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PUBLICATION THESIS OPTION 

This thesis consists of the following three articles, formatted in the style used by 

the Missouri University of Science and Technology: 

Paper I, found on pages 3–15, Subsumption Reduces Dataset Dimensionality 

Without Decreasing Performance of a Machine Learning Classifier, has been submitted 

to the IEEE Engineering in Medicine and Biology Conference (EMBC) in February of 

2021. 

Paper II, found on pages 16–27, Utilizing Reinforcement Learning to Generate an 

Optimal Policy for Blood PH Regulation, has been submitted to the IEEE Engineering in 

Medicine and Biology Conference (EMBC) in May of 2021. 

Paper III, found on pages 28–52, A Comparison of Three Feature Reduction 

Strategies for High Dimensionality of Neurological Datasets, is intended for submission 

to IEEE Transactions on Biomedical and Health Informatics. 
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ABSTRACT 

As the medical world becomes increasingly intertwined with the tech sphere, 

machine learning on medical datasets and mathematical models becomes an attractive 

application. This research looks at the predictive capabilities of neural networks and  

other machine learning algorithms,  and assesses the validity of several feature selection 

strategies to reduce the negative effects of high dataset dimensionality. Our results 

indicate that several feature selection methods can maintain high validation and test 

accuracy on classification tasks, with neural networks performing best, for both single 

class and multi-class classification applications. This research also evaluates a proof-of-

concept application of a deep-Q-learning network (DQN) to model the impact of altered 

pH on respiratory rate, based on the Henderson-Hasselbalch equation. The model 

behaves as expected and is a preliminary example of how reinforcement learning can be 

utilized for medical modelling.  Its sophistication will be improved in future works.  
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1. INTRODUCTION 

 

The emergence of electronic health records has led many machine learning 

researchers to look for applications, both for modeling and prediction in healthcare [1], 

[2]. Electronic health records hold vast amounts of clinical data, that is frequently highly 

dimensional, and incurs high computational costs and runs the risk of including 

redundant and irrelevant features into proposed models. Feature reduction is an attractive 

solution to reduce the dimensionality of such datasets. In addition, mathematical models 

of chemical concentrations as they relate to certain physiological processes have been 

developed, such as the regulation of blood pH as a function of CO2 and HCO3
- levels [3].  

These mathematical models include a system of equations that can be integrated with 

other models or known behaviors of other related physiological processes. These 

complex models are a good fit with reinforcement learning applications, which can model 

dynamic physiological processes. This thesis analyzes and proposes solutions for both 

problems, as well as provides a future course of action and study.  

Feature selection (dimension reduction) is important to machine learning 

applications, especially when datasets are of high dimensionality. Feature selection can 

improve model accuracy, reduce over-fitting, eliminate irrelevant features, reduce 

computation costs, and improve model interpretability [4], [5]. Multiple datasets were 

constructed from a dataset consisting of 364 cases, consisting of 20 neurological diseases, 

using three different feature selection techniques (relief filter, PCA, and subsumption). 

We tested 4 different algorithms (classification trees, SVM, kNN, and a multilayer 

perceptron (NN)) and corresponding algorithmic variations (linear SVM, quadratic SVM, 
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cubic SVM, etc.) and evaluated their test and 5-fold cross validation accuracies. We 

wanted to determine the impact of feature selection methods on validaton and test set 

accuracy, to adequately assess the feasibility and usability of these dimensionality 

reduction methods.  

The second problem we looked at was a model for the impact of blood pH on 

respiration rate. Overall blood pH can be calculated from an application of the 

Henderson-Hasselbalch equation, which is a formula for the overall pH of a chemical 

buffer [3]. While we understand the physiological response of the body to pH changes, 

we do not have a quantifiable way to measure such a response. Reinforcement learning 

offers the potential to generate a dynamic model of the physiological response to altered 

blood pH. Our research developed a rudimentary model, looking only at the response of 

the lungs (via respiratory rate), which serves as a proof-of-concept for additional research 

that would require the integration of additional mathematical models including renal 

responses to alterations in blood pH. 
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PAPER 

I. SUBSUMPTION REDUCES DATASET DIMENSIONALITY WITHOUT 

DECREASING PERFORMANCE OF A MACHINE LEARNING CLASSIFIER 

 

Donald Wunsch III1 and Daniel B. Hier1 

1Missouri University of Science and Technology, Department of Electrical and Computer 

Engineering, Rolla, MO, 65409 

ABSTRACT 

When features in a high dimension dataset are organized hierarchically, there is 

an inherent opportunity to reduce dimensionality. Since more specific concepts are 

subsumed by more general concepts, subsumption can be applied successively to reduce 

dimensionality. We tested whether subsumption could reduce the dimensionality of a 

disease dataset without impairing classification accuracy. We started with a dataset that 

had 168 neurological patients, 14 diagnoses, and 293 unique features. We applied 

subsumption repeatedly to create eight successively smaller datasets, ranging from 293 

dimensions in the largest dataset to 11 dimensions in the smallest dataset. We tested a 

MLP classifier on all eight datasets. Precision, recall, accuracy, and validation declined 

only at the lowest dimensionality. Our preliminary results suggest that when features in a 

high dimension dataset are derived from a hierarchical ontology, subsumption is a viable 

strategy to reduce dimensionality.  

  



 

 

4 

1. INTRODUCTION 

 

Electronic health records (EHR) hold huge amounts of clinical data. Some of the 

value of this data can be unlocked by machine learning [1], [2]. It is estimated that the 

EHR system of a large healthcare organization holds clinical information equivalent to 

100 million years of patient data (10 million patients times 10 years) [3]. Each hospital 

encounter generates as much as 150,000 pieces of data. Although some hospital data is 

numerical (e.g. laboratory results), admission notes, progress notes, and discharge 

summaries are difficult to convert to a computable form. One approach to making the 

signs and symptoms of patients computable has been called deep phenotyping. With deep 

phenotyping, the signs and symptoms of patients are represented as concepts from an 

ontology such as the Human Phenotype Ontology (HPO) [4] – [6]. 

Disease classification is an important goal of machine learning healthcare 

applications [1]. The signs and symptoms of patients are important features utilized by 

machine learning classifiers to make medical diagnoses. Healthcare datasets are generally 

of high dimensionality with hundreds or thousands of features. For example, the Human 

Phenotype Ontology, used to encode the signs and symptoms of subjects with human 

diseases, has 19,249 unique concepts, offering “a standardized set of phenotypic terms 

that are organized in a hierarchical fashion. Using standardized hierarchies enables us to 

put our phenotypic knowledge into an organized framework that can be analyzed by 

computational means” [7] 

Feature selection (dimension reduction) is important to machine learning 

applications, especially for datasets of high dimensionality. Feature selection can improve 
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model accuracy, reduce over-fitting, eliminate irrelevant features, reduce computation 

costs, and improve model interpretability [8], [9]. Approaches to reducing feature 

dimensionality have included filter methods, wrapper methods, ensemble methods, 

principal components analysis, and genetic algorithms [8]–[10]. 

Ontologies offer a unique additional opportunity for dimension reduction due to 

their inherent hierarchical structure. Most medical terminology ontologies are based on a 

subsumptive containment hierarchy with classes hierarchically organized from the 

general to the specific; also known as IS-A hierarchies. Each child class inherit properties 

from its parent class. The inheritance of properties from a parent is called subsumption. 

Subsumption supports dimension reduction. For example, the children concepts 

micrographia, masked face, impaired turns, decreased arms swing, reduced blink rate are 

subsumed under the more general concept bradykinesia (Figure 1). Similarly, the 

concepts fine tremor, resting tremor, action tremor, postural tremor, voice tremor, senile 

tremor are subsumed under the more general concept tremor. The hierarchical structure 

of ontologies and the ability to collapse sub-classes into more general super-classes 

makes an ontology well-suited for feature reduction. 

 

2. METHODS 

2.1. PROPOSED APPROACH 

We proposed to test the hypothesis that the hierarchical structure of ontologies 

can be used to reduce the dimensionality of disease datasets without an adverse impact 

classification accuracy. We tested this hypothesis on a disease dataset with 168 instances 
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(patients), 293 unique features (signs and symptoms), 1953 total features, and 14 unique 

labels (diagnoses). Features were derived from a hierarchical ontology with 1242 unique 

concepts based on the neurological examination [11], [12]. We tested classification 

accuracy, precision, and recall at 8 different levels of specificity within the ontology 

hierarchy, reflecting a reduction in dataset dimensionality from 293 to 11 dimensions.  

2.2. DIMENSIONALITY REDUCTION 

We used Python to traverse the neuro-ontology [11] from each of its 1242 

terminal nodes to the root node. We created 1242 ordered lists (one for each concept) of 

length n=8 where the last element in the list was the penultimate concept (last node prior 

to root) and the first element in the list was the terminal concept. If the list was less than 8 

elements long, it was backfilled to 8 elements by repeating the first element (terminal 

node) until all lists were 8 elements in length. For example, the list for micrographia 

(Figure 1) was [micrographia, micrographia, micrographia, micrographia, bradykinesia, 

hypokinesia, movement disorder, motor finding]. Using these ordered lists as a reference, 

we created eight new datasets by sequentially replacing the first element in the ordered 

list with the second element and so on, seven times. This allowed us to perform 

dimension reduction sequentially with each reduction reflecting replacement of a child 

concept with its parent concept. 

2.3. MACHINE LEARNING CLASSIFIER AND METRICS 

We used MATLAB to construct a multilayer perceptron (MLP) of 3 hidden 

layers, each with 300 neurons.  
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Figure 1. A small excerpt from the neuro-ontology. The neuro-ontology has 11 major 

branches below the root (seven shown) and 1242 terminal nodes. Concepts in the 

ontology become increasingly specific at lower levels going from coarsest (least specific) 

to most granular (most specific) at the lowest level. The concept micrographia (shown in 

dark blue) is most specific and is subsumed by bradykinesia, then movement disorder, 

and finally by the coarsest (least specific) concept motor finding. 

 

 

 

Table 1. Diagnoses and Typical Findings. 
Diagnosis N Finding 

amyotrophic lateral sclerosis 22 weakness, fasciculations, hyperreflexia 

dystonia 10 dystonia 

normal pressure hydrocephalus 14 dementia, gait apraxia, incontinence 

Lewy body dementia 6 dementia, hallucinations, bradykinesia 

hemiballismus 4 hemiballismus 

myasthenia gravis 18 weakness, diplopia, ptosis 

moyopathy 18 proximal weakness 

Huntington disease 17 personality change, chorea, dementia 

essential tremor 7 tremor 

Parkinson disease 20 tremor, bradykinesia, rigidity 

multiple system atrophy 9 dysautonomia, bradykinesia, rigidity 

progressive supranuclear palsy 9 gaze palsy, bradykinesia, rigidity 

spinocerebellar ataxia 5 ataxia, weakness, spasticity 

Wilson disease 9 tremor, ataxia, personality change 
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Each neuron utilized a hyperbolic tangent transfer function. Output layers used a 

SoftMax transfer function. The learning rate was set at 0.01 with a momentum constant 

of 0.1. Our dataset was split into training, testing, and validation subsets using a 70:15:15 

ratio respectively. Each trial was constrained to a maximum of 1000 epochs (most trials 

ran for fewer than 60 epochs). Training performance was evaluated by cross-entropy, 

which consistently yielded higher classification accuracy than a mean-squared error 

performance metric [13]. 

Each classification was one-against-rest (OAR). The limited size of the dataset 

precluded meaningful classification results with some of the diagnosis classes with few 

members (Table I). Accuracy, precision, recall, and minimum validation loss were 

recorded and averaged across 10 trials at each of the eight ontology levels. Two-way 

ANOVA and post hoc testing were by GraphPad Prism 9.  

 

3. RESULTS 

3.1. DIMENSION REDUCTION 

Using sequentially repeated subsumption based on hierarchical levels in the 

ontology, we reduced dimensionality from 293 dimensions to 11 dimensions (Table 2). 

Each case was represented by eight different vectors of successively lower 

dimensionality based on the hierarchy of signs and symptoms in the neuro-ontology.  
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3.2. CLASSIFICATION PERFORMANCE 

We tested the MLP classifier on the four most common diagnoses in the dataset 

(amyotrophic lateral sclerosis, myopathy, myasthenia gravis, and Parkinson disease 

(Table I). Classification precision, accuracy, recall, and validation loss did not decline 

 

 

 

Table 2. Dimensionality 

 

 

 

until level 8 (the level that utilized the most general concepts) of the ontology (Figures 2-

5). In general, the classifier performed well on all four diagnoses. Classification 

performance was minimally better for the diagnosis of myasthenia gravis than the other 

three diagnoses (Figures 2-4). 

 

4. DISCUSSION AND CONCLUSIONS 

 

The features of our dataset were the signs and symptoms of patients with 

neurological diseases. All features were categorical. Like many disease datasets, our 

dataset was of high dimensionality (293 different signs and symptoms) despite having 

Level Features 

1 293 

2 287 

3 272 

4 255 

5 222 

6 157 

7 62 

8 11 
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only 168 cases (Table I). High dimensionality poses difficulties for machine learning 

applications because of higher computational costs and the risk of including redundant or 

irrelevant features into the model. 

The features of our dataset were derived from a subsumptive containment 

hierarchy [11]. In a subsumptive containment hierarchy, more specific concepts are 

subsumed by more general concepts. We used subsumption successively to reduce the 

dimensionality of our dataset from 293 dimensions to 11 dimensions. Each successive 

application of subsumption reduced dimensionality of the dataset and substituted a more 

general concepts for a more specific concept. The performance of the MLP classifier was 

surprisingly lossless with dimension reduction. Performance of the classifier did not drop 

significantly until the eighth level of the ontology which utilized the most general 

concepts. 

At the seventh level of the ontology, dimensionality was reduced to 62 

dimensions from 293 dimensions (a 79% recudction), yet overall performance of the 

classifier remained high (Figures 2-5). 

The goal of dimension reduction methods for high dimension datasets is to find 

the minimal subset of features that maintains classifier accuracy and retains predicted 

class sizes reflective of the class sizes in the ground truth dataset upon retraining [14]–

[16]. Two commonly used strategies to reduce dataset dimensionality include feature 

selection and feature extraction. Feature selection (filter methods, wrapper methods) 

emphasize algorithms that reduce the number of features into the smallest subset that 

accurately predict class membership [14]–[16]. 
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Figure 2. Accuracy (mean SEM ) for classification by ontology level. Two-way ANOVA 

showed significant effects (p < 0.05) for both ontology level and diagnosis. Post hoc tests 

(Tukey) showed level 8 accuracy was lower than other levels and that myasthenia gravis 

accuracy was higher than Parkinson disease and myopathy (p < 0.05). 

 

 

 

 
Figure 3. Precision (mean SEM ) by ontology level. Two-way ANOVA showed 

significant effects (p < 0.05) for both ontology level and diagnosis. Post hoc tests (Tukey) 

showed level 8 precision lower than the other levels and myasthenia gravis precision 

higher than myopathy. 

 

 

 

Feature extraction methods (principal components, linear discriminant analysis, 

etc.) emphasize methods for collapsing a large number of features into a smaller number 

of highly predictive features. The use of subsumption to collapse features into a smaller 

number of features bears more resemblance to a feature extraction strategy than a feature 

selection strategy. The use of knowledge embedded in a hierarchical ontology has been 

suggested by others as a dimension reduction strategy [17]. 
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Figure 4. Recall (mean   SEM ) by ontology level. Two way ANOVA showed both 

ontology level (df= 7) and diagnosis (df=3) effects were significant (p <0.05). Post hoc 

testing with Tukey correction showed ontology level 8 had lower recall than the other 7 

levels. Recall was better for myasthenia gravis (p<0.05) than the other three diagnoses. 

 

 

 

 
Figure 5. Validation loss (mean SEM ) by ontology level. Two-way ANOVA showed 

ontology level was significant (p < 0.05). Diagnosis effect was non-significant. Post hoc 

comparisons with Tukey correction showed level 8 validation validation loss was higher 

than other levels (P < 0.05). 

 

 

 

This work has important limitations. First, the dataset was small and future testing 

utilizing a larger dataset will be advantageous. Second, we did not test our dataset on 

other classifiers such as SVM, k-nearest neighbor, or logistic regression [18]. 

Comparison of the MLP classifier to other classifiers would be instructive. Third, due to 

asymmetries in the depth of the ontology, significant dimension reduction did not occur 

until level 5 of the ontology (Table 2). Finally, we did not compare subsumption to other 
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feature selections methods such as FCBF [19], mutual information [20], or Relief [21]. 

We plan to make these comparisons in the future. Other studies have found that when 

different feature reduction strategies are compared classifier performance depends on the 

nature of the dataset, the classifier utilized, as well as the feature reduction algorithm 

[18]. 
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II. UTILIZING REINFORCEMENT LEARNING TO GENERATE AN OPTIMAL 

POLICY FOR BLOOD PH REGULATION 

 

Donald Wunsch III 

Missouri University of Science and Technology, Department of Electrical and Computer 

Engineering, Rolla, MO 65409 

ABSTRACT 

This paper assesses the feasibility of reinforcement learning for personalized 

modeling of the effect of respiration rate on pH regulation.  It is crucial to maintaining 

homeostasis in the body, which is the primary function of the Bicarbonate buffer system 

in the bloodstream. The pH of said buffer system can be determined in terms of 

concentration of bicarbonate (HCO3
- ) and carbon dioxide (CO2) by an application of the 

Henderson-Hasselbalch equation. We tasked a Deep-Q-Network (DQN) with maintaining 

physiological pH in the bloodstream in the context of respiration rate. We defined our 

environment in the context of four observable parameters: respiration rate, pH, 

concentration of CO2 (mM), and concentration of HCO3
- (mM). Our agent could take one 

of five actions: ±1 breath per minute (RR, respiration rate), ±2 RR, or maintain current 

RR. The trained model replicates the expected pH-regulatory behavior as a function of 

RR. 
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1. INTRODUCTION 

 

In the absence of physiological disorders, the pH of the body ranges between 7.34 

and 7.46, averaging at 7.40. This slightly alkaline pH is ideal for numerous biological 

functions, including the oxygenation of blood and the folding of various proteins. The 

importance of pH maintenance is also evidenced by numerous symptoms and disorders 

associated with high or low pH. This maintenance is largely achieved by chemical buffers 

in the body, particularly the HCO3
- buffer. Chemical buffers are solutions comprised of a 

weak acid and its conjugate base, or vice versa, which have unique properties of pH 

change resistance; the weak acid neutralizes added base and the conjugate base 

neutralizes added acid [1]. 

Overall blood pH can be calculated from an application of the Henderson-

Hasselbalch equation, which is a formula for the overall pH of a chemical buffer 

(Equation 1). A- is the conjugate base and is produced because of the dissociation of the 

acid, HA. In the context of pH regulation via the HCO3
- buffer, CO2 dissolves in water to 

form carbonic acid, H2CO3, which is then converted to HCO3
- by the actions of the 

enzyme carbonic anhydrase (Equation 2) [2]. 

pH = pKa + log10 (
[A]

[HA]
)    (1) 

CO2+H2O↔ H2CO3

Carbonic
Anhydrase
↔      HCO3

-+H+   (2) 

pH = 6.1 + log10 (
[HCO3

-]

[CO2]
)    (3) 

 From this reaction, we can substitute pertinent values into an application 

Henderson-Hasselbalch equation (Equation 3), where HCO3
- and CO2 concentrations are 
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given in mM, and the pKa value of HCO3
- comes from the literature. This buffer system 

allows for pH regulation through either altering CO2 concentration or altering HCO3
- 

concentration, and we can intuitively determine the general action taken by the body for 

different pH disorders; decreasing CO2 when the pH is too low, increasing CO2 when pH 

is too high, increasing HCO3
- when pH is too low, and decreasing HCO3

- when pH is too 

high. These distinct actions are the responsibility of either the lungs or the kidney, 

respectively. Although disorders of one system can be complemented by changes to 

another, normal homeostasis requires these values to lie within a normal range. Disorders 

involving CO2 concentration are called respiratory disorders, and disorders involving 

HCO3
- are metabolic disorders [2]. 

While we understand the physiological background behind the body’s response to 

bloodstream pH, we do not have an effective way to quantify just how much the body 

alters the rates of secretion/retention for CO2/HCO3
-. We seek to answer this problem by 

turning to machine learning, under the assumption that the most efficient policy 

generated using reinforcement learning may also be what the body does by extension. 

This paper serves as the first step towards building a reinforcement learning model that 

adequately represents the body’s reaction in regulating blood pH. We are primarily 

interested in the impact of pH on the respiration rate (RR, given in breaths per minute) 

and the steps the body may take to maintain pH within normal limits. 
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2. METHODS 

2.1. MODEL ASSUMPTIONS 

To facilitate model construction, several assumptions are made about the body’s 

behavior in pH regulation. The first assumption is that CO2 exchange is continuous and 

always occurs. In other words, the removal of CO2 from the bloodstream is not 

necessarily a discrete event (as one may intuitively believe, considering an exhale seems 

to be this discrete event) but is instead a continuous one. This is a fair assumption to 

make; if one were to hold their breath briefly, CO2 exchange would still occur between 

the alveoli and the gases in their lungs. 

The second assumption is a normal resting RR of 14. Most literature 

acknowledges the acceptable RR range from 12 to 20 breaths per minute for a resting 

adult, with varied changes based on age [4]. Since we also know that the standard 

metabolic CO2 production of an adult on a western diet is 15000 mM/day, and that our 

normal resting RR must account for the removal of all this CO2, we can intuitively define 

the rate of CO2 removal at a different RR as a ratio between the new RR and the standard 

RR multiplied by the CO2 decrease over a given time interval [1]. Below is the equation 

used to calculate the CO2 removed in a given amount of time, T (Equation 4).  

CO2,T=CO2,day×K×
RRcurrent

RRnormal
    (4) 

K is a unit conversion constant from day to T, CO2,day=15000mM, and 

RRnormal=14 breaths per minute. In other words, we assume that CO2 removal is linear 

and corresponds to our RR. This is only a first-order approximation; patients 

experiencing symptoms from diabetic ketoacidosis, for example, will not only experience 



 

 

20 

an increase in RR, but have deeper breaths as well [5]. While we can argue the combined 

impact of deeper breaths and faster rate can be approximated by assigning an even faster 

RR, this is an intuitive explanation and literature on the validity of such assumptions 

were not found. Since our model also deals with very small time intervals across each 

step (0.04 seconds per step), RR is treated more as a measure of the rate of CO2 exchange 

rather than its typical definition of being a discrete number of breaths in a minute. 

The third assumption is that pH is solely regulated by the concentration of CO2. 

This is objectively not true, however, we do know that CO2 plays a larger role in acute 

pH changes, as respiration is a very effective way to quickly alter arterial pH. Therefore, 

the assumption is appropriate for the feasibility assessment that is the goal of this paper.  

2.2. AGENT AND CRITIC SPECIFICATIONS 

We utilized the MATLAB Reinforcement Learning package to construct a deep-

Q-network (DQN). DQNs use a deep neural network with states as input and estimated Q 

values as output to find a good or optimal policy directly from observations [3]. During 

training, the agent updates the critic properties with each step during each episode of 

learning and explores the action space using an epsilon-greedy exploration.  

By default, the MATLAB DQN agent uses a target critic to improve the stability 

of the optimization through periodic updating based on the latest critic parameters. The 

agent was allowed to view four observations: respiration rate, pH, concentration of CO2, 

and concentration of HCO3
-
. The agent was given five values to choose from as an action, 

all of which impact the respiration rate: ±1 RR, ±2 RR, or maintain current RR. We 

defined a reset function that initializes each episode with a random CO2 and HCO3
-value 
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(and thus a random pH) for each episode’s start, and a step function that calculates the 

new pH based off the action taken, and returns said pH value alongside the HCO3
-, CO2, 

and RR. We implemented various numbers of layer sizes and determined that the best 

performance and behavior emerged from six layers, including and input and output layer, 

with two sigmoid layers alternating with two fully connected layers with thirty neurons 

each. The critic had a learning rate of 0.0001, and the agent was specified to update the 

critic every 2 steps. 

2.3. REWARDS AND TRAINING SPECIFICATIONS 

The reinforcement learning model was set to train up to 10000 episodes, with 

each episode taking up 1500 steps at most. Each step calculated a new RR and pH based 

off the actions of the agent and represented 0.04 seconds of modeling the CO2 exchange. 

For each current observation, one of the 5 actions was selected with probability ε, which 

was specified as 1 at the beginning of each episode and experienced a decay rate of 

0.0005. At the end of each step, ε is updated using the following formula (Equation 5).  

εnew = ε × (1-εdecay)     (5) 

The maximum initial value of ε promotes exploration and helps prevent 

convergence on a local optimum too quickly. Rewards were given solely on the pH value 

at any given step of the episode; a reward of +5 was given for each step taken where the 

pH was between 7.41 and 7.39, close to the mean of the acceptable pH range of 7.34 and 

7.46. As we approach the boundaries, however, the model receives less of a reward, 

going to a mere +0.1 for the ranges 7.41-7.44 and 7.36 to 7.39. In the event the pH was 

closer to these bounds (7.44-7.46 and 7.34-7.36) then the model was slightly punished 
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with a value -0.3. This addition is necessary to prevent the reinforcement learning model 

from accumulating rewards at a boundary without exploring the space for the better 

reward. Lastly, in the event the model stepped outside the normal pH bounds, the episode 

received a punishment of -1, and the episode prematurely ended. After all, a human with 

a blood pH outside of the normal range would experience severe symptoms or death. In 

addition to pH, CO2 levels could also trigger a premature episode end; in the event that 

the respiration rate resulted in a blood CO2 that is outside of the accepted range of 0.771-

1.3566 mM, then the model would receive a punishment of -1 and end the session. These 

ranges are determined from literature [6]. 

Training could end prematurely if an average reward across 5 episodes was greater 

than 7000. This value corresponds to 1400 of 1500 steps per episode yielding the 

maximum reward. Since the CO2 and HCO3
- values are randomly initialized, we wanted 

some additional steps to allow for a model to travel from a boundary position to the 

maximum reward range. The theoretical maximum reward for a given episode is 7500. 

 

3. RESULTS 

3.1. TRAINING PERFORMANCE 

After 1485 episodes of training, the last 5 episodes had an average reward of 7429 

and ran for their maximum number of steps (1500), which triggered our stopping criteria 

(Figure 1.) This is a good indicator that the generated policy performs well, as each of the 

5 episodes ran to completion and accrued an exceptional reward. From this policy, we 
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can generate simulated episodes with a smaller number of steps to take a closer look at 

exactly what is happening to yield this stellar result. 

 

 

 

 
Figure 1. Total episode reward plot during training. This model generated a policy that 

met our stopping criterion after 1485 episodes. In blue are the rewards in each episode, 

and the red are average rewards over the previous 5 episodes. 

 

 

 

3.2. POLICY VALIDATION 

Running an episode for 300 steps (12 seconds) and plotting the observed 

environmental variables yields results as expected. As the episode progresses, steps are 

progressively taken to reduce the pH so that it is within our maximum reward region 

(7.41-7.39). In this instance, we stop at around 7.40, the exact center of this region. Once 

there, the policy dictates that we maintain said pH for as long as possible, and so the pH 
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stabilizes until the max steps is reached, which yields us the largest possible reward for 

the given initialization (Figure 2). Intuitively, seeing the pH decrease across our episode 

means we should expect a corresponding CO2 increase (Figure 3).  

 

 

 

 

Figure 2. pH plot during validation. The policy optimized time spent in the maximum 

reward zone (pH = 7.41 through 7.39) and moved towards it immediately from its initial 

position. 

 

 

 

Finally, the respiration rate of the validation episode behaves as expected. Since 

the overall CO2 of the bloodstream needs to increase, we see a rapid drop in the 

respiration rate from the standard value, allowing CO2 to accumulate in the bloodstream 

gradually as the respiration rate is raised over time to reach the standard (Figure 4). Each 

step corresponds to 0.04s of CO2 exchange, so our respiration rate is an indicator of how 

fast our patient is breathing over a very small period of time, not a measure of a discrete  
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Figure 3. CO2 plot during validation. Since the policy dictated that the pH move towards 

the region of highest reward, which was lower than the initial pH value, we expected the 

CO2 to increase. 

 

 

 

 
Figure 4 RR plot during validation. Since the policy dictated that the pH move towards 

the region of highest reward, which was lower than the initial pH value, we expected the 

CO2 to increase. This is accomplished by first reducing the respiration rate to below the 

standard so that CO2 can accumulate in the bloodstream, then gradually bring the 

respiration rate back up so that the CO2 is removed as fast as it is being produced. 
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number of breaths. In other words, RR acts as a stand in for the rate of CO2 exchange, 

rather than a discrete description of the number of breaths taken in this context. 

 

4. DISCUSSION AND CONCLUSIONS 

 

The resulting policy generated by the reinforcement learning model behaves as 

expected; when pH is too high, the model will reduce the CO2 output until we are within 

the range of maximum reward. This corresponds with a temporary reduction in our RR, 

allowing for the accumulation of CO2, followed by a return to the standard RR, which 

corresponds with CO2 leaving as fast as it is entering. Conversely, we expect to see 

opposing behaviors if CO2 is too low. Thus, the model provides the ability to quantify all 

of these values for CO2, HCO3
-, RR, and pH. Further research needs to be conducted to 

ensure that the model is behaving as the body does. 

This paper serves as the first step towards building a reinforcement learning 

model that adequately represents the body’s reaction in regulating pH. Detailed study of 

this behavior in vivo must be investigated to validate and improve the reinforcement 

learning model. This would allow implementing additional metrics that impact overall 

pH, particularly HCO3
- levels, which are primarily regulated by the liver.  The regulation 

of pH by RR is of substantial importance for personalized medicine, particularly when 

therapies such as respirators have become more commonplace due to COVID-19. 
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ABSTRACT 

High dimensionality poses difficulties for machine learning applications because 

of higher computational costs and the risk of including redundant or irrelevant features 

into the model. Feature reduction is therefore attractive, but it is essential to maintain 

high accuracy, particularly for biomedical applications. We therefore investigated three 

different feature selection strategies; Subsumption, Relief, and Principal Component 

Analysis (PCA), assessing their effects on the test and validation accuracy of four 

representative machine learning methods. We assessed a neurological dataset containing 

364 neurological patients, 20 diagnoses, and 474 unique features corresponding to signs 

and symptoms. We applied these feature selection strategies repeatedly to create 5 

additional successively smaller datasets, ranging from our original 474 features to 11. We 

tested a neural network (NN), k-nearest neighbors (kNN), support vector machines 

(SVM), and classification trees on these various datasets to assess validation and test set 

accuracy. Our preliminary results suggest that Subsumption and Relief behave in similar 

manner with respect to validation and test set accuracy as features are reduced, and that 

datasets with high dimensionality can be substantially simplified (from 474 to 76) while 

still maintaining high accuracy. PCA, on the other hand, actuallly requires feature 
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reduction to perform well, quickly degrading with increasing features. Validation 

accuracy is high for Relief and Subsumption, but PCA has lowered average validation 

accuracy, indicating that there may be losses to generalizability when using this strategy. 

 

1. INTRODUCTION AND PREVIOUS WORK 

 

Electronic health records (EHR) hold huge amounts of clinical data. Some of the 

value of this data can be unlocked by machine learning [1], [2]. It is estimated that the 

EHR system of a large healthcare organization holds clinical information equivalent to 

100 million years of patient data (10 million patients times 10 years) [3]. Each hospital 

encounter generates as much as 150,000 pieces of data. Although some hospital data is 

numerical (e.g. laboratory results), admission notes, progress notes, and discharge 

summaries are difficult to convert to a computable form. One approach to making the 

signs and symptoms of patients computable has been called deep phenotyping. With deep 

phenotyping, the signs and symptoms of patients are represented as concepts from an 

ontology such as the Human Phenotype Ontology (HPO) [4]–[6]. One of the goals of 

deep phenotyping is to identify disease sub phenotypes which identify the characteristics 

of specific subsets of a disease phenotype. 

Disease classification is an important goal of machine learning healthcare 

applications [1]. The signs and symptoms of patients are important features utilized by 

machine learning classifiers to make medical diagnoses. Healthcare datasets are generally 

of high dimensionality with hundreds or thousands of features (Figure 1). For example, 

the Human Phenotype Ontology, used to encode the signs and symptoms of subjects with 
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human diseases, has 19,249 unique concepts, offering “a standardized set of phenotypic 

terms that are organized in a hierarchical fashion. Using standardized hierarchies enables 

us to put our phenotypic knowledge into an organized framework that can be analyzed by 

computational means” [7]. 

 

 

 

 
Figure 1. A t-SNE map (method by [11]) to illustrate the complexity of the diagnosis 

classification task. The t-SNE is based on the 20 diagnoses with each diagnosis as a 

different color. All 364 cases were mapped based on the full 476 feature set. If the t-SNE 

is viewed as a clock face, note that at 2-4 pm there is overlap between CJD, HD, ALZ, 

and FTD (all dementing diseases), at 5 pm there is overlap between PAR, NPH, and PSP 

(all hypokinetic diseases), at 7 pm there is overlap between HSE, SAH, and MEN (all 

meningitic diseases), at 12 noon to 1 pm there is overlap between MYL and ALS 

(myelopathic diseases) and in the center there is overlap between MG and MYO (pure 

motor diseases). For key to abbreviations and typical findings, see Table I. 
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Feature selection (dimension reduction) is important to machine learning 

applications, especially for datasets of high dimensionality. Feature selection can improve 

model accuracy, reduce overfitting, eliminate irrelevant features, reduce computation 

costs, and improve model interpretability [8], [9]. Approaches to reducing feature 

dimensionality have included filter methods, wrapper methods, ensemble methods, 

principal components analysis, and genetic algorithms [8]–[10]. 

Ontologies offer a unique additional opportunity for dimension reduction due to 

their inherent hierarchical structure. Most medical terminology ontologies are based on a 

subsumptive containment hierarchy with classes hierarchically organized from the 

general to the specific; also known as IS-A hierarchies. Each child class inherit properties 

from its parent class. The inheritance of properties from a parent is called subsumption. 

Subsumption supports dimension reduction. For example, the children concepts 

micrographia, masked face, impaired turns, decreased arms swing, reduced blink rate are 

subsumed under the more general concept bradykinesia (Figure 2). Similarly, the 

concepts fine tremor, resting tremor, action tremor, postural tremor, voice tremor, senile 

tremor are subsumed under the more general concept tremor. The hierarchical structure 

of ontologies and the ability to collapse sub-classes into more general super-classes 

makes an ontology well-suited for feature reduction. We use the term subsumption to 

describe this feature reduction strategy. 

In this study we have compared the ability of three feature reduction strategies 

(feature filtering, principal components, and subsumption) to reduce the dimensionality 

of a high dimension medical dataset. Filter methods use a metric (often a distance metric 

between cases) to identify the best features that discriminate between cases of different 
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classes. Principal components analysis creates new features from a linear weighted 

combination of existing features that reduces dataset dimensionality without losing 

predictive information. Subsumption uses the hierarchical structure of an ontology to 

collapse more narrowly defined features into more broadly defined features.  

 

 
Figure 2. A small excerpt from the neuro-ontology. The neuro-ontology has 11 major 

branches below the root (seven shown) and 1242 terminal nodes. Concepts in the 

ontology become increasingly specific at lower levels going from coarsest (least specific) 

to most granular (most specific) at the lowest level. The concept micrographia (shown in 

dark blue) is most specific and is subsumed by bradykinesia, then movement disorder, 

and finally by the coarsest (least specific) concept motor finding. Each color represents a 

different level in the concept hierarchy. 

 

 

 

The three feature reduction strategies were tested on a multi-class classification 

task involving 20 neurological diseases. After feature reduction, we tested classification 
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accuracy with four different machine learning classifiers (neural network (NN), support 

vector machine (SVM), k-nearest neighbor (kNN), and classification trees). 

 

2. METHODS 

2.1. OVERVIEW 

We proposed to study the effects of feature selection and dimensional reduction 

strategies on classification accuracy across various machine learning algorithms. We 

tested this hypothesis on several disease datasets of varying features (ranging from 11 to 

474 signs and symptoms) with 364 instances (patients) and over 20 diseases (Table 1), 

across 4 different algorithms (classification trees, SVM, kNN, and a multilayer 

perceptron (NN)) and corresponding algorithmic variations (linear SVM, quadratic SVM, 

cubic SVM, etc.). Multiple datasets were constructed using three different feature 

selection techniques (relief filter, PCA, and subsumption). Using the feature reduction 

strategies, new datasets of reduced dimensionality with a reduced number of features, 

ranging from 11 features to 464, were created. All classifiers had their test accuracy and 

5-fold cross validation accuracy assessed. The mean ±s.d. of 10 trials per classifier across 

all conditions was calculated.  

2.2. DATASET 

The test dataset consisted of 364 cases, each case being a patient with one of 20 

different neurological diseases (Table 1). All cases were derived from 11 standard 

textbooks of neurology [12]–[22]. For each entry into the dataset, the disease diagnosis 
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was entered as the machine learning label. Symptoms (what the patient complains of) and 

signs (examination findings by the physician) were abstracted from the case histories and 

then mapped to one of the 1404 concepts in the Neurological Examination Ontology by 

previously described methods [23], [24]. To capture all the signs and symptoms of the 

364 cases in the dataset, 475 unique concepts were used. Each case was represented as a 

476-dimension vector. The first element of the vector was the label (disease diagnosis) 

followed by 475 features (signs and symptoms).  

 

 

 

Table 1. Abbreviations, Diagnoses, Counts, and Typical Findings. 

Abbreviation Diagnosis N Finding 

ALS amyotrophic lateral sclerosis 23 weakness, hyperreflexia, fasciculations 

ALZ Alzheimer’s disease 17 dementia, memory loss 

CJD Creutzfeldt Jacob disease 12 dementia, myoclonus, ataxia 

FTD fronto-temporal dementia 13 dementia, aphasia, personality change 

GBS Guillain Barre syndrome 22 ascending weakness and numbness, 

hyporeflexia 

HD Huntington disease 17 personality change, dementia, chorea 

HSE herpes simplex encephalitis 16 confusion, fever, aphasia, stiff neck 

IIH idiopathic intracranial 

hypertension 

14 headache, blurred vision, papilledema 

LR lumbar radiculopathy 16 foot weakness, sensory loss in leg, pain 

MED median nerve neuropathy 16 sensory loss in hand, pain 

MEN meningitis 24 stiff neck, fever, confusion 

MG myasthenia gravis 18 diplopia, fatiguable weakness, eyelid 

ptosis 

MS multiple sclerosis 24 ataxia, weakness, spasticity, optic neuritis 

MYL myelopathy 35 sensory level, Babinksi signs, weakness 

MYO myopathy 18 proximal muscle weakness 

NPH normal pressure 

hydrocephalus 

14 urinary incontinence, dementia, gait 

difficulty  
PAR Parkinson disease 20 bradykinesia, rigidity, resting tremor 

PN polyneuropathy 19 weakness, sensory loss, hyporeflexia 

PSP progressive supranuclear palsy 9 bradykinesia, impaired eye movements, 

rigidity 

SAH subarachnoid hemorrhage 17 headache, stiff neck, vomiting 

 TOTAL: 364  
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All features were binarized as 0 = absent or 1 = present. The test dataset was a 

364 (cases) x 476 (label + features) matrix in which all values were binary except the 

case labels. Cases averaged 11.2 ± 3.5 features. 

2.3. DIMENSIONALITY REDUCTION 

2.3.1. Dimensionality Reduction by Subsumption. The features in our dataset 

are concepts from the neuro-ontology [23]. The neuro-ontology is a hierarchical 

subsumptive ontology which supports IS-A relationships. For example, in the neuro-

ontology bradykinesia IS-A hypokinesia IS-A movement disorder IS-A motor finding. 

Because bradykinesia is the child concept of hypokinesia, we can say that bradykinesia is 

subsumed by hypokinesia. Just as hypokinesia is subsumed by movement disorder 

(Figure 2). In a subsumptive ontology like the neuro-ontology, we can use subsumption 

repetitively to reduce features by consolidating all the children concepts with the parent 

concepts. Since the neuro-ontology is at most eight levels deep, we had a potential of 8 

steps of subsumption to successively reduce dimensionality. However, some branches of 

the neuro-ontology were only 3 or 4 levels deep. We used Python to traverse the neuro-

ontology [23] from each of its 1404 terminal nodes to the root node (Figure 1). We 

created 1404 ordered lists (one for each concept) of length n=8 where the last element in 

the list was the penultimate concept (last node prior to root) and the first element in the 

list was the terminal concept. If the list was less than 8 elements long, it was backfilled to 

8 elements by repeating the first element (terminal node) until all lists were 8 elements in 

length. For example, the list for micrographia (Figure 2) was [micrographia, 

micrographia, micrographia, micrographia, bradykinesia, hypokinesia, movement 
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disorder, motor finding]. Using these ordered lists as a reference, we created eight new 

datasets by sequentially replacing the first element in the ordered list with the second 

element and so on, seven times. Two of the new datasets provided minimal feature 

reduction and were eliminated from the analysis. The remaining six datasets had 11, 76, 

245, 360, 424, and 464 features compared to the initial dataset with 474 features. 

2.3.2. Dimension Reduction by Principal Components. The term principal 

components was introduced by Hotelling in the 1933 [25]. It is a popular multivariate 

statistical technique to reduce dataset dimensionality by creating new variables that are a 

linear combination of existing variables. The goal of principal component analysis (PCA) 

is to reduce dataset dimensionality, retain as much information as possible, and to reduce 

noise and information redundancy [26], [27]. With PCA, the original variables are 

replaced with a smaller number of variables that are called factor scores (weighted linear 

combinations of the original variables). We used the factor analysis module of SPSS 27.0 

(IBM Corporation) with extraction by principal components analysis and rotation by 

Varimax with Kaiser normalization to create new datasets with 11, 76, 245, 360, 424, and 

464 features to parallel the dimensionality of the subsumption datasets 

2.3.3. Dimension Reduction by Relief. The Relief algorithm for feature selection 

was originally described by Kira and Kendell [28] and later modified as ReliefF by 

Kononenko et al [29]. ReliefF is a filter-based feature reduction strategy that evaluates 

each feature independently of other features (it does not look for the best combination of 

features or consider redundancy between features). The algorithm is based on finding 

index cases in the dataset and then examining matching nearest neighbors (hits) and non-

matching neighbors (misses). It then uses a difference function to looks for which 
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features best distinguish the hits from the misses. We used the ReliefF filter as 

implemented in Orange data mining [11]. To parallel the feature reductions obtained by 

subsumption, we used the Ranking widget in Orange to create 6 subsets of the original 

dataset with 11, 76, 245, 360, 424, and 464 features.  

2.4. MACHINE LEARNING CLASSIFIERS 

2.4.1. K-Nearest Neighbors. We used MATLAB to construct fine, medium, and 

coarse kNN classifiers corresponding to k=1, 10, and 100 nearest neighbors, respectively. 

We utilized the default Euclidean distance metric and standardized non-categorical 

predictor data. We used an 80:20 split for model training and testing, model validation 

was performed using 5-fold cross validation. We also ran a cosine kNN classifier 

corresponding to k=10 using a cosine distance metric, with the same dataset splits. 

2.4.2. Support Vector Machines. We used MATLAB to construct linear, 

quadratic, and cubic support vector machine (SVM) classifiers. As the names imply, each 

SVM constructed a hyperplane boundary of order 1, 2, and 3, respectively. SVM 

architectures have advantages in high dimensional cases [30]. By default, the classifier 

uses a one-vs-one multiclass classification strategy and standardizes predictor data. We 

used an 80:20 split for model training and testing, model validation was performed using 

5-fold cross validation. 

2.4.3. Classification Trees. We used MATLAB to construct fine, medium, and 

coarse classification trees corresponding to various thresholds for the maximum number 

of splits: 100, 20, and 4, respectively. The default splitting criterion is the Gini’s 

Diversity Index, which is standard for most decision trees [31]. We used an 80:20 split 
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for model training and testing, model validation was performed using 5-fold cross 

validation. 

2.4.4. Neural Networks. We used MATLAB to construct a multilayer perceptron 

(MLP) of 3 hidden layers, each with 500 neurons. Each neuron utilized a hyperbolic 

tangent transfer function. Output layers used a SoftMax transfer function. The learning 

rate was set at 0.01 with a momentum constant of 0.1. Our dataset was split into training, 

testing, and validation subsets using a 70:15:15 ratio respectively. Each trial was 

constrained to a maximum of 300 epochs as a precautionary measure (most trials ran for 

fewer than 60 epochs). Training ceased after 6 successive increases in validation error. 

Training performance was evaluated by cross-entropy, which consistently yielded higher 

classification accuracy than a mean-squared error performance metric [32]. 

2.5. STATISTICAL TESTING 

To test differences in group means, we used one-way ANOVA with a significance 

level of p < 0.05 (SPSS 27, IBM). Post hoc means comparisons were by the Bonferroni 

method.  

 

3. RESULTS 

3.1. DIMENSION REDUCTION 

Using sequentially repeated subsumption based on hierarchical levels in the 

neuro-ontology, we created reduced dimensionality subsets from the original dataset (474 

dimensions) that had 11, 76, 245, 360, 424, and 464 dimensions. Comparable datasets of 
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11, 76, 245, 360, 424, and 464 dimensions were created by the ReliefF filter method and 

the PCA method. 

3.2. CLASSIFIER PERFORMANCE 

We tested each of the classifiers on a multi-class classification task that involved 

assigning each of the 364 cases to one of 20 classes (diagnoses) based on the available 

features. For each classifier, the classification task was repeated on all  6 data subsets with 

dimensionality that ranged from 11 to 464 features. 

 

 

 

 
Figure 3. Comparative accuracy of four different kNN classifiers utilizing 76 features. 

For all three dimension reduction strategies, the four kNN classifiers performed similarly 

except for the coarse kNN which performed significantly worse than the other three. 

(One-way ANOVA with post hoc Bonferroni text, p < 0.05. For additional analyses, we 

selected the cosine kNN classifier.) 
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Figure 4. Comparative accuracy of three different Tree classifiers utilizing 76 features. 

For all three dimension reduction strategies, Fine outperformed Medium, Medium 

outperformed Coarse. (One-way ANOVA with post hoc Bonferroni test, p<.05. For 

additional analyses we selected the Fine Tree classifier.) 

 

 

 

 
Figure 5. Comparative accuracy of three different SVM classifiers utilizing 76 features. 

All three SVM classifiers performed similarly, although performance was lower with the 

PCA feature reduction strategy (One-way ANOVA, p <0.05). For additional analyses we 

selected the Linear SVM classifier.) 
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Figure 6. The average across all feature levels show that the NN classifier performed best 

for all three dimension reduction strategies. (One-way ANOVA, post hoc Bonferroni test, 

p<0.05). The low average accuracy for PCA for all classifiers reflects pooling of high 

accuracy at low dataset dimensionality with low accuracy at high dimensionality). 

 

 

 

We first evaluated the performance of variations of the kNN, Tree, and SVM 

classifiers. All variations of the kNN classifier performed similarly (across all dimension 

reduction strategies) except for the Coarse kNN classifer which performed significantly 

worse than the others (Figure 3). This is likely due to the much larger value of k for the 

coarse classifier. We selected the Cosine kNN classifier for subsequent analyses, as it 

performed best. For the Tree classifiers, Fine performed better than Medium and Medium 

performed better than Coarse (Figure 4). The Fine Tree classifier was chosen for 

subsequent analyses. The linear, cubic, and quadratic versions of the SVM classifier 

performed similarly (Figure 5). We selected the Linear SVM classifier for subsequent 

analyses. 
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Figure 7. The NN classifier outperforms the other classifiers at all levels of dataset 

dimensionality, performing best near 76 features. Results are pooled across all three 

dimension reduction strategies. Note that subsequent figures show that dimension 

reduction through PCA has an opposite effect compared to relief and subsumption, 

lowering the depicted averages. 

 

 

 

 
Figure 8. At lower feature levels, the PCA dimension reduction strategy performed best, 

at high levels of dimensionality performance of the PCA strategy falters. Results are 

pooled across all four classifiers. 
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Figure 9. With dimension reduction by Relief, accuracy dropped below 76 features. The 

NN classifier performed best, the Tree classifier worst. 

 

 

 

 
Figure 10. With PCA dimension reduction strategy, all classifiers performed better at 11 

features than higher number of features. The NN classifier performed best and SVM 

performed worst with PCA strategy. 

 



 

 

44 

 
Figure 11. With dimension reduction by subsumption, accuracy begins to drop below 76 

features. NN classifier performs best and Tree classifier worst with the subsumption 

strategy. 

 

 

 

Across all models, the NN performed best for all dimension reduction strategies 

(Figure 6) on most features. We do see that the NN is less resistant to accuracy loss as the 

number of features increases for PCA compared to other models (Figure 10), which 

contributes to the lowered average accuracy at 245 features across all strategies (Figure 

7). The fine tree classifier had the worst accuracy for all feature reduction strategies at 

any number of features. 

Intuitively, one would expect that increasing the number of features would result 

in increased accuracy for any given model. What we have observed, however, is that for 

subsumption and relief strategies, there is little difference in accuracy between the 

greatest number of features (464) and the second smallest number of features (76) for our 

best performing models (NN, SVM). There is also little difference in model accuracy 
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between these strategies as well (Figure 9, 11). PCA dimension reduction strategies 

behave unintuitively, with smaller numbers of features being associated with greater 

accuracy (Figure 10). 

 

 

 

 
Figure 12. Test accuracy and Validation accuracy by classifier across all dimension 

reduction strategies and all feature levels. 

 

 

 

Lastly, validation accuracy was assessed across all classifiers, features, and 

strategies. The NN maintained the highest median average accuracy for both the 

validation and test sets while the tree maintained the lowest median average accuracy for 

the test set and the kNN had the lowest 5-fold cross validation accuracy (Figure 12). The 

highest validation accuracy was maintained at 76 features, the highest test set accuracy at 

424 features (Figure 13). Lastly, subsumption and relief both maintained higher 

validation and test set accuracy than PCA, and did not differ significantly from each other 
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(Figure 14). This does indicate that utilizing PCA may result in losses to model 

generalizability. Further investigation is needed to validate these results. 

 

 

 

 
Figure 13. Test accuracy and Validation Accuracy by number of features across all 

classifiers and all dimension reduction strategies 

 

 

 

 
Figure 14. Test accuracy and Validation accuracy by dimension reduction strategy across 

all classifiers and all feature levels 
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4. DISCUSSION AND CONCLUSIONS 

 

The features of our dataset were the signs and symptoms of patients with 

neurological diseases. The labels of our dataset were disease diagnoses. All features were 

one-hot encoded. Like many disease datasets, our dataset was of high dimensionality 

(475 different signs and symptoms) for 364 cases (Table 1). The classification task was to 

assign one of 20 different diagnoses to each of the 364 cases based on underlying 

features. High dimensionality poses difficulties for machine learning applications because 

of higher computational costs and the risk of including redundant or irrelevant features 

into the model. 

The features of our dataset were derived from a subsumptive containment 

hierarchy [23]. In a subsumptive containment hierarchy, more specific concepts are 

subsumed by more general concepts. We used subsumption successively to reduce the 

dimensionality of our dataset from 474 dimensions to 11 dimensions. Each successive 

application of subsumption reduced dimensionality of the dataset and substituted a more 

general concepts for a more specific concept. 

Several observations were notable: 

• For all classifiers, the PCA dimension strategy worked best at lower levels 

of dimensionality (Figure 10 and Figure 8). Performance was best at 11 

features and began dropping at 76 features for Tree and SVM and at 245 

features for NN and kNN.  

• Classification accuracy using ReliefF (Figure 9) and subsumption (Figure 

11) did not fall until features were reduced below 76 features. For all 
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classifiers accuracy was lower for subsumption and ReliefF than PCA at 

the 11-feature level. 

• Test accuracy and Validation accuracy was comparable across all 

experiments (Figures 12-14) suggesting that classification models were 

relatively robust. 

• When averaged across all dimension reduction strategies, all classifiers 

performed best at 76 features (Figure 7). 

• When averaged across all dimension reduction strategies, the NN classifier 

outperformed the SVM, kNN, and Tree classifiers (Figure 6). 

The goal of dimension reduction methods for high dimension datasets is to find 

the minimal subset of features that maintains classifier accuracy and retains predicted 

class sizes reflective of the class sizes in the ground truth dataset upon retraining [33]–

[35]. Two commonly used strategies to reduce dataset dimensionality include feature 

selection and feature extraction. Feature selection (filter methods, wrapper methods) 

emphasize algorithms that reduce the number of features into the smallest subset that 

accurately predict class membership [33]–[35]. Feature extraction methods (principal 

components, linear discriminant analysis, etc.) emphasize methods for collapsing many 

features into a smaller number of highly predictive features. The use of subsumption to 

collapse features into a smaller number of features bears more resemblance to a feature 

extraction strategy than a feature selection strategy. The use of knowledge embedded in a 

hierarchical ontology has been suggested by others as a dimension reduction strategy 

[36]. 
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This work has important limitations. First, the dataset was small and future testing 

utilizing a larger dataset will be advantageous. Second, due to asymmetries in the depth 

of the ontology, the subsumption strategy only yielded six different levels of dimension 

reduction (464, 424, 360, 245, 76, and 11 features). To make comparisons fairly, we were 

limited to those dimensions by the subsumption strategy. We did not evaluate the 

performance of Relief or PCA at other levels of dimensionality, although those strategies 

could have created additional datasets of different dimensionality. Other studies have 

found that when different feature reduction strategies are compared classifier 

performance depends on the nature of the dataset, the classifer utilized, as well as the 

feature reduction algorithm [37]. Lastly, additional investigation into fine-tuning 

parameters for the various machine learning algorithms would have undoubtedly 

improved various architectures (particularly kNN, as the coarse kNN looked at the 100 

closest neighbors of a dataset of 364, or coarse tree, which was limited to 4 splits). 
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SECTION 

2. CONCLUSIONS 

In this research, feature reduction techniques for use with machine learning 

approaches have been presented in medical applications.  Specifically, research has 

explored the diagnosis of disease from patient signs and symptoms has been conducted 

on numerous machine learning algorithms, including a neural network, various support 

vector machines, various k-Nearest Neighbor algorithms, and various classification trees. 

In addition, a proof-of-concept application of utilizing reinforcement learning was 

discussed, that if further investigated and improved, could offer a method of reliably 

creating models of various physiological processes, provided an available mathematical 

foundation. For this work, methods for reducing dimensionality has been investigated in 

complex medical datasets. Our experimental studies indicate that various feature 

selection methods can be implemented in our data and still preserve algorithm accuracy. 

Further research must be done to validate our results. In addition, our preliminary 

reinforcement learning model shows potential for developing complex models of the 

interactions of varied organ systems in biological processes and regulation.  
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