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ABSTRACT 

Adequate sleep is associated with an individual’s health.  Too little sleep is 

associated with many health problems, including cardiovascular disease, obesity, and a 

general increase in all-cause mortality.  Yet the molecular changes that link poor sleep 

and changes in health are still not well understood. Individuals have a unique daily need 

for sleep, and deviations from the animal’s regular sleeping patterns can be indicative of, 

or result in, underlying changes in its health.  Therefore, we hypothesize that changes in 

the sleep architecture in Drosophila melanogaster reflect changes in the fly’s health. 

We determined sleep architecture in wild-type male flies over their entire lifespan. 

We converted activity into sleep and wake-bout parameters and determined the best 

multiple linear regression model that described lifespan. Variables describing sleep 

stability can predict the actual lifespan with an adjusted R2 of 0.42.  We then re-

calculated the model using sleep data to predict lifespan by approximately midlife.  The 

animals were separated into cohorts consisting of short-lived and long-lived flies, giving 

us the opportunity to study their underlying molecular differences.   

Short-lived flies have significantly increased Amylase mRNA expression in the 

heads, a biomarker for sleepiness.  Moreover, long-lived flies had significantly increased 

levels of the endogenous antioxidant glutathione (GSH) in their bodies when compared to 

their short-lived counterparts. There were increased levels of polyubiquitinated proteins 

in our short-lived samples, which is often observed in older animals. Our results indicate 

that sleep architecture can be used to separate biological aging in flies in a non-invasive 

manner to study the molecular changes that occur with an individual’s sleep patterns. 
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1. INTRODUCTION 

Regular sleep is imperative to the health of all animals (Luyster, Strollo et al. 

2012). Insufficient or erratic sleep has been linked to a myriad of problems including 

weight gain (Markwald, Melanson et al. 2013) (Taheri, Lin et al. 2004), metabolic 

stress(Shukla and Basheer 2016), oxidative stress(Gopalakrishnan, Ji et al. 2004) 

(Villafuerte, Miguel-Puga et al. 2015), cardiovascular disease (Gottlieb, Redline et al. 

2006) (Redline, Yenokyan et al. 2010) (Punjabi, Shahar et al. 2004), 

inflammation(Dumaine and Ashley 2018) and more. Yet for all that is known of the 

effects of poor sleep, there is much to be learned about why sleep is necessary and so 

conserved throughout the animal kingdom. 

Previous experiments have attempted to address the necessity of sleep by 

manipulating the animal at the genetic level or by manipulating an animal’s regular 

sleeping pattern via sleep deprivation or fragmentation (Villafuerte, Miguel-Puga et al. 

2015) (Everson 1995). Invasive experiments like these often require that the animal is 

sacrificed to measure the health of the animal through biochemical experimentation. 

These experiments are great for discerning what goes wrong when an animal is denied 

sleep, but they do little to elucidate the restorative functions that sleep serves (Brown, 

Basheer et al. 2012) (Atkinson and Davenne 2007).  

The relationship between sleep and health is further complicated by the fact that 

each individual animal has a unique daily need for sleep, and there is substantial variation 

between individuals even within the same species (Cirelli , Cirelli and Bushey 2008) 

(Koudounas, Green et al. 2012). Therefore, it is difficult to qualify what good sleep looks 

like for any individual organism.  
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Recent advances in mathematical modeling have opened up opportunities to gain 

a better understanding as to the restorative function that sleep serves (Swindell, Harper et 

al. 2008). This may provide a more complete picture as to what healthy sleep looks like, 

and how it changes with age. This thesis addresses the link between sleep and health in 

Drosophila melanogaster by modeling the relationship between sleep architecture and 

lifespan for each individual animal. Our model offers a novel method to better understand 

how this relationship affects and is affected by the underlying biology of the animal. 

1.1. THE RELATIONSHIP BETWEEN HEALTH AND SLEEP 

Epidemiological studies in humans have revealed an association between sleep 

duration and an increase in all-cause mortality for both short- and long-duration sleepers. 

Deviation from the mean sleep duration in humans is correlated with an increased BMI, 

cardiovascular and respiratory problems, insulin resistance and other long-term issues 

(Ohayon, Carskadon et al. 2004). However, studies on humans are often based on 

subjective surveys and are therefore difficult to interpret. They also cannot assess specific 

biological differences between good sleepers and bad sleepers which remain largely 

unknown. Further, these studies are not able to identify subjects with poor sleeping 

behaviors and thus lack predictive ability. 

Studies focusing on insomnia and other sleep disorders have also yielded 

important information on the consequences of inadequate sleep. Insomnia in humans is 

associated with health problems later in life, including an increased risk for disease, 

decreased telomere length, and even an increased risk of death (Carroll, Esquivel et al. 

2016). The sleep disorder is also correlated with an increase in inflammation and 
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disruption of immune and endocrine pathways (Okun 2011). Diseases like insomnia give 

scientists clues as to what the consequences of poor sleep actually are and highlight the 

need for additional research. 

Animal models allow researchers to evaluate specific changes in biology due to 

poor sleep and have indicated that sleep duration and health are related. Reduced sleep 

duration is correlated with a shorter lifespan in Drosophila, as well as C. elegans. 

1.2. DROSOPHILA MELANOGASTER AS A MODEL ORGANISM 

Drosophila melanogaster is an ideal animal model to examine the relationship 

between sleep and longevity.  The animal’s short lifespan of about two months, along 

with its fast reproduction rate, allows researchers to study many generations within a 

short period of time. Additionally, the small size of the fly makes storage and feeding 

cheap and easy - reducing lab storage requirements as well as costs when compared to 

other animals. This has led to the accumulation of a vast catalog of genetic information 

from which additional research may be done (Donelson and Sanyal 2015). 

1.3. SLEEP IN DROSOPHILA MELANOGASTER 

Sleep in Drosophila has been extensively evaluated (Hendricks, Finn et al. 2000, 

Shaw, Cirelli et al. 2000) (Cirelli and Bushey 2008). The fruit fly displays the same sleep 

characteristics as not only other invertebrates, but even that of “higher” forms of life. 

Like in mammals, sleep characteristics in the fly include extended periods of reversible 

immobility, also known as quiescence, along with a heightened arousal threshold (Shaw, 

Cirelli et al. 2000) (Hendricks, Finn et al. 2000). Fruit flies are also negatively impacted 



 

 

4 

by sleep deprivation and will respond with a sleep rebound when deprived of sleep 

(Shaw, Cirelli et al. 2000, Ganguly-Fitzgerald, Donlea et al. 2006). Additionally, 

experiments have shown that flies are responsive to some of the same sleep- and wake-

inducing drugs that affect humans, including adenosine receptor antagonists (e.g. 

caffeine) and GABA agonists (e.g. gaboxadol) (Dissel, Angadi et al. 2015).  

Sleep in the fly is diurnal and is governed by the same 24-hour circadian 

mechanisms as mammals, suggesting that sleep is highly conserved throughout the 

animal kingdom. In fact, the universal circadian molecules timeless and period were 

originally discovered through forward genetic screening of flies bred to lack a circadian 

rhythm (Dowse, Hall et al. 1987) (Young 1996). This 24-hour process, known as Process 

C, is regulated by the presence and absence of blue light. The presence of light works to 

align the circadian “clock” within the animal’s brain, which then influences molecular 

processes like gene expression and regulation, driving broader animal behaviors (Borbély 

1982). Fly mutants lacking the any of the essential components of the circadian clock 

(cycle, period, clock) have an irregular sleeping pattern, and tend to sleep randomly 

throughout the 24 hour day (Sehgal, Price et al. 1994) (Konopka and Benzer 1971).  

 The second process, known as Process S, describes how waking affects the 

accumulation of sleep debt and how sleep works to restore the animal to a sleep-satiated 

state. Process S can be evaluated through the animal’s need for a sleep rebound after 

sleep deprivation. This process has further been studied in Drosophila mutants that lack 

the fundamental circadian molecules which govern cycling, resulting in a fly that is 

unbound by light cycles. Loss-of-function circadian mutations cause the fly’s sleep to 

“drift” and have an irregular sleep cycle. Still, little is known about Process S, but the 
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interaction between it and process C is thought to account for the timing and strength of 

the animal’s sleep drive (Borbely et al. 1982). 

Like in mammals, there is substantial variability of sleeping characteristics 

between individual fruit flies of the same genotype. Total sleep time in wild-type male 

flies follows a normal distribution and can range from 600 to 1200 minutes per day. 

Numerous studies have attempted to use this variability to breed short- and long-sleeping 

flies to isolate specific genes responsible for regular sleep behavior. 

 Selective breeding of short-sleeping flies has also been used to assess the 

consequences of sleep disruption. Short-sleeping flies selected to model human insomnia 

exhibited increased sleep latency, decreased sleep consolidation during the dark period, 

and increased locomotor activity. These characteristics resulted in learning and balance 

impairment when compared to controls. Biomolecular differences between short-sleeping 

flies and controls were also evaluated. Short-sleeping flies were found to have elevated 

mRNA transcripts of the sleep-debt marker Amylase in the head, increased dopamine, and 

increased levels of cholesterol and fatty acids. Additionally, the insomnia model of 

Drosophila had a significantly reduced lifespan when compared to controls, providing 

more evidence that sleeping behavior is intimately linked with lifespan (Seugnet, Suzuki 

et al. 2009).   

1.4. SLEEP ARCHITECHTURE AND AGE 

The link between aging and the deterioration of sleep quality and quantity has 

been well established in multiple organisms including humans, flies, mice and C. elegans 

(Pincus and Slack 2010). Both humans and fruit flies, for example, tend to sleep less as 
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they age by total sleep duration, with increasing fragmentation. This decrease in 

consolidation leads to increased daytime sleep and decreased nighttime sleep as the 

animal ages (Koh, Evans et al. 2006). Older flies also have a diminished ability to recover 

after sleep deprivation, suggesting a reduced effectiveness of sleep (Vienne, Spann et al. 

2016). 

Studies in humans have shown that total sleep time, sleep efficiency, slow wave 

sleep and wake after sleep onset all change with age (Skeldon, Derks et al. 2016). These 

same studies, however, show that there is substantial variability as to when in life these 

changes occur. In other words, chronological age is less important than physiologic age. 

Additionally, there have been conflicting results when looking at other factors as they 

change with age including sleep latency, percentage of time spent in sleep stages 1 and 2, 

and percentage of time spent in REM (Yin, Jin et al. 2017) (Atkinson and Davenne 

2007). This could be the result of differences in methodologies including sample size, 

differences in ages studied, cultural differences, and other confounding variables. Finally, 

it is notoriously difficult to measure the quality of sleep given the subjective nature of 

sleep surveys. The differences found between studies highlights the need for a better way 

to study the effect of age on sleep behavior using animal models under controlled 

conditions.  

1.5. MATHEMATICAL MODELING 

There has been a push in recent years to describe the world using advanced 

mathematical models. Statistical evaluation of large datasets has revolutionized our 

understanding of the world from economics to ecology to climate and now, biological 
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processes. The ability to develop models that are based on pattern recognition have 

proven indispensable when dealing with the massive amounts of data that may be 

generated in a given experiment. The field of bioinformatics is currently being used in a 

wide range of studies in genomics and proteomics, as well as population dynamics and 

pharmacology.  

 There have been various attempts to predict lifespan based on simple sleep 

metrics, but with limited success (Wallace, Stone et al. 2018). Previous experiments used 

basic sleep metrics, like total daily sleep duration, to predict how long an animal will live. 

This approach is problematic, however, because each individual organism has a unique 

need for sleep, and so it’s hard to simplify the ideal amount of daily sleep to just one 

number derived from a single cohort (Koudounas, Green et al. 2012). Further, there may 

also be tradeoffs and compensations that complicate the sleeping behavior of an 

organism. For example, an organism with a low total sleep time may still exhibit a 

healthy sleep due to increased consolidation. Therefore, the average time spent asleep is 

simply not enough information to predict lifespan.  

 There is evidence that models developed using a multivariable approach have a 

higher success rate of predicting lifespan in animals than models generated using a single 

variable, like sleep duration, alone. Linear regression allows for many variables to be 

incorporated into a single model, while generating lifespan predictions for each 

individual organism.   
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1.6. BIOLOGICAL MARKERS FOR INADEQUATE SLEEP 

A cross-species biomarker for sleepiness has long been sought after. Due to the 

complexities of sleep-wake systems, it has been difficult to identify a single molecule 

which is correlated with rising sleep debt and can be measured endogenously in humans 

as well as other animals. Amylase was the first cross-species biomarker discovered to be 

correlated with sleep debt. Amylase mRNA transcripts are upregulated as an animal 

becomes more sleep deprived and is thus a potent biomarker that can be used to 

objectively measure sleepiness (Seugnet, Boero et al. 2006).  

 Produced in the salivary glands and pancreas, amylase is an enzyme which breaks 

down complex polysaccharides (starch) into simple sugars. The enzyme is upregulated in 

the presence or anticipation of feeding. It is unknown why this gene is upregulated during 

sleep debt accumulation, but one may speculate that there is an increased energy need 

that is associated with waking that drives animals to find more food (Schneyer 1956).  

 Poor sleep has also been associated with an increase in transcripts related to 

immune function. Sleep deprivation in rats and humans has resulted in a homeostatic 

response that is consistent with an elevated immune response and is accompanied by 

inflammatory signaling markers. Total sleep deprivation caused rats to have increased 

levels of interleukin-6 when compared to both yoked and non-sleep-deprived controls. 

Sleep deprivation was also shown to increase salivary IL-6 in humans(Thimgan, 

Gottschalk et al. 2013). The same study showed remarkably increased levels of a variety 

of immune-related biomarkers in CS flies after sleep deprivation. These included 

Drosocin, Attacin-B, Drosomycin and Metchnikowin. It’s worth noting that transcript 

levels were a function of sleep deprivation duration for many of the aforementioned 
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genes. These data provide evidence that there are indeed objective ways to quantify sleep 

debt.  

1.7. MARKERS FOR AGING 

1.7.1. Oxidative Stress. There is strong evidence that oxidative damage plays a  

key role in aging (Jung et al. 2013). Free radicals and oxidative species (eg. Superoxide 

generated by the mitochondria) lead to chemical changes in many parts of the cell. This 

includes damage to the cell’s protein systems as well as its DNA, resulting in either 

repair, apoptosis, or the passing on of damaged DNA to the next generation of cells. This 

is thought to be partly responsible for the general deterioration of an organism throughout 

its lifetime.  

The cell has built in defenses to protect itself; one of which, the antioxidant 

glutathione. Glutathione is a small tripeptide with a reducing thiol group used to 

neutralize ROS’s. This action converts the reduced glutathione (GSH) to its oxidized 

form, glutathione disulfide (GSSG), and must then be reconverted by the enzyme 

glutathione reductase (Figure 1.1). The GSH/GSSG ratio is thought to be an indicator of 

oxidative stress within an organism (Jahngen-Hodge et al. 1997). 

Glutathione is endogenously generated in a two-step process. Glutamate-cysteine 

ligase (GCL) facilitates the creation of a peptide bond between the amino acids glutamate 

and cysteine and is the rate limiting step in the synthesis of glutathione. GCL is made up 

of two subunits, GCLC and GCLM, the expression of which have been found to be 

correlated with increasing oxidative stress (Franklin et al. 2009). Additionally, expression 

of both subunits can be induced by the transcription factors nrf2, ap-1, and NF-kB. 
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Glutathione synthesis is down-regulated with an increase in the concentration of GSH 

and can be limited by both substrate and GCL component availabilities (Lu 2009). 

Sleep plays an important role in the regulation of cellular redox state. Sleep 

deprivation in animal models results in the accumulation of reactive oxygen species, like 

superoxide (Gopalakrishnan, Ji et al. 2004). This suggests that sleep serves to protect the 

organism from oxidative stress. Further, short-sleeping Drosophila mutants have a 

significantly reduced lifespan when exposed to H2O2 or paraquat compared to their 

normal sleeping controls (Hill, O'Connor et al. 2018). This phenotype is reversed when 

the flies are forced to sleep with drugs like the GABA receptor agonist, Gaboxadol. 

 

 

Figure 1.1. Cellular Redox: superoxide free radicals are reduced to hydrogen peroxide 

by superoxide dismutase. The product is then broken down into water and oxygen by 

catalase or reduced by glutathione (Li, Yan et al. 2000). 
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1.7.2. Ubiquitin Proteasome Pathway. Ubiquitin is a small, 76 amino acid  

protein which serves many purposes from protein degradation to chromatin remodeling. 

The importance of the ubiquitin-proteasome system is underscored by its almost 

completely conserved molecular mechanisms from which it acts(Lee, Simon et al. 1988). 

Additionally, changes within this system are thought to be one of the key causes of 

cellular and molecular aging, making this system an ideal candidate to study the complex 

effects of sleep and aging.  

All organisms have one or several genes coding for polyubiquitin. The gene 

contains a homomeric fusion of ubiquitin molecules which are inert until cleaved into 

individual ubiquitin proteins. Different species have very similar polyubiquitin genes but 

with one caveat, the number of repeats of ubiquitin within the gene can vary widely from 

species to species, suggesting rapid evolution of the gene. In humans, the Ubiquitin-B 

gene encodes 3 repeats of ubiquitin. The polyubiquitin product is then processed into 8.5 

kd monomers which can be activated and used when needed. These monomers appear to 

be difficult to detect, leading researchers to believe that they rapidly bind to proteins once 

synthesized, and that the process is highly regulated (Hoe, Huang et al. 2011). 

Target proteins can be ubiquitinated in several ways and the protein’s fate is 

determined by where ubiquitin is attached. Multiple ubiquitin monomers can attach to a 

single protein due to the presence of seven lysine residues on ubiquitin itself, creating a 

thioester bond between the two ubiquitin monomers. K48 linked ubiquitin chains tag the 

protein for proteolysis and it is then broken down into its constituent amino acids by a 

26S proteasome. Inhibition of the 26S proteasome can cause a buildup of 

polyubiquitinated proteins that can be detrimental to the cell in which this is occurring. 
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 Ubiquitination of a target protein is mediated by a three-enzyme cascade 

consisting of E1, E2, and E3 components. E1, also known as Ubiquitin activating 

enzyme, covalently binds to ubiquitin in an ATP dependent process. Once bound and 

activated, ubiquitin is then transferred to E2, the ubiquitin conjugating enzyme. There 

have been about 40 discovered E2 enzymes in humans, all of which are nearly identical, 

with small changes in the active site leading to specificity to E3, also known as Ubiquitin 

Ligase. The E3 then binds to both the E2 (still holding ubiquitin) and the target protein 

and mediates the transfer of one or more ubiquitin molecules to the target. There are two 

categories of E3 proteins with specific active sites. The first contains a RING motif 

(Really Interesting New Gene) which directly catalyzes the transfer of ubiquitin from E2 

to the target (Deshaies et al, 2009). There have been over 600 E3 enzymes discovered, 

each with specific binding properties, this makes E3 one of the most diverse family of 

proteins ever described. Mutations in some of these E3s have been associated with 

various diseases like Alzheimer’s and Huntington’s (Marblestone et al., 2013).  

 Cellular redox state has been proposed to be one of the key regulators for the 

enzymes within the ubiquitin conjugation pathway.  The ability for E1 and E2 enzymes to 

accept ubiquitin depends on the maintenance of the active site, which must be in the 

reduced state to receive the ubiquitin monomer. Glutathione is thought to be a key 

regulator of this process, and the ability for E1 and E2 to form thiol esters is correlated 

with the GSH:GSSG ratio. Thus, lower concentrations of reduced glutathione can 

suppress ubiquitin conjugation/ Further, exposure to oxidants has been shown to inhibit 

ubiquitin conjugation leading to a buildup of oxidatively damaged proteins (Jahngen-

Hodge, Obin et al. 1997).  
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 After poly-ubiquitination, damaged or misfolded proteins are recognized by a 

proteasome, starting the degradation process. Proteasomes are multi-subunit protein 

complexes responsible for the degradation of both misfolded and oxidized proteins into 

their component amino acids (Jung and Grune 2013). Proteasomes are made up of the 

20S cylindrical “core” bound by up to two regulatory adapters capping either end of the 

core. The 20S core has the ability to degrade a wide range of damaged proteins, but it 

does not have the ability to unfold them by itself. For this function, it must associate with 

a 19S subunit which allows the proteasome to unfold and digest ubiquitinated proteins in 

an ATP dependent manner.  When one or more 19s subunits are associated with the 20S 

core, the complex is known as the 26S proteasome.  

The association and dissociation of the 19S subunit is dependent on the cellular 

redox state (Hohn and Grune 2014). In an oxidative environment, the 19S subunits will 

disassociate from the 20S proteasome, enabling the core subunit to better process 

oxidatively damaged proteins.  It is thought that increasing oxidative stress gradually 

causes proteins to expose hydrophobic structures normally located near the protein’s 

core. The 20S core has the ability to recognize these exposed amino acid sequences, 

leading to the digestion of the protein. A buildup of oxidatively damaged and 

polyubiquitinated proteins is thought to be a key indication of aging. 

1.8. RESEARCH OBJECTIVES 

The purpose of this thesis is to evaluate the relationship between an organism’s 

sleep stability and its overall health. An organism’s sleeping behavior, health, and 

biology are intimately linked, and a breakdown in any one will ultimately lead to the 
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breakdown of the others. Weakness in any one component will lead to an accelerated 

aging profile that can be detected in both organism behavior as well as the underlying 

biology. Here, we focus on the effects of poor sleep stability on several biological 

systems to uncover novel mechanisms in which aging may occur. 

The foundation for this thesis was laid by experiments completed in Dr. 

Thimgan’s lab conducted by a previous graduate student. The results suggest that 

Drosophila lifespan can be successfully modeled by linear regression of sleep-related 

variables. Further, the model can be applied to a new set of 30-day old flies, to generate 

lifespan predictions. Binning the flies into short- and long-lived groups then gives us the 

ability to assess the biological differences that may cause an animal to be short- or long-

lived as a result of its sleeping behavior (Figure 1.2). We plan to use this method to better 

understand the biological causes and consequences of poor sleep.  

1. To build upon and validate the work done previously in Dr. Thimgan’s laboratory 

by a previous graduate student. This includes expanding the full lifespan model to 

include a larger sample size so that a broader range of fly sleep behavior may be 

evaluated and studied.  

2. Apply the model to a new set of flies after monitoring them for approximately 30-

days.  

3. Bin the flies into short- and long- lived groups and confirm the model by testing 

for known biological aging markers (Figure 1.2).  
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Figure 1.2. Preliminary Results Indicate Lower Levels of Glutathione in the Bodies of 

Predicted Short-Lived Flies. 

*** 
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2. MATERIALS AND METHODS 

2.1. ANIMAL HUSBANDRY 

All live animals were stored in polystyrene vials (75mm tall x 25mm diameter) 

and housed in an incubator set at 25°C and on a 12:12 light:dark (LD) lighting schedule 

until mating. The flies were “flipped” into new vials and allowed to mate for three days 

under the same conditions. The parents were then removed from the vials, allowing a new 

generation of flies to emerge. Flies were reared on a standard diet consisting of agar, corn 

syrup, molasses, sucrose and yeast. Adult male Canton S. flies were used for all 

experiments.   

2.2. FLY ACTIVITY AND SLEEP MONITORING 

One- to three-day old Canton S. flies were anesthetized under CO2 and separated 

by sex. Males were collected and stored in vials for up to three days, allowing them to 

become socialized. Four- to seven-day old flies were then loaded into individual glass 

tubes (3mm diameter, 65mm length) containing food with a wax cap on one end, and an 

air-permeable plug on the other. The flies were loaded into tubes by aspiration to avoid 

unnecessary CO2 exposure, and 32 tubes containing flies were placed into Drosophila 

Activity Monitors (DAM, Trikinetics, Waltham, MA, USA) in an incubator with 

identical conditions as stated above.  

Fly activity was recorded and converted into sleep data with an in-house, Excel 

(Microsoft, Richmond) based program as described previously. Beam breaks were 

segmented into 1-minute bins, generating a text file of each individual fly’s activity 

during a 24-hour day. The in-house program was then used to populate an Excel file with 
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raw activity data for every fly in the experiment for each 24-hour period. These data are 

then moved to another in-house program that converts the raw data into sleep-wake 

information. The program then generates hourly sleep data for each fly, and calculates the 

following sleep metrics: latency, total sleep, average day bout duration, average night 

bout duration, maximum day bout duration, maximum night bout duration, number of 

day bouts, number of night bouts, and maximum rest time.  

  Activity was monitored for either the fly’s entire life, or until the flies reached an 

age of 30 days, depending on the experiment. The flies were transferred into new tubes 

containing fresh food twice a week to prevent the food from drying out.  Any deaths were 

recorded at this time. Activity data were collected and converted into sleep data on a 

daily basis, and a survival curve was generated after the conclusion of each experiment.  

Flies obtained from the 30-day experiments were placed in a -80°C freezer until later use. 

2.3. MODELING AND PREDICTIONS 

Lifespan predictions were generated from a multiple linear regression model 

developed by Dr. Gayla R. Olbricht from the Department of Mathematics and Statistics at 

the Missouri University of Science and Technology. Raw activity data was converted into 

a binary representation of sleep status where “1” represents a fly in its awake state, and 

“0” represents a sleeping fly. A sliding five-minute window was utilized to determine fly 

sleep status. Fly activity, as counted by beam breaks, inside any of the one-minute bins 

within the five-minute window is indicative of a fly in its awake state. The absence of 

activity for the duration of this period indicates a sleeping fly (Figure 2.1).  
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 Fly sleep and wake bout data were then used to calculate 36 unique variables plus 

a user term for contribution to the model. Markov chains were used to generate transition 

probabilities. The following variables were calculated daily for both the light and dark 

periods.  

1. Transition probability of the fly staying asleep from one minute to the next (p00).  

2. Transition probability of the fly staying awake from one minute to the next (p11).  

3. The percent of time asleep over the first 30 days (pi_0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average first differences and the standard deviation of the first differences of 

the above variables were also calculated, along with a squared term for each of the 

Figure 2.1. Sleep Bout Information can be Derived from Fly Activity Data. A fly is 

determined to be asleep after a 5-minute period of inactivity. (a): Raw beam break 

counts are converted to a binary representation of sleep and wake states for each 

minute, represented visually in (b). Length of each sleep and wake bout is then 

quantified as shown in (c) (Olbricht, Samaranayake et al. 2014). 
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aforementioned variables. The resulting 37 variables also included a term for the 

experimenter. Out of those variables, only 16 were incorporated into the final model. 

These variables were selected via a model selection process which was utilized to filter 

out unimportant variables.  

2.4. BIOLOGICAL EXPERIMENTS 

Frozen flies still inside their monitoring tubes were separated into short- and long-

lived groups on dry ice to prevent the flies from thawing. Groups of up to five at a time 

were then decapitated on a frozen glass plate over dry ice with a clean and sterile razor 

blade. Groups of heads or bodies were stored in 0.5 mL Eppendorf tubes and placed in 

the -20°C freezer for immediate use. This ensured that both the fly bodies and their heads 

remained frozen throughout the process.  

2.4.1. Gene Expression. Gene expression was assessed by real time PCR. 20  

heads or 5 bodies were homogenized 100ul Trizol (Invitrogen, Carlsbad, CA) using glass 

Micro Tissue Grinders (Wheaton, Millville, NJ). The samples were then transferred to 

1.5mL Eppendorf tubes filled with 900ul Trizol for a final volume of 1mL. RNA was 

then isolated and pelleted according to the manufacturer’s instructions and then dissolved 

into DEPC-treated water. RNA quantity and quality was then determined with a 

Nanodrop spectrophotometer (Thermo Fisher, Waltham, MA). 1ug of RNA was DNAse I 

digested with Optizyme DNAse (Fisher Bioreagents, Hampton, NH) and converted into 

cDNA with iScript cDNA Synthesis Kit (Bio-rad, Hercules, CA), according to the 

manufacturer’s protocol. Relative cDNA quantity was then assessed by loading 

equivalent volumes of each sample into iTaq Universal SYBR Green Supermix (Bio-rad, 
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Hercules, CA) solution as per the manufacturer’s instructions along with primers specific 

to the fly gene Ub-63E. Approximately equivalent amounts of cDNA, determined by Ub-

63E concentration, were then loaded into the master mix for gene quantification using a 

Bio-rad CFX Connect Real-Time PCR Detection System. All genes were normalized to 

Ub-63E which was used as a reference gene. Gene expression for each cohort was 

determined by ΔΔCT as described previously (Livak and Schmittgen 2001).  

2.4.2. Protein Quantification. Samples were homogenized in lysis buffer (50mM  

Tris-HCl, 150mM NaCl, 1% Triton X-100, 1% HALT protease Inhibitor, 1mM EDTA) 

and then centrifuged at 12,000g for 5 minutes. Supernatants were extracted, and protein 

concentration determined by BCA assay (Pierce Biotechnology, Rockford, IL) with a 

BMG Labtech FLUOstar Omega plate reader. 100ug of protein was added to 4x Laemmli 

Sample Buffer (Bio-Rad, Hercules, CA) and 40ug was loaded into each well of a mini-

protean stain-free gel (Bio-Rad, Hercules, CA).  Protein was then transferred to PVDF 

membranes using Trans-Blot Turbo mini-size Transfer Stacks and a Trans-Blot Turbo 

(Bio-Rad, Hercules, Ca). Blots were probed with anti-ubiquitin (1:1000, R&D Systems, 

Minneapolis) or anti-sod2 (1:1000, Novus Biologicals, Littleton) and were lightly 

agitated on a rotator at 4°C overnight. The blots were then washed with TBST and then 

incubated in anti-mouse (1:2000, Abcam, Cambridge) and anti-rabbit (1:2000, 

Invitrogen, Carlsbad, Ca) for three hours at room temperature. Bands or protein smears 

were detected with ECL+ (Pierce Biotechnology, Rockford, IL) and imaged using a 

ChemiDoc Imaging System (Bio-Rad, Hercules, Ca). Band or protein smears were 

quantified using ImageLab (Bio-Rad, Hercules, Ca), and normalized to total protein 

images obtained using the stain-free protocol.  
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3. RESULTS 

3.1. FULL LIFESPAN EXPERIMENTS 

Sleep data for 192 male adult fruit flies was collected over the life of each fly. 

Over the 67-day period, data was collected for the following variables on a daily basis: 

total sleep time, day/night bout duration, maximum day/night bout, number of day/night 

bouts, maximum rest time and latency. Graphs of these metrics were generated and used 

for comparison to other experiments to check that the flies are similar and normally 

distributed (Figure 3.2a). Out of 192 flies, 22 were excluded for various reasons including 

fly death from unnatural causes (e.g. the fly was crushed during transfer) or it flew away 

during food exchange. 12 flies were also marked as questionable due to less obvious 

circumstances (e.g. the fly got stuck in its food and died). In total, 158 flies were 

ultimately used for modeling. Half of the flies were dead by the 55th day (Figure 3.1).   

 

Figure 3.1. Survival Curve for the August Full-Lifespan Experiment. Half the 

flies were dead by day 55. 
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Figure 3.2. Example of Traditional Fly Metrics. (a): Mean daily traditional metrics of the 

surviving population of flies. (b): Total Sleep Time for 15, 30 and 50 days. (c): Total sleep 

time for days 15 and 30 by for observed short- and long- lived flies. (d): Average night 

bout duration for flies at 15, 30 and 50 days. (e): Average night bout duration for observed 

short- and long- lived flies. 

a

. 

c 

e d

. 

b

. 
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As the flies age, they tend to sleep more by total sleep time (Figure 3.2 b-c). By 

day 30, this trend was most pronounced in the bottom quartile of flies by days lived. This 

group of flies slept significantly longer (p < 0.01, Student’s t-test) at day 30 than day 15. 

These short-lived flies had a significantly higher total sleep time on day 30 than the top 

quartile (p < 0.05, Student’s t-test) but not the top 10% of flies by lifespan, although the 

trend suggests a similar difference. There was no significant difference between day 15 

and day 30 in terms of total sleep time for flies falling in the top quartile and the top 10% 

of days lived.  

 The average night bout duration of flies decreases significantly with age (Figure 

3.2 d-e). This is most pronounced in flies observed to live within the top quartile of 

lifespan (p < 0.001, Student’s t-test), but not in the bottom quartile. Average night bout 

duration did decrease as the top 10% by lifespan of flies got older, but not significantly. 

This is possibly due to higher variation.  

3.2. FULL LIFESPAN PREDICTION MODEL.  

Lifespan predictions were generated by utilizing a multiple linear regression model. 

The final model was built using fly data (n=380) from four individual experiments, carried 

out by three different people (Table 3.1).  

 

Table 3.1. Full-Lifespan Experiments Contributing to the Model. 

Experiment Title Researcher Date Number of Flies 

Full Lifespan Experiment 1 Courtney Fiebleman April 2015 52 

Full Lifespan Experiment 2 Josh Lisse August 2016 137 

Full Lifespan Experiment 3 Josh Lisse October 2016 117 

Full Lifespan Experiment 4 Elizabeth Park October 2016 74 
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 Out of 37 potential variables, 16 (+3 Experiment terms) were incorporated into 

the final model. Variables were selected by a stepwise Akaike Information Criterion 

(AIC) model selection process, ensuring that only the most important variables to 

lifespan were used in the final lifespan model.  

Lifespan prediction was generated inserting values into the following equation:  

Predicted Days Lived = β0 + β1 * Var1 + … + β19 * Var19. The first term, the intercept, is 

represented by β0 and had a value of 116.95. Subsequent terms are comprised of a 

coefficient (β1-β19), the value of which was determined during model training, and the 

variable generated for each individual fly. The variables used, along with their parameter 

estimates can be found in Table 3.2. 

 

                                              Predictions vs. Actual Lifespan 

  

Predicted 

Short-Lived Middle Long-Lived 

Actual 

Short-Lived 59 29 1 

Middle 34 127 37 

Long-Lived 2 34 57 

 
b c 

a 

Figure 3.3. Full-Lifespan Model. (a): Fly binning of predicted long- and short-lived flies. 

(b): Predicted long- and short- lived flies mean actual lifespan. (c): Actual vs Predicted days 

lived (One-Way ANOVA p < 0.0001). (d): Contingency table for actual and predicted 

lifespan. 

d 

*** 
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Table 3.2. Variables Used for the Full Lifespan Model Sorted by Partial R-Square. FD = 

First Differences, p11 = wake propabiblity from one minute to the next, p00 = sleep 

probability from one minute to the next, SD = Standard Deviation.  

Variable Parameter 

Estimate 

P-value Standardized 

Estimate 

Partial 

Rsquare 

Intercept 116.95 <0.0001 0 . 

User Term: Courtney 6.96 <0.0001 0.55173 16.38% 

(Percent of Time Asleep – Dark)2 

Squared 

-299.48 <0.0001 -0.26809 5.31% 

Percent of Time Asleep - Dark -56.91 <0.0001 -0.52449 5.23% 

Percent of Time Asleep - Light 34.52 0.0002 0.40063 3.78% 

Prob. of Staying Awake - Dark -45.36 0.0009 -0.32652 3.01% 

(Average FD – Light)2 -43879 0.0011 -0.1403 2.92% 

Average FD for p11 - Light -563.17 0.0012 -0.20191 2.86% 

(Average FD for p11 – Light)2 -63666 0.0023 -0.14791 2.55% 

Average FD for p00 - Light -2549.4 0.0031 -0.19225 2.39% 

(Average FD for p11 – Dark)2 -40675 0.0053 -0.11443 2.14% 

User Term: Josh -1.75 0.0079 -0.17559 1.94% 

SD of FD Percent Asleep - Light 60.06 0.0090 0.1699 1.88% 

(SD of FD for p11 – Light)2 957.69 0.0227 0.16879 1.43% 

SD of FD for p11 Light -58.60 0.0555 -0.19299 1.01% 

(Prob. of Staying Awake – Dark)2 -148.34 0.1115 -0.08867 0.7% 

Average FD Percent Asleep - 

Light 

-180.52 0.2749 -0.09205 0.33% 

Average FD Percent Asleep - 

Dark 

36.92 0.7100 0.01526 0.038% 

User Term: Elizabeth -0.15 0.8046 -0.01346 0.016% 
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The percentage of time asleep during the dark period (partial R2 = 5.23%) and its 

square term (partial R2 = 5.31%) were the most influential variables for the prediction of 

lifespan. This was followed by the percentage of time asleep during the light period 

(partial R2 = 3.78%) and the probability of staying awake from one minute to the next, or 

p11, during the dark period (partial R2 = 3.00%).  

The next five most influential variables were based on first differences, indicating 

the importance of sleep stability. These included the squared term of the first differences 

of the mean time asleep during the 30-day light period (partial R2 = 2.92%), the first 

differences of the probability that the fly stays asleep from one minute to the next during 

the light period (partial R2 = 2.86%), followed by the squared term (partial R2 = 2.55%). 

 The resulting model was used to generate lifespan predictions for all 380 flies. 

When plotted against the actual lifespan of each individual fly, the model was able to 

successfully predict lifespan with an adjusted R2 of .435 (p<.0001) (Figure 3.3d). The 

flies were then binned into long-lived (top 25%), middle (middle 50%), and short-lived 

(bottom 25%) groups by both predicted and actual lifespan (Figure 3.3a). Out of 95 

predicted short-lived flies, 62.11% were predicted correctly and were observed to be 

short-lived, while only 2.11% were predicted incorrectly and were observed long-lived. 

The remaining 35.79% were observed to be within the middle group. Out of 95 predicted 

long-lived flies, 60% were observed to be long-lived, while only 1.05% were observed to 

be short-lived. The remaining 38.95% were observed to fall into the middle group. The 

predicted short-lived flies had an observed lifespan of 46.95 days, while the predicted 

long-lived flies had an observed lifespan of 59.37 days. The predicted middle group had 

an observed lifespan of 54.77 days. 
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3.3. LIFESPAN PREDICTION AT 30 DAYS 

The variables used to generate the full lifespan model were recalculated to be 

incorporated into a model which predicts lifespan when the fly is 30 days old. 445 flies 

from 5 different experiments were used when building this model. Out of those 445 flies, 

70% (n = 311) were designated as a model training group, while the remaining 30% were 

withheld from the model for validation. As with the full lifespan model, 36 potential 

variables were assessed, 14 of which were incorporated into the model (Table 3.3.).  

Terms accounting for the user were not used for this model. 

When the model was applied to the training set (the group of flies used to build 

the model), it was successfully able to predict lifespan with an R2 of 0.22 and an adjusted 

R2 of 0.183 (Figure 3.4b, One-way ANOVA, p < 0.0001). The 311 training set flies were 

then binned into predicted short- and long- lived groups containing 77 flies each, with 

157 predicted to fall into the middle. Out of the 77 predicted short-lived flies, 46.75% 

were observed to be actually short-lived, with 5.19% having an actual lifespan that would 

fall into the long-lived category. The remaining 48.05% had an actual lifespan falling into 

the middle category. Out of the 77 predicted long-lived flies, 46.75% were observed to be 

long-lived, 11.69% were observed to be short-lived, and the remaining 41.56% of the 

flies were observed to have a middle lifespan (Figure 3.4a). The mean actual lifespan for 

the predicted short-lived group was 49.44 days, the predicted middle group was 55.50 

days, and the predicted long-lived group was 60.81 days (Figure 3.4d, ANOVA, p < 

0.0001). 

The model was then applied to the withheld group of flies (n = 134), the test set 

(Figure 3.5). A comparison between the actual days lived and the predicted days lived 
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yielded an adjusted R2 of 0.16 (ANOVA, p < 0.0001, Student’s t-test). The model 

continued to show strength when binning the flies. Out of the 33 predicted short-lived 

flies, 45.45% were observed as short-lived, while 6.06% were incorrectly called and were 

observed as long-lived. The remaining 48.48% had a middle-observed lifespan. Out of 

the 33 flies that the model predicted to be long-lived, 36.36% were observed to have a 

long lifespan, while only 9.09% had an observed short lifespan. 54.55% were observed to 

have a lifespan falling in the middle (Figure 3.5c). The mean actual lifespan for the 

predicted short-lived flies was 50.45 days, the middle was 56.29 days, and the long-lived 

was 58.00 days (Figure 3.5d).  

3.4. BIOLOGICAL DIFFERENCES BETWEEN SHORT- AND LONG-LIVED 

FLIES 

3.4.1. Amylase. Differences in relative sleep quality between predicted short- and  

long-lived animals were confirmed by measuring levels of the sleep debt marker, 

amylase. Heads from three separate 30-day experiments were tested (n = 20). Amylase 

mRNA levels were significantly elevated (p < 0.05, Student’s t-test) in the heads of short-

lived fruit flies when compared to their long-lived counterparts. This is an indication that 

the predicted short-lived flies have an increase in accumulated sleepiness relative to the 

predicted long-lived cohort (Figure 3.6). 

3.4.2. Drosocin. Drosocin is a marker for inadequate sleep. Short-lived flies from  

three separate 30-day experiments had significantly more Drosocin expression in the 

heads (p < 0.05, Student’s t-test, n = 3). Upregulation of this marker in short-lived flies 

supports our hypothesis that sleep and lifespan have a bi-directional relationship (Figure 

3.6.).  
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Predictions vs. Actual Lifespan 

  

Predicted 

Short-Lived Middle Long-Lived 

Actual 

Short-Lived 36 27 9 

Middle 37 95 32 

Long-Lived 4 35 36 

30-Day Training Set 
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Figure 3.4. 30-Day Training Set. (a): Fly binning by quartile. (b): Predicted days lived 

vs. actual days lived. (c): Fly binning of predicted long- and short-lived flies. (d): 

Predicted long- and short- lived flies mean actual lifespan. 
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Figure 3.5. 30-Day Test Set:  Predictions were generated from flies withheld from the 30-

day model and plotted against their actual day lived. (a): Fly binning by quartile. (b): 

Scatter plot of actual vs. predicted lifespans (n = 134, p < 0.0001). (c): A representation 

of the composition of predicted short- and long-lived flies. (d): The average actual 

lifespan of predicted short- and long-lived flies (Top/Bottom 25%). 

Predictions vs. Actual Lifespan 

 Predicted 

Short-Lived Middle Long-Lived 

Actual 

Short-Lived 15 10 3 

Middle 16 40 18 

Long-Lived 2 18 12 
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Table 3.3. Variables Used for the Full Lifespan Model Sorted by Partial R-Square. FD = 

First Differences, p11 = Wake Probability from one minute to the next, p00 = sleep 

probability from one minute to the next, SD = Standard Deviation.  

Variable 
Parameter 

Estimate 
p-value 

Standardized 

Estimate 

Partial  

R-square 

Intercept 198.78 0.043 0 . 

Average FD p11 - Light -805.06 <0.0001 -0.27 6.81% 

Average FD Time Asleep - 

Dark 
-363.41 0.0059 -0.17 2.54% 

Percent of Time Asleep - Light 103.42 0.0151 1.19 1.98% 

Average FD p00 - Light -1334.51 0.0186 -0.14 1.86% 

Probability of Staying Awake - 

Light 
193.12 0.0224 1.08 1.75% 

SD of FD Percent of Time 

Asleep - Light 
51.45 0.044 0.14 1.36% 

Percent of Time Asleep - Dark -14.76 0.0498 -0.18 1.29% 

Probability of Staying Asleep - 

Light 
-399.56 0.0524 -0.59 1.27% 

(Probability of Staying Awake 

– Light)2 525.03 0.0559 0.31 1.23% 

(SD of FD Percent of Time 

Asleep – Dark)2 -961.13 0.0703 -0.11 1.10% 

SD of FD p00 - Dark 327.07 0.0939 0.16 0.95% 

SD of FD Percent Asleep - Dark -42.94 0.2367 -0.14 0.47% 

(Average Percent of Time 

Asleep – Light)2 11.96 0.8553 0.01 0.01% 

(Probability of Staying Asleep)2 352.84 0.9085 0.01 0.00% 
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3.4.3. SOD-2. Biological differences between predicted short- and long-lived flies  

were further assessed by measuring levels of the antioxidant SOD-2. SOD-2 levels were 

found to be significantly higher in the bodies of flies that were predicted to be short-lived 

(Figure 3.7). Relative SOD-2 protein concentration as determined by a semi-quantitative 

western blot, was found to be an average of 25% higher in predicted short-lived flies than 

in predicted long-lived flies (n=3, p <0.05 Student’s t-test). These results were confirmed 

by qPCR assay across three different 30-day experiments. The bodies of short-lived flies 

had an average of 45% more SOD-2 transcripts than their long-lived counterparts (n = 3, 

p < 0.001 by Student’s t-test). 

3.4.4. Ubiquitin. Accumulated ubiquitinated proteins are a known indicator of  

aging. Western Blots were used to determine the relative concentration of poly-

ubiquitinated proteins in both cohorts (n = 3). Total ubiquitinated proteins were elevated 

in the bodies of short-lived samples, suggesting that the predicted short-lived flies are 
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Figure 3.6. Relative Amylase and Drosocin Levels. (a) Relative Amylase Levels. Amylase 

mRNA was significantly higher in the heads of predicted short-lived flies (p<.05, 

Student’s t-test). (b) Relative Drosocin levels. Drosocin mRNA was significantly higher 

in the heads of short-lived flies (p<.05, Student’s t-test). 
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biologically older than the predicted long-lived flies. Short lived flies had an observed 

22% increase in polyubiquitinated proteins (Figure 3.8). This result was confirmed in two 

separate 30-day experiments. 
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Figure 3.7. Relative SOD-2 Levels. SOD-2 mRNA (n=8, p <.001 Student’s t-test) and 

protein concentrations (n=3, p<0.05 Student’s t-test) were found to be significantly 

elevated in the bodies of short-lived flies . 
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Figure 3.8. Relative Polyubiquitinated Proteins. Polyubiquitin was significantly elevated 

in the bodies of short-lived flies (n=3, p<0.01 Student’s t-test). 
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4. DISCUSSION 

Building a model to describe lifespan by sleep architecture has proven to be a 

monumental task. These data show that wild type Drosophila melanogaster’s lifespan 

can be successfully modeled and binned into short- and long-lived groups using a multi-

variate approach. The incorporation of variables representing sleep stability was integral 

when describing lifespan and was much more powerful than measuring basic sleeping 

metrics alone.  

 As Drosophila age, they spend more time asleep throughout the day, but in a way 

that is less consolidated. This is especially pronounced in short-lived flies. Long-lived 

flies, on the other hand, exhibit a more consolidated and stable sleep architecture, even at 

30 days old. Unsurprisingly, however, neither total sleep time nor average night bout 

duration has a strong correlation with lifespan, and both are insufficient when predicting 

lifespan.  

 The full lifespan model most accurately predicted lifespan. This model was 

trained with sleep data from 380 flies which were monitored from about six days after 

emerging from the pupa stage until death. When the model was reapplied to the same 

group of flies from which it was built, the generated predictions were highly correlated 

with actual lifespan (R2 =.46, p<0.0001). The success of the model is even more apparent 

when the flies are binned into quartiles. 66.29% of observed short-lived flies were 

correctly predicted to be short-lived, while 61.29% of observed long-lived flies were 

correctly predicted to be long-lived. Missed calls (i.e. an observed short-lived fly was 

predicted to be long-lived) accounted for fewer than 1% of all predictions. 
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 Expectedly, the accuracy of the model decreased when only 30 days of sleep data 

was used in model training. This model was trained using 311 flies and was able to 

achieve an adjusted R2 value of 0.183 when the model was applied to the flies used in the 

training set. When the flies were binned, the model correctly predicted long-lived flies 

48% of the time, and short-lived flies 50% of the time. Missed calls accounted for fewer 

than 4% of all predictions.  

The 30-day model performed similarly when it was applied to the 134 withheld 

flies, with an adjusted R2 of 0.16. When the flies were binned, the model correctly 

predicted short-lived flies 53.57% of the time, and long-lived flies 37.50% of the time. 

Missed calls accounted for a total of less than 3% of flies.  

Although each of the 37 variables were calculated for both the full-lifespan and 

30-day models, only 15 variables were selected for use in each model. The two models 

differ because each variable was independently calculated, and model selection was 

carried out independently for each model. With that said, there is significant overlap 

between the two models in terms of variables selected. 

Sorting by Standardized Estimate revealed which variables have the largest effect 

on lifespan. The percentage of time spent asleep during both the day and night were 

strongly correlated to lifespan in both models. Interestingly, and in contrast to available 

literature, there was a negative correlation between percentage of time spent asleep at 

night and lifespan. Time asleep during the day, however, was positively correlated with 

lifespan. In other words, longer-living flies tend to spend less time sleeping during the 

night and more time asleep during the day. The first differences of the mean transition 
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probability for wake and sleep during the daytime both had a strong negative correlation 

with lifespan in both models.  

The transition probabilities for both wake and sleep during the day occupied 

positions two and three in the 30-day model, respectively. Neither variable was selected 

in the full-lifespan model. This could suggest that transition probabilities during the day 

play an outsized role during the younger stages of life but lose influence on lifespan as 

the animal gets older. It’s worth noting that the first differences of the mean transition 

probability of wake during the day was calculated to be extremely similar for both 

models.    

Verification of the model was conducted by comparing known markers of 

sleepiness and aging for both short- and long-lived flies. Preliminary data collected from 

a previous graduate student indicated that predicted short-lived flies are less equipped to 

deal with oxidative stress due to lower levels of the antioxidant glutathione. This 

evidence suggested a relationship between sleep stability and oxidative stress and is 

consistent with published research. Subsequent experiments were designed with this 

evidence in mind, concentrating on the downstream effects of oxidative stress. 

Several methods were chosen to carry out the goal of assessing oxidative stress 

differences between predicted short- and long-lived animals. Gene expression differences 

between prediction groups were measured via qPCR for genes known to change due to 

oxidative stress and age. Western blots were used to confirm significant differences in 

gene expression between the two cohorts for select genes. Many genes associated with 

cellular redox state are also associated with aging, so it was expected that short- and long-

lived flies would exhibit differences in expression of these genes. 
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A qPCR screen for genes affected by oxidative stress revealed gene expression 

differences between the two prediction groups. Notably, SOD-2 was significantly 

elevated in the bodies of predicted short-lived flies. This result was confirmed by a 

western blot. SOD-2 expression is controlled by the Antioxidant Response Element 

(ARE) which is responsible for the transcription of several antioxidant genes when 

activated, including both the catalytic (GCLc) and modifier (GCLm) subunits of γ-

Glutamyl cysteine synthase, the rate limiting enzyme in the synthesis of glutathione. The 

ARE is activated by Relish, the fly analog to Nrf2 in mammals. Upregulation of SOD-2 

is consistent with research indicating that organisms become more oxidatively stressed 

with age, and thus must compensate by increasing antioxidants. This evidence supports 

our hypothesis that predicted short-lived flies have a more biologically advanced age 

compared to predicted long-lived flies. 

Predicted short-lived flies are biologically different than their long-lived 

counterparts. Biological experiments resulted in striking differences in both transcript as 

well as protein levels for several indicators of sleepiness and aging, all of which are 

consistent with the literature. Predicted short-lived flies have significantly elevated levels 

of amylase compared to predicted long-lived flies, indicating that they may live in a 

chronic state of increased sleep debt. Predicted short-lived flies have over three times the 

expression of amylase in their heads, while nine hours of sleep deprivation resulted in a 

five-fold change in a previous experiment. 

The aforementioned markers of aging are just a few of many that should be tested. 

These markers are all known to be correlated with age, and now – sleep behavior. From 

here, lesser understood pathways may be tested for changes between short- and long-
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lived organisms. Cell cycle regulation, metabolite clearance in the brain, and kinase 

function all come to mind. Further, other behavioral consequences of chronically poor 

sleep can also be tested, like learning differences between predicted short- and long-lived 

flies.  

The biological differences between short- and long-lived flies are an indication 

that our hypothesis is correct; sleep stability can be modeled to assess organism health. 

Poor sleep stability is an indication that the organism’s biological age is further advanced, 

and that intervention may be required. From here, the next question that must be asked is 

whether or not poor sleeping short-lived organisms can be rescued through the 

stabilization of their sleeping behavior. 
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