of x owned by party Pi. For example, suppose x is

secretly shared between P1 and P2 in ZN , then x = [x]P1

N + [x]P2

N mod N

• [x]Pi

N,B ≡ [xl−1]
Pi

N , . . . , [x0]
Pi

N : the secret shares of each bit of x owned by party

Pi. For example, xj = [xj ]
P1

N + [xj ]
P2

N mod N for 0 ≤ j ≤ l − 1

• T i
B ≡ ti, . . . , t0: a random bit sequence with size i + 1, where 0 ≤ i ≤ l − 1

and ti ∈R {0, 1}

For succinctness, we assume there are three participating parties P1, P2

and P3, and our work can be directly extended to the situation where there are
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more than three participating parties. Unlike the existing work, the secret shares

of x are not distributed among the three parties. Instead, we assume x is shared

between P1 and P2. The party P3 is required to perform certain computations like

multiplying two secretly shared values. The proposed seure comparison protocol

is defined as follows (N1 and N2are public parameters, N2 ≪ N1):

(〈P1, [u]
P1

N1
〉, 〈P2, [u]

P2

N1
〉)←FAST-CMP(〈P1, [a]

P1

N2,B
, [b]P1

N2,B
, t, π(.)〉,

〈P2, [a]
P2

N2,B
, [b]P2

N2,B
, bB, t, π(.)〉, 〈P3,⊥〉)

(1.1)

The above protocol takes private inputs [a]P1

N2,B
, [b]P1

N2,B
and [a]P2

N2,B
, [b]P2

N2,B
from

P1 and P2 respectively and returns shares of f = b
?
> a, for f ∈ {0, 1}, [u]P1

N1
to P1

and [u]P2

N1
to P2. t , tB and π(.) are parameters known by P1 and P2. The proposed

comparison protocol to perform the same functionality as post-fix comparison is

briefly described as follows (tB is known by P1 and P2):

(〈P1, [u]
P1

N1
〉, 〈P2, [u]

P2

N1
〉)←CMP(〈P1, [a]

P1

N2,B
, [b]P1

N2,B
, tB, π(.)〉,

〈P2, [a]
P2

N2,B
, [b]P2

N2,B
, bB, tB, π(.)〉, 〈P3,⊥〉)

(1.2)

The secure CMP protocol takes the same private inputs as FAST-CMP protocol.

Instead of inputing a flipping bit t, it takes a flipping sequence tB. The output

is the same as FAST-CMP, [u]P1

N1
to P1 and [u]P2

N1
to P2. The proposed secure

bit-decomposition (SBD) protocol is formally defined as follows (N are public

parameters):

(〈P1, [x]
P1

N,B〉, 〈P2, [x]
P2

N,B〉)← SBD(〈P1, [x]
P1

N 〉, 〈P2, [x]
P2

N 〉, 〈P3,⊥〉) (1.3)

The protocol takes private inputs [x]P1

N and [x]P2

N from P1 and P2 respectively and

returns [x]P1

N,B to P1 and [x]P2

N,B to P2. Among the above protocols, the role of P3

is to assist P1 and P2 to perform certain intermediate computations.
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Since secure multiplication is one of the dominant factors in analyzing the

complexity of secret sharing based protocol (initially discussed in [3, 7]), to analyze

the complexity of the proposed CMP and SBD protocols, we adopt the number

of secure multiplications as one key variable. In addition, we will also count the

number of rounds to execute the protocol and the message sizes communicated

among the three parties.

The PRE schemes come in bidirectional and unidirectional varieties[8, 9].

In a bidirectional scheme, the re-encryption is reversible, that is, the re-encryption

key can be used to transform ciphertext from Alice (delegator) to Bob (delegatee)

(that is, from Alice’s public key to Bob’s public key), as well as from Bob to

Alice. This is not a desired feature since Bob may not allow his ciphertext been

re-encrypted and decrypted by other users. Another deficiency is that Alice and

Bob must contribute their secret keys to generate the re-encryption key. While in

a unidirectional scheme, the re-encryption is one-way, that is, the ciphertext can

be re-encrypted from Alice to Bob, but not the reverse, and Bob is not required

to reveal his secret key in the process of computing re-encryption key.

The good thing of PRE shceme is that the delegator (Alice) and delegatees

(like Bob) are not required to be online when the delegation happens. However,

there are some issues we need to address. Colluding among proxy and delega-

tee may compromise the data owner’s secret key; If delegatee wants to decrypt

a certain kind of data, he needs to search the corresponding ciphertext in the

database. There is no existing unidirectional PRE scheme solving both above

issues at the same time. Therefore, we propose a serachable unidirectional PRE

scheme satisfying the “Colluding Safe”.

In case of the proxy is malicious, the unidirectional PRE scheme should be

able to against invalid ciphertexts. Therefore, the validation of ciphertext should

be considered when design a secure unidirectional PRE scheme. In the paper, we
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adopt strongly unforgeable signature technique to implement the validation of re-

encrypted ciphertext and then construct efficient and feature-rich unidirectional

PRE schemes with simple design.

1.2. OBJECTIVES AND CONTRIBUTIONS

To further improve the efficiency, in this thesis, we propose a new effi-

cient secure comparison protocol to perform the same functionality as the post-fix

comparison protocol. Then our new comparison protocol can be applied to imple-

ment a more efficient SBD protocol. Our proposed protocol provides a solution

matching the O(·) bound while decreasing the hidden constants.

(1). Comparison. In existing bit-decomposition protocols, the comparison of

secret data is required as the basic security primitive. We propose a new

efficient secure comparison protocol to perform the same functionality as the

post-fix comparison protocol

(2). Bit-decomposition. We improved the bit-decomposition protocol presented

in Reistad and Toft [4] by applying our efficient secure comparison protocol

.

Table 1.1 compares the complexity of the our proposed solution with those

of the existing SBD protocols. All these complexities are analyzed under the

passive adversary model.

We construct different proxy re-encryption schemes depends on adversary

model assumption. The proposed constructions also preserve multiple features

as discussed in Section 3.6. We also design a searchable unidirectional proxy re-

encryption scheme in multi-proxy setting under semi-hones proxy model.
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Protocols Rounds Multiplications

Damgards et al [3] 36 94l log l + 93l

Nishide and Ohta [7] 23 47l log l + 93l

Reistad and Toft [4] 7 16.5l + 3

The Proposed SBD 3 3l

Table 1.1: Complexity Comparison

1.3. ORGANIZATION

The thesis is organized as follows. Chapter 2 provides an overview of the

existing work closely related to the proposed research. Chapter 3 reviews the

cryptographic primitives utilized in the proposed protocols as well as the security

definition adopted in this dissertation. Chapter 4 presents our new schemes of

secure comparison, from which two protocols denoted as FAST-CMP and CMP

are derivated. Chapter 5 focus on the binary decomposition of [x]. We applied

our proposed secure comparison protocol to the SBD protocol achieving more

efficient than existing works. Also, the complexity and security are analyzed under

different parameter settings. Chapter 6 provides the basic proxy re-encryption

scheme achieving collusion safe, and other improved versions with achieving more

security features.
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2. LITERATURE REVIEW

2.1. SECURE COMPARISON (CMP)

The secure comparison is considered as a basic primitives in implementing

distributed protocols, such as binary decomposition protocol. Garay et al [10]

developed a protocol for integer comparison based on homomophic encryption ,

which takes two sets of encrypted bits representing x and y as inputs, and out-

puts a encrypted bit indicating x
?
> y. The protocol achieves logarithmic rounds

complexity by spliting the bit strings into equally parts, comparing them recur-

sively and then combining results to reach the final result. They also proviede a

constant rounds protocol using different apprach: conditional oblivious transfer of

Blake and Kolesnikov’s [11]. Damg̊ard et al [12, 13] proposed a protocol for se-

curely compare integers based on a new additive homomophic encryption scheme,

which is more efficient than previous protocols. However, this efficient comes with

small ciphertext space. It is worth to pointing out is that the inputs to these

protocol must be in binary representation form which is the main problem we ad-

dress in this paper. Kolesnikov et al [14] improves the complexity of comparison

of non-encrypted walues using Garbled Circuit (GC) by reducing the number of

non-Xor gates. Blaken and Koleanikov [15] provides an efficient way to compare

two encrypted integer, however, this scheme leaks the result to at least one of the

involved parties.

2.2. SECURE BINARY DECOMPOSITION (SBD)

In [3], Damg̊ard et al proposed the first constant rounds bit-decomposition

under the secret sharing scheme with O(l log l) secure multiplications, where l is

the bit length. Nishide and Ohta [7] improved the round complexity by removing
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one secure addition which is the most expensive primitive in bit-decomposition

and providing a more accurate way to compute the complexity which is reduced to

O(l) secure multiplications. Several other constant-round solutions were proposed

by [4, 16, 17, 18] where the bit-decomposition problem was reduced to the post-

fix comparison problem. The security of these protocols was inherited from the

primitives which means security against the adaptive and active adversaries when

the primitives are so under the secret sharing as well as Paillier encryption scheme.

Bogdanov [19] states a framework for secure arithmetic operation including

sharing secret multiplication and bit transformation which run simultaneously

by three parties. Schoenmakers and Tuyls [20] constructed BITREP gate for

securely computing the binary representation of an encrypted integer value with n

participants, however, the efficient BITREP gate is only feasible if a cryptosystem

such as Paillier is used as the underlying cryptosystem (even not efficient under

homomorphic ElGamal cryptosystem as it involving solving a discrete logarithm

problem [21] which is not applicable to our problems. As secure comparison is

a basic primitive in bit-decomposition, many works focus on the improvement of

sensitive data comparison.

Various existing protocols and their improvements under two-party settings

[22, 23, 24, 25, 26, 27] or multi-parties environments [3, 4, 7, 28, 29, 30, 31, 32, 33,

34], including addition, multiplication, comparison, equlity texting , enables the

design of new efficient bit-decompositon protocol. Without loss of generality, we

construct new efficient and secure comparison protocol for our bit-decomposition

scheme.

A MPC apprach SPDZ (“SpeedZ”), an extension of protocol proposed by

Bendlin et al [34], has been introduced in [35] and improved in [36], which has the

advantage that costly operation can be loaded into the preprocessing phase and

the cheap secure computation can be loaded into online phase and can therefore

very efficient. The SPDZ apprach is based on fully homomophic encryption [37]



11

with an arbitrary number of participants. However, they focus on evaluating

functionalities with limited finite field or more mathematically complex offline

phase, which can not applied to our scheme with large primes and less workload

on both offline and online phase. In our comparison protocol, the inputs are not

necessarily binary represented.

In [16], an unconditionally secure and constant-round bit-decomposition

protocol using postfix comparison method was introduced. Then Reistad and

Toft [4] solve this postfix comparison problem in a more efficient way based on

a comparison protocol proposed by Reistad [18]. The new solution, denoted by

Bits-RT, has the lowest complexity compared with the other existing solutions.

The main steps of Bits-RT [4] are presented in Algorithm 1.

Algorithm 1 [x]B ← Bits-RT([x])

Input: Secret shares of x from parties
Output: Bit-wise sharing of x: [xl−1], . . . , [x0]

1. [r] =
∑l−1

i=0 2
i[ri] and [r]B = ([r0], . . . , [rl−1])

2. b = Reveal([x] + [r])

3. c′ = b+M

4. [f ]← [r]B
?
> b

5. For i = 0 to l
[ci] = [f ](c′i − bi) + bi
EndFor

6. [c]B = ([cl], . . . , [c0])

7. [x mod 2l] = [x]

8. For i = l − 1 to 1

[ui] = [r mod 2i]B
?
> [c mod 2i]B

[x mod 2i] = [c mod 2i]B − [r mod 2i]B + 2i[ui]
[xi] = ([x mod 2i+1]− [x mod 2i]) ∗ 2−i

EndFor

9. [x0] = [x mod 2]
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The operations of Bits-RT are over the group ZM where M > 2l+κ+logn, κ is

security parameter, and n is the number of parties. To perform bit-decomposition

of [x], first a random mask [r] is added to [x] such that [b] = [x+ r mod M ]. Then

the actual value of b is revealed to every party. This step reveals nothing about

x since r is uniformly random. Steps 3-5 determine the correct c value: c = b if

b > r, c = b + M otherwise. The method to retrieve the individual bits of x is

based on the following equation:

2ixi = (x mod 2i+1)− (x mod 2i) (2.1)

which can be computed securely based on the secret shares of the actual values

according to the equation given below:

[x mod 2i] = [c mod 2i]B − [r mod 2i]B + 2i[ui] (2.2)

where [ui] the secret shares of the the comparison result between r mod 2i and

c mod 2i. That is ui = 1 if r mod 2i > c mod 2i, and ui = 0 otherwise. The

comparison using inputs [r mod 2i] and [c mod 2i] for all i is a secure postfix

comparison problem. Therefore, the bit-decomposition problem is transformed

into the post-fix comparison problem which is the most costly primitive in the

bit-decomposition protocol.

Reistad and Toft [4] improved the post-fix comparison which reduces the

total complexity in both the number of rounds and the number of multiplications.

Excluding the preprocessing phase, Bits-RT takes 8 rounds and 16.5l + 3 multi-

plications. This protocol is statistically secure against passive adversaries since

the post-fix comparison primitive is only statistically secure. In this paper, we

proposed a novel way to compare two secrets replacing the post-fix comparison by

using only 3l secure multiplications as described in next section.
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2.3. PROXY RE-ENCRYPTION (PRE)

In proxy cryptosystems [38, 39, 40], a delegator Alice delegates the right to

decrypt ciphertexts to the delegatee Bob with the help of proxy by providing Proxy

and delegatee pieces of secret information (like secret shares), which requires the

delegatee to store additional information for each delegation. PRE scheme is a

special kind of proxy cryptosystems where delegatees only need to store their own

decryption keys.

Blaze et al. [5, 6] introduced atomic proxy crptography, in which an semi-

trusted Proxy is given a re-encryption proxy key that allows him/her to transform

a messagem encrypted under Alice’s public key pkA into an encryption of the same

m under Bob’s public key pkB, without allowing proxy to learn anyting about the

plaintext m. The scheme works fine when Alice and Bob are mutually trusted

since it is bidirectional and the proxy is semi-honest. However, this assumption

is impractical in the real world. Ivan and Dodis [39] proposed an efficient proxy

encryption scheme based on RSA, bilinear and DDH asumptions. In the scheme,

Alice’s secret key s is divided into two shares: s1, given to the proxy, and s2, given

to Bob. A ciphertext intended for Alice can be partialy decrypted by the proxy

via s1. Then Bob can complete the decryption process by using s2 and recover the

message. However, this scheme is not an exactly proxy re-encryption scheme in

which Bob must store the additional secret keys to recover the message and faces

the same colluding problem: s can be recovered, s = s1+ s2 when Bob and Proxy

collude; this approach requires that Bob obtain and store an additional secrets for

every decryption delegation he accepted which put high requirement of storage

capability on the user side.

Ateniese et al.[8, 9] first time showed an unidirectional PRE shcemes, which

is Elgamal-based scheme operating over two bilinear map groups[41], solving the

above collusion issue. There are two levels encryption: first-level ciphertext can

only be decrypted by the owner’s secret key, while second-level ciphertext can be
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transformed into first-level ciphertext with different public key, allowing that to

be decrypted by secret keys corresponding to this public key. Ateniese et al.[8, 9]

also first time applied the proposed unidirectional PRE scheme to an encrypted

file storage system where an untrusted access control server (proxy) managing

the storage, without granting full decryption rights to the server. Canetti and

Hohenberger[42] construct a PRE scheme achieving security against chosen ci-

phertext attacks (CCA) based on the Decisional Bilinear Diffie-Hellman (DBDH)

assumption in the standard model. But, this scheme is also bidirectional as [5, 6]

in that the re-encryption key to convert ciphertexts from Alice’s publc key to

Bob’s public can also be used to convert that in reverse direction.

Libert and Vergnaud [43] proposed a traceable proxy re-encryption schemes,

where misbehaving proxies can be identified by the delegator, only against re-

playable chosen ciphertext attacks (RCCA)[44, 45], a weaker definition of CCA,

tolerating a “harmless attacking” of the challenge ciphertext. Deng et al.,[46] pre-

sented a CCA-secure PRE without pairings using Schnorr signature[47] to make

the original ciphertext be publicly verifiable. However, this unidirectional PRE

scheme is sufferring from the collusion attack. Shao and Cao[48] stated another

unidirectional PRE scheme without pairings using signature of knowledge, which

is secure against chosen ciphertext attack and collusion attack, in the random

oracle model, based on Decisional Diffie-Hellman assumption and interger factor-

ization assumption.Chow et al.,[49] identified flaws in security proof of [48] which

translate to a real-world chosen-ciphertext attack, then proposed an efficient uni-

directional CCA-secure PRE scheme without pairings using the “ token-controlled

encryption” technique under the standard computational Diffie-Hellman assump-

tion in the random oracle model. The scheme proposed by [42] is a verifiable

PRE scheme, in which it appends to the ciphertext a checksum value consisting

of an element of bilinear group raised to the random encryption exponent. Like
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Table 2.1: Properties of PRE Schemes from the Literature

Schemes Blaze[6] Ivan[39] Ateniese[9] Canetti[42] Libert [50] Yau[62]
Collusion safe No No Yes No Yes No
Non-interactive No Yes Yes No Yes Yes
Unidirectional No Yes Yes No Yes No
Key optimal Yes No Yes Yes Yes Yes
Searchable No No No No No Yes
Verifiable No No No Yes Yes No
CCA secure No No No Yes No No

[42], Libert and Vergnaud [50] present another scheme using a strongly unforge-

able one-time signature to tie several ciphertext components altogether and offer

a safeguard against CCA.

Boneh et al. [51] first proposed a public key encryption with keyword

search (PEKS) scheme enable searching of keywords within encrypted messages.

After that, a number of solution have been proposed [52, 53, 54, 55, 56, 57, 58, 59].

Searchable encryption scheme provides a way to search on encrypted datas without

leaking any information to the untrusted server[60]. Shao et al. [61] proposed

Searchable PRE (PRES) scheme, which encrypts the message and keyword in the

same encryption algorithm, while Yau et al., [62] introduced a PRES scheme which

keeps the encryption of message and encryption of keyword separate so that we

can have the flexibility to select which standard PRE and PRES schemes to be

sued for satisfying the requirements of the actual applications.

2.4. PRIVACY-PRESERVING AUTHENTICATION

In this section, we first present the work most related to ours. Then we

will provide an overview of other privacy-preserving authentication protocols in

mobile ad-hoc network (MANET) and vehicular ad-hoc network (VANET).

(1) The Camenisch Anonymous Credential System. Camenisch et al.[63,

64] introduced the first anonymous credential system using zero-knowledge proof

to achieve anonymous authentication. This scheme guarantees user anonymity but
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has a credential sharing problem where dishonest users can share their credentials

with others, and it is insecure against the replay attack. To solve the credential

sharing problem, hardware based solutions have been proposed in [65, 66, 67]. In

our proposed approach, we do not assume a user’s computing device is equipped

with specialized hardware The credential revocation problem was addressed in [68],

but the solution only works when the system is adopted as a regular credential

system (without randomizing a user’s credential for each authentication). There

still does not exist a concrete solution to the credential sharing problem in the

actual anonymous credential system. There are other extensions to the Camenisch

scheme [69, 70], but none of them directly addresses the disadvantages listed in

Table 7.1. Due to its popularity and similar setting, the Camenisch scheme will

be used as the baseline to evaluate the performance of our proposed randomized

authentication (RAU) system.

As listed in Table 7.1, the proposed anonymous credential system has two

disadvantages comparing to AC. First, in addition to the service providers, the

authentication servers also need to be online to process user authentication request,

and multiple messages are communicated among the participating parties. At the

first glance, the efficiency of the proposed system may not be as good as AC.

However, in Section 7.4, we will empirically show the proposed protocols are very

efficient (e.g., a little bit more efficient than AC). Secondly, the proposed system

assumes the existence of two mutually independent authentication servers and the

two servers do not collude. We believe that collusion will not happen in practice

if the two servers are legitimate IT companies.

(2) Privacy-Preserving Authentications in VANET. We can categorize the

existing work on privacy-preserving authentication in VANET into two major

categories: (i) pseudonym-based and (ii) group-based protocols.

The general goal of the pseudonym-based authentication protocols is to

enable vehicles to use different pseudonyms during communication rather than
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using their real identities. One of the earliest work in this category is by Raya

and Hubaux [71]. They suggested that when a vehicle needs to sign a message,

it randomly selects a private key from a huge pool of certificates issued by the

authority. The message receiver will verify the sender’s signature by checking the

validity of the corresponding public key certificate. The problem of this protocol

is that vehicles need to check a long list of revoked certificates when verifying each

received signed-message, which is very time consuming.

Raya, et al. in [72] proposed efficient revocation schemes. However, these

schemes violate the location privacy requirement and are subject to a movement

tracking attack [73]. In order to reduce the average overhead of message au-

thentication, Calandriello et al. [74] proposed a hybrid scheme, which is also

computationally expensive because it needs to check if the group signature is

from a revoked vehicle [75]. Other pseudonym-based protocols can be found

in s[76, 77, 78, 79, 80, 81, 82], achieving different degrees of improvement over

the key revocation problem. However, in most these protocols, the identity man-

agement authority is required to maintain the certificates associated with each

vehicle so as to retrieve the vehicles’ real identities when disputes occur. This

allows the authority to track the vehicles’ movement; hence, the vehicles’ privacy

is not fully preserved.

Another category of privacy preserving authentication protocols is group-

based[82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. The typical idea is to utilize

group managers to group and authenticate vehicles, which enables vehicles to

anonymously communicate with group members. In general, existing group-based

protocols may have certain disadvantages: First, the group manager has all the

knowledge about group members and hence is able to track them. In our protocol,

this becomes harder since the servers in our scheme need to collude. Secondly,

group managers are difficult to select because they serve as trusted parties. There

are no theoretical results or comprehensive empirical studies on how to select a
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trustworthy group leader in VANET. In addition, Groups are also dynamic, and

group managers can leave the group at any moment. New group leaders will know

the private information within the group. The more dynamic the group becomes,

the more private information can be leaked from the group. As a result, we do

not adopt the grouped based approach in this paper.

(3) Privacy-Preserving Authentications in MANET. Most related work in

MANET is associated with authenticating the messages exchanged in the net-

work without disclosing the actual identities of the source and the destination.

Ciszkowski and Koutulski [94] provided an ANAP protocol which identifies the

destination using the hash value of a user’s pseudonymous. However, the problem

of this scheme is how the source of a transmission can get the pseudonymous of

the destination node. By assuming that such pseudonymous are public, attackers

can pre-compute a table containing pairs of pseudonymous-hashes. In this way,

when a packet is captured in the network, a destination node can be immediately

discovered. On the other hand, when the pseudonymous is secret, then using

hashes does not provide enough strong security [95].

Chou et al. [96] proposed an efficient anonymous communication protocol

for peer-to-peer applications over MANETs which uses broadcast-based scheme

and probability flooding control to establish multiple anonymous paths within a

single query phase. The scheme uses controlled and probabilistic broadcasting

to provide anonymity while avoids using step-by-step encryption/decryption and

achieves lower computational complexity; however, this approach does not work

for privacy-preserving user authentication.

Freudiger et al. [97] pointed out a self-organized anonymous message au-

thentication protocol that a user can use a group of identities including his own

to generate a ring signature and the successful verification reveals the only fact

that the signature is generated by one of the group identities to authenticate the

messages sent from a particular group. Similarly, Ren and Harn [98] proposed
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a (t, n)-threshold ring signature scheme to achieve anonymous authentication for

communication by verifying the ring signature. As other privacy-preserving mes-

sage authentication protocols, the above schemes cannot be used to anonymously

authenticate the identity of a user.

Tsai et al. [99] proposes a secure anonymous authentication protocol to

achieve user unlinkability under mobile wireless environment. In the authenti-

cation phase, after receiving the credential (certificate) from user, FA (Foreign

Agent) forwards the credential with his signature to HA (Home Agent) who is-

sued credentials to users in the initial phase. HA will check the validity of the

credential by searching the mapping table and send back the acknowledgment mes-

sage when the credential is correct. However, in such scheme, the HA can learn

useful information to track a user when the FA sends authenticating information

to him.

Kotzanikolaou et al. [100] presented an efficient anonymous authentica-

tion scheme that provides untraceability and unlinkability of mobile devices while

accessing location-based services. The scheme uses standard primitives such as

zero-knowledge proofs, MACs and challenge/response. However, there are a cou-

ple of drawbacks: First, when a user U generates n different credentials, if each

user possesses the same n, which would cause information leakage. If each user

possesses different n, they could be tracked by an issuer or SP (Service Provider) in

the verification process. Secondly, if more service providers join the network, not

only more storage space and secret keys shared between the issuer and each ser-

vice provider are needed, but also the number of communication messages increase

exponentially. Thus, the scheme is not practical.

There are other content-based authentication schemes utilize attribute en-

cryption. For instance, Baden et al. [101] developed Persona which achieves pri-

vacy by encrypting private content and prevents misuse of a user’s data through

authentication under online social network. However, when a user authenticates
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another user or a group, the users and group need to belong to a certain category,

such as “family”, “friend”, and the group size needs to be almost fixed. Attribute

encryption is very expensive when there are a large number of users. In a dynamic

mobile network such as MANET and VANET, both information and users con-

stantly change, it is impractical or even impossible to apply attribute encryption

in this problem domain. In addition, messages associated with location based

services like providing traffic flow information are generally not confidential, so

to save computation and storage costs, we should not encrypt these information

under most situations.
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3. CRYPTOGRAPHIC PRIMITIVES AND SECURITY
DEFINITIONS

3.1. SECURE MULTIPARTY COMPUTATION (SMC)

Consider a scenario where n number of parties, P1, . . . , Pn, wish to securely

compute a function f(a1, . . . , an) of their respective inputs, while preserving pri-

vacy of their inputs. In the literature, this is referred to as secure multiparty

computation (SMC). In a formal defination, SMC allows the evaluation of the

function (b1, . . . , bn) = f(a1, . . . , an) such that the output bi is known to Pi, mak-

ing sure the following two conditions hold as well:

• Correctness- the correct value of output is computed

• Privacy - the output is the only new information that is released

Privacy/security is closely related to the amount of inofmation disclosed during

the execution of a protocol. In our proposed protocols, our goal is to ensure no

information leakage to the participating parties other than what they can deduce

from their own inputs and outputs. There are many ways to define information

disclosure. To maximize privacy or minimize information disclosure, we adopt

the security definitions of secure multiparty computation (SMC) first introduced

by Yao’s Millionaires problem for which a provably secure solution was developed

[102, 103]. Goldreich et al. [104] extended this to multiparty computation scenario

and proved that any compuation which can be done in polynomial time by a single

party can also be done securely by multiple parties. Since then much work has

been done for the multiparty case [105, 106, 107, 108, 109, 110].

Generally, there are three types of adversarial model under SMC: semi-

honest, covert and malicious. An adversarial model specifies what an adversary
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is allowing to do during the execution of secure distributed protocols. In semi-

honest model, an adversary follows the prescribed procedures of a protocol, but

they are free to perform any computation based on their own inputs, outputs and

the messages received during the execution of the protocol. As a result, whatever

can be inferred from the private input and output of an attacker is not considered

as a privacy violation. In other words, the adversary under semi-honest model is

considered as a passive attacker while an adversary under malicious model can be

treated as an active attacker who can diverge from the normal execution of a pro-

tocol arbitrarily. The covert adversarial model [111] lies between the semi-honest

and malicious models. Specifically, an adversary under the covert adversarial

model may diverge arbitrarily from the execution of a protocol, however, a honest

party is guaranteed to detect such cheating with good probability.

In this thesis, to develop secure and efficient protocols, we assume that

parties are semi-honest or passive. That is, the parties follow the prescribed

procedures of a protocol, but they are free to perform any computation based on

their own inputs, outputs and the messages received during the execution of the

protocol. As a result, whatever can be inferred from the private input and output

of an attacker is not considered as a privacy violation. The complexities of the

existing SBD protocols given in Table 1.1 are all under the semi-honest model. In

particular, the most efficient SBD protocol [4] among the existing ones was proved

to be statistically secure under the semi-honest model. Therefore, our assumption

is consistent with the work we are planning to compare. To prove the security

of the proposed protocol under the semi-honest model, we will adopt the formal

security definition given below [112]:

Definition 1 Let Ti be the input of party i,
∏

i(π) be i’s execution image of the

protocol π and s be the result computed from π. π is secure if
∏

i(π) can be

simulated from 〈Ti, s〉 and distribution of the simulated image is computationally

indistinguishable from
∏

i(π).
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In the above definition, an execution image generally includes the input, the output

and the messages communicated during an execution of a protocol. To prove a

protocol is secure, we generally need to show that the execution image of a protocol

does not leak any information regarding the private inputs of participating parties

[112].

3.2. SECRET SHARING SCHEMES (SSS)

Given secret x ∈ Zk, its shares are distributed to each party as follows: for

party Pj (j ∈ {1, . . . n− 1}), uniformly generate values xj ∈ Zk, and distribute xj

to Pj and xn = (x−
∑n−1

j=1 xj) mod k to Pn. We denote the distribution protocol

as (〈Pj, x
Pj

j 〉) ← ShareGen(x, k). The secret x also can be reconstructed by

adding each party’s share together, such as x =
∑n

j=1 xj mod k. We assume that

the secret sharing scheme, like Shamir’s secret sharing scheme, allows to compute

sharings addition without communication. Suppose there are two secrets [a]k , [b]k

and a public constant c. Each party Pj (j ∈ {1, . . . , n}) has its own shares [a]
Pj

k

and [b]
Pj

k of a and b respectively. Then the parties can compute: [a+b mod k]
Pj

k and

[ca mod k]
Pj

k , easily. Since the secret sharing scheme is homomorphic considering

addition and multiplication by scalar, thus these operations can be done in only

one round without communication among parties.

3.2.1. Two Shares Multiplication. We implement the two shares mul-

tiplication protocol by modifying a little bit Du-Atallah multiplication protocol[113,

114]. Instead of outputing three shares, we only generate two shares output even

involving three parties to compute. The implementation process is shown in Al-

gorithm 2: P1 and P2 possess a and b, respectively. Initially, P3 generates α, β,

γ ∈ ZN and sends α to P1, β, γ to P2. Next, P3 computes c1 = α ∗ β − γ, and

sends c1 to P1. Then, P1 and P2 communicate with each other and exchange data

in a secure channel: P1 sends (a+α) to P2 and P2 sends (b+ β) to P1. Now, with
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all these information, P1 and P2 are able to compute their shares [ab]P1

N and [ab]P2

N

of ab locally, where [ab]P1

N = −αb− γ mod N and [ab]P2

N = b ∗ (a+ α) + γ mod N .

Algorithm 2 (〈P1, [s]
P1

N 〉, 〈P2, [s]
P2

N )←TwoSharesMult(〈P1, a〉, 〈P2, b〉)
Input: a from P1 and b from P2.

Output: [s]P1

N to P1 and [s]P2

N toP2, where ([s]P1

N + [s]P2

N ) mod N = a · b mod N

(1). P3 generates three randome numbers: α, β and γ, where α, β, γ ∈ ZN , and computes:

c1 = α ∗ β − γ and c2 = γ, then sends α, c1 to P1, and β, c2 to Party P2.

(2). P1 computes: (a+ α), and sends it to Party P2.

(3). P2 computes: (b+ β), and sends it to Party P1.

(4). P1 computes: [s]P1

N = −α ∗ (b+ β) + c1 mod N .

(5). P2 computes: [s]P2

N = b ∗ (a+ α) + c2 mod N .

3.2.2. Secure Multiplication. Multiplication between two secretly shared

values cannot be done locally, and it requires participating parties to collabora-

tively perform a sequence of operations. For example, given [a]N and [b]N , we want

to compute [ab]N . Suppose there are three parties P1, P2 and P3, and assume a, b

and ab are secretly shared between P1 and P2, while P3 is only required to perform

certain computations. More specifically, P1 has [a]P1

N and [b]P1

N . P2 has [a]P2

N and

[b]P2

N , where a = ([a]P1

N + [a]P2

N ) mod N and b = ([b]P1

N + [b]P2

N ) mod N . Given the

above inputs, the parties can compute [ab]N according to the following equation:

[ab]N = ([a]P1

N + [a]P2

N )([b]P1

N + [b]P2

N ) mod N

= [a]P1

N · [b]P1

N + [a]P2

N · [b]P1

N + [a]P1

N · [b]P2

N + [a]P2

N · [b]P2

N mod N

The [a]P1

N · [b]P1

N and [a]P2

N · [b]P2

N values are computed by P1 and P2 locally without

incurring any communication costs. The [a]P2

N · [b]P1

N and [a]P1

N · [b]P2

N can be securely

computed using a variation of the Du-Atallah’s multiplication protocol [113, 114].

Due to space limitation, we omit the detailed steps here. Following the existing
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work, we count the entire secure multiplication protocol as one multiplication in

the complexity analysis of the proposed protocol.

3.3. PAILLIER CRYPTOSYSTEM

Paillier’s public key encryption system was first intorduced in [115]. In the

scheme, the public key N = p∗ q, where p and q are large primes with similar size,

and they are private information. λ = lcm(p − 1, q − 1), µ = (L(gλ mod n2))−1

where function L(.) is defined as L(u) = u−1
N

. In general, the size of N should be

at least 1024 bits. Since p and q have equal size, we assume g = N +1, λ = ϕ(N)

and µ = ϕ(N)−1 mod N , where ϕ(N) = (p − 1)(q − 1). The public key is (N, g)

and private key is (λ, µ). The encryption function for message m ∈ ZN is defined

as follows:

C = E(m, r) = gm · rN mod N2

= (1 +N)m · rN mod n2

(3.1)

where r is randomly selected from Z∗

N2. Note that the encryption is only based

on the public key, and the group Z∗

N2 which contains the elements from Z∗

N2 =

{0, 1, 2, . . . , N2 − 1} which are co-prime to N2. The decryption function is:

m = D(C) = D(E(m, r))

=
(E(m, r)λ mod N2)− 1

N
· µ mod N

(3.2)

Since r is randomly selected from Z∗

N2 each time a message is encrypted, E(m, r1) 6=

E(m, r2) if r1 6= r2. On the other hand, D(E(m, r1)) = D(E(m, r2)) = m regard-

less the value of r1 and r2.

(1) Additive Homomorphic Properties. Let the E and D be the encryption

and decryption functions in Paillier public encryption system with public key pk

and privated key sk. Without sk, no one can dicover m from Epk(m) in polynomial
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time. When the context is clear, we will omit pk and sk from the notations of

the encryption and decryption functions. The Paillier encryption system has the

following properties[116]:

• The encryption function is additive homomorphic in that the product of the

encryptions of m1 and m2 produces the encryption of m1 +m2.

E(m1) ∗ E(m2) = E(m1 +m2) (3.3)

• Given a constant c and E(m):

E(m)c = E(c ∗m) (3.4)

• The encryption function has semantic security as defined in [117], i.e., a set

of ciphertexts do not provide additional infromation about the plaintext to

an adversary. E.g., suppose that C1 and C2 are the ciphertexts generated

by performing the encryptions of m at different time using the same public

key, then there is very high probability that C1 6= C2, but D(C1) = D(C2)

holds.

The encryption scheme is semantically secure [117, 118], i.e., given a set of cipher-

texts, an adversary cannot deduce any information about the plaintext. In Proxy

re-encryption, we assume that a data owner encryted datas using Paillier public

key encryption scheme before outsourcing them to remote storage.

(2) Mathematical Decryption. If a user Bob knows the ciphertext C =

E(m, r) and corresponding r which can be generated with Random Number Seed

(RNS), Bob can compute (rN)−1 and then retrieve the plaintext message m in

such way:

m = D′(C) =
(C · (rN)−1 mod N2)− 1

N
(3.5)
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The correctness of Eq.(3.5) comes from the lemma 1. First, we have the following

lemma. Note that (1 +N)x ∈ Z∗

N2 , since gcd(1 +N,N2) = gcd(1 +N,N) = 1.

Lemma 1 For any x ∈ ZN , we have[119, 120]:

(1 +N)x = 1 + xN mod N2 (3.6)

Proof 1 Proof by induction over x. Basis x = 0 is obviously true.

Inductive step: x→ x+ 1:

(1 +N)x = 1 + xN mod N2 ⇒

(1 +N)x+1 = (1 + xN)(1 +N) mod N2

= 1 + xN +N + xN2

= 1 + (x+ 1)N mod N2

(3.7)

We assume g = N+1, then Eq. 3.1 becomes C = E(m, r) = (1+N)m ·rN mod N2.

With Lemma 1, we can compute:

(C · (rN)−1) mod N2

= ((1 +N)m · rN · (rN)−1) mod N2

= (1 +Nm) mod N2.

(3.8)

Then, m can be easily retrieved. Even though Bob knows what the plaintext

message is, he still learn nothing about the secret key (λ, µ) whose privacy is

preserved (master key security introduced in [8, 9]).

3.4. STRONGLY UNFORGEABLE SIGNATURE

A signature scheme is secure if it is unforgeable under chosen plaintext

attack, that is, an adversary should not be able to compute a signature for a new

message given a signature for a few messages of his choice. While the strongly
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unforgeable signature scheme ensures the adversary cannot compute a new signa-

ture for a previously signed message[121, 122, 123, 124]. In our scheme, we assume

there is a strongly unforgeable one-time signature scheme Sig = (ζ, S, V ), where ζ

is a key generation protocol, S is a message signing protocol while V is a signature

verifying protocol. On input of a security parameter k, ζ generates a one-time key

pair (sk, vk). For any message m, V (σ, vk,m) outputs 1 whenever σ = S(sk,m)

and 0, otherwise. The security of Sig is defined as playing the following game:

• Setup. The challenger runs ζ , and gives the resulting verification key vk to

the adversary and keeps the signing key sk in safe.

• Queries. The adversary continuely issues signature queries m1, . . . , mw. To

each query mi, the challenger responds by running S and gives the resulting

signature σi of mi to the adversary. The adversary may queries adaptively

so that the query mi depends on the replies to m1, . . . , mi−1.

• Output. The adversary outputs (m, σ)

The adversary wins the game if σ is a valid signature of m according to V and

(m, σ) is not among the pairs (mi, σi). Then, we have the following definition of

advantage that the adversary gains:

Definition 2 Sig = (ζ, S, V ) is a storngly unforgeable one-time signature if the

advantage of any PPT adversary Λ:

AdvΛ = |Pr[(sk, vk)← ζ(k);

(m, st)← Λ(vk);

σ ← S(sk,m);

(m′, σ′)← Λ(m, σ, vk, st) :

V (σ′, vk,m′) = 1 ∧ (m′, σ′) 6= (m, σ)]− 1

2
| < negl(k)

(3.9)
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3.5. COSINE SIMILARITY

(1) Secure multiplication (MULT). This protocol considers P2 with input

Epk(a), Epk(b) and outputs Epk(a ∗ b) to P2, where a and b are not known to P1

and P2. During this process, no information regarding a and b is revealed to P1

and P2. The output Epk(a ∗ b) is known only to P1.

This MULT protocol can be implemented in several ways either using

additive homomorphic encryption scheme or garbled circuit evaluation [125]. In

each way, P2 first needs to randomize Epk(a) and Epk(b) to get Epk(a + r1) and

Epk(b+r2) and sends the randomized values to P1. After decryption, P1 obtains a+

r1 and b+r2. Now P1 can compute a∗b is such way if using additive homomorphic

encryption:

a ∗ b = (a+ r1) ∗ (b+ r2)− a ∗ r2 − b ∗ r1 − r1 ∗ r2 (3.10)

P1 computes Epk((a + r1) ∗ (b + r2)) and sends it to P2. With Eq.(3.10) and the

additive homomorphic property of paillier encryption, P2 can obtain Epk(a ∗ b) at

the end.

(2) Secure cosine similarity (SCS). With P2’s input (Epk(X), Epk(Y )), the

protocol outputs the ciphertext of similarity Epk(cos(X, Y )) to P2. Here X and

Y are both l dimensional vectors: Epk(X) = 〈Epk(x1), . . . , Epk(xl)〉 and Epk(Y ) =

〈Epk(y1), . . . , Epk(yl)〉, where X , Y are normalized vectors, cos(X, Y ) = x1 · y1 +

. . . ,+xl · yl. First, P2 computes the component wise multiplication: Epk(xi ∗

yi) ← MULT (Epk(xi), Epk(yi)), for i ∈ {1, l}, and obtains Epk(cos(X, Y )) ←
∏l

i=1Epk(xi∗yi). Then P2 communicates with P1 to find out the highest similarity

value and response with requested ciphertext or nothing (by comparing the value

with threshold predefined)



30

Table 3.1: Common Notations

Notation Meaning
(pki, ski) A pair of public key and secret key of user indexed by i
r Random number
RNS Random number seed that can be used to compute random number
D Data space
m Data from data space D
Cm Ciphertext of data m
CA Ciphertext under A’s public key
(sk, vk) A pair of signing key and verification key
(gi, Ni) Public parameters of Paillier PKE scheme indexed by i

3.6. PROXY RE-ENCRYPTION (PRE)

A PRE scheme allows the proxy to transform ciphertext of message m

under one public key to another ciphertext of the same m under different public

key, with the proxy leaning nothing. For simplicity, in the following context, we

use A, B and P to refer Alice, Bob and Proxy in the notations, respectively, as the

default setting unless point out, e.g., pkA denotes Alice’s public key. The notations

in table 3.1 are used extensively: First, we give the input-output specifications for

bidirectional PRE as follows[6].

Definition 3 A bidirectional PRE is a tuple of algorithms (KeyGen, ReKeyGen,

Enc, ReEnc, Dec).

• KeyGen (1k)→ (pki, ski). On input the security parameter 1k, the algorithm

outputs the key pair (pki, ski), where i ∈ {A,B}.

• ReKeyGen (skA, skB) → rkA→B. A and B input secret keys skA and skB,

respectively. The algorithm outputs a re-encryptionl key rkA→B to the P.

• Enc (pkA, m) → C. A inputs a public key pkA and a message m ∈ {0, 1}∗,

the algorithm outputs C.
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Figure 3.1: Overview of PRE scheme

• ReEnc (rkA→B, C) → C ′. Proxy inputs a re-encryption key rkA→B and a

ciphertext C, the algorithm outputs a new ciphertext C ′ or the empty symbol

⊥ if C is invalid.

• Dec (skB, C
′) → m. B inputs a secret key skB and a ciphertext C ′, the

algorithm outputs a message m ∈ {0, 1}∗ or the empty symbol ⊥ if C ′ is

invalid.

The above definition is bidirectional in that the re-encryption key to trans-

form ciphertexts from Alice to Bob can also be used to transform ciphertexts from

Bob to Alice. We assume that Proxy learns the re-encryption key as defined but

nothing else and the secret key holders also learn nothing in ReKeyGen which

involves the participation of parties. The I/O specification for unidirectional PRE

would be changed for ReKeyGen algorithm. Instead of inputing two secret keys,

Unidirectional PRE only takes a secret key skA and a public key pkB as input,

which makes the scheme be noninteractive (properties are explained in detail in

the following section). The overview of PRE is shown in figure 3.1

In the paper, we construct Unidirectional PRE with different algorighms

and our constructions do not provide ReKeyGen and ReEnc algorithms. We use

paillier public key encryption to implement secure U-PRE with simple design.

Instead of providing re-encryption key to proxy, Alice just gives the random seed,

generating random number used in encryption, to proxy. When Bob requests for
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it, proxy sends that to him. Although Bob knows the seed, the secret key of Alice

is kept safely offline where it is less vulnerable to compromise.

(1) Secure PRE Features. The above definition of PRE scheme, assuming

the proxy is semi-honest, which is not secure enough in applying to the distributed

file storage system. For example, if the proxy is not satisfying semi-honest assump-

tion, in both bidirectional and unidirectional schemes, the re-encrypted ciphertext

may be modified without noticed by Bob; also in the worst case, Alice’s secret key

may be compromised when the proxy and dishonest Bob collude. Therefore, the

varieties of collusion safe and against malicious proxy should be preserved when

designing a secure PRE scheme. As we analyzed, to achieve the security of dis-

tributed file storage system, a secure PRE scheme should possess the following

important properties:

• Collusion safe: By colluding, Bob and the Proxy cannot recover Alices Secret

key. For example, in [39], the secret key can be reconstructed by s = s1+s2,

where s is secret key of Alice and s1, s2 are the shares to proxy and Bob,

respectively; in [6], the secret key also can be compromised by a = rkA→B∗b,

where re-encryption key rkA→B = a/b and a, b are secret key of Alice and

Bob, respectively. A secure PRE is able to avoid above situations happen.

• Non-interactive: Re-encryption key rkA→B can be generated by Alice com-

bining Bob’s public key; no trusted third party or interaction is required,

that is, users do not need to communicate or reveal their secret keys in order

to join the system, which allows content owners to add users to the system

without interaction, simply by obtaining their public key.

• Unidirectional: The re-encryption is one-way, that is, the ciphertext of m

under Alice’s public key can be re-encrypted to the ciphertext of the same

m under Bob’s public key using re-encryption key rkA→B, but the ciphertext
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m′ under Bob’s public key cannot be re-encrypted to the ciphertext of the

same m′under Alice’s key using rkA→B.

• Key optimal: The size of Bob’s storage for the secret key remains constant,

regardless of how many delegations he accepts.

• Searchable*∗: The ciphertexts from Alice stored in the storage can be searched

by Bob (e.g., by keywords) without allowing the proxy learning the query

and the query result.

• Non-transitive: The proxy, alone, cannot redelegate decryption rights. For

example, given rkA→B and rkB→L, he cannot produce rkA→L

• Verifiable: Bob is able to verify the validity of re-encrypted ciphertexts to

against the malicious proxy.

If the above security property being achieved, the file system is secure even if the

following properties are not preserved:

• Non-multihop: Single-hop implys a re-encrypted ciphertext cannot be fur-

ther re-encrypted[9]; while multi-hop means a ciphertext can be re-encrypted

from Alice to Bob to Louis and so on[6]. For example, in a single-hop scheme,

ciphertext CA of message m under Alice’s public key can be re-encrypted

using rkA→B to CB of the same m, but CB cannot be further re-encrypted.

• Proxy invisibility: This is a feature offered by the original BBS scheme. The

proxy in the BBS scheme is transparent in the sense that neither the sender

of an encrypted message nor any of the delegatees have to be aware of the

existence of the proxy.

• Temporary: [39] suggested applying generic key-insulation techniques to

their constructions to form schemes where Bob is only able to decrypt mes-

sages from Alice that were authorized during some specific time period i.

∗*: indicates the feature is preserved under different assumptions
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• Original access: Alice can decrypt the re-encrypted ciphertexts sent to Bob.

(2) Adverary Model. We categorized adversaries into three models:

• Semi-honest proxy model :

As stated in the existing papers [6, 39, 61, 126, 127, 128, 129], the proxy

is assumed to be semi-honest. That is, the proxy follows the prescribed

procedures of a protocol, but he/she is free to perform any computation

based on his/her own inputs, outputs and the messages received during

the execution of the protocol. As a result, whatever can be inferred from

the private input and output of an attacker is not considered as a privacy

violation. .

• Malicious proxy model

1. M1: The proxy is malicious with ability of colluding with the dishonest

user [8, 9, 42, 46, 48, 49, 62]. A dishonest user, colludes with a malicious

proxy, may want to compromise the target’s secret key. For example,

in [39], Alice’s secret key can be reconstructed if the proxy and Bob

collude.

2. M2: The proxy is malicious allowing to modify ciphertext [42, 43, 50]

and show an incorrect output. According to the definition of PRE

scheme, the proxy learn nothing about the secret information based on

the knowledge of re-encryption keys. If being malicious, a proxy may

compute the re-encryption incorrectly. For example, in [9], Bob has no

way of verifying the correctness of re-encrypted ciphertexts.

3. M3: The proxy is assumed to behave willingly. For example, the proxy

may refuse to provide services of re-encryption, or serve against the

protocols.
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3.7. DIFFIE-HELLMAN KEY EXCHANGE

In this paper, we will use Diffie-Hellman key exchange protocol[130] to

generate a random number shared by two parties Alice and Bob. Let p be a

large prime number and g be a primitive root in Zp. p and g are known by both

parties. To share a random number k between Alice and Bob, they can perform

the following operations: Alice and Bob generate x1 and x2 in {1, 2, . . . , p − 2}

respectively. Alice sends gx1 mod p to Bob, and Bob sends gx2 mod p to Alice.

At the end, both parties can compute k = gx1x2 mod p. As long as one party

follows the protocol, k will be a random number in the group of Zp.
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4. SECURE COMPARISON

4.1. MAIN CONTRIBUTION

In this section, we first present two new secure comparison protocols that

are needed for the proposed SBD protocols. Note that the secure comparison

protocols presented here are specifically designed to build a more efficient SBD.

Thus, their input parameters and structures are very different from a regular

secure comparison protocol. In this scheme, the inputs to be compared [a]N1,B

and [b]N1,B (l = |a| or |b|) are given as bitwise sharings [al−1]N1
, . . . , [a0]N1

and

[bl−1]N1, . . . , [b0]N1
, with a =

∑l−1
i=0 ai2

i, b =
∑l−1

i=0 bi2
i; the outputs is [a

?
> b].

Both protocols provide an efficient way to compare two sharing secrets with low

computation and communication complexity in constant rounds. Furthermore, we

apply our proposed protocols to solving the bit-decomposition problem.

4.2. CUSTOMIZED SECURE COMPARISONPROTOCOLS FOR SBD

We assume P1 and P2 have secret shares of a and b in ZN1
, and bit-wise

secret shares of a and b in ZN2
. [a]N2,B = ([al−1]N2

, . . . , [a0]N2
) and [b]N2,B =

([bl−1]N2
, . . . , [b0]N2

), where [a]N2,B, [b]N2,B are by construction the bit-wise shar-

ing of [a]N2
and [b]N2

, respectively. where 0 ≤ a, b < 2l, l = size(N1), and

N2 = ⌈2 logN1⌉. P1 and P2 want to obtain the secret shares of the comparison

result between a and b. The novelty of our secure comparison is that certain

computations can be performed on a much smaller domain which leads to a more

efficient protocol. The proposed comparison scheme has three main stages:

• Stage 1 - Compute the Difference Vector:

Given [a]N2,B and [b]N2,B, compute the secret shares of the difference vector

(i.e., the bit-wise xor of a and b, denoted by e = a ⊕ b). At the end of this
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stage, each party obtains new bit-wise shares [e]N2,B of e. Other than these

shares, nothing else is revealed.

• Stage 2 - Find the First Different Bit:

Find the most significant bit location i such that ai 6= bi. In this stage, the

computation each party performs can be done locally, such that no secret

information is revealed.

• Stage 3 - Adjusting the Result:

The parties will adjust the temporary comparison result based on the flipping

bit (sequence).

4.2.1. FAST-CMP. The proposed secure comparison protocol is termed

as FAST-CMP whose main steps are highlighted in Algorithm 4. At the end of

the protocol, P1 and P2 obtain the secret shares of f = b
?
> a, for f ∈ {0, 1}, but

not f . Next, we detail the steps involved in each stage.

Stage 1-Computing The Difference Vector. Given [a]N2,B and [b]N2,B, the

purpose of this stage is to compute the bit-wise secret shares of the xor vector

e between a and b. Initially, P1 and P2 jointly execute the DIFF-VEC protocol

which takes 1 round and l multiplications.

(〈P1, [e]
P1

N2,B
〉, 〈P2, [e]

P2

N2,B
〉)← DIFF-VEC(〈P1, [a]

P1

N2,B
, [b]P1

N2,B
〉, 〈P2, [a]

P2

N2,B
, [b]P2

N2,B
〉, 〈P3,⊥〉)

(4.1)

Example 1 Assuming N1 = 31 and N2 = 11. Suppose P1 and P2 have bit-wise

shares of aB = 10110 and bB = 10100, then the outputs of DIFF-VEC are bit-wise

secret shares of eB = 00010 to P1 and P2.

Stage 2 - Finding the First Different Bit. Next, inspired by the existing

work [10], we compute the γ sequence in a different way to prevent the possible

information leaking. The parties compute the ∆ sequence and then γ sequence
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Algorithm 3 FIRST-DIFF-BIT

Input: 〈P1, [e]
P1

N2,B
, π(.)〉, 〈P2, [e]

P2

N2,B
, π(.)〉 and 〈P3,⊥〉, where π(.) is random permutation only

known to P1 and P2

Output: 〈P3, i
∗〉

1: Pj (j ∈ {1, 2})

(a) Compute the ∆ sequence:

[∆l−1]
Pj

N2
= [el−1]

Pj

N2

[∆i]
Pj

N2
= [∆i+1]

Pj

N2
+ [ei]

Pj

N2
, for i = l − 2, . . . , 0 (l is the bit-length of e)

(b) Compute the γ sequence:

[γl−1]
Pj

N2
= [∆l−1]

Pj

N2

[γi]
Pj

N2
= [γi+1]

Pj

N2
+ [∆i]

Pj

N2
, for i = l − 2, . . . , 0

(c) Compute [ui]
Pj

N2
= ri[γi − 1]

Pj

N2
, for i = l − 1, . . . , 0 and ri ∈R Z∗

N2

(d) [v]
Pj

N2,B
← π

(

[u]
Pj

N2,B

)

(e) Send [v]
Pj

N2,B
to P3

2: P3

(a) vi = [vi]
P1

N2
+ [vi]

P2

N2
mod N2, for i = l− 1, . . . , 0

(b) Find the unique index i∗, where vi∗ = 0

locally which ensures that the value of all positions before d (d denotes the first

different bit position start from MSB) is zero and that ofall positions after d is

bigger than one. Then the computation ri[γi − 1]N2
are locally performed, where

ri are uniformly random number in ZN2
. Then, the value of position d is zero, and

values of all the other positions are random number. Combine these together, we

get [u]N2,B sequence. One way to cover the position d is to peform permutation

on [u]B using permutation function π(.) first before sending to P3 since we need

P3 to reconstruct the value of all positions. The detail is depicted in Algorithm 3.

At the same time, P1 uses the same permutation function π(.) to permutate aB,

and use t to flip the sequence, where t ∈ {0, 1}, producing ãB and sends it to P3.

P3 learns nothing about aB from ãB because the permutation function π(.) and

flipping bit are only know by P1 and P2. Then, P3 reconstructs the sequence, finds

the uniqe index i∗ and sets temporary comparison result as f = ãi∗ and distributes

shares to P1 and P2.
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Algorithm 4 FAST-CMP

Input: 〈P1, [a]
P1

N2,B
, [b]P1

N2,B
, t, π(.)〉, 〈P2, [a]

P2

N2,B
, [b]P2

N2,B
, bB, t, π(.)〉 and 〈P3,⊥〉, where π(.) is

random permutation and t is a random bit, known only to P1 and P2

Output: 〈P1, [u]
P1

N1
〉 and 〈P2, [u]

P2

N1
〉

1: P2:

(a) b′B ← π(bB)

(b) For i = l − 1, . . . , 0 do
if t = 0, b̃i = b′i
else, b̃i = 1− b′i

End for

(c) Sends b̃B to P3.

2: P1, P2 and P3:

(a) (〈P1, [e]
P1

N2,B
〉, 〈P2, [e]

P2

N2,B
〉) ←

DIFF-VEC (〈P1, [a]
P1

N2,B
, [b]P1

N2,B
〉, 〈P2, [a]

P2

N2,B
, [b]P2

N2,B
〉, 〈P3,⊥〉)

(b) 〈P3, i
∗, f〉 ←FIRST-DIFF-BIT (〈P1, [e]

P1

N2,B
, π(.)〉, 〈P2, [e]

P2

N2,B
, π(.)〉, 〈P3, b̃B〉)

3: P3:

(a) (〈P1, [f ]
P1

N1
〉, 〈P2, [f ]

P2

N1
〉) ← ShareGen(f,N1)

4: Pj (j ∈ {1, 2}):

(a). [u]
Pj

N1
= (1 − t)[f ]

Pj

N1
+ t[1− f ]

Pj

N1
mod N1

The major goal of this stage is to find the first bit that is different from MSB to

LSB between aB and bB. Due to flipping and permutation P1 and P2 performs

before ahead, with temporary comparison result, the possibility that P3 learns the

final comparison result is no more than 1
2
.

Example 2 Suppose we have P1 and P2’s bit-wise shares of eB = 00010, then

the Algorithm 3 outputs the result as followings: first, computes the γ sequence:

γB = {0, 0, 0, 1, 2}, then chooses rB = {6, 4, 2, 7, 9} randomly. At the end, P1 and

P2 get the shares of small domain of permuted uB sequence, vB = {9, 0, 1, 7, 9},

using π(reverse). P3 reveals and finds the uniqe index i∗. As in Example 2, i∗ = 3,

then f = ā3 = 0.

Stage 3-Adjusting the result. P1 and P2 adjust their shares of comparison

result according to the flipping bit t. P1 and P2 adjust their shares as [1 − f ]P1

N1
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and [1− f ]P2

N1
, respectively, if t = 1.

In our application, P3 keeps f for future use. Only P3 knows the temporary

comparison result (not final decision since the result may be flipped) which will

be used in Algorithm 5 to perform selection. Knowing f , P3 cannot learn the final

comparison result because f is flipped by flipping bit t which is known by P1 and

P2. At then end, P1 and P2 can adjust the final comparson result according to the

value of t.

All steps involved are presented in Algorithm 4. This protocol can also be used for

equality check problem such that all values revealed by P3 are random numbers

(Here, we assume the a 6= b). The complexity of comparison protocol is 1 round

and l multiplications contributed by stage 1, all the other steps can be done

locally.

The goal of Algorithm 5 is to select from c̃′B, b̃B based on the value of f and

flipping bit value t. The selection result is cB in different domains (N1 and N2),

cN1,B = ([c]P1

N1,B
+ [c]P2

N1,B
) mod N1, cN2,B = ([c]P1

N2,B
+ [c]P2

N2,B
) mod N2, and :

cB = tβB + (1− t)αB (4.2)

where,

αB = f b̃B + (1− f)c̃′B

βB = f c̃′B + (1− f)b̃B

(4.3)

Example 3 The purpose of Algorithm 5 is to determine what c is. Continued

from Example 2, suppose P1 has c
′

B = 110011, bB = 10100. In step 1, P1 permutes

and flips (since t = 0, there is no flipping) in such way: c̄′B = π(c′B) = 111001

and b̄B = π(bB) = 00101. In step 2, as in Example 1. P1 and P2 compute the

difference vector; as in Example 2, P3 obtans the temporary comparison result:

f = 0. In step 3, P3 decides how to output the right result. He would choose
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Algorithm 5 SELECT

Input: 〈P1, [r]
P1

N2,B
, [x+r]P1

N2,B
, b, b′, t, π(.)〉, 〈P2, [r]

P2

N2,B
, [x+r]P2

N2,B
, t, π(.)〉, and 〈P3,⊥〉, where t

is random bit and π(.) is random permutation known only to P1 and P2, and b = x+r mod N2

and b′ = b+N2

Output: 〈P1, [c]
P1

N1,B
, [c]P1

N2,B
〉 and 〈P2, [c]

P2

N1,B
, [c]P2

N2,B
〉, where c = b if b > r and c = b′ otherwise

1: P1:

(a). b̃← π(b) and b̃′ ← π(b′)

(b). If t = 1, then b̃i = 1− b̃i and b̃′i = 1− b̃′i, for 0 ≤ i ≤ l − 1

(c). Send b̃ and b̃′ to P3

2: P1, P2 and P3:

(a) (〈P1, [e]
P1

N2,B
〉, 〈P2, [e]

P2

N2,B
〉) ←

DIFF VEC(〈P1, [r]
P1

N2,B
, [x+ r]P1

N2,B
〉, 〈P2, [r]

P2

N2,B
, [x+ r]P2

N2,B
〉, 〈P3,⊥〉)

(b) 〈P3, i
∗〉 ← FIRST DIFF BIT(〈P1, [e]

P1

N2,B
, π(.)〉, 〈P2, [e]

P2

N2,B
, π(.)〉, 〈P3,⊥〉)

3: P3:

(a) f = b̃i∗

(b) α = f ∗ b̃+ (1− f) ∗ b̃′ and β = (1− f) ∗ b̃+ f ∗ b̃′

(c) For i = l − 1, . . . , 0 do
([αi]

P1

N1
, [αi]

P2

N1
) ← ShareGen(αi, N1)

([α′

i]
P1

N2
, [α′

i]
P2

N2
)← ShareGen(αi, N2)

([βi]
P1

N1
, [βi]

P2

N1
)← ShareGen(βi, N1)

([β′

i]
P1

N2
, [β′

i]
P2

N2
)← ShareGen(βi, N2)

End for

4: Pj (j ∈ {1, 2}):

[c]
Pj

N1,B
= (1− t) ∗ π−1([α]

Pj

N1,B
) + t ∗ π−1([β]

Pj

N1,B
)

[c]
Pj

N2,B
= (1− t) ∗ π−1([α′]

Pj

N2,B
) + t ∗ π−1([β′]

Pj

N2,B
)

αB = c̄′B = 111001 and βB = b̄B = 00101 corresponding to the value of f . In step

4, based on the knowledge of t, P1 and P2 choose shares of cB = αB = 111001.

4.2.2. CMP. we extend our secure comparison shceme to obtain CMP

protocol solving post-fix comparison problem without using pre-fix product method

and LSB-gate technique as shown in Algorithm 6. All stages are described in the

following:

• Stage 1-Compute the difference vector from [a]N2,B and [b]N2,B:

This Stage perfomes the same operation as that in FAST-CMP.
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• Stage 2-Find the first different bit:

Instead of P1 sending b̃B to P3, P2 sends ãB radomized using permutation

function π(.) and flipping sequence tB. P3 learns nothing about bB from

ãB because the permutation function π(.) and flipping sequence tB are only

know by P1 and P2. Then, P3 reveals the sequence [v]N2,B until finding the

unique index i∗ satisfying vi∗ = 0 and sets w = ãi∗ , and sends [w]P1

N1
to P1

and [w]P2

N1
to P2. P3 also computes a new sequence ṽB, where ṽi∗ = 1, and

ṽi = 0, if i 6= i∗, and sends bit sharings of ṽB to P1 and P2.

• Stage 3-Adjust the result:

Pj (j ∈ {1, 2}) performs multiplication on [ṽ]
Pj

2,B and fliping sequence tB to

find out the bit [z̃]
Pj

2 indicating flipped or not flipped and choose t′ ∈ {0, 1},

then send [h]
Pj

2 = t′(1 − [z̃]
Pj

2 ) + (1 − t′)[z̃]
Pj

2 to P3. P3 contributes to reveal

h and sends new shares [h]
Pj

N1
back to Pj . At last, Pj combine t′, [w]

Pj

N1
and

[h]
Pj

N1
to compute the comparison result.

If we want to compute all post-fix bits string comparison as section 2.2

, stages-2 and Stage-3 are included in a loop increasing l multiplications.

Thus the overall complexity is 2l multiplications.

Example 4 Suppose we have the following inputs: P1 and P2’s shares of

[e′]B = 0100; aB = 1101 from P2; tB = 0111 and π(reverse) from P1 and

P2. The Algorithm 6 runs as follows: first, P2 permutes and flips aB using

π(reverse) and flipping sequence tB and obtains āB = 1010. P3 finds the

unique index i∗ = 2 and sets w = ā2 = 0 and v̄B = 0100. Next, P1 and P2

need to find out if ā2 is flipped or not by checking the “summation” of the

result of bit-wise multiplying v̄B with tB. Here, ā2 is flipped, therfore, the

output should be adjusted as shares of c = 1− w = 1.
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Algorithm 6 CMP

Input: 〈P1, [a]
P1

N2,B
, [b]P1

N2,B
, tB, π(.)〉, 〈P2, [a]

P2

N2,B
, [b]P2

N2,B
, bB, tB, π(.)〉 and 〈P3,⊥〉), where π(.)

is random permutation and tB is a random binary string only known to P1 and P2

Output: 〈P1, [u]
P1

N1
〉, 〈P2, [u]

P2

N1
〉 where u ≡ b

?

> a and u ∈ {0, 1}

1: P2

(a) a′B ← π(bB).

(b) ãB = a′B ⊕ tB, where ⊕ denotes bit-wise xor operation.

(c) Sends ãB to P3.

2: P1, P2 and P3:

(a) (〈P1, [e]
P1

N2,B
〉, 〈P2, [e]

P2

N2,B
〉) ←

DIFF-VEC(〈P1, [a]
P1

N2,B
, [b]P1

N2,B
〉, 〈P2, [a]

P2

N2,B
, [b]P2

N2,B
〉, 〈P3,⊥〉)

(b) (〈P3, i
∗, w〉) ←FIRST-DIFF-BIT (〈P1, [e]

P1

N2,B
, π(.)〉, 〈P2, [e]

P2

N2,B
, π(.)〉, 〈P3,⊥〉)

3: P3

(a) 〈[w]P1

N1
, [w]P2

N1
〉 ← ShareGen(w,N1) .

(b) Generate a new sequence ṽB, where ṽi∗ = 1, and ṽi = 0, if i 6= i∗, for i =
l̃ − 1, . . . , 0

(c) 〈[ṽi]P1

2 , [ṽi]
P2

2 〉 ← ShareGen(ṽi, 2), for i = l̃ − 1, . . . , 0

4: Pj (j ∈ {1, 2})

(a) [zi]
Pj

2 = ti · [ṽi]Pj

2 , for i = l̃ − 1, . . . , 0

(b) [z̃]
Pj

2 =
∑l−1

i=0
[zi]

Pj

2

(c) Send [h]
Pj

2 = t′([1− z̃]
Pj

2 )+(1− t′)[z̃]
Pj

2 to P3, where t
′ ∈ {0, 1} is jointly selected.

5: P3:

(a) h = ([h]P1

2 + [h]P2

2 ) mod 2

(b) (〈[h]P1

N1
, [h]P2

N1
〉)← ShareGen(h,N1).

6: Pj (j ∈ {1, 2})

(a) [z̃]
Pj

N1
= (t′([1− h]

Pj

N1
) + (1− t′)[h]

Pj

N1
) mod N1

(b) [u]
Pj

N1
= ([z̃]

Pj

N1
([1− w]

Pj

N1
) + (1− [z̃]

Pj

N1
)[w]

Pj

N1
) mod N1

4.3. COMPLEXITY AND SECURITY ANALYSIS

FAST-CMP takes 1 round and l multiplications to compare two sharing

secrets. CMP also takes 1 round and l multiplications to implement post-fix

comparison without using pre-fix product method and LSB-gate technique . In
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our secure comparison schemeds, the communication among parties occurs in all

stages. During stage 1, the exclusive-or involves the interaction among parties for

sharing secret multiplication. The security of this stage comes with the secure

multiplication which is assumed to be secure, therefore, stage 1 is secure and no

information is leaked. In stage 2, the generation of the γ sequence and permuta-

tion the sequence are all locally computed; the parties jointly generate uniformly

random numbers and reveal them. ui is also uniformly random since ri is a uni-

formly random value from a finite field jointly generated by the parties and is

independent of γi. Therefore, u sequence is secure and no information is leaked.

During stage 3, the parties send their sequences of shares ot party P3 and then P3

performs the reconstruction process to reveal the “anchor”. Although P3 gets the

revealing value, it does not know the position that d is located since the sequences

are permuted by the parties based on the pre-determined one-way permutation

function and thenP3 has no chance of finding the being compared and comparator.

Therefore, P3 gains nothing valuable in stage 3.
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5. EFFICIENT PROTOCOL FOR BINARY DECOMPOSITION

Suppose an l-bit value s is secretly shared among n parties, each of whom

has a secret share si ∈ ZP for 1 ≤ i ≤ n. A secure bit-decomposition (SBD) proto-

col allows the n parties to convert their secret shares of s into secret shares of the

individual bits of s. SBD has many important applications in secure multiparty

computation, especially when the intermediate computation result of a secure com-

putation cannot be disclosed, and the subsequent computation requires the input

to be secret shares of individual bits of the intermediate result. The first SBD

protocol was introduced by Damg̊ard et al. Since then, more SBD protocols have

been developed to reduce both communication and computation complexities. To

our knowledge, among the existing SBD protocols, the most efficient protocol

requires O(1) rounds of communication and O(l) multiplications. To further im-

prove the efficiency of SBD, this paper introduces a novel and more efficient SBD

protocol. The complexity of the proposed protocol matches the big O(·) bound

while decreasing the hidden constants. More specifically, the proposed protocol is

five times more efficient in the number of required multiplications and twice more

efficient in round complexity. The reduced complexity comes from the fact that

certain secure operations can be done with smaller share sizes without sacrificing

any security guarantee.

5.1. MAIN CONTRIBUTION

We improved the bit-decomposition protocol presented by Reistad and Toft

[4] by using our efficient comparison primitive In our SBD protocol, we no longer

use post-fix comparison in which prefix-product dominate the overall complexity

as described in section 2.2 and therefore no need of transforming bit-decomposition

problem to post-fix problem, which gives us more efficiency in both computation
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and communication aspects. In addition, in the case of a or b is public, the dom-

inate factor that affects complexity is removed and followed by further improved

efficiency. At the end, we address the complexity comparison between our SBD

and Bits-RT protocol. For security reason, We assume that the parties are con-

nected by perfectly secure channels in a synchronous network.

5.2. SECURE BINARY DECOMPOSITION (SBD)

The secure comparison protocol can be apllied into many practical prob-

lems, and bit-decomposition problem is one of them. Therefore, we introduce a

new improvement bit-decomposition protocol using the secure comparison scheme

proposed in Section 4.2.

First, in our SBD protocol, we use SELECT to achieve the same functinality

as step (4) and (5), which are comparison and selection phase, of Bits-RT protocol.

Second, To achieve the post-fix comparison as in step (8) of Bits-RT protocol,

we use CMP with small domain modulo N2. With small domain in comparison

protocol, the communication complexity can be significantly reduced. In addition,

to obtain more efficiency, we put the DIFF-VEC in CMP protocol outside the

loop. Therefore, the CMP is modified a little bit, denoting as CMP∗. The input

specification should be changed correspondingly: the output of DIFF-VEC is

considered as part of the input to CMP*.

(〈P1, [u]
P1

N1
〉, 〈P2, [u]

P2

N1
〉)← CMP*(〈P1, [e mod 2i]P1

N2,B
, T i

B, π(.)〉,

〈P2, [e mod 2i]P2

N2,B
, (r mod 2i)B, T

i
B, π(.)〉, 〈P3,⊥〉)

(5.1)

TB is, a flipping sequence, used to flip individual bit (bit-wise flipping) of

a sequence, hiding the sequence from P3 so that P3 learns nothing since TB are

only know by P1 and P2. The protocols hierarchy is shown in figure 5.1
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Figure 5.1: The protocol hierarchy

Example 5 Suppose we have public parameters: N1 = 31, N2 = 11, l = 5.

We assume x = 29(11101), and xP1 = 12, xP2 = 17; we use the function

that reverse the order of l-bit string as permutation function: π(reverse) (e.g.,

01101← π(10110)).

(1). Step 1:(a)-(b): P2 choose r = 22(10110), and sends XP2 + r to P1. Then P1

computes b = xP1+xP2+r mod 31 = 20(10100) and c′ = b+N1 = 51(110011).

(2). Step 1:(c): P1 and P2 choose t = 0, and TB = {T l−1
B , . . . , T 1

B} = {T 4
B, T

3
B, T

2
B, T

1
B} =

{0111, 101, 10, 1}.

(3). Step 2: as in Example 3, P1 and P2 get the shares of cB = 111001 in different

domains.

(4). Step 3:(a): P1 and P2 gets the shares of e′B = 111001⊕ 01101 = 110100.

(5). Step 3:(b)-(d): As in Example 4, u4 = 1, we gets u3 = 1, u2 = 0 and u1 = 0

by running CMP∗ repeatedly. Now, we can compute locally: [x mod 25] =

[x] = [29] [x mod 24] = [(0011)]2 − [(0110)]2 + 24 · [u4] = [13]; [x mod 23] =

[5]; [x mod 22] = [1]; [x mod 21] = [1]. Then, we compute locally: [x4] =

[x mod 25]−[x mod 24]
24

= 1. [x3] = 1; [x2] = 1; [x1] = 0; [x0] = [29 mod 2] = 1.
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Algorithm 7 SBD

Input: 〈P1, [x]
P1

N1
, π(.)〉, 〈P2, [x]

P2

N1
, π(.)〉 and 〈P3,⊥〉, where π(.) is random permutation only

known to P1 and P2. N1 and N2 are public parameters where N2 = ⌈2 logN1⌉
Output: 〈P1, [x]

P1

N1,B
〉 and 〈P2, [x]

P2

N1,B
〉

P2:

(a) r ∈R ZN1
, t ∈R {0, 1}, and flipping sequences T i

B ≡ (T i
i−1, . . . , T

i
0), where T

i
j ∈R {0, 1} for

0 ≤ j ≤ i − 1 and 1 ≤ i ≤ l − 1

(b) 〈[ri]P1

N1,B
, [ri]

P2

N1,B
〉 ← ShareGen(ri, N1), for i = l − 1, . . . , 0

〈[ri]P1

N2,B
, [ri]

P2

N2,B
〉 ← ShareGen(ri, N2), for i = l − 1, . . . , 0

(c) Send ([x]p2

N1
+ r) mod N1, t and TB to P1

P1:

(a) b← [x]p1

N1
+ [x]p2

N1
+ r mod N1 and b′ = b +N1

(b) 〈[bi]P1

N1,B
, [bi]

P2

N1,B
〉 ← ShareGen(bi, N1), for i = l − 1, . . . , 0

〈[bi]P1

N2,B
, [bi]

P2

N2,B
〉 ← ShareGen(bi, N2), for i = l − 1, . . . , 0

(c) 〈[b′i]P1

N1,B
, [b′i]

P2

N1,B
〉 ← ShareGen(b′i, N1), for i = l − 1, . . . , 0

〈[b′i]P1

N2,B
, [b′i]

P2

N2,B
〉 ← ShareGen(b′i, N2), for i = l − 1, . . . , 0

P1, P2 and P3

(a) (〈P1, [c]
P1

N1,B
, [c]P1

N2,B
〉, 〈P2, [c]

P2

N1,B
, [c]P2

N2,B
〉)← SELECT(〈P1, [r]

P1

N2,B
,

[b]P1

N2,B
, bB, b

′

B, t, π(.)〉, 〈P2, [r]
P2

N2,B
, [b]P2

N2,B
, t, π(.)〉, 〈P3,⊥〉)

Pj (j ∈ {1, 2})

(a) (〈P1, [e]
P1

N2,B
〉, 〈P2, [e]

P2

N2,B
〉)←DIFF-VEC(〈P1, [r]

P1

N2,B
, [c]P1

N2,B
〉, 〈P2, [r]

P2

N2,B
, [c]P2

N2,B
〉, 〈P3,⊥

〉)

(b) [x mod 2l]
Pj

N1
= [x]

Pj

N1

(c) For i = l − 1, . . . , 1 do
(〈P1, [u]

P1

N1
〉, 〈P2, [u]

P2

N1
〉)← CMP*(〈P1, [e mod 2i]P1

N2,B
, T i

B, π(.)〉,
〈P2, [e mod 2i]P2

N2,B
, (r mod 2i)B , T

i
B, π(.)〉, 〈P3,⊥〉)

[x mod 2i]
Pj

N1
= [c mod 2i]

Pj

N1,B
− [r mod 2i]

Pj

N1,B
+ 2i[ui]

Pj

N1

[xi]
Pj

N1
= ([x mod 2i+1]

Pj

N1
− [x mod 2i]

Pj

N1
) ∗ 2−i

End for

(d) [x0]
Pj

N1
= [x mod 2]

Pj

N1

5.3. COMPLEXITY AND SECURITY ANALYSIS

5.3.1. Complexity Analysis. Bits-RT protocol in section 2.2 takes 5

rounds and 24l+12 multiplications for preprecessing phase, and for online phase,

it takes 2 rounds and 7l + 3 multiplications for comparison between a random

bit strings and a public value in step (4), and 5 rounds and 9.5l multiplications

for post-fix compariosn in step (8). Therefore, the overall online complexity is
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Table 5.1: Complexity of Bit-decomposition Protocol

Protocols Rounds Multiplications

Compare 2 7l + 3

Post-fix Compare 5 9.5l

Bits (online) 7 16.5l + 3

(a) Bits-RT protocol [4]

Protocols Rounds Multiplications

SELECT 1 l

DIFF-VEC 1 l

CMP 1 l

SBD 3 3l

(b) Our SBD protocol

Table 5.2: Complexity Comparison

Protocols Rounds Multiplications

Bits-RT [4] (online) 7 16.5l + 3

SBD 3 3l

7 rounds and 16.5 + 3 multiplications as shown in Table 5.1(a). While our pro-

posed secure comparison scheme reduces the complexity of comparison between

two secrets, and further improved the bit-decomposition protocol. The proposed

SELECT protocol takes 1 rounds and 1l multiplications and CMP* takes 2 rounds

and 2l multiplications as dipicted in section 4.2. By applying our secure com-

parison scheme, SBD protool takes 3 rounds and 3l multiplications to solve bit

decomposition problem, detailied in Table 5.1 (b). The complexity comparison of

our approaches with Bits-RT protocol is shown in Table 5.2
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Table 5.3: Message Size Comparison

Protocol Parallelized steps Message Size

Bits-RT 4 + 16.5k (28.5k + 6)l2 + 18.5κkl
SBD 10 + 2k (12 + 2 log l)l2 + (18 + 4k)l log l

Communication message size of Bits-Toft protocol is around (28.5k+6)l2+

18.5κkl while our proposed protocol is (12+ 2 log l)l2 + (18+ 4k)l log l, where k is

number of communication steps involved in one multiplication. In our protocol,

we use shares in different finite fields, such as N1 and N2. Therefore, our proposed

protocol is also more efficient cosidering communication complexity as shown in

Table 5.3.

5.3.2. Security Analysis. In our secure comparison scheme, the com-

munication among parties occurs in all stages. During stage 1, the exclusive-or

involves the interaction among parties for sharing secret multiplication. The se-

curity of this stage comes with the secure multiplication which is assumed to be

secure, therefore, stage 1 is secure and no information is leaked. In stage 2, the

generation of the γ sequence and permutation the sequence are all locally com-

puted; the parties jointly generate uniformly random numbers and reveal them.

ui is also uniformly random since ri is a uniformly random value from a finite field

jointly generated by the parties and is independent of γi. Therefore, u sequence

is secure and no information is leaked. During stage 3, the parties send their se-

quences of shares ot party P3 and then P3 performs the reconstruction process to

reveal the “anchor”. Although P3 gets the revealing value, it does not know the

position that d is located since the sequences are permuted by the parties based

on the pre-determined one-way permutation function and thenP3 has no chance of

finding the being compared and comparator. Therefore, P3 gains nothing valuable

in stage 3.
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6. PROXY RE-ENCRYPTION

6.1. MAIN CONTRIBUTION

Most existing proxy re-encryption (PRE) schemes are implemented by pair-

ings. These pairings are useful for realizing a scheme’s construction.A bilinear

mapping function can be used to check a ciphertext’s validity. If the proxy is

malicious, a PRE scheme should be able to check the correctness of ciphertexts.

Therefore, the validation of ciphertext should be considered when designing a se-

cure unidirectional PRE scheme. In the paper, it adopts strongly unforgeable

signature technique to implement the validation of re-encrypted ciphertext and

then construct efficient and feature-rich unidirectional PRE schemes with simple

design (no pairings). At last, the paper measures the implementation of PRE in a

secure file system. The secure file system uses an untrusted access control server

to manage accesses to encrypted files stored on a distributed storage.

6.2. PROPOSED PROXY RE-ENCRYPTION (PRE) SCHEMES

A paillier public key encryption (PKE) scheme was used to encrypt all of

the data from the proposed construction by data owner. It was then stored in

a distributed file storage. Suppose an authorized user (e.g., Bob) has the right

to access this data. Before he can access this information, however, he needs

to obtain the secret information used to perform decryption. This information is

either Alice’s secret key or random number seed (RNS) generating random number

to randomize Paillier encryption. Alice, however, does not want to share her secret

key with others due to security concerns. Therefore, Bob can only access to data

through mathematical decryption with RNS as described in Section ??.
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Figure 6.1: Overview of our single-proxy basic construction

Assume a PKE scheme given to the proxy was used to encrypt the RNS

under a user’s public key. This PKE can be any type of secure public key en-

cryption scheme (If the Paillier PKE scheme is used, the prime products must

be different for security reasons.). In Lemma 1, Bob must submit a request to

the proxy for the secret information if he wants to access the data. The proxy in

this proposed construction does not perform any computation on the ciphertexts

to respond to the requests. This is the main difference form the existing PRE

schemes. The existing schemes require the proxy to perform re-encryption on the

ciphertext when receives the access request from users.

6.2.1. Single-Proxy Basic Construction. The file system in this single-

proxy scheme has only one proxy to control access to the encrypted data in storage.

An overview of the single-proxy PRE’s basic construction can be seen in Figure

6.1.

Assume the proxy is in a semi-honest model, and only one proxy (P ) con-

trols access to the data. One simple solution is available to construct a PRE

scheme. In the solution, Alice send the RNS, which can be used to decrypt ci-

phertext encrypted by Paillier PKE scheme, to the proxy in plaintext. If the

authorized user (Bob) requests RNS for decryption, the proxy will pass RNS to

him. This case, however, contains only one proxy. Thus, the proxy learns the

valuable information RNS used to generate the random number (r) which is inte-

grated in the ciphertext. instead of sending plaintext of RNS, Alice provides the
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encryption of that under Bob’s public key to the proxy. This solution can keep

the data in storage secure and protect the privacy of data owner

An assumption similar to the Paillier PKE is made here. Assume the public

key is N = p ∗ q, where p and q are large primes with equal size. The random

number (r) generated by RNS is within the range {0, N2}, and the message (m) is

in {0, N − 1}. The construction’s detail are described in the following algorithms.

• Setup (k): Input of the security parameter k, and choose two large prime

numbers (p and q) with the same size.

• KeyGen (k): Set N = pq and g = N + 1, λ = ϕ(N), where ϕ(N) is Euler’s

totient function. Set µ = ϕ(N)−1. The public key is pk = (N, g), and the

private key is sk = (λ, µ).

• Enc (pkA, m): Alice encryptes the message (m) in such a way that C =

gmA r
NA. Alice sends all encrypted data to the storage and sends encrypted

RNS rs: C ′ = E(PKB, rs) to P .

• Dec1 (skA, C): Alice can use Eq.(3.2) to decrypt the ciphertext C with skA

• Dec2 (C,C ′, skB): Bob uses input from data ciphertext C and RNS cipher-

text C ′. He decrypts C ′ to obtain rs and computes r corresponding to C, and

further uses Eq.(3.5) to decrypt the ciphertext bym = L(C(rNA)−1) mod NA

This construction is secure under the assumption of a semi-honest proxy

model. It achieves colluding safe under adversary model M1, but fails to achieve

verifiable and CCA secure under adversary model M2 in malicious proxy models.

Alice keeps secret key used to decrypt all ciphertexts safe, even if the Proxy and

Bob collude. Bob, however, has no way of verifying the correctness of ciphertext

of RNS if proxy is malicious with ability of compromising the re-encryption. The

Paillier PKE achieves CPA; it does not achieve CCA. Therefore, this construction

is not CCA secure. The RNS is encrypted under Bob’s public key, allowing only
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Bob to decrypt it. This means other users cannot obtain the RNS, even if the

proxy offers the ciphertext to them. Therefore, the RNS cannot be distributed

further without Alice’s permission (assuming Bob is honest). In Enc step, Since

the Paillier PKE scheme is adopted to encrypt the RNS. The malicious proxy has

ability of modifying the ciphertext without been caught since the paillier PKE

is chosen plaintext attack (CPA)-secure. A scheme against adversary model M2

was developed to avoid this situation. This scheme is discussed in the following

section.

6.2.2. Single-Proxy Construction Against M2. Unlike the Single-

Proxy Basic Construction, this proxy is under adversary model M2. Alice uses a

strongly unforgeable signature (as described in Section 3.4) to sign the ciphertext

and thus validate the RNS. She then provides both the ciphertext and the signature

to the proxy. The proxy’s malicious behavior can now be detected.

Assume a strongly unforgeable, one-time signature scheme Sig = (ζ, S, V )

exists, where ζ is a key generation protocol, S is a message signing protocol, and V

is a signature verifying protocol and a one-time key pair (sk, vk). The construction

detail can be seen as follows:

• Setup (k): This setup is the same as that described in Section 6.2.1.

• KeyGen (k): The keyGen is the same as that described in Section 6.2.1.

• Enc (pkA, mi):Alice proceeds as follows to encrypt a message mi ∈ ZN under

public key pkA, where 0 ≤ i ≤ |D|, |D| is the database size:

(1). Select a one-time signature key pair (sk, vk)← ζ(λ).

(2). Generates random number ri using RNS rs and computes: Ci = E(pkA, mi) =

gmi

A rNA

i mod N2
A.

(3). Encrypts the RNS rs with Bob’s public key pkB: C ′ = E(pkB, rs) =

grsB rNB .
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(4). Computes a one-time signature: σ = S(sk, C ′) on C ′.

Alice stores ciphertexts to the storage and sends (C ′, σ) to P .

• Dec1 (skA, C): This decription is the same as that described in Section 6.2.1

• Dec2 (C,C ′, σ, skB): With input of data ciphertext C, RNS ciphertext C ′

and the signature on C ′, Bob first checks the validity of the ciphertext of

RNS by testing the following condition:

V (σ, vk, C ′) = 1 (6.1)

If valid, Bob decrypts C ′ to get rs, computes ri corresponding to Ci and then

gets the plaintext message mi by using Eq.(3.5): mi =
(Ci(r

NA
i )−1 mod N2

A)−1

N
;

⊥, otherwise.

With strongly unforgeable signature, the validity of ciphertext of RNS can be ver-

ified by Bob and the malicious behavior of proxy can be detected. In one case that

the proxy altered the ciphertext of RNS, Bob will find this behavior by verifying

the Alice’s signature. In the other case that the proxy modified ciphertext of data,

Bob can detect this behavior by checking if decryption result is within the message

domain. This construction further achieved verifible feature and against adversary

model M2. Bob is able to check the validity of RNS by through testing condition

6.1. Further, the signature prevents the proxy from altering the ciphertext will-

ingly without being caught since the signature is strongly unforgeable. We can

detect the behavior of modifying ciphertexts of data, However, theses ciphertexts

are vulnerable to chosen-ciphertext attack (CCA). Then, we need further design

a more secure scheme to protect the data in storage.

6.2.3. Single-Proxy Construction Against CCA . Although we can

detect the proxy’s malicious behavior of modifying ciphertext of data, we have no

way of preventing that happens in the above schemes. Here, we provide a more
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secure PRE scheme preventing modification over ciphertext of data. By applying

the similar mechanism to protect the RNS as in Section 6.2.1, we further protect

data by adopting signature scheme. Therefore, all the ciphertexts in the storage

were signed by Alice using strongly unforgeable signature scheme before they were

stored. The detail of construction is described as follows:

• Setup (k): This setup is the same as that described in Section 6.2.1.

• KeyGen (k): The keyGen is the same as that described in Section 6.2.1.

• Enc (pkA, mi):To encrypt a message mi ∈ ZN under public key pkA, where

0 ≤ i ≤ |D|, |D| is the database size, Alice proceeds as follows:

(1). Select a one-time signature key pair (sk, vk)← ζ(λ).

(2). Generates random number ri using the seed rs and computes: Ci =

E(pkA, mi) = gmi

A rNA

i mod N2
A.

(3). Encrypts the seed rs with Bob’s public key pkB: C ′ = E(pkB, rs) =

grsB rNB .

(4). Computes a one-time signature: σr = S(sk, C ′) on C ′ and σi = S(sk, Ci)

on Ci.

Alice stores ciphertext and their signatures (Ci, σi) to the storage and sends

(C ′, σr) to P .

• Dec1 (skA, C): This decription is the same as that described in Section 6.2.1

• Dec2 (C, σ, C ′, σr, skB): With input of data ciphertext C, RNS ciphertext C ′

and signatures on C and C ′, Bob first checks the validity of the ciphertexts

by testing the following conditions:

V (σ, vk, C ′) = 1V (σi, vk, Ci) = 1 (6.2)
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Table 6.1: Properties of proposed single-proxy constructions

Constructions Basic Against M2 Against CCA
Collusion safe Yes Yes Yes
Non-interactive Yes Yes Yes
Unidirectional Yes Yes Yes
Key optimal Yes Yes Yes
Non-transitive Yes Yes Yes
Verifiable No Yes Yes
CCA secure No No Yes

If valid, Bob decrypt C ′ obtains rs and computes ri corresponding to Ci and

then gets the plaintext message m by Eq.(3.5): m =
(Ci(r

NA
i )−1 mod N2

A
)−1

N
; ⊥,

otherwise.

In this construction, the ciphertexts of data and the ciphertext of RNS are signed

by Alice, the data owner, using strongly unforgeable signature before they were

distributed. Because the signature is unforgeable, the adversary can do nothing

to compromise the ciphertext and further the data. Therefore, this construction

is CCA secure. Further analysis can be seen in section 6.3.

6.2.4. Multi-Proxy Construction with Searchable Feature. To meet

some certain needs, like searchable feature, we assume there are multiple semi-

honest proxies (here is two proxies P1 and P2, where P2 controls the distributed

file storage, and P1 stores the random number seed (RNS)). We first gives the

basic construction without strong security, which will be further improved in the

following section. To decrypt the ciphertexts from P2, Bob receives the plaintext

of RNS, which is used to generate random number, a randomization factor in the

Paillier PKE scheme, from P1. With RNS, Bob computes random number corre-

sponding to the ciphertext, then obtains the message by decrypting the ciphertext

following Eq.(3.5).

• Setup (k): This setup is the same as that described in Section 6.2.1.

• KeyGen (k): The keyGen is the same as that described in Section 6.2.1.
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• Enc (pkA, m): Alice encrypts message m in such a way C = gmA r
NA and

stores C in the storage and sends RNS rs to P1.

• Dec1 (skA, C): With skA, Alice can decrypt the ciphertext C by computing

as Eq.(3.2)

• Dec2 (C, rs): With input of ciphertext of data C and RNS rs, Bob is able

to compute r corresponding to C, and further decrypts the ciphertext by

computing m = L(C(rNA)−1) mod NA as Eq.(3.5)

Since we assume P1 and P2 are semi-honest, they follows the protocol and learns

nothing about the data and secret key of Alice except the RNS and the ciphertext

of data. Although, the RNS can be used to decrypt the ciphertext indirectly, the

data will be in a safe box as long as P1 and P2 are not colluding. Therefore, the

security of the above construction is semantic secure which comes from the Paillier

PKE scheme.

Followed the same assumption as the above multi-proxy construction, we

further design a searchable PRE scheme. In practice, the delegatee Bob may have

to search for a certain kind email, for example, emails related to classes, to decrypt

in email forwarding scenario. In this case, the construction should achieve search-

ability. Originated from [62], we keep the encryption of message and encryption of

keyword separate so that we can have the flexibility to select which standard PRE

and PRES (Searchable PRE) schemes to be used for satisfying the requirements

of the actual applications. Here, we constructed an efficient PRES scheme based

on Paillier PKE scheme.

Each ciphertext of message is associated a ciphertext of keyword w en-

crypted under the data owner Alice’s public key pkA. When the Bob chooses to

decrypt one of the ciphertext, he/she encrypts the query q with pkA and sends

to P2 to request this ciphertext. Then P2 computes the difference Cdiff between
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the keyword and the query, and based on the communication result with P1, P2

response with requested ciphertext or nothing.

• Setup (k): This setup is the same as that described in Section 6.2.1.

• KeyGen (k): The keyGen is the same as that described in Section 6.2.1.

• Enc (pkA, w): Alice encrypts keyword w in such a way Ckey = gwAr
NA asso-

ciated with the ciphertext of data and sends RNS rs to P1.

• Query (pkA, q): Bob generates the query by encrypting word q with Alice’s

public key, and sends Cq = E(pkA, q) to P2.

• Test (Cq, Ckey): With input of query Cq and keyword ciphertext Ckey, P2

computes Cdiff = Ckey ∗ C−1
q , then randomizes Cdiff and gets C ′

diff . P2

sends C ′
diff to P1 who can decrypt it. P2 response with requested ciphertext

Cdata or nothing based on the communication result with P1.

• Dec1 (skA, Cdata): With skA, Alice can decrypt the ciphertext Cdata by com-

puting Eq.(3.2)

• Dec2 (Cdata, rs
′): With input of Cdata and rs′ (different from rs, rs′ is used

to generate random number for encrypting data). Then, Bob generates r

corresponding to Cdata, and further decrypts the ciphertext by computing

m = L(Cdata(r
NA)−1) mod NA as Eq.(3.5)

The computation of Cdiff can be based on the exact match or similarity.

In the exact match based, the matching requirement is that the query and the

keyword are the same, that is, Cdiff is the ciphertext of 0, while in similarity

based, the matching requirement is that the matched one is with highest similarity.

Here, we provide protocols to compute cosine similarity which is a popular way

of measuring the similarity (see section 3.5). With cosine similarity, the highest

value means the best match. In order to better using cosine similarity method, we
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preprocess the keyword and query into vectors with the same length l and encrypt

them component wise using Paillier PKE.

6.3. SECURITY ANALYSIS

In this section, we mainly analyze the security of our proposed CCA-secure

construction in section 6.2.3. The following game is played by a challenger c and

an adversary Λ:

• KeyGen: The challenger c executes the keygen algorithm nh times resulting

a set of public/private key pairs (pkh, skh) and runs the keygen algorithm for

nc times again to obtain a set of corrupted public/private key paris (pkc, skc).

Then c sends the skc and all pk = (pkh ∪ pkc) = pkii∈[1,nh+nc].

• Step 1: Adaptively query decryption oracle: the adversary adaptively sends

decryption request (pk, C)to c, the decryption oracle responds with the de-

cryption of C using the sk with respect to pk

• Challenge: After the adversary Λ stops the step 1, it chooses two equal-

length plaintexts m0 and m1 from plaintext domain and a target public key

pk∗, then sends them to the challenger c. The challenger c randomly select

b←R {0, 1}, and sends C∗ depending on pk∗ and mb to the adversary Λ.

• Step 2: The adversary Λ continues to issue decryption queries as in step 1.

• Guess: Λ outputs the guess b′ ∈ {0, 1}.

The public key in input from the adversary should meet the following constraints:

(1). All public keys in the input should be generated by the challenger

(2). The target public key pk∗ should be from pkh sets.

(3). After the challenge step, Λ cannot query the decryption oracle with C∗
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Definition 4 CCA-secure scheme: We define the adversary Λ’s advantage in at-

tacking a scheme as

AdvΛCCA = |Pr[b = b′]− 1

2
| (6.3)

where the probability is taken over the random b chosen by the challenge and b′

chosen by the adversary. The scheme is said to be (t, nu, nc, qd, ǫ)− CCA secure,

if for any polynomial t-time adversary Λ who queries at most qd times over the

decryption queries, we have AdvΛCCA ≤ ǫ.

Theorem 1 If the signature is strongly unforgeable and assumptions for Paillier

PKE holds, our CCA-secure construction is (t, nu, nc, qd, ǫ)− CCA secure.

6.4. SECURE DISTRIBUTED STORAGE SYSTEM

In PRE scheme, an untrusted Proxy is given a transformation key to trans-

form ciphertexts under Alice’s public key into another ciphertext that Bob can

decrypt with his secret key, without the Proxy knowing the plaintext. Because

of the nature of this transformation, PRE scheme can be applied to many ap-

plications, such as access to distributed storage [9]. A storage system that uses

an untrusted proxy (access control server) to manage accesses to encrypted data

stored on a distributed, untrusted storage. We use proxy re-encryption to allow

for access control without granting full decryption rights to the proxy.

Overview : In the storage system, a data owner stores all the encrypted

data to the distributed, untrusted storage and selects which users, say delegatee

user, should have right to access to the data and gives the appropriate delegation

rights to the proxy by distributing the encrypted RNS under delegatee’s public

key to the proxy. The delegatee users on client machines wish to get access to the

encrypted confidential data stored in the storage.

Access Control using CCA-secure PRE : The delegatee users download the

encrypted content from the storage, then communicate with the Proxy to get
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the RNS used to protecting the data. Because the proxy does not possess the

corresponding secret key, it cannot be corrupted so as to gain access to the RNS

necessary to access encrypted data. The delegatee has the ability to verify the

validity of ciphertext of RNS, and the ciphertext as well, using delegator’s public

key, which preserves the confidentiality of data. Moreover, the secret key used to

decrypt the data remains offline, which cannot be corrupted in any kind of attack.

The architecture has significant advantages over systems with trusted ac-

cess control servers. The key material stored on the proxy cannot be used to

access stored data directly, which reduces the need to absolutely trust the proxy

and diminishes the proxy’s value to attackers. The secret key itself only required

by a content owner when encrypts the confidential data at the begining and can

therefore be stored safely offline where it is less vulnerable to compromise.
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7. PRIVACY-PRESERVING USER AUTHENTICATION

The protection of user privacy when performing web-based transactions

has become an important factor in the acceptance and widespread use of on-

line location based services, such as navigation, site recommendation, finding the

nearest restaurant or gas station. Service providers generally control user access

to their on-line resources and impose accountability of user actions. Under these

situations, a user needs to prove her identity or the possession of a certificate which

may contain a pseudo identity of the user or the necessary attributes required for

accessing certain location based services. Since a user’s physical location can

reveal the actual identity of the user, it is in the best interest of the user not to be

tracked by service providers or peer users. In many non-critical scenarios, a service

provider may only need to know whether the user is authenticated or not, but does

not need to know the user’s actual identity. Thus, user privacy should be preserved

during authentication in that their identities should be kept private in order to

avoid unlawful tracing and user profiling. More specifically, regarding location

based services, these entities may cause privacy concerns: (i) the authentication

server(s) and (ii) service providers. The authentication servers and the service

providers may obtain the behavior pattern or track the user locations according

to user authentication records to access particular services. We refer to the privacy

concern caused by the server as the server-wise privacy and the privacy concern

caused by peer users as the peer-wise privacy. Ideally, we should preserve both

server-wise for each mobile user.

7.1. MAIN CONTRIBUTION

To overcome the shortcomings in the well-known AC system [63, 64], we

propose a novel anonymous credential or privacy-preserving authentication system
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(namely RAU) that truly preserves user privacy while still ensures traceability.

The proposed protocols of the system are designed based on homomorphic en-

cryption [2], and they allow each user to self-generate any number of randomized

authenticated identities to prove his or her legal status when communicating with

the service providers of location based services. In fact, users will be able to easily

use a fresh pseudo or randomized identity for each newly established communica-

tion. These randomized identities can be verified through the collaboration of a

pair of authentication servers while each authentication server would not know the

real identity of the authentication requester. In this way, we achieve the server-

wise privacy preservation. For traceability, the pair of authentication servers need

to collaboratively execute a protocol to reveal the identity of a malicious user

without disclosing the identities of other trustworthy users. We summarize the

advantages of our proposed authentication protocol as follows.

• Under our anonymous authentication system, users’ real identities are hid-

den from each individual party including authentication servers and service

providers.

• Our system achieves a set of desired security and privacy properties such

as unforgeability, unlinkability and traceability. It is robust against various

types of attacks (discussed in Section 7.3).

• Our approach no longer has the key revocation problem neither the costly

group management. Specifically, users using the proposed protocol no longer

need to preload a huge number of keys (i.e., pseudonyms) or rely on others

(i.e., peers or infrastructure) to generate the pseudonyms. Our experimental

study demonstrates the proposed protocol is very efficiency.

• Our protocol does not require users to be equipped with high performance

computing equipment since almost all computations are outsourced to the
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Table 7.1: System comparison

Properties AC RAU

Against the replay attack × √

Ease of credential revocation × √

Privacy-preserving traceability × √

Preventing credential sharing × √

Non-interactive credential issuers
√ ×

No collusion issues during authentication
√ ×

servers and the users only need to generate several encryptions and random

numbers from a pre-defined domain.

• Since anonymity revocation needs not to be done as a real-time application

(due to court orders), our protocol provides reasonable computation time

(as presented in Section 7.4).

• Our approach does not have the credential sharing problem, and it is secure

against the replay attack.

Table 7.1 summarizes the advantages of our approach compared with the baseline

AC system proposed in [63, 64].

7.2. PROPSED RANDOMIZED AUTHENTICATION (RAU)

In this section, we present the proposed privacy-preserving authentication

system. We first discuss the system setup and give an overview of the related

protocols. Then we elaborate on the details in each protocol of the authentication

system.

The proposed authentication system consists of three kinds of entities: au-

thentication servers, users and service providers. In the current version, the system

has two authentication servers, namely Registration Server (RS), and Verification
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Server (VS). The two servers collaborate with each other to conduct privacy-

preserving user authentications, and hence none of them is able to track the user

alone.

In addition, we assume that the users and the service providers can com-

municate with the authentication servers.

When designing each specific protocol, we aim to achieve the following

security requirements of the anonymous authentication system:

• User authentication: we can verify if a user has a legitimate right to obtain

the service from a service provider.

• Preserving user anonymity: the real identity of a legitimate user should not

be known by other entities (e.g., peer users and service providers), and these

entities should not be able to track a user’s behavior by linking multiple

authentication messages to the same user.

• Providing traceability: if necessary and under lawful request, the two au-

thentication servers will be able to collaboratively reveal the real identity of

a malicious user.

Figure 7.1: An Overview of the Data Flow
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Table 7.2: List of Notations

Notation Meaning
RAU Randomized Authentication
RS Registration Server
VS Verification Server

E(x,r) Encrypt x using RS’ public key
D(y) Decrypt the ciphertext y
IDu Real identity of user u
RIDu Randomized identity of user u
riu Random number generated at ith round

The proposed authentication system has three main phases: (1) user reg-

istration, (2) user authentication, and (3) identity tracing. Figure 7.1 illustrates

an overview of the data flow in the system. At the beginning, users register at the

RS server. The RS server shares part of the information of users’ pseudo identities

with the VS server. Whenever users want to communicate with others, they can

randomly generate pseudo identities which can be verified by the VS server. If

there is any dispute, the two servers will conduct a tracing protocol to figure out

the real identity of a malicious user. The detailed steps in each phase will be

presented in the following subsections. For clarity, Table 7.2 lists the frequently

used notions in this paper.

7.2.1. User Registration. To begin with, the RS server generates its

own public-private key pair using the Paillier encryption scheme, and the public

key is known by all entities in the network. Users will always communicate with

the servers through a secure channel. Specifically, a session key between a user

u and a server can be generated using any well-known method, e.g., public key

infrastructure utilizing the servers’ digital certificate. The remaining communica-

tion between the server and the user will be encrypted using the session key only

known to them. Similarly, the communication between the two authentication

servers is also via a secure channel.
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User registration is an on-going process. That is, a new user can join

the system at any moment. To register, a user u sends certain identification

information (IDu) such as driver license number∗ to the registration server (RS)

via the secure channel. If needed, the RS server can further verify u’s identification

information via a third party (e.g., an agency who performs background check for

credit card applications or visas). How to achieve robust identify verification is out

of the scope of this paper, but the RS server can use any existing solutions. Note

that a user’s identification or identifiable information is only needed to achieve

traceability; otherwise, any value can be used as the seed to generate the initial

randomized ID.

The RS server computes an initial randomized authentication ID (RID0
u)

for user u as follows:

RID0
u = E(IDu, r

0
u) (7.1)

where E(IDu, r
0
u) is a Paillier encryption of the identity of u with a random number

r0u using the RS’ public key. RID0
u is sent to both user u and the verification

server (VS). Since RID0
u is encrypted using the RS server’s public key, only the

RS server is able to decrypt it and reveal the real identity of the user. The

actual identity of the user is always kept secret from the verification server during

the lifetime of the user. After user u is registered, both the RS and VS servers

store the user’s initial randomized authentication ID RID0
u in their local databases

DBrs and DBvs respectively. The plain texts of the real identities are discarded

by the RS server to prevent attackers from hacking the system and stealing the

sensitive information. The registration protocol is illustrated in Figure 7.2. Note

that all messages are encrypted using the corresponding session keys between the

communicating parties. For clarity, we only include the content of the messages

in the figure.

∗Here we use driver license number for illustration only. In practice, we can use more complex
information to verify a user’s identity to prevent an adversary from guessing.
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Figure 7.2: User Registration

At the end of the registration, a user creates an account with the RS server

which can be authenticated via normal password or public key authentication

system. This account will allow the user to communicate with RS for generating

a new randomized ID. (See Section ?? for more details.)

7.2.2. User Authentication. Here we present the authentication proto-

col for a service provider Bob to verify if Alice is a legitimate user. The authen-

tication protocol consists of three phases: (i) identity validation, (ii) ownership

validation, and (iii) generation of randomized authentication ID.

(1) Identity Validation. Suppose Alice uses her randomized authentication

ID RIDi
u1 to initiate the identity validation process with Bob. The following steps

will be performed.

(a) Generating a shared random number

After establishing a secure channel, Alice executes the Diffie-Hellman key ex-

change protocol with Bob to mutually generate a shared random number ku1u2
.

The protocol guarantees that the probability of other two users obtaining the

same random number ku1u2
is close to zero as long as one of the users follows

the protocol. In other words, ku1u2
is unique for each pair of users each time

they execute the protocol. The use of this random number is to prevent the

replay attack (discussed in Section 7.3).

(b) Setting up a pending request by Alice

Before sending RIDi
u1 to Bob, Alice will first register a pending authentication

request at the VS server by sending the message: pu1
= [RIDi

u1
, ku1u2

]. The
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VS server will search its database to look for RIDi
u1 . If RIDi

u1 exists, then

the VS server will check if there is a duplication of this RIDi
u1 in the pending

request table (to avoid the replay attack, described in Section 7.3). If there is

no such randomized ID in the pending request table, the VS server will record

this pending request. On the other hand, if it does not exist in the database

or there is a duplication in the pending request table, the VS server will deny

the authentication request.

(c) Exchanging the randomized ID

Upon receiving the acknowledgment of successful registration of the authen-

tication request from the VS server, Alice sends RIDi
u1 to Bob.

(d) Verifying the randomized ID

For Bob to verify the received RIDi
u1
, Bob forwards this randomized ID to-

gether with the random number ku1u2
to the VS server. If the VS server finds

a pending authentication request that matches the message sent by Bob, the

VS server will inform Bob that this is a valid ID. Otherwise, the VS server

will inform Bob that authentication fails.

Verification Server

Acknowledgement

RIDi
u1

valid/not valid

u2u1

ku1u2

RIDi
u1
, ku1u2

RIDi
u1
, ku1u2

RIDi
u1

Figure 7.3: Identity Validation

The main steps of identity validation are shown in Figure 7.3. In addition,

Alice can perform concurrent authentication sessions with other service providers.

For example, suppose Alice wants to contact with three other service providers
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(e.g., u3, u4 and u5), Alice can ask RS to generate three new randomized authenti-

cation IDs (see Section ?? for technical details) and start three additional sessions

with VS and continues with the rest of the steps discussed above with each user.

Note that each session is established with a different session key generated between

each pair of users at step (a) of the identity validation protocol.

(2) Ownership Validation. Once the service provider Bob confirms the

validity of RIDi
u1
, Bob may need to further verify whether Alice is the real owner

of the randomized ID by checking if RIDi
u1

is currently stored at VS (i.e., has yet to

be used by Alice). This step prevents an adversary to use RIDi
u1

to authenticate

his or herself with other service providers to prevent common attacks such as

the replay attack and the credential sharing problem (analyzed in Section 7.3).

Note that this step is optional and not necessary if the user and the servers’

systems are reasonably secure, the security of the communication channels cannot

be tempered, or service providers are trustworthy.

(a) Generating a random challenge

Bob selects two random values c and r, and sends the following value v1 to

Alice.

v1 =
(

RIDi
u1

)c ∗ E(0, r) (7.2)

where c is a challenge for Alice to solve, and r can be any random number

just for performing the encryption of 0. The purpose of multiplying with

E(0, r) is to randomize
(

RIDi
u1

)c
, so that it is computationally infeasible for

an adversary to compute the discrete log of
(

RIDi
u1

)c
to obtain c (Section ??

provides detailed security analysis on this regard).

(b) Solving the random challenge

Only if Alice is the owner of the real identity, Alice will be able to compute

the encrypted value of the challenge c. Specifically, Alice first encrypts the

multiplicative inverse of her real identity ID−1
u1

used during the registration
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phase. Then, Alice computes a value v2 by computing v
ID−1

u1

1 . According

to the additive homomorphic property of the underlying encryption scheme,

value v2 is equal to the encrypted value of c as deduced below:

v2 = v
ID−1

u1

1

=
((

RIDi
u1

)c ∗ E(0, r)
)ID−1

u1

= E(c ∗ IDu1
∗ ID−1

u1
, r′)

= E(c, r′)

(c) Verifying Ownership

Then, Alice sends v2 along with ku1,u2
to VS who will ask the RS to decrypt

v2 = E(c, r′) and obtain a decrypted value D(E(c, r′)). In addition, Bob needs

to send c and ku1,u2
to VS in parallel. VS will forward the v2 and c with the

same ku1,u2
to RS. Then, RS will decrypt v2 = E(c, r′) and get c. Since E(c, r′)

or c does not contain any identity information about Alice, the RS server does

not know whose identity that Bob is trying to verify. At last, RS will check if

D(E(c, r′)) equals to c. If yes, RS informs VS that the validation succeeded,

and no, otherwise. Then VS will notify Alice and Bob the corresponding

validation result.

Figure 7.4 depicts the main messages exchanged during this validation phase. For

the above scheme to work, IDu1 needs to have a multiplicative inverse in ZN . Since

N = pq, and p and q are very large prime numbers, this requirement can be easily

satisfied in our problem domain.

(3) Generation of Randomized Authentication ID. In our system, each ran-

domized authentication ID is only used once so that a user social behaviors or

locality patterns will not be tracked by any party. After Alice obtained services

from Bob, Alice needs to acquire a new randomized authentication identity RIDi
u1

from the RS server for the next service request.
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E(c, r′)

(

RIDi
u1

)c ∗ E(0, r)

D(E(c, r′))

D(E(c, r′))

E(c, r′)

u1 u2

Figure 7.4: Ownership Validation

(a) Generating a new randomized ID

After Alice informs RS its intention to obtain a new randomized ID, the RS

server can produce one based on the last randomized ID associated with Alice

according to Equation 7.3. (As stated at the end of Section 7.2.1, a user creates

a on-line account with the RS server at the end of the registration phase. This

account links the user and his or her last randomized ID together. Thus, the

user does not need to send his or her old randomized ID to generate a new

one.)

RIDi
u1

= RIDi−1
u1
∗ E(0, riu1

) (7.3)

The riu1
value is randomly generated for this ith request from u1 (or Alice).

Based on the addition property of the homomorphic encryption (Equation

??), the new randomized ID is again the encryption of the real identity which

can be deduced as:

RIDi
u1 = E(IDu1 , r

i−1
u1

) ∗ E(0, riu1
) = E(IDu1 + 0, r′)

It is worth mentioning that by leveraging this addition property, the generation

of new randomized ID using the above Equation is more efficient and secure

than directly encrypting the real identity again since there is no need for the

RS server to keep the real identity after the registration phase. This is why

the RS server should delete a user’s real identity for added security protection,
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under the assumption that the private key is kept in a temper-proof storage

such as a secure co-processor. As a consequence, even if the RS server is

hacked, and private key is still safely protected from the attackers. Without

the private key, the attackers cannot decrypt the randomized IDs to discover

a user’s real identity.

(b) Storing the new randomized ID

The RS server sends the newly generated randomized ID to both Alice and

VS. When the VS server receives the new copy of randomized IDs, it will not

be able to link each new ID to its previous version.

Since correlating a user’s requests to location based services can reveal the user’s

real identity, it is important to note that the main purpose of generating a new

set of randomized authentication IDs is to prevent VS and service providers from

tracking to which services a user has been authenticated. Because each randomized

ID is only used once, service requests cannot be linked to the same user. As a

result, the user’s real identity is protected.

Although RS knows the number of times a user has been authenticated, the

RS server still cannot trace the locations of the user since the server does not know

which service providers have been in contact with the user. Without the location

information, the RS server cannot discover the real identity of the user when the

user only use non-identifiable information in the user registration phase. (Recall

that when a user registers with the RS server as discussed in Section 7.2.1, the user

can submit either her real identity or some random information. The real identity

is merely used for the purpose of traceability which is application-specific.)

7.2.3. Identity Tracing. In some applications, disputes may occur due

to various reasons. Sometimes a third-party law enforcement authority may want

to know immediately the real identity of a suspect user. Sometimes there may be

a need to discover the authentication history of a suspect user. Thus, we propose

both real-time identity tracing and historical identity tracing.
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The real-time identity tracing is easy to achieve. The law enforcement

authority submits the tracing request that contains the suspect user’s randomized

authentication ID to either the VS server or the RS server. If the request is received

by the VS server, the VS server will forward the suspect user’s randomized ID to

the RS server. Upon receiving the suspect user’s randomized ID, the RS server

uses its private key to decrypt the randomized ID and reports the real identity to

the law enforcement authority.

In terms of historical identity tracing, the law enforcement authority cap-

tured one randomized ID of the suspect user and wants to know the authentication

history of the user to figure out the user’s behavior in the network. The law en-

forcement authority sends the randomized ID of the suspect user to both RS and

VS server. The RS server maintains a list of authentication history of all users.

For example, each user has a list of randomized authentication IDs that have been

or are planning to be used. The VS server maintains all valid authentication IDs

and their targeted service providers or peer users like Bob in our example.

First, the RS server finds a match in a user’s list. If there is a match,

the list of randomized IDs will be provided to the law enforcement authority who

will subsequently send these IDs to VS. The VS will return the authority the

service providers who have provided services to the user with these randomized

ID. Based on the location of the service providers, the authority may learn where

the suspect has been before. To provide this kind of historical tracing, the only

thing needs to be changed is that the RS and VS servers need more memory

space to store previously used randomized IDs. In addition, when the VS server

performs identity validation, it needs to make sure, old IDs cannot be used again.

These modifications can be easily incorporated into our current scheme.

7.2.4. Credential or Identity Revocation. Identity revocation is very

efficient in our system. Once a suspect user is confirmed to be malicious, the RS

and the VS server just need to remove this user’s randomization ID from their
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databases. Any subsequent authentication request for this malicious user will fail

as no matching record will be found by the server any more.

7.3. SECURITY ANALYSIS

In this section, we analyze the properties of our proposed authentication

system and discuss its robustness against various types of attacks The proposed

authentication protocols have the following three properties: (i) unforgeability, (ii)

full privacy preservation, and (iii) traceability. These properties can be analyzed

based on the fact that the Paillier encryption scheme is semantically secure [2].

That is, for any m ∈ ZN , c1 = E(m, r1) and c2 = E(m, r2) are computationally in-

distinguishable (i.e., c1 6= c2) if r1 and r2 are randomly chosen and N is sufficiently

large (e.g., 1024-bit). Please note that even though c1 6= c2, D(c1) = D(c2) = m

always holds because the randomness used in the encryption function is removed

by the decryption function.

In addition, we also need to prove the challenge c issued by Bob in the

ownership validation protocol cannot be discovered by a malicious user who does

not possess the corresponding secret or the real identity. Our proof is based on

the formal definition of computational indistinguishability.

Combining with the semantic security of the Paillier encryption function

adopted in this paper, we are able to prove it is computationally infeasible for a

malicious user to discover c. Next we will present this proof first.

(1) Discoverability of the Challenge in Ownership Validation. Equation 7.2 can

be rewritten as v = (E(x, r1))
c ∗ E(0, r2). As discussed previously, since we do

not know if it is hard to compute the discrete log of (E(x, r1))
c to discover c, the

purpose of multiplying (E(x, r1))
c with E(0, r2) is to make the discovery of c from

v computationally infeasible without knowing the secret value x. The following

claim holds:
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Claim 1 Suppose the encryption key size is sufficient large (i.e., N is at least

1024-bit). Without knowing the secret value x, a malicious user is computationally

infeasible to discover c from v where v = (E(x, r1))
c ∗E(0, r2).

Our proof follows from the semantic security property of E (the Paillier encryp-

tion function). Suppose the claim is not true, then there exists a probabilistic

polynomially bounded algorithm A that can discover c from v. Now A can be

used to distinguish the two cipher texts v = (E(x, r1))
c ∗ E(0, r2) = E(cx, r) and

v′ = E(x, r′) in polynomial time with hundred percent certainty. Thus, we can

claim that v and v′ are computationally distinguishable. On the other hand, since

E is semantically secure [2], v and v′ are computationally indistinguishable. This

contradicts that A can distinguish between v and v′. Therefore, the assumption

of the existence of A is invalid. We can conclude that the above claim is true and

c cannot be discovered by a malicious user without knowing the secret value x.

The proposed ownership validation protocol works correctly and securely.

(2) Unforgeability. Our authentication protocol guarantees that no one can

use the randomized IDs that does not belong to him/her. Under the assumptions

that the private key is kept securely at the RS server side, the only option left

for the attacker to impersonate legitimate users is to exploit their randomized

authentication IDs. There are several possible ways for an attacker to obtain a

randomized authentication ID of a user. However, we show in the following that

the attacker would not be able to use this ID as its own for authentication purpose.

(3) The Replay Attack. Although an attacker (e.g., a malicious service

provider) can obtain another user’s valid authentication ID during authentication,

the attacker cannot directly use the received authentication ID using another

parallel authentication session since the ID is currently in use, and the VS server

can detect it during the step (b) of the identify validation phase.

If the attacker does not use the randomized ID in parallel with Alice, the

attacker still cannot use it to perform user authentication successfully because each
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ID is allowed to be used only once and is discarded after the use by the VS server.

Even if the attacker tries to re-randomize the received ID using a new random

number, the resulting ID will not match any valid authentication ID stored in

the VS server. This is because the attacker does not know the randomization

seed used by the real owner of the ID, and hence the attacker will not be able to

generate the same series of randomized IDs that match the real ones.

(4) The Replay Attack with New Randomized IDs Previous discussion is

focused on the used randomized IDs. We now discuss the case when an attacker

steals new or never used randomized IDs from a user, the VS or RS server. Since

these IDs have not been used by the real owner, the attacker will be able to

go through the user authentication phase, but will be caught at the ownership

validation phase. This is because the attacker does not know the real identity of

the ID owner or the initial seed used in the user registration phase; hence, the

attacker cannot discover the random number included in the challenge message

according to Claim 1 proved previously.

(5) Full Privacy Preservation. Our authentication protocol provides full

privacy preservation in that it guarantees both server-wise and peer-wise privacy

for the users in terms of both anonymity and unlinkability. Considering the peer-

wise privacy, under the proposed protocol, a user always self-generates a new

randomized authentication ID when establishing a new communication session.

Since the encryption scheme we adopted is semantically secure [2], it is compu-

tationally infeasible for peer users to know the real identity of others and to link

different communication sessions or randomized authentication IDs to the same

user as long as the size of the encryption key is large enough (such as 1024 bit).

As for the VS server, it does not have the secret key to decrypt the random-

ized IDs stored in its database, and hence it does not know the real identity of the

user who submits authentication request (again here we assume the encryption

key size is sufficiently large). Due to the fact that the IDs are randomized, VS
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cannot link different RIDs to the same user. As for the RS server, since it does

not handle any authentication request that contains randomized IDs during the

authentication phase, the RS server does not know which user or service provider

is sending the authentication request. Therefore, our protocol prevents the RS

server from tracking the locations of the users.

(6) Traceability. Traceability refers to the ability to reveal a user’s real

identity requested by the law authorities. This is a seemingly conflicting require-

ment with respect to the privacy preservation goal of our system. We achieve this

by proposing the collaborative identity tracing protocol as presented in Section

7.2.3. The identity tracing protocol is capable of revealing a suspect user’s real

identity and his/her whole authentication history to the law authorities without

violating the privacy of other legitimate users.

(7) Preventing Credential Sharing. The credential sharing problem under

the proposed RAU system can be described as follows. Suppose a legitimate user

Alice possesses a valid randomized authentication ID RIDi
u1 and Bob is not a

legitimate user (e.g., Bob did not pay service fees). Credential sharing means that

Alice gives RIDi
u1

to Bob so that Bob can obtain the needed service using RIDi
u1
.

To prevent credential sharing, the RAU system needs to require that Alice

provides her real identify or personal identifiable information, such as social se-

curity number (SSN), during user registration phase (discussed in Section 7.2.1).

Here we assume that the personal information (denoted by x) for Alice is extremely

important and cannot be shared with other users. Under this assumption, even

if RIDi
u1 is given to another user Carl, Carl cannot pass the ownership valida-

tion phase without knowing x. As a consequence, credential sharing problem can

be easily solved under the RAU system assuming that Alice does not share her

personal identifiable information x.

(8) Different Configurations of RAU. We have discussed all the features

and functionalities of the RAU system. To be more clear, here we summarize the
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choices that need to be made when setting up the RAU system to achieve the

desired features. The choices are related to non-identifiable or identifiable infor-

mation for user registration and whether or not to perform ownership validation.

• Identifiable vs. non-identifiable information

As stated in Section 7.2.1, a user can provide either identifiable or non-

identifiable information during user registration phase. A user needs to

provide identifiable personal information such as SSN to achieve

(1) traceability

(2) prevention of credential sharing

• Ownership validation

As acknowledged in the previous section, the ownership validation phase is

optional. The ownership validation is required if we want to eliminate

(1) the replay attack

(2) the credential sharing problem

7.4. EXPERIMENTAL STUDY

Please note that our protocol does not require the users be equipped with

high performance computing equipment. The following hardware specification is

used to simulate the servers, but not the hardware carried by a mobile user. We

implemented the RAU authentication protocol in C language with GMP library,

and run the tests on a PC with Intel Xeon CPU X5675 @3.07GHZ x6 and 12GB

memory. We evaluate the efficiency of the total authentication process in terms of

communication and computation costs. We did not include the transmission and

propagation delays since they depend on specific network configurations.

(1) User Registration. The main computation cost involved in user reg-

istration is the generation of the initial randomized ID for the new user. Each
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Figure 7.5: Running time of AC protocol

randomized ID is 2048 bits. The communication complexity of this phase is 4

steps:

• A user sends his or her real identity to RS,

• RS sends the received identity to background check authority,

• The authority sends back the verification result to RS,

• RS generates the initial random ID for the user.

The message complexity is 4l (l = 1024) where l denotes the encryption key size.

The computation complexity is 1 exponentiation. In the experiment, we observed

that the randomized ID generation time is less than 1.9ms per user.

Figure 7.6: Running Time of RAU protocol
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(2) User Authentication. Recall that the user authentication protocol con-

sists of three phases: identity validation, ownership validation and randomized ID

generation. Note that not every phase is required for each user authentication.

The ownership validation phase is optional. Thus, the efficiency of the identity

validation phase is important. As reported later in this section, all three phase

combined take about 11ms. In addition, the average latency for a 4G network

(e.g., Verizon) is 30ms. Identity tracing is very efficient, and it only requires

several encryption operations.

The AC protocol [63] uses zero-knowledge proof to achieve privacy-preserving

user authentication. Being the best among the exiting solutions, that scheme

achieves most criteria for anonymous authentication defined in this paper. Here

we compare its efficiency with our protocol. In order to have the same security

guarantee as our proposed RAU protocol, we need to include the running time for

both credential issuing and verification phases. We implemented the AC protocol

under the same computing environment as RAU.

The running time of each phase of both protocols are given in Figure 7.5

and Figure 7.6. (The running time of historical tracing in our protocol is not

shown here since it is about 3490ms, which is hard to present clearly on the figure

with other phases.) The running time for both protocols are also compared in

Table 7.3. According to the table, 10.7ms running time includes all three phases

of RAU. RAUα represents the situation where the ownership validation phase is

omitted. RAUβ represents the situation where the request for and the generation

of new randomized ID, denoted by RIDnew, are performed offline. As we can see,

the proposed protocol is considerably more efficient than the AC protocol.

The communication complexity of showing credential to verifier in the AC

protocol using zero-knowledge proof contains 5 steps:

1. a user sends an initial request to the verifier
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Table 7.3: Running time

Protocol Time

AC 13ms
RAU 10.7 ms
RAUα 4 ms
RAUβ 2.1ms

2. the user sends his or her anonymous credential to the verifier (if necessary,

the user should wait for the acknowledgment of the initial request from the

verifier which adds one more step)

3. the verifier sends a challenge to the user

4. the user sends the response of the challenge to the verifier

5. the verifier sends an acknowledgment to the user.

The message complexity is 14l bits. The computation complexity of showing

credential is 9 exponentiations.

Our scheme improves both communication and computation complexities.

The communication complexity of our RAU scheme contains 6 steps:

1. Alice and Bob mutually generate a session key

2. Alice sends a pending authentication request to VS

3. Alice sends an authentication request to Bob (if necessary, Alice should wait

for the acknowledgment from VS before communicating with Bob which adds

one more step)

4. Bob sends the authentication message to VS

5. Alice requests for a new randomized ID, RIDnew

6. RS sends RIDnew to Alice, and in parallel, RS sends RIDnew to VS.
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Table 7.4: Complexity RAU vs. AC

Protocol Rounds Message size exponentiations
AC 5 14l 9

RAUα 6 9l + 512 1
RAUβ 4 7l + 512 1

The message complexity is 9l + 512 bits, and the computation only takes one

exponentiation. The last two steps can be done offline which makes our protocol

more efficient. Table 7.4 summarizes the results.

Our scheme also solves the credential sharing problem which is the major

concern in the AC protocol. As described in Section 7.3, each RID can only be

used once, so an old RID is useless for a malicious user. On the other hand, when

a new RID is stolen and used, the malicious user can be caught by executing the

ownership validation phase.

Please note that for the ownership validation phase, the communication

complexity is 5 steps with 8l bits message complexity, and the computation cost

is 2 exponentiations. Without the ownership validation phase, our protocol offers

the same functionality as the AC protocol. Thus, to have a fair comparison, Table

7.4 does not include the complexity of the ownership validation phase.
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8. CONCLUSIONS

We provides an efficient constant rounds solution for the bit-decomposition

problem based on secure arithmetic computation with improved rounds and multi-

plication complexity compared to the previous solutions. The complexity reduced

to 3l (constant factor is reduced) secure multiplications. Unlike Bits-RT protocol,

there is no need of the LSB gate which is statistical secure in the comparison

primitive and result in statistical security of post-fix comparison primitive and

hence, our protocol achieves more secure. In addition, we analyze the commu-

nication complexity of the proposed protocol with that protocol. We emphasize

that, apart from the computation complexity gain, the communication message

size is reduced by using smaller share size. In this thesis, we proposed several

efficient protocols of cryptographic primitives to implement the computation over

the encrypted data, including:

• secure comparison (CMP)

• secure binary decomposition (SBD)

• proxy re-encryption (PRE)

We also construct efficient and feature-rich unidirectional proxy re-encryption

schemes with simple design (no pairings involved as the existing works) against

multiple adversary models. We adopt the strongly unforgeable signature tech-

nique to implement the validation of re-encrypted ciphertext. In our proposed

constructions, the delegatee Bob has to submit request of the secret to proxy if

Bob desires to access the data, and the proxy does not perform any computation

on the ciphertexts to response the requests. This is the main difference form the

existing PRE schemes where the proxy is required to perform re-encryption on
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the ciphertext when the delegatee requests to access data. We measure our imple-

mentation of PRE in a secure file system which uses an untrusted access control

server to manage accesses to encrypted files stored on a distributed storage.
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