
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2018

Mixed-criticality real-time task scheduling with graceful Mixed-criticality real-time task scheduling with graceful

degradation degradation

Samsil Arefin

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Arefin, Samsil, "Mixed-criticality real-time task scheduling with graceful degradation" (2018). Masters
Theses. 8035.
https://scholarsmine.mst.edu/masters_theses/8035

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8035&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8035&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/8035?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F8035&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MIXED-CRITICALITY REAL-TIME TASK SCHEDULING WITH GRACEFUL

DEGRADATION

by

SAMSIL AREFIN

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

2018

Approved by:

Zhishan Guo, Advisor
Donald C. Wunsch
Patrick Taylor

Copyright 2018

SAMSIL AREFIN

All Rights Reserved

iii

ABSTRACT

The mixed-criticality real-time systems implement functionalities of different de-

grees of importance (or criticalities) upon a shared platform. In traditional mixed-criticality

systems, under a hi mode switch, no guaranteed service is provided to lo-criticality tasks.

After a mode switch, only hi-criticality tasks are considered for execution while no guar-

antee is made to the lo-criticality tasks. However, with careful optimistic design, a certain

degree of service guarantee can be provided to lo-criticality tasks upon a mode switch.

This concept is broadly known as graceful degradation. Guaranteed graceful degradation

provides a better quality of service as well as it utilizes the system resource more efficiently.

In this thesis, we study two efficient techniques of graceful degradation.

First, we study a mixed-criticality scheduling technique where graceful degradation

is provided in the form of minimum cumulative completion rates. We present two easy-to-

implement admission-control algorithms to determine which lo-criticality jobs to complete

in hi mode. The scheduling is done by following deadline virtualization, and two heuristics

are shown for virtual deadline settings. We further study the schedulability analysis and the

backward mode switch conditions, which are proposed and proved in (Guo et al., 2018).

Next, we present a probabilistic scheduling technique for mixed-criticality tasks on

multiprocessor systems where a system-wide permitted failure probability is known. The

schedulability conditions are derived along with the processor allocation scheme. The work

is extended from (Guo et al., 2015), where the probabilistic model is first introduced for

independent task scheduling on a uniprocessor platform. We further consider the failure

dependency between tasks while scheduling on multiprocessor platforms.

We provide related theoretical analysis to show the correctness of our work. To show

the effectiveness of our proposed techniques, we conduct a detailed experimental evaluation

under different circumstances.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to everyone for whom it became possible to

accomplish my research work successfully. First of all, I would like to thank Dr. Zhishan

Guo, my advisor, whose immense knowledge and constant support helped me to achieve

my goal. It was a great opportunity for me to work in his research group, which helped me

to learn a lot about the real-time systems research area, and to collaborate with numerous

talented researchers. Without his proper guidance, it wouldn’t be possible for me to

overcome all the hurdles I faced during my master’s program and in this research work.

Furthermore, I would like to thank my committee members, Dr. Donald C. Wunsch

andDr. Patrick Taylor, for agreeing to be the part of my thesis committee and for giving their

valuable time to review this work. I am grateful to Missouri S&T, and more specifically

the computer science department, for providing me the opportunity and sufficient facilities

to perform my research work. Finally, I want to thank my parents and my wife, Farzana

Shawarna, for their constant support and love.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

NOMENCLATURE . x

SECTION

1. INTRODUCTION. 1

1.1. MIXED CRITICALITY SYSTEMS . 2

1.2. GRACEFUL DEGRADATION IN MIXED-CRITICALITY SYSTEMS. 4

1.3. PROBABILISTIC MC TASK SCHEDULING . 5

1.4. CONTRIBUTION AND ORGANIZATION . 7

2. LITERATURE REVIEW . 8

2.1. MC REAL-TIME TASK SCHEDULING . 8

2.2. MC SCHEDULING WITH GRACEFUL DEGRADATION 9

2.3. PROBABILISTIC SCHEDULABILITY . 10

3. SYSTEM MODEL . 12

3.1. TRADITIONAL MC SYSTEM MODEL. 12

3.2. MC GRACEFUL DEGRADATION MODEL. 14

3.3. SYSTEM MODEL WITH PERMITTED FAILURE PROBABILITY 16

vi

3.4. THESIS STATEMENT . 17

4. MIXED-CRITICALITY TASK SCHEDULING WITH GRACEFUL DEGRA-
DATION . 18

4.1. ADMISSION CONTROL OF LO-CRITICALITY TASKS IN HI MODE . . . 19

4.2. SCHEDULER AND SCHEDULABILITY ANALYSIS . 23

4.2.1. Algorithm EDF-GVD . 23

4.2.2. DBF Based Schedulability Analysis . 27

4.2.3. Mode Switch in Both Directions. 29

4.3. EXPERIMENTS . 30

4.3.1. Workload Generation . 31

4.3.2. Observation . 34

5. PROBABILISTIC MULTIPROCESSOR SCHEDULING . 36

5.1. BACKGROUND AND PRELIMINARY WORK . 36

5.1.1. Probabilistic Schedulability on Uniprocessor Platforms 37

5.1.2. The LFF-Clustering Algorithm . 37

5.1.3. Runtime Strategy . 38

5.1.4. Schedulability Test . 39

5.2. PROBABILISTIC SCHEDULINGONMULTI-PROCESSOR PLATFORMS 40

5.2.1. Different Scheduling Heuristics. 40

5.2.2. Algorithm to Schedule MC Tasks with Failure Probability 41

5.2.3. Scheduling LO-Criticality Tasks. 42

5.3. SCHEDULABILITY . 42

5.3.1. Task Allocation Conditions . 43

5.3.2. Task Schedulability Condition . 44

5.4. CONSIDERING COVARIANCE/FAILURE DEPENDENCY 46

5.4.1. Covariance Matrix . 46

vii

5.4.2. Task Isolation using Graph Model . 47

5.4.3. Task Allocation and Scheduling . 50

5.5. EXPERIMENTAL EVALUATION . 52

5.5.1. Workload Generation . 52

5.5.2. Evaluation Results . 53

6. CONCLUSION . 58

REFERENCES . 59

VITA . 66

viii

LIST OF ILLUSTRATIONS

Figure Page

4.1. EDF-GVD scheduling of the task set provided in Example IV.1 26

4.2. Variation of task set acceptance ratio for varying average utilization U 32

4.3. Effect of parameters on acceptance ratio . 33

5.1. Different partitioning heuristics example . 41

5.2. Graph transformation of the covariance matrix . 48

5.3. Graph coloring with m = 2 . 51

5.4. Acceptance ratio for pMCMP in an 4-core platform under different utilizations . 54

5.5. Performance of pMCMP in an 4-core platform under different partition heuris-
tics . 55

5.6. Acceptance ratio for pMCMP under various parameters . 56

5.7. Performance of pMCMP in an 4-core platform under different density of
covariance . 57

ix

LIST OF TABLES

Table Page

1.1. Safety levels defined by different industrial standards . 3

4.1. Sample completion rates with associated admission patterns and maximum
job acceptance separation . 21

4.2. An MC set with minimum degradation execution rates . 26

4.3. Breakdown of virtual deadline selections, mode switch upper bounds, and task set sizes 34

5.1. Sample covariance matrix of an MC task set with 8 tasks . 46

x

NOMENCLATURE

AMC Adaptive Mixed-Criticality

BF Best-Fit

BFD Best-Fit Decreasing

DBF Demand Bount Function

EDF Earliest Deadline First

EDF-GVD Earliest Deadline First - Graceful Virtual Deadline

EDF-VD Earliest Deadline First with Virtual Deadline

EVT Extreme Value Theory

FF First-Fit

FFD First-Fit Decreasing

GEDF-VD Global Earliest Deadline First with Virtual Deadline

LF Largest-First

MC Mixed-Criticality

MIT Minimum Inter-arrival Time

pET probabilistic Execution Time

pMC probabilistic Mixed-Criticality

pMCMP probabilistic Mixed-Criticality on MultiProcessor

xi

pWCET probabilistic Wost-Case Execution Time

QoS Quality of Service

RAD Reasonable Allocation Decreasing

WCET Wost-Case Execution Time

WF Worst-Fit

WFD Worst-Fit Decreasing

1. INTRODUCTION

Real-Time Systems refers to the infrastructure where the temporal correctness is

as much important as the logical correctness. While the logical correctness of the system

ensures that the correct results are produced, the temporal correctness focuses on the

completion of a specific task at the right time (e.g., within deadlines). In simple words, we

can describe the simplest form of a real-time system as follows — if there is a set of tasks

to be completed with given deadlines by using a specific amount of resources, the goal is

to complete all tasks on time (e.g., within their corresponding deadlines). To accomplish

this goal properly, we need an efficient scheduling algorithm. With the advancement of

technology aswell as the real-time systems itself, various types of such system emerge, hence

raising numerous new challenges.. Based on different system infrastructure, requirements,

and constraints, there exist different real-time systems and different scheduling problems.

For example, based on the nature of the tasks, there can be periodic or sporadic task systems.

Based on the criticality level, there can be single-criticality or mixed-criticality systems.

Depending on the platforms where the tasks will be scheduled, there can be uniprocessor or

multiprocessor scheduling problems. The goal of a scheduling algorithm is to accomplish

the scheduling challenge (i.e., fulfilling both logical and temporal correctness). The real-

time scheduling theory allows us to study such scheduling algorithms or create a new one

for a new challenge, and also to validate the algorithms by deriving schedulability tests to

guarantee temporal correctness.

In this thesis, we focus on the scheduling problem of mixed-criticality real-time

task systems. Along with the mixed-criticality task scheduling, our main goal is to provide

graceful degradation (enhanced quality of service) to low critical tasks. We study two

2

different scheduling problems of such systems which are some of the emerging problems

in the area. This section provides a brief introduction to the different problems which are

studied in this thesis, followed by the contribution and organization.

1.1. MIXED CRITICALITY SYSTEMS

In a real-world system, where multiple applications are considered with a variety of

task sets, not every application have the same importance level as others. Either based on

fulfilling themission of the application or to enhance the quality of service (QoS), success of

some of these applications are more critical than others. For example, a navigation system

in an airplane is obviously more critical than a real-time entertainment system. Here the

navigation system can be seen as a mission-critical task, failing to accomplish such tasks

on time can have a drastic effect and may create risks for hundreds of lives. However, the

entertainment system can be considered as a quality-critical task, which is good to have but

occasionally failing to complete such tasks wouldn’t harm a lot. Due to the size, weight,

and power considerations, there is a trend in combining such mixed-critical applications of

different degree of importance with varying specifications upon a shared platform (Burns

and Davis, 2017c) and such systems are called Mixed-Criticality (MC) systems.

Due to the emerging importance of MC systems, government and industrial or-

ganizations (including AFRL, NSF, NSA, NASA, etc.) have put much effort into it in

recent years. For example, the software standards in the European automotive industry

(AUTOSAR) and in the avionics domain (ARINC) already recognize the importance of

MC on their platforms (Guo and Baruah, 2018) while the US Air Force has acknowledged

that the MC architectures are needed where safety and security are designed for certifi-

cation (Barhorst et al.). Not only the government and industrial organizations but also

the academia realize the strategic significance of the study of such systems. A numerous

amount of research has been done (Burns and Davis, 2017a) since the pioneering work

3

by Vestal (of Honeywell Aerospace) in 2007 (Vestal, 2007). In Table 1.1, some current

industrial system standards and their corresponding failure conditions are shown which are

originally presented in (Guo and Baruah, 2018).

Table 1.1. Safety levels defined by different industrial standards

dards
Stan-

(ASIL)
ISO26262

(Class)
IEC62304

(SIL)
IEC61508

(SSIL)
EN50128

(DAL)
DO-178B/C

Condition
Failure

A A 1 0/1 A Catastrophic
Safety B - 2 2 B Hazardous
Levels C B 2 2 C Major

D C 3 3 D Minor
- - 4 4 E No Effect

Most of the early research on scheduling MC task system is based on the Vestal

model (Vestal, 2007), which defines the correctness as follows: all deadlines will be met

under normal circumstances, while if some more important tasks overrun, a mode switch

is triggered and only hi-critical deadline will be guaranteed to met. In traditional MC

system, different worst-case execution time (WCET) are specified for each hi-criticality

task for different mode. For example, in a two-criticality-level system, each task can be

of either higher (hi) or lower (lo) criticality. Two WCET estimations, a lo-WCET and a

hi-WCET, are specified for each hi-criticality task (usually the hi-WCET is several orders

of magnitude larger than the lo-WCET). However, only one WCET is specified for each

lo-criticality task. Whenever there is a single failure by any hi-criticality task, i.e., the task

does not finish before the deadline, a system-wide mode switch will be triggered. Upon a

mode switch, all hi-criticality tasks are allocated by using there hi-WCET estimation while

all the lo-crtiticality tasks are dropped.

4

1.2. GRACEFUL DEGRADATION IN MIXED-CRITICALITY SYSTEMS

Most of the prior research on MC schedulability (Please refer to (Burns and Davis,

2017b) for an up-to-date thorough review) is based on the Vestal model (Vestal, 2007),

where upon a mode switch, all lo-criticality tasks are dropped. Although this system-mode

based MC model is quite successful to solve some of the core challenges, however, it fails

to identify a major challenge which is pointed by systems engineers and researchers (Burns,

2017) :

lo-criticality functionalities are not non-critical — they should be guaranteed

with some degree of service, regardless of hi-criticality tasks’ behaviors.

GRACEFULDEGRADATION: The term graceful degradation of any system refers

to the ability to maintain limited functionality even under an adverse situation, when a large

portion of the system is destroyed or does not work properly. Scheduling algorithm with

graceful degradation allows lo-criticality tasks to receive a certain amount of service,

instead of fully being abandoned, even after a mode switch. Variety of applications can

produce better result upon integrating such algorithms in the system. For example, Baruah

et al. (Branicky et al., 2002) show that a control signal processing in the networked control

system can still perform stably while skipping a limited number of computation tasks within

a certain. Similarly, this technique can be applied in a continuous closed-loop system where

completing a minimal fraction of some computations (tasks) on time can only cause an

optimal disturbance rejection performance (Majumdar et al., 2011).

In the real-time systems community, the study of MC scheduling with graceful

degradation become popular in recent years (Baruah, 2015; Baruah et al., 2016; Gettings

et al., 2015; Guo et al., 2015; Liu et al., 2016; Saha et al., 2015). However, at least one of

the following issues remain unsolved in most of the existing works:

5

1. In utilization based schedulers, lo-criticality utilization upon a mode switch is re-

duced. As a result, either the execution time is reduced or the period is increased. A

reduced execution time for each taskmay lead to unfinished execution (malfunction)as

lo-WCET is already optimistically estimated (with tight margin). On the other hand,

a longer period may result in the loss of timeliness which results in a degraded quality

of service as well.

2. Some schedulers maintain asymptotic bounds to provide graceful degradation but

it doesn’t provide any fine granularity. For example, to maintain a 20% graceful

degradation in asymptotic bound, both 1-out-of-4 and 10k-out-of-40k are considered

as correct. However, it is obvious that the latter one provides a lower quality of

service.

By considering the above situation, it is a demand of time to provide a better

scheduling algorithm which identifies both of the above scenarios.

1.3. PROBABILISTIC MC TASK SCHEDULING

As described in the Section 1.1, upon a mode switch in a traditional MC system,

it is assumed that, after a hi mode switch, all hi-criticality tasks exceed their lo-WCET

budget simultaneously. As a result, all lo-criticality tasks are dropped to make place for

the execution of hi-criticality tasks. However, the assumption that all hi-criticality tasks

exceeding their hi-WCET simultaneously is rather pessimistic. It may result in unwanted

wastage of system resource as well as the degradation of quality as all lo-criticality tasks

are not further considered for execution. However, if the probability of all the hi-criticality

tasks exceeding their hi-WCET was considered, there might have been better schedulability

and QoS for the task system. The scenario can be understood more clearly by the following

example by (Guo et al., 2015):

6

Example 1.3.1. Consider a MC system with two independent hi-criticality tasks τ1 and τ2.

Each task has a lo-criticality utilization ulo and a hi-criticality utilization uhi where ulo ≤

uhi. The utilization values for both tasks are as follows: τ1 = {0.4, 0.6} and τ2 = {0.3, 0.5}.

It is clear that this task system cannot be scheduled on a preemptive uniprocessor platform

as the system utilization in hi-criticality mode is 1.1 while the processor capacity is 1.

In traditional real-time scheduling and MC scheduling, the absolute certainty of

correctness is required, i.e., any single failure is considered as an overall system failure. In

such cases, the task set in example 1 can never be scheduled. However, let’s consider the

following constraints for the task set: (i) The probability of any hi-criticality job exceeding

its lo-WCET budget is estimated as 10−4 per hour. (ii) The permitted failure probability for

the system is 10−6 per hour. and (iii) The tasks are independent, i.e., the failure of one task

doesn’t affect another task.

Based on the above assumption, the probability of jobs from both tasks exceeding

their lo-WCETs is 10−4 × 10−4 = 10−8 per hour which is less than the permitted failure

probability 10−6 per hour. As a result, the system is probabilistically feasible for schedule

as the total remaining utilization at worst case will be max(0.4+ 0.3, 0.4+ 0.5, 0.6+ 0.3) =

0.9 ≤ 1.

From the above example, it is clear that the task set with specific requirements can be

schedulable using a probabilistic scheduling algorithm without dropping any lo-criticality

task (i.e., without compromising QoS) while the traditional algorithms are unable to sched-

ule them. Upon successful scheduling, the probabilistic scheduler provides a specific type

of graceful degradation to the system. Here the lo-criticality tasks are guaranteed to execute

until the permitted failure probability is not violated. As a result, this probabilistic scheduler

can provide better QoS to the system. Hence, the probabilistic scheduling becomes one of

the key research areas in both real-time scheduling and MC scheduling.

7

1.4. CONTRIBUTION AND ORGANIZATION

As discussed above, significant work on MC scheduling has been done in the real-

time systems community. However, there exists the need for efficient scheduling techniques

with graceful degradation in several demanding yet unsolved areas. Our work primarily

focuses on these areas while studying the MC scheduling with graceful degradation and

probabilistic schedulability in multiprocessor platforms. We provide efficient algorithms

along with experimental results. The main contributions of this thesis are:

• In this work, we present an MC scheduling algorithm based on r-out-of-n graceful

degradation. We present detailed experimental results based on the schedulability

analysis proposed in (Guo et al., 2018).

• This thesis studies multiprocessor probabilistic scheduling of MC systems and pro-

vides necessary algorithms and schedulability test along with detailed experimental

results based on randomly generated task sets.

ORGANIZATION: The rest of the thesis is organized as follows: Section 2 consists

of the detailed literature review of previous works. In Section 3, the system models used in

this thesis is described. Section 4 contains a noble MC scheduling algorithm with graceful

degradation while Section 5 presents the multiprocessor probabilistic MC task scheduling

algorithm and the corresponding results. Finally, Section 6 consists of a summary of the

thesis.

8

2. LITERATURE REVIEW

In the previous section, we have introduced the concepts of MC scheduling, MC

scheduling with graceful degradation, and probabilistic scheduling, which are directly

related to the contents of this thesis. In this section, we will briefly go through the literature

reviews over the state-of-the-art works done on those areas.

2.1. MC REAL-TIME TASK SCHEDULING

Since Vestal’s first proposal (Vestal, 2007) on the concept of MC workload model,

numerous amount of work has been done on MC task scheduling (see (Burns and Davis,

2017a) for an up-to-date review). However, determining the schedulability of an MC in-

stance is proven NP-hard in strong sense even under the uniprocessor platforms. (Baruah

et al., 2012a). As a result, different scheduling techniques such as fixed priority schedul-

ing (Baruah et al., 2010, 2011a,c; Guan et al., 2011; Li and Baruah, 2010) as well as

dynamic priority scheduling (such as Earliest Deadline First (EDF)) (Baruah et al., 2015;

Chen et al., 2014; Easwaran, 2013; Li, 2013; Masrur et al., 2015) are studied over the

time to provide efficient approximate algorithms. It has been proven that, in uniprocessor

platforms, an MC task scheduling algorithm can achieve optimal speedup factor1 of at most

4/3 (Baruah et al., 2011c).

Due to the importance and increasing demand for multi-core platforms, works have

been coduced on MC scheduling algorithms for such platforms as well (Baruah, 2004;

Gratia et al., 2015a,b; Li and Baruah, 2012). While many works propose MC scheduling

by extending existing standard multi-processor scheduling algorithms (Awan et al., 2017;

Bletsas and Petters, 2012; Guo, 2016; Niz et al., 2009; Rodriguez et al., 2013; Xu and

1For a scheduler S, a speedup factorV (V ≥ 1) (also known as resource augmentation factor), means that
any task set that is schedulable on a platform of speed-1 core will be schedulable by S on a platform where
each core is of speedV.

9

Burns, 2015) different techniques are introduced in different works such as fluid-based MC

model (Lee et al., 2014), global fixed priority scheduling algorithms (Baruah, 2004; Pathan,

2012), use of hierarchy of servers (Gratia et al., 2015a,b), globally scheduled fixed-priority

systems (Pathan, 2012), and a semi-partition based scheme (Awan et al., 2017). However,

the performance of multiprocessor scheduling algorithms is not as good as the uniprocessor

ones. GEDF-VD (Global Earliest Deadline First with Virtual Deadline) (Li and Baruah,

2012) provides the highest speedup factor of (
√

5 + 1).

2.2. MC SCHEDULINGWITH GRACEFUL DEGRADATION

While most of the existing MC scheduling algorithms provide guarantees for the

completion of hi-criticality tasks quite efficiently, lo-criticality tasks don’t get any service

guarantee upon a mode switch. To identify this issue, Baruah et al. (S. Baruah and A. Burns,

2014) presented an alternative model which allow lo tasks’s execution after a criticality

mode switch by assigning a lower priority level to them. However, in this model, all

lo-criticality tasks can still miss their deadlines as no guarantee is provided.

Santy et al. (Santy et al., 2012) proposed another algorithm where lo-criticality

jobs get some service as long as the execution of hi-criticality jobs is not hindered. In

(Jan et al., 2013; Su and Zhu, 2013), elastic task model (also known as task stretching)

is used where the lo-priority tasks receive dynamically enlarged periods and deadlines in

higher modes. Fleming and Burnds first introduced the notion of ‘importance’ (Fleming

and Burns, 2014), which provides more control over the degradation of service in more

realistic system models.

Apart from the best-efforts algorithms mentioned above, several works have been

done to provide som guarantee to lo-criticality tasks under hi mode. Baruah et al. (Baruah

et al., 2016) used fluid based techniques to provide a degraded (but non-zero) level of service

to lo-criticality tasks under all non-erroneous behavior of the system. Liu et al. (Liu et al.,

2016) proposed an utilization-based schedulability test under EDF-VD (Earliest Deadline

10

First with Virtual Deadline) scheduling. In (Guo et al., 2015), Guo et al. proposed a

unique system model and corresponding schedulability analysis by incorporating failure

probability inoformation into the mixed criticality task model.

Although the notion of graceful degradation is gaining more interest in recent years,

the concept of graceful degradation can be traced back to the 1990’s when Hamdaoui and

Ramanathan (Hamdaoui and Ramanathan, 1995) propose (m, k)-firm model for streams.

According to this model, out of consecutive k tasks, at least m deadlines must be met. A

weakly-hard taskmodel is introduced by Bernat et al. (Bernat et al., 2001) which can tolerate

a predefined degree of missed deadlines. In control system, an expected asymptotic success

rate is introduced by Saha et al. (Saha et al., 2015) for task scheduling. Adaptive Mixed

Criticality (AMC) (Baruah et al., 2011b) is used in an MC scheduling technique proposed

by Getting et al. (Gettings et al., 2015) where they incorporate weakly hard constraints

with the graceful degradation. Delaying mode-switch is another approach used by Gu and

Easwaran (Gu and Easwaran, 2016) where lo-criticality budgets for individual hi-criticality

applications are determined dynamically during runtime. Among other recent works, Chwa

et al.(Chwa et al., 2018) proposed a new single-criticality cyber-physical system task model,

where they maintain the stability of the system by exploring the trade-off between enlarging

periods and consecutive task drops to guarantee schedulability.

2.3. PROBABILISTIC SCHEDULABILITY

In order to overcome the disadvantages of discreet MC task models, several proba-

bilistic models have been proposed over time. Edgar and Burns (Edgar and Burns, 2001)

first introduced the concept of probabilistic confidence to the real-time task and the system

model. They have used estimated probabilistic WCETs (pWCETs) from test data for indi-

vidual tasks and provided a suitable lower bound for the overall confidence level of a system.

Since then, several works have been done with the focus in better WCET estimations and a

predicted probability of exceeding such WCET along with the use of extreme value theory

11

(EVT) (Cucu-Grosjean et al., 2012; Griffin and Burns, 2010; Hansen et al., 2009). Other

significant works consist probabilistic WCET estimations with preemptions, (Davis et al.,

2013), pWCET estimation (Hardy and Puaut, 2013; Slijepcevic et al., 2013) in the presence

of permanent faults and disabling of hardware elements, and probabilistic Execution Time

(pET) estimation (David and Puaut, 2004) based upon a tree-based technique. The pWCET

estimation is calculated based on the probability of a task exceeding a specific value, while

the pET is the probability of a job’s execution time being equal to a particular value.

Among the work regarding pWCET and pET estimation, Tia et al. (Tia et al.,

1995) provide two methods for probabilistic schedulability guarantees by focusing on the

unbalanced heavy loaded system. Probabilistic schedulability analysis for earliest deadline

first ((Zhu et al., 2002) and fixed priority policy (Gardner and Liu, 1999) is deducted based

on the initial work of Lehoczky (Lehoczky, 1996). A generic analysis for probabilistic

systems with pWCET estimations for tasks is presented in (Díaz et al., 2002). While most

of the works are based on the WCET estimation, (Abeni and Buttazzo, 1999) and (Maxim

and Cucu-Grosjean, 2013) focus on providing statistical guarantee upon the minimum inter-

arrival time (MIT) estimation. Among the works which are based on pETs (instead of

pWCETs), (Hansen et al., 2002) focused on the limited priority level case (quantized

EDF), and (Manolache et al., 2004) presented an associated schedulability analysis on

multiprocessors.

Guo et al. (Guo et al., 2015) first proposed a unique probabilistic system model

for MC real-time task model. They have introduced a failure probability for each hi task,

a system-wide permitted failure probability, and provided schedulability analysis for the

EDF-based scheduling algorithm. Our work is motivated by this work and we further

extend this work to support multiprocessor platforms.

12

3. SYSTEMMODEL

In this section, first, we present the traditional MC model used by most of the

state-of-the-art works and its corresponding system behavior and MC-correctness. Then,

we demonstrate each system model used in this thesis, which are created by modification

(mainly addition) of the traditional model. We also define some notations which are used

throughout the paper.

In this thesis, we restrict our attention to MC sporadic task model. In such MC

model, a task set τ consists of n finite amount of tasks τ1, τ2, . . . , τn. Every task τi ∈ τ

may produce infinite number of MC jobs. While the first job of each task can be released

in the same time or different time, the analysis of different release times can be translated

into a single release time analysis by finding the first time instance where the jobs of all the

tasks are released. Without loss of generality, the release time for the first job of each task

is assumed to be 0, i.e., all tasks in τ are released at time 0. Due to simplicity and ease

of understanding, we also restrict our attention to dual-criticality task systems only, where

criticality levels and execution modes are restricted to lo and hi.

3.1. TRADITIONAL MC SYSTEMMODEL

In traditional dual-criticality sporadic task system, each task τi ∈ τ is characterized

by 5-tuples:

{Clo
i ,C

hi
i ,Ti,Di, χi} (3.1)

Here, Clo
i ,C

hi
i ∈ R+ are the twoWCET estimations for lo-criticality mode and hi-criticality

mode respectively. Ti represents the period of a task, which is theminimum inter-arrival time

between any two consecutive job releases. The deadline of the task is denoted by Di while

χi ∈ {lo, hi} represents the criticality level of each task. Note that, for implicit-deadline

13

task system period and deadline is same, i.e., Ti = Di, while for constrained-deadline

task system Ti > Di. Usually, for lo-criticality tasks the value of Clo
i and Chi

i are same

while for hi-criticality tasks, Chi
i is greater than Clo

i . So in general, we can assume that,

0 < Clo
i ≤ Chi

i ≤ Ti.

The utilizations of the task set τ in lo-criticality and hi-criticality mode is calculated

as follows:

∀τi ∈ τ, ulo
i =

Clo
i

Ti
;

∀τi ∈ τ, uhi
i =

Chi
i

Ti
.

The total utilization for each mode of operation is calculated as follows:

• The total utilization for all lo-criticality tasks in lo- and hi-modes respectively are,

Ulo
lo =

∑
∀τi∈τlo ulo

i , Uhi
lo =

∑
∀τi∈τhi ulo

i .

• Similarly, for all hi-criticality tasks, the utilization for hi-and lo-criticality tasks are:

Ulo
hi =

∑
∀τi∈τlo uhi

i , Uhi
hi =

∑
∀τi∈τhi uhi

i .

In general, the utilizations for lo-criticality tasks in both hi- and lo-criticalitymodes

are same, i.e., Ulo
lo = Uhi

lo.

SYSTEMBEHAVIOR: The traditional mixed criticalitymodel has the following semantics.

• If every job is completed upon executing no more than the Clo of the corresponding

task, then we call it a lo-criticality behavior.

• if one or more HI-criticality jobs complete upon executing more thanClo but no more

than Chi, then the system behavior is categorized as hi-criticality.

• All other behaviors are erroneous.

CORRECTNESSCRITERIA: AnMC scheduling is correct if both the following properties

are satisfied:

14

• During all lo-criticality behaviors of the system, each job receives an execution of

up to its lo-criticality WCET between its release time and deadline (such that all jobs

can be completed before their deadlines).

• During all hi-criticality behavior of the system, all hi-criticality jobs receive enough

execution (up to its hi-criticality WCET) between their release time and deadline

such that all such jobs can be completed before their deadline. In the meanwhile, all

lo-criticality jobs are dropped and are not considered for further execution.

3.2. MC GRACEFUL DEGRADATION MODEL

While the traditional MC task model doesn’t provide any service to lo-criticality

tasks in hi-criticality mode, in this thesis, we study a noble approach of graceful degradation

toMC task sets. The systemmodel discussed in this section is first introduced in our previous

work (Guo et al., 2018). In addition to the existing MC task model, for each lo-criticality

task τi, a minimum cumulative admission rate ri is introduced. Also, we provide separate

model for task τi based on its criticality level χi ∈ {lo, hi}. Each lo-criticality task τi can

be characterized as:

τi = {Ci,Ti,Di, ri, χi} , ∀τi ∈ τlo,

while each hi-criticality task τi can be characterized as:

τi =
{
Clo

i ,C
hi
i ,Ti,Di, χi

}
, ∀τi ∈ τhi.

where, lo-criticality task set τlo = {τi |χi = lo} and the hi-criticality task set τhi = {τi |χi =

hi}.

While the model for hi-criticality tasks and all other parameters of lo-criticality

tasks are characterized similarly to traditional MC task model as described before, the

value of ri, which is introduced in lo-criticality tasks model, denotes that, at hi mode, the

15

completion rate of that task must be at least ri. That is, for the first N jobs released by τi

after the mode switch (to the HI mode), at least dri ·Ne number of jobs should be completed.

Furthermore, each lo-criticality task τi has only a single WCET estimation Ci alongside

required completion rate ri while each hi-criticality task τi has two WCET estimations like

the traditional MC model.

As described in (Guo et al., 2018), the above system model is a generalization

of many existing models as well as bridges mixed-criticality and non-mixed-criticality

scheduling. As the value of ri may vary for each lo-criticality task, when they are all zero,

our problem becomes a traditional sporadic MC task scheduling problem. On the other

hand, an all 1 values turn the system into a non-mixed-criticality scheduling problem as no

jobs can be dropped.

CORRECTNESS CRITERIA: The correctness criteria are defined in (Guo et al., 2018)

for the above MC task system. AnMC scheduling is correct if both the following properties

are satisfied:

• During all lo-criticality behaviors of the system, each job receives an execution of

up to its lo-criticality WCET between its release time and deadline (such that all jobs

can be completed before their deadlines).

• During all hi-criticality behavior of the system, all hi-criticality jobs receive enough

execution (up to its hi-criticality WCET) between their release time and deadline

such that all such jobs can be completed before their deadline. In the meanwhile,

lo-criticality jobs will be executed following a minimum cumulative admission rate

ri; i.e., starting from the last hi mode switch point, out of any N ∈ Z+ consecutive

jobs released by any lo-criticality task τi, dri · Ne jobs are guaranteed to receive full

execution (between their release time and the deadlines).

16

3.3. SYSTEMMODELWITH PERMITTED FAILURE PROBABILITY

For the probabilistic schedulability, we follow the system model proposed by Guo et

al (Guo et al., 2015). According to their work, in anMC task model with failure probability,

hi-criticality tasks are represented by:

τi = (Clo
i ,C

hi
i ,Ti,Di, fi, χi)

lo-criticality tasks continue to be represented with three parameters as before.

Note that, A failure probability parameter fi is added to hi-criticality task τi, which

represents the probability of the actual execution requirement of any job of the task exceeding

Clo
i (but still below Chi

i) in one hour. Furthermore, an allowed system failure probability

FS is specified. It describes the permitted probability of the system during one hour of

execution. FS may be very close to zero (e.g., 10−12 for some safety-critical avionics

functionalities).

In this thesis, we consider implicit-deadline task models for probabilistic schedu-

lability, i.e., Ti = Di. Furthermore, unlike the work in (Guo et al., 2015), we consider

scheduling such task system in multiprocessor platforms.

CORRECTNESS CRITERIA: The correctness criteria for the probabilistic schedulability

is inherited from the work in (Guo et al., 2015). An MC scheduling is correct if both the

following properties are satisfied:

• If the probability of any task missing its deadline is no greater than FS, the task system

is strongly probabilistic schedulable,

• If the probability of any HI-criticality task missing its deadline is no greater than FS,

and no deadline is missed when all jobs finish upon execution of their LO-WCETs, If

it returns weakly probabilistic schedulable

17

3.4. THESIS STATEMENT

New methods with an optimistic analysis of MC real-time task scheduling can be

used to provide a higher degree of services to lo-criticality to enhance the overall quality of

service of MC systems. Efficient MC scheduling technique can be implemented to provide

a reduced yet non-zero guaranteed service to lo tasks under hi mode by maintaining a

cumulative completion rate. Furthermore, accommodating the probabilistic scheduling in

MC scheduling, especially on multiprocessor platforms, can increase the schedulability of

the task system, hence improving the overall quality of service.

18

4. MIXED-CRITICALITY TASK SCHEDULINGWITH GRACEFUL
DEGRADATION

In Section 1, we presented the concept of graceful degradation and discussed the

drawbacks of existing MC scheduling algorithms which provide graceful degradation to

lo-criticality tasks upon a mode switch. In this section, we study a noble approach which

guarantees a specific amount of service to lo-tasks even after a hi-mode switch.

In Section 3, we discuss the system model used for the algorithm we present in this

section. To reiterate briefly, we study a new MC system model as proposed in (Guo et

al., 2018), which redefines the hi-criticality mode and provides service guarantee to lo-

criticality tasks. On top of that, we study the following topics in this section:

• We study the minimum cumulative admission rate ri which ensures that upon a

system-wide mode switch, for any N ∈ Z+, at least dri · Ne out of N new consecutive

job releases (by task τi) will receive full execution.

• An easy-to-implement admission control procedure to lo-criticality tasks upon mode

switch is proposed to guarantee the rate ri for any task τi. Moreover, if a rate ri can

be expressed in the fraction form ri = mi/ki, then our procedure further guarantees

that after mode switch occurs, at least mi jobs will receive full execution out of any

ki consecutive jobs of a lo-criticality task τi.

• We adapt the earliest-deadline-first (EDF) with virtual deadlines scheduler and pro-

posed a pseudo-polynomial time schedulability test for the MC system based on

demand-bound function (DBF) analysis.

19

• We include a backward mode switch (from hi mode back to lo mode) mechanism,

then prove the maximum length of the period (upper bounds) to bring the system back

to lo mode safely, with our scheduler, under different scenarios of execution patterns

to hi-criticality tasks.

• To demonstrate the effectiveness of our algorithm, we verify the theoretical results by

conducting the experiments via simulation.

4.1. ADMISSION CONTROL OF LO-CRITICALITY TASKS IN HI MODE

In our MC graceful degradation model, every lo-criticality task has a minimum

cumulative admission rate ri which determines thehimode system behavior. Inhi-criticality

mode, hi-criticality tasks need more execution time budget (i.e., hi-WCET). As a result,

due to lack of resource in hi mode, it is obvious that not every of lo-criticality tasks can

be executed in every scenario. Therefore, to maintain any ri < 1, we must drop some of

the lo-criticality jobs. However, the dropping of lo-criticality jobs needs to respect the

minimum cumulative admission rate ri; i.e., for any task τi, if dri · Ne out of the first N

consecutive jobs after the mode switch are executed (∀N ∈ Z+), then ri is satisfied. To

accomplish this goal we need to design an admission control protocol, where two different

cases are considered: (A) when ri is a rational number, and (B) when it is not. (refer

to (Guo et al., 2018))

(A). When ri is a rational number for task τi, it can be represented in a fractional

form (mi/ki), where mi and ki are co-prime integer values and gcd(mi, ki) = 1. In this case,

we can generate a repeated pattern µi of size k, such that mi out of ki jobs are selected for

execution. This admission control pattern µi is generated off-line and used dynamically to

decide which jobs to admit and which jobs to drop under the hi mode.

20

If the cumulative admission rate without considering the current job is less than ri,

then it should be admitted for execution, otherwise, this job can be dropped. Following this

observation, we design Algorithm 1 for the admission control protocol. To make it simple

it is enough to check the condition (a < b× r) at every position b, where a is the successful

number of admission so far. For any i > k the admission of a job should be controlled by

the value µ[i mod k].

Algorithm 1: Static Admission Control
Data: ri values for any lo-criticality task τi
Result: vector µi: µi ∈ {0, 1}ki is the admission control pattern for each lo-criticality

task τi
foreach τi ∈ τlo do

a = 0; // counts successful admission
ki = Get_Min_Int_Denominator(ri);
for b = 1 to ki do

if (a < b × ri) then
µi[b] = 1 ; // admit
a = a + 1;

end
else

µi[b] = 0 ; // drop
end

end
end
return µi;

The output of Algorithm 1, µi, is a binary vector of length ki, representing the

admission control pattern of the input lo-criticality task τi. In µ, value 1 at any position

i denotes that the job of that position is allowed to execute while value 0 is denoted for

dropped jobs. For example, the pattern {10100} denotes that job 1 and 3 are admitted,

while job 2, 4, and 5 are dropped. To ensure a uniform distribution, the algorithm maintains

that at each position, the successful admission ratio is at least ri.

21

(B). If ri is not a rational number, any repeated pattern (µi) with a limited length

cannot be guaranteed like the previous case. In this scenario, we make the admission-

control decision dynamically on-line, which is presented in Algorithm 2. Here we control

the admission of lo-criticality jobs similar to Algorithm 1, but instead of prior calculation

of pattern µ, we make the admission decision during run-time.

Algorithm 2: Dynamic Admission Control
Data: (ri) values for all lo-criticality tasks
foreach τi ∈ τlo do

ai = 0; // Number of executed jobs
end
while true do

if jb ∈ τi released then
// jb is bth job of τi
if (ai < b × ri) then
// schedule jb using EDF
ai = ai + 1;

end
else
// The job jb is dropped

end
end

end

We now show how the two admission control schemes work with an example of

several tasks.

Example 4.1.1. Consider a task set τ where the requirements of minimum cumulative

admission rates are given in Table 4.1, where Si denotes the maximum number of consecutive

drops to a certain task (which is a function of ri).

Table 4.1. Sample completion rates with associated admission patterns and maximum job
acceptance separation

Task ID ri Pattern µi Si
τ1 0.4 {10100}∞ 2
τ2 0.625 {11011010}∞ 1
τ3 1/

√
2 11101101110 · · · 1

22

First, consider τ1 to determine the µ. If we consider dropping the job at position 1

then the condition (a < b · r) is satisfied. So the first job will be allowed to execute. For the

second job whereby considering allowing the job, our admission control condition doesn’t

meet. Similarly by checking up to position k the values of µ becomes 10100. All jobs of task

τ1 will be determined by this pattern. So the admission control pattern of task τ1 will be

(10100)∞. Note that, its cumulative admission rate (the proportion of admitted jobs over all

released jobs) pattern is 1, 1/2, 2/3, 1/2, 2/5, 1/2, 3/7, 1/2, 4/9, 2/5, · · · , which never drops

below ri = 0.4. The admission control pattern for τ2 can be determined similarly and the

pattern is (11011010)∞.

However, For τ3, the value of ri is an irrational number. So, we calculate the

admission control dynamically by checking similar condition (a < b · r). Hence the

admission control for τ3 is done in a non-repetitive manner; i.e., 11101101110 · · · .

Remark 1. This dynamic approach of Algorithm 2 can also be used for specific case even

when the r is a rational number with a large denominator. In Algorithm 1, we compute an

admission control pattern µi prior to run-time. If we consider mi/ki as the standard form of

every minimum degradation rate ri, then it requires
∑

i∈n ki amount of space to store all the

patterns. When ri has a large denominator, the dynamic approach of Algorithm 2 can be

used to save the extra space for those cases even ri is rational. Consider the case when a set

consisting one (or more) value/s of ri is given in a way such that the value of ki is too large,

then it may not be feasible to store this large pattern/s in the system and we can use the

dynamic approach to schedule the lo-criticality jobs in hi-criticality mode. The threshold

value k for applying Algorithm 1 or 2 in admission control can vary from system to system

and hence should be decided by the system engineer.

Remark 2. One important aspect of our admission control protocol is that we minimize the

maximum number of consecutive drops S(ri) while maintaining the minimum cumulative

admission rate ri. S(ri) can also be viewed as the maximum number of consecutive zeros in

23

µi. The following equation reveals the relationship between S(ri) and ri:

S(ri) =

⌈
1
ri

⌉
− 1. (4.1)

Remark 3. Upon a mode switch (to hi mode), for any N ∈ Z+ consecutive job releases of

any lo-criticality task τi, the admitted number of jobs equals to dri · Ne.

4.2. SCHEDULER AND SCHEDULABILITY ANALYSIS

In this section, we consider MC constrained-deadline sporadic task system on a

preemptive uniprocessor while maintaining the minimum cumulative admission rate ri. for

lo-criticality tasks One of the most efficient approaches for scheduling such tasks is to

use virtual deadlines where the HI-criticality tasks get their deadline reduced(if necessary)

during execution in LO-criticality mode. We use a similar technique to define an algorithm

EDF-GVD (Graceful-Virtual-Deadline)(refer to (Guo et al., 2018)), which is derived from

the concept of EDF-VD (Baruah et al., 2012b).

In this section, we first describe our EDF-GVD algorithm and propose two virtual

deadline setting mechanisms which are followed by the proof of correctness and necessary

schedulability analysis for different modes.

4.2.1. Algorithm EDF-GVD. Let τ = {τ1, τ2, ..., τn} denote the targeted MC

constrained-deadline sporadic task set, to be scheduled on a uniprocessor platform. Prior

to runtime, Algorithm EDF-GVD performs a schedulability test (Section 4.2.2) based on

demand bound function to determine whether the task set τ can be scheduled or not. If τ is

deemed schedulable, then we calculate the virtual deadline Dv
i ≤ Di for each HI-criticality

task, which is later used to schedule the corresponding tasks using EDF.

VIRTUAL DEADLINE SETTINGS: We set the virtual deadlines by following

similar techniques like other EDF-VD familiy algorithm. We first calculate the virtual

deadlines Dv
i for hi-criticality tasks we first use a simple yet efficient heuristic such that the

24

per-mode utilizations are the same for each task, i.e.,

Di =
Clo

i

Chi
i

Di . (4.2)

Since the above heuristic may not provide an suitable result for every scenario, we

use an alternative approach for setting virtual deadlines:

Di = q · Di, s.t. ∀i χi = hi. (4.3)

Here, q ∈ (0, 1] is the common virtual deadline scaling factor for the whole set, to be

determined using Algorithm 3.

Algorithm 3: Virtual Deadline Setting
Data: Task set τ, Accuracy ε
∆ = 0.5 //step size;
q = 0.5 //virtual deadline shrinking parameter;
while ∆ ≥ ε do
∆ = ∆/2;
foreach τi ∈ τHI do

Di = q · Di;
end
CA = Check(Condition (A) in Section 4.2.2);
CB = Check(Condition (B) in Section 4.2.2);
if CA = true && CB = true then

Return q;
end
else if CA = true && CB = f alse then

q = q − ∆;
end
else if CA = f alse && CB = true then

q = q + ∆;
end
else

Return failure; //no q can be found
end
Return -1; //still possible with a smaller ε

end

To find a feasible q to any level of preciseness, we perform a binary search over the

range (0, 1]. In short, Algorithm 3 performs the following two tasks:

25

1. Binary search is performed over the range (0, 1] up to a desired degree of accuracy,

and find the smallest value of q for which all the hi-criticality tasks with virtual

deadline q · Di along with all the lo-criticality tasks with their original deadline are

schedulable. (Satisfying 4.2.2-condition A)

2. For the value of q determined above, check if all the hi-criticality tasks with their

original deadlines along with a certain amount of lo-criticality jobs maintaining the

minimum degradation rate ri are schedulable. (Satisfying 4.2.2-condition B)

TIME COMPLEXITY: Algorithm 3 runs in pseudo-polynomial time (to a desired

degree of accuracy, say 2−10) as the main steps depends on the schedulability test to be

mentioned in Section 4.2.2, which takes pseudo-polynomial time for any q.

RUN-TIME BEHAVIOR: After computing the feasible virtual deadlines Di, run-

time scheduling for all tasks is done in an EDF manner. Specifically, under the lo mode,

jobs of each hi-criticality task τi are assigned a virtual deadline of Di after their releases,

while the relative deadline of a lo-criticality job remains Di. If some hi-criticality job does

not signal its completion upon receiving a cumulative execution time of its lo-criticality

WCET, i.e., during the hi-criticality behavior of the system, the tasks are scheduled as

follows:

• If χ = hi, then this job is assigned a virtual deadline equal to its original deadline Di.

• If χ = lo, then the execution of this job is determined based on the admission control

protocol described in Section 4.1. If the job is selected for execution then it is assigned

a virtual deadline equal to its original deadline Di.

Example 4.2.1. Table 4.2 shows a MC system consisting of three tasks.

The task set is EDF-schedulable under lomode as the systemdensity (i.e.,
∑

i Ci/Di =

1/6 + 1/3 + 2/4) is 1.

26

Mode switch
From LO to HI

τ1

τ2

τ3

6 12 18 24 30 36 420

C1
HI

C2

C3

C1
LO

First idle time (but no
mode switch)

dropped dropped dropped dropped

droppeddroppeddropped

T1, D1

T2, D2
D1

V

T3 D3

dropped dropped

Potential mode switch
From HI to LO

Figure 4.1. EDF-GVD scheduling of the task set provided in Example IV.1

Table 4.2. An MC set with minimum degradation execution rates

Task ID Ci (Clo
i) Chi

i Ti Di χi ri
τ1 1 3 6 6 hi -
τ2 1 - 3 3 lo 0.5
τ3 2 - 6 4 lo 0.4

However, Under the traditional MC sporadic task model, after the mode switch all

the lo-criticality tasks (τ2 and τ3) are dropped and are not considered for further execution

as the overall system utilization (i.e.,
∑

i Ci/Ti = 3/6 + 1/3 + 2/6 = 7/6) becomes greater

than 1. However, the task system is schedulable using EDF-GVD as shown in Figure 4.1.

During lo-criticality mode, the hi-criticality task τ1 is scheduled using virtual

deadline D1 = 4. At time t = 10, the second job of τ1 couldn’t finish its execution withing

its estimated lo-WCET budged (i.e., Clo
1 = 1). As a result, a system wide mode switch to

hi-criticality mode occurs. In this scenario, the algorithm drops all the pending jobs of all

lo-criticality tasks (e.g., (4th) lo-criticality job of τ2 is dropped in this case). In himode,

the hi-crticality task τ1 is scheduled using EDF with Chi
1 = 3 and deadline D1 = 6, and

the lo-criticality jobs are scheduled based on the admission control procedure described

in Section 4.1 (see ‘dropped’ jobs in the figure). The system is ready for a potential mode

switch to lo-mode again when:

• The processor is idle,

27

• The last jobs of all hi-criticality tasks are completed within its Clo amount of time

(denoted by dashed green lines), and

• The last job of any hi-criticality task didn’t execute more than its Clo

If the last job of any hi-criticality task executes more than its Clo, there cannot be

any backward mode switch even if the system is idle (denoted by dashed blue lines)

4.2.2. DBF Based Schedulability Analysis. In this section, we study the schedu-

lability test to check the correctness of both lo and hi mode based on the virtual deadline

setting from Section 4.2.1. To prove the correctness, we use the demand bound function

(DBF), which has been demonstrated to be a successful approach to analyze the schedula-

bility of both ordinary (Baruah et al., 1990) and mixed-criticality (Ekberg and Yi, 2014)

real-time systems.

Definition 1. (dbf(τi, `) function.) The function dbf(τi, `) denotes the maximum execution

demand of task τi during any time interval of length `, where the demand is calculated

by the cumulative execution requirement of all jobs of τi that have both release times and

deadlines in that interval.

Baruah et al. (Baruah et al., 1990) proposed and proved the following dbf-based

schedulability test for non-mixed criticality tasks:

Lemma 1. A constrained-deadline task set τ can be successfully scheduled by EDF on a

uniprocessor, if

∀` ≥ 0,
∑
τi∈τ

dbf(τi, `) ≤ `.

Ekberg et al. (Ekberg and Yi, 2014) propose an efficient method to analyze the DBF

for MC systems. In this thesis, we use the following four DBF functions:

• dbflo
lo(τi, `)—the demand bound of a lo-criticality task τi in lo mode for any time

interval of length `.

28

• dbflo
hi (τi, `)—the demand bound of a hi-criticality task τi in lo mode for any time

interval of length `.

• dbfhi
lo(τi, `)—the demand bound of a lo-criticality task τi in hi mode for any time

interval of length `.

• dbfhi
hi(τi, `)—the demand bound of a hi-criticality task τi in hi mode for any time

interval of length `.

Definition 2. (Carry-Over Job.) A carry-over job is a job that is released before the mode

switch and has a deadline after the mode switch.

The carry-over jobs do not affect the calculation of dbflo
lo(τi, `) and dbflo

hi (τi, `).

Furthermore, in the algorithm EDF-GVD, carry over jobs in the calcuation of dbfhi
lo(τi, `)

is not considered either as it drops all the such jobs of lo-criticality tasks. Hence, we only

need to calculate the carry over jobs while calculating dbfhi
hi(τi, `). While calculating this

value, we can consider carry-over jobs as a special job that releases at the time of mode

switch and has an execution of the remaining execution requirement that has not completed

before the mode switch. As a result, we can use the following schedulability test which is

directly extended from Lemma 1.

Lemma 2. A mixed-criticality system τ can be successfully scheduled by EDF on a unipro-

cessor if both of the following conditions hold.

Condition (A):

∀` ≥ 0,
∑
τi∈τlo

dbflo
lo(τi, `) +

∑
τi∈τhi

dbflo
hi (τi, `) ≤ `.

Condition (B):

∀` ≥ 0,
∑
τi∈τlo

dbfhi
lo(τi, `) +

∑
τi∈τhi

dbfhi
hi(τi, `) ≤ `.

29

Please refer to (Guo et al., 2018) for the detail proof of Lemma 2.

TIME COMPLEXITY OF SCHEDULABILITY TEST: In Conditions (A) and (B),

it is stated that “∀`” needs to be assessed, which implies an unbounded number of dbf

computations of different values of `. In follwoing Lemmas, it is shown that only a limited

number of ` values are enough for the calculation as shown in (Guo et al., 2018), which

yields a schedulability test with pseudo-polynomial time complexity.

Lemma 3. Let c be a constant such that c < 1 and
∑
τi∈τlo(Ci/Ti) +

∑
τi∈τhi(C

lo
i /Ti) ≤ c.

Then, Condition (A) is true for ∀` ≥ 0, if it is true for all ` such that

` <
c

1 − c
·max{max

τi∈τlo
{Ti − Di}, max

τi∈τhi
{Ti − Dv

i }}.

Lemma 4. Let c1 and c2 be two constants such that
∑
τi∈τlo(ri ·Ci/Ti) ≤ c1,

∑
τi∈τhi(C

hi
i /Ti) ≤

c2, and c1 + c2 < 1. Then, Condition (B) is true for ∀` ≥ 0, if it is true for all ` such that

` <

c1 · max
τi∈τlo∧ri>0

{Ti−Di+
Ti
ri
} + c2 ·max

τi∈τhi
{Ti−Di+Dv

i }

1 − c1 − c2
.

The proofs of Lemma 1 and 2 are given in (Guo et al., 2018).

4.2.3. Mode Switch in Both Directions. One of the major advantages of our work

is that we can easily determine the possibility of backward mode switch from hi to lomode.

In traditional Vestal model (Vestal, 2007), it is extremely unlikely that there will be a mode

switch during run-time (Baruah, 2018). As a result, the backward mode switch calculation

is often skipped in such models. However, in MC scheduling with graceful degradation,

the lo-WCET estimation is done optimistically and are designed to be violated from time

to time, thus it is important to determine the mode switches to both directions. Hence, in

our work, we take hi-to-lo mode switch into consideration. As mentioned in (Guo et al.,

2018), we propose a more realistic backward mode switch behavior:

30

Whenever some hi-criticality task overruns, the system will switch to hi mode

immediately. The system is again switched back to lo-criticality mode when:

(i) the processor idles in hi-criticality mode, and (ii) the last instance of each hi-

criticality task is finished within its lo-WCET, where all further lo-criticality

releases are accepted and all deadlines are met.

In the following Lemma, we provide a mathematical bound for the backward mode

switch instance. We suppose

∑
τi∈τhi

Clo
i

Ti
+

∑
τi∈τlo

ri · Ci

Ti
≤

∑
τi∈τhi

Chi
i

Ti
+

∑
τi∈τlo

ri · Ci

Ti
< 1,

which is, in fact, required for our schedulability test.

Lemma 5. Let td denote the absolute deadline of the latest hi-criticality job that overruns

its lo-WCET in this hi mode. Then, there must be an idle time instant at or before td + L1,

where

L1 =

∑
τi∈τhi(2Clo

i) +
∑
τi∈τlo(Ci + 2ri · Ci)

1 −
∑
τi∈τhi(C

lo
i /Ti) −

∑
τi∈τlo(ri · Ci/Ti)

.

Please refer to (Guo et al., 2018) for the detail proof of Lemma 5.

4.3. EXPERIMENTS

To evaluate the performance of EDF-GVD, we compare the results to the existing

state-of-the-art algorithms. In this section, we present the detail experimental results. To

demonstrate the efficiency of our proposed algorithm, several simulations are conducted

considering a series of different scenarios. For comparison, we have used EDF-VD (Baruah

et al., 2012b), EDF-VD with (m, k) guarantee (under density based analysis), and EDF-VD

with shrunk Clo (Liu et al., 2016) (which provides weaker guarantees). The similarity,

speedup-optimality for uniprocessor MC task scheduling were the major factors behind

choosing these specific EDF-VD family algorithms.

31

4.3.1. WorkloadGeneration. We use a similar approach to (Ekberg and Yi, 2014)

for generating theMCworkload. We generate randomMCsporadic tasks based on following

parameters (here U stands for uniform distribution):

• Phi = 0.5: An individual task’s probability of being hi-criticality. The criticality

level χi is decided based on this parameter.

• Clo
i ∼ U[1, 10]: The values of Clo

i (and Ci) are uniformly generated from this range.

• Rhi = 4: It denotes the ratio ofChi
i toClo

i ; if χi = hi, then the value ofChi
i is uniformly

generated from the range [Clo
i , Rhi · Clo

i].

• Tmax = 200: The value of periodTi is uniformly generated from the range [Ci(χi),Tmax].

• minDR ∼ U[0.1, 0.9]: This value is used to generate the deadline after generating

minDR uniformly from given range, the deadline is calculated by following Di = α·Ti;

where α is uniformly generated from the range [minDR, 1].

We use a fixed target average utilization U∗ to generate the tasks of each task set

τ. Once a task is generated, we take the average of Ulo and Uhi to calculate the average

utilization U(τ). The task set is generated in a ways such that the average utilization is

near the value of U∗. To accomplish this we generate the average utilization from the range

[U∗,U∗], where U∗ = U∗ − 0.005 and U∗ = U∗ + 0.005.

We keep generating task for a specific task set τ as long as U(τ) < U∗. The whole

task set is discarded if at any point the U(τ) becomes larger than U∗. A generated task set is

considered for further processing if the value ofU(τ) is within the range [U∗,U∗]. However,

if all the tasks of τ have same criticality level, Ulo(τ) > 0.99, or Uhi(τ) > 0.99, the task set

is discarded immediately.

32

For the three algorithms used in comparison, we calculate the utilization of a task

by using Ci/Di instead of Ci/Ti as they only considered implicit-deadline MC task models.

Also, we set Chi
i = ri · Clo

i for EDF-VD with shrunk Clo
i , as the requirement in hi mode for

lo-criticality task is Clo
i ≥ Chi

i . We present our experimental results in Figure 4.2.

(a) Implicit deadline

Average utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc
ep
ta
n
ce

R
a
ti
o
%

0

20

40

60

80

100

(b) Constrained deadline with minDR = 0.5

Figure 4.2. Variation of task set acceptance ratio for varying average utilization U

We choose the Average Utilization from 0.05 to 0.95 at a step size of 0.05. For every

average utilization, 1000 tasks are generated. The Acceptance Ratios (ratio of successfully

schedulable task sets and total task sets) are presented in Figure 4.2. Figure 4.2a presents

the result for implicit-deadline task sets while Figure 4.2b is for constrained ones.

33

minDR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc
ep
ta
n
ce

R
a
ti
o
%

0

20

40

60

80

100

EDF-GVD (our proposed method)

EDF-VD (drops all LO tasks upon mode switch)

EDF-VD w/ shrunk C
LO [19]

EDF-VD w/ m-out-of-k guarantees for LO

(a) Effect of minDR (U = 0.5)

ri range
0.
0
-
0.
2

0.
1
-
0.
3

0.
2
-
0.
4

0.
3
-
0.
5

0.
4
-
0.
6

0.
5
-
0.
7

0.
6
-
0.
8

0.
7
-
0.
9

0.
8
-
1.
0

A
cc
ep
ta
n
ce

R
a
ti
o
%

0

20

40

60

80

100

(b) Effect of ri values for implicit deadline (U = 0.7)

ri range
0.
0
-
0.
2

0.
1
-
0.
3

0.
2
-
0.
4

0.
3
-
0.
5

0.
4
-
0.
6

0.
5
-
0.
7

0.
6
-
0.
8

0.
7
-
0.
9

0.
8
-
1.
0

A
cc
ep
ta
n
ce

R
a
ti
o
%

0

20

40

60

80

100

(c) Effect of ri values for constrained deadline (U = 0.5)

Figure 4.3. Effect of parameters on acceptance ratio

34

Table 4.3. Breakdown of virtual deadline selections, mode switch upper bounds, and task set sizes

Utilization 0.4 0.5 0.6 0.7 0.8 0.9
AR (simple D) % 91.6 65.7 19.3 2.7 0.3 0.1

AR (full) % 99.3 86.2 44.9 7.1 0.7 0.3
Avg. L1/Tmax 0.45 0.61 0.78 0.77 0.69 0.39

Avg. size of task set 6.00 6.99 7.93 9.12 10.74 12.01

4.3.2. Observation. In Figure 4.2, we have shown the performance of EDF-GVD

in comparison with other algorithms under implicit and constrained deadline settings (refer

to (Guo et al., 2018)). For constrained-deadline tasks, Algorithm EDF-GVD clearly

outperforms the other algorithms, as they are designed for implicit-deadline task scheduling.

We perform the schedulability test for different average utilization in the range [0.05, 0.95]

in interval of 0.05. We observe that up to 0.5 average utilization, all the algorithms

can produce the highest acceptance ratio. However, for the average utilization over 0.5,

EDF-GVD delivers better acceptance ratio than all the other algorithms. Even for implicit-

deadline task sets, EDF-GVD still performs better than EDF-VD with the same guarantees.

We present two virtual deadline setting mechanisms in Section 4.2.1. The first two

rows of Table 4.3 report the percentage of accepted task sets under each utilization setting

for the easy virtual deadline setting and the one further coped with a time-consuming binary

search. It is clear that the simple heuristic can only identify a small portion of all EDF-

GVD schedulable tasks, especially when utilization is high. In the table, AR refers to the

acceptance ratio.

Section 4.2.3 presents a upper bound L1 for mode switch back to lo mode (when

idle occurs). The third row of Table 4.3 report the relationships between task period upper

bound (Tmax) and the bound L1 while the last row report the average size of the task set.

In Figure 4.3a, we have shown the variation of acceptance ratio with respect to

minDR. As minDR increases towards 1.0, the constrained deadline model becomes implicit

deadline model. Because it becomes almost implicit and the average utilizationU = 0.5, the

35

algorithms guarantee close to 100% of the task sets. On the other hand, when minDR values

are less than 0.5, the constrained deadline tasks dominate the task set and our algorithm

performs better than other algorithms.

In Figure 4.3b and 4.3c, the result for acceptance ratio with respect to a range of

minimum degradation rate ri for both implicit (see Figure 4.3b) and constrained-deadlines

(see Figure 4.3c) is presented. The interval of the ri range is equal for all case while the

minimum bound is increased. For implicit-deadline tasks EDF-VD performs the best as it

schedules only the hi-criticality tasks in himode. For low values of ri, most lo-critical tasks

are dropped in hi-mode and the performance of EDF-VD with shrunk Clo meets EDF-VD’s

performance. Our algorithm provides a consistent acceptance ratio throughout the different

range of ris. For constrained deadline task sets, algorithm EDF-GVD clearly outperforms

the other algorithms. It provides a consistent higher acceptance ratio throughout the different

ranges of ri.

36

5. PROBABILISTIC MULTIPROCESSOR SCHEDULING

In Section 4, we study an MC scheduling with graceful degradation with a specific

minimum cumulative completion rate ri for lo-criticality tasks. Under hi-criticality mode,

instead of fully dropped, the lo-criticality tasks execute by following the corresponding ri

value. While this method follows a discreet scheduling procedure, in this section, we study a

probabilistic MC scheduling technique. With a specific accepted failure probability FS, our

scheduler guarantee the proper scheduling of the MC task set such that the overall system

failure doesn’t exceed FS. This approach provides the graceful degradation to lo-criticality

tasks in a probabilistic way. While this concept was first introduced in (Guo et al., 2018),

which only focus on the probabilistic schedulability on uniprocessor platforms, we further

extend their work to multiprocessor platforms.

5.1. BACKGROUND AND PRELIMINARYWORK

In (Guo et al., 2015), Guo et al. first proposed a novel MC system model which

acknowledge the system failure probability and probabilistic worst-case execution time

(pWCET) and presented an efficient MC scheduler which provides better schedulability and

QoS. They considered solving the scheduling problem of independent implicit-deadline

sporadic task system on uniprocessor platforms. In this thesis, we extend their work and

propose an efficient multiprocessor scheduling algorithm. To the best of our knowledge, this

work is the first of its kind where multiprocessor probabilistic MC scheduling is considered.

Alongside the independent task set, we also provide scheduling solution for a specific type

of failure dependency among the task. Before detailing our proposed method, we feel the

necessity to briefly describe the work presented in (Guo et al., 2015).

37

5.1.1. Probabilistic Schedulability onUniprocessorPlatforms. (Guo et al., 2015)

proposed an algorithm to scheduleMC task set on uniprocessor platforms by acknowledging

the failure probability of the system. In their work, they proposed a modified system model

as described in Section 3.3. A failure probability parameter fi is added to hi-criticality tasks

which denote the probability that the actual execution of that task exceeding its lo-WCET.

It also considers a system-wide permitted failure probability FS. According to their work,

the definition of probabilistic schedulability is described as follows:

Definition 3. (Probabilistic schedulability.) AnMC task set is strongly probabilistic schedu-

lable by a scheduling strategy if it possesses the property that upon execution, the probability

of missing any deadline is less than FS . It is weakly probabilistic schedulable if the prob-

ability of missing any HI -criticality deadline is less than FS. (In either case, all deadlines

are met during system runs where no job exceeds its LO -WCET.)

According to the definition of probabilistic schedulability, when the test result is

strongly schedulable, then all jobs meet their deadlines with a probability of at least 1− FS.

And if the test result returns weakly schedulable, it guarantees that the probability of hi-

criticality jobs meeting their deadlines is no less than FS. However, if all job finishes before

their lo-WCET budget, all deadlines are guaranteed to be met.

5.1.2. The LFF-Clustering Algorithm. To provide the probabilistic schedulabil-

ity, (Guo et al., 2015) proposed a heuristic-based clustering technique. They proposed the

LFF-Clustering Algorithm which divides the hi-criticality tasks into different groups by

calculating the failure probabilities in a way such that the overall system failure probability

FS doesn’t exceed upon executing the clusters. We feel the necessity to briefly describe the

LFF-Clustering algorithm as we use this algorithm in our work which extends the work of

(Guo et al., 2015) for multiprocessor platforms.

The LFF-Clustering algorithm groups all hi-criticality tasks into M number of

clusters G1,G2, . . . ,GM based on their additional utilization cost δi and failure probability

fi. The additional utilization cost is the additional budget allocation of each Hi-criticality

38

task after a mode switch. Thus δi can be represented as:

δi = (Chi
i − Clo

i)/pi (5.1)

While creating the clusters, the algorithm ensures that each cluster is created in a

way, such that it always maintain the following condition:

gm < Fs/M (5.2)

Here, gm is the failure probability in cluster m. The value of gm is calculated based on

the probability of more than one single task in a cluster exceeding their lo-WCET budget

within an hour. The calculation of gm is done by following equation:

gm = 1 −
∏

i |yi=m

(1 − fi) −
∑

j |yj=m

f j

∏
i |yi=m

1 − f j
(5.3)

Here, the total number of hi-criticality tasks is denoted by nhi and yi ∈ {1, 2, . . . , M} denotes

to the assigned cluster number of task τi. In the above equation, the second term of the

right-hand side is the probability of no task (in the cluster) exceeding its LO-WCET, and

the last term represents the probability of exactly one of the tasks exceeding its LO-WCET

in an hour. Proof has been given in (Guo et al., 2015) to show that if Condition. 5.2 is

maintained, then the overall system failure probability is less than Fs.

5.1.3. Runtime Strategy. For executing the lo-criticality tasks, a hi-criticality

server τs with period 1 is allocated with utilization equal to ∆, where:

∆ =

M∑
i=1
∆i (5.4)

39

The ∆i is the additional utilization of each cluster and is defined by:

∆m = max
i |τi∈Gm

δi (5.5)

here only the maximum utilization cost in a cluster is considered because the the clusters

are created in a way, such that there can be at most one task failure.

All the hi-criticality tasks along with the server τs are executed by following the

EDF scheduling technique. At any time instant that the server is executing, if there is any

active HI-criticality job (which is released but not completed yet) with the earliest deadline,

those are considered for execution. Otherwise, the current job of the server is dropped. A

job is dropped at its deadline if it doesn’t complete within its deadline.

5.1.4. Schedulability Test. The schedulability test presented in (Guo et al., 2015)

provides the following schedulability conditions:

• The MC task system is strongly probabilistic schedulable if and only if the following

condition holds:
n∑

i=1

Clo
i

Ti
+ ∆ ≤ 1 (5.6)

• If the task system is not strongly schedulable, it still can be weakly schedulable if the

following conditions hold: ∑
i |χi=hi

Clo
i

Ti
+ ∆ ≤ 1 (5.7)

and

∆Û(1 −
∑

i |χi=hi

Clo
i

Ti
) +

n∑
i=1

Clo
i

Ti
≤ 1 (5.8)

Please refer to (Guo et al., 2015) for the proofs of the above schedulability condi-

tions.

40

5.2. PROBABILISTIC SCHEDULING ONMULTI-PROCESSOR PLATFORMS

With the advancements in technology, multi-processor devices are becoming more

and more popular. Along with that, it is becoming more efficient to schedule real-time tasks

in multi-processor platforms to get better throughput. The motivation behind the probabilis-

tic scheduling of real-time tasks on uniprocessor platform is the same for multi-processor

platforms as well. Considering the pragmatic application of applying probabilistic schedul-

ing, by implementing a similar technique in multi-processors will dissipate the pessimistic

assumption of existing scheduling mechanism and will improve the efficiency with respect

to task scheduling dramatically. In this section, we propose a multi-processor scheduling

technique of MC tasks considering the failure probability as proposed in Section 3.3 based

on partitioned-based scheduling technique.

The partitioned-based scheduling of implicit-deadline sporadic task system can be

converted into a bin-packing problem (Korte and Vygen, 2012). Hence, each processor

is modeled as a bin of capacity one, and each task τi has the capacity of size ui (its

utilization). As bin packing problem is a combinatorial NP-Hard (Korte and Vygen, 2012),

heuristics are applied to solve such problems. Similar heuristics can be applied for solving

the partitioned-based scheduling problems. As our system model considers MC tasks with

failure probability, we need to modify the task-sets to fit into a traditional bin packing

heuristics. Here we have briefly discussed three most-common heuristics (First-Fit, Best-

Fit, and Worst-Fit), then we present our algorithm to schedule our system model in multi-

processor environments.

5.2.1. Different SchedulingHeuristics. For partitioned scheduling, most common

heuristics are First-Fit (FF), Best-Fit (BF), and Worst-Fit (WF). Considering the tasks are

ordered by following a specific rule and every processor is indexed from 0 to upward, While

scheduling with FF, the algorithm chooses the processor with the smallest index. The BF

algorithm allocated the tasks to a processor with the maximal utilization. And the last

41

algorithm WF chooses the one with the minimal utilization. For a specific order of tasks

with the utilization values 0.2, 0.6, 0.4, 0.7, 0.1, 0.3 respectively, the task allocations with

different algorithms are shown in Figure 5.1.

Figure 5.1. Different partitioning heuristics example

Note that, in our example if we sort the task in the decreasing order of their utiliza-

tion value, we would get Reasonable Allocation Decreasing (RAD) algorithm. The three

algorithms discussed above would have been called First-Fit Decreasing (FFD), Best-Fit

Decreasing (BFD), and Worst-Fit Decreasing partitioned algorithm. RAD algorithms are

proved to provide optimal utilization bound (López et al., 2004). Hence, in our work, we

consider allocating the tasks using the RAD algorithms.

5.2.2. Algorithm to Schedule MC Tasks with Failure Probability. To schedule

tasks in our proposed system model in multiprocessor platforms, we present a slightly

different scheduling approach than the uniprocessor scheduling prested in (Guo et al., 2015).

Initially, all the tasks are grouped into different clusters using the same LFF-Clustering

algorithm presented before. Then we schedule the clusters in different processors by using

different RAD partitioned heuristics. Note that, for every cluster, there is an additional

utilization cost ∆m which is also needed to be allocated in case any task of the cluster

exceeds is LO-criticality WCET. For every processor, we need to allocate a server which

has a utilization equal to the sum of additional utilization cost ∆m of all the clusters

allocated in that processor. For example, While considering of scheduling three clusters on

two processors and if the Clusters 1 and 2 are allocated on Processor 1 and the Cluster 3 is

42

allocated on Processor 2, then we also need to allocated a server with utilization (∆1 + ∆2)

in Processor 1, and another server with utilization ∆3 in the Processor 2. So while applying

the partitioned heuristic, we need to accommodate the demand of server utilization as well.

5.2.3. Scheduling LO-Criticality Tasks. The lo-criticality tasks are considered

for allocation once all the hi-criticality clusters and ∆′s are allocated. The lo tasks are

allocated using the same partitioning techniques used for the hi tasks.

5.3. SCHEDULABILITY

The schedulability of the task set is determined in two different steps. First, we

have to check whether the tasks can be properly allocated to the available processors. Upon

successful allocation, we need to check whether the MC task systems can be scheduled

runtime even under worse conditions. Also in each step, there is a possibility that either

only HI tasks or all the tasks are allocated/schedulable. Based on the allocation the tasks

set can be strongly allocated or weekly allocated. If all the clusters, ∆′s, and lo-tasks are

allocated then we call it strongly allocated task set. If only the clusters and ∆′s are allocated

properly but not the lo-tasks then we call it weakly allocated task set. Otherwise, the

task sets cannot be considered for further schedulability test. Upon successful allocation,

we need to check the schedulability of the allocated task set on all the processors. The

schedulability test is done by following the similar technique used for the uniprocessor

scheduling.

The following theorems are used to check the successful allocation and the schedu-

lability of the task sets. Before going into the schedulability conditions, it is necessary to

introduce the parameter α and β. α is the utilization factor of a task set, i.e., the maximum

utilization among all tasks. β is the maximum number of tasks of α which fit into one

processor under EDF scheduling. β can be expressed as a function of α

β = b
1
α
c (5.9)

43

Lopez et al. (López et al., 2004) proved that formultiprocessor partitioned scheduling

using EDF, FFD, BFD, andWFD algorithms provide the optimal upper bound, which is the

following:

Lemma 6. If m > βn then U(n, α) = βn+1
β+1

Here,U(n, α) denotes the utilization bound to schedule n number of tasks using RAD

algorithms in m processors, where the utilization factor for the task set is α.

5.3.1. Task Allocation Conditions. For the HI-tasks we need to allocate each clus-

ter with its∆m in the same processor as in the partitioned scheduling, a task is always needed

to be executed on the same processor which it was initially allocated. Lets assume there

are m clusters with utilization UC1,UC2, . . . ,UCm with the corresponding delta values as

∆1,∆2, . . . ,∆m. As each cluster is needed to be allocated to a processor with its correspond-

ing ∆, let assume αh is the utilization factor of the sum of the cluster’s utilization and it’s

∆ value, and βh is the maximum number of tasks of αh which fit into one processor under

EDF scheduling.

αh = max
i∈1,2,...,m

(UCi + ∆i) (5.10)

βh = b
1
αh
c (5.11)

Similarly, lets n defines the number of LO-tasks in the system, and let αl and βl

define the utilization factor and the β value for the LO-tasks respectively. Let αs be the

utilization factor of the total system, which is the maximum of αh and αl . Furthermore,

βs represents the β value of the system (i.e., the hi-criticality clusters and the lo-criticality

tasks).

αs = max(αh, αl) (5.12)

βs = b
1
αs
c (5.13)

44

Theorem 1. All the hi-criticality clusters along with their server allocation (∆) and all the

lo-criticality tasks can be allocated (i.e., strongly allocated task-set) to p processor if the

following two condition holds,

p > βs(m + n) (5.14)

Us ≤
βs(m + n) + 1

βs + 1
(5.15)

here Us is the sum of the utilization of all cluster, all lo-criticality tasks, and the ∆s.

Proof. Here, each cluster and lo-criticality tasks can be seen as a single entity with specific

utilization demand. The total number of entity here is (m + n). Thus according to Theorem

4, the maximum utilization bound can be βs(m+n)+1
βs+1 . So for a successful allocation, the

system utilization Us must be no greater than the utilization bound.

Theorem 2. All the hi-criticality clusters along with their server allocation (∆) can be

allocated (i.e., weakly allocated task-set) to p processor if the following two condition

holds,

p > βhm (5.16)

U =
βhm + 1
βh + 1

(5.17)

Proof. Theorem 6 can be proved similar to Theorem 5 by using the utilization bound

presented in Theorem 4.

5.3.2. Task Schedulability Condition. Upon successful allocation (either strongly

or weakly allocated), the schedulability of the task set can be determined by running the

pMCMP (probabilistic Mixed-Criticality on MultiProcessor) algorithm (presented in 4).

pMCMP algorithm basically use pMC algorithm presented in (Guo et al., 2015) on all the

processors to check the schedulability. The result of pMCMP can be strongly schedulable,

weakly schedulable, or non-determined. If a task set is only weakly allocated on the

available processors, the task set can never be considered as strongly schedulable.

45

Algorithm 4: pMCMP algorithm
Data: Allocation of hi-criticality ∆is and lo-criticality task-set τi on each processor pi
Result: The schedulability of the task set
if ∀pi, pMC returns strongly-schedulable then

return strongly-schedulable;
end
else if ∀pi, pMC returns weakly-schedulable then

return weakly-schedulable;
end
else

return non-determined;
end

Theorem 3. The scheduled task set satisfies the correctness criteria of probabilistic schedu-

lability presented in (Guo et al., 2015) for multiprocessor platforms. i.e., the schedulability

test pMCMP for multiprocessor scheduling is sufficient in the following sense:

• If it returns strongly probabilistic schedulable, the probability of any task missing its

deadline is no greater than FS

• If it returns weakly probabilistic schedulable, the probability of any hi-criticality task

missing its deadline is no greater than FS, and no deadline is missed when all jobs

finish upon execution of their lo-WCETs.

Proof. After a successful allocation, each processor has a specific set of∆s and lo-criticality

tasks assigned for scheduling. Let n1, n2, . . . , nM denote the number of clusters assigned

to p processors (note that there are total M number of clusters). Hence, each processor

assignment can be seen as a subset problem of uniprocessor scheduling presented in (Guo

et al., 2015).

For processor 1, similar to the proof of Eqn. 5.2 (Guo et al., 2015), we can show

that the failure probability of processor 1 is no greater that (n1×FS)/M . Similarly, for other

processors the failure probability lower bounds are (n1 × FS)/M, (n2 × FS)/M, . . . , (nM ×

FS)/M respectively. As the tasks are independent. The total failure probablity of the system

is no greater than
∑M

i=1(ni × FS)/M = FS.

46

5.4. CONSIDERING COVARIANCE/FAILURE DEPENDENCY

In our previous model, we have considered independent tasks only, e.g., the failure

probability fi of each task τi is independent of each other. As a result, whether a hi task

fails to complete within its lo-WCET budget does not affect the completion of other

hi tasks. In traditional models, it is assumed that all the hi tasks exceed their lo-WCET

budget at the same time. That means failure probabilities of all hi tasks are dependent

on each other, which is rather a pessimistic assumption. However, in practical systems,

not every failure probability is independent. It is possible that while most of the hi tasks

are independent, a certain amount of task is directly dependent to each other with respect

to their probability of exceeding lo-WCET, i.e., once a hi task exceeds the lo-WCET,

other dependent tasks also exceed their lo-WCET budget, regardless of their own failure

probability. By considering this scenario, We propose an extended model in this section by

introducing the covariance/failure-dependency in our task model.

Table 5.1. Sample covariance matrix of an MC task set with 8 tasks

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8
τ1 - 0 0 0 1 0 0 0
τ2 - - 1 0 0 1 0 0
τ3 - - - 0 0 1 1 0
τ4 - - - - 0 0 0 0
τ5 - - - - - 0 0 1
τ6 - - - - - - 0 0
τ7 - - - - - - - 0

5.4.1. Covariance Matrix. We introduce a covariance matrix where the depen-

dency between each tasks failure to complete before lo-WCET. In Table. 5.1, a sample

covariance matrix is shown for eight hi-criticality tasks. Here the covariance is represented

by either 1 or 0. 0 represents the independence between two tasks while the 1 represents

that there is a dependency between the failure probability of two tasks. Note that, for sim-

47

plicity, we only consider 0 and 1 values for covariance. As a result, if there is a dependency

between two tasks, we assume that upon exceeding the lo-WCET budget of one task, the

other dependent task/s will also exceed their lo-WCET budget simultaneously.

Definition 4. (Failure-dependent tasks.) Two tasks are considered failure-dependent when

upon scheduling those tasks on the same processor, if one of those tasks exceeds its lo-WCET,

the other one also exceeds. So, both of the tasks exceeds their lo-WCET simultaneously.

In Table 5.1, if there is a 1 between two tasks, those tasks are failure-dependent. For

example, τ2 and τ3 are failure dependent but τ1 and τ2 are not. Note that, two tasks are

failure-dependent only if those are scheduled on the same processor. Upon scheduling on

different processors, those tasks can be executed independently.

5.4.2. Task Isolation usingGraphModel. Similar to the clustering problemwith-

out covariance, finding the optimal clustering for the new problem is also NP-Hard. Thus,

we propose a heuristic to find an efficient solution to the problem. From the covariance

matrix, we can visualize a task set as a graph problem. We can assume the tasks as a node

of the graph and the failure dependencies as edges between the nodes, i.e., if there is a 1

between two tasks, we can consider an edge between those two nodes (tasks). Note that, if

the graph is fully connected, the problem will become a traditional MC scheduling problem

as in our strategy, we will need to create a cluster for each task. In practical scenarios,

the graph is assumed to be a disconnected graph as there can be both independent and

failure dependent tasks in a system. Hence there will be multiple islands in the graph which

consist of interdependent tasks. Example 5.4.1 demonstrate the graph transformation of the

covariance matrix.

Example 5.4.1. Consider the covariance matrix for all hi-criticality tasks of a task set is

shown in Table 5.1. Here from the definition of covariance matrix, we can see that the

failure of τ1 is dependent on τ5, and the failure of τ5 is dependent on τ8. Hence to transform

the covariance matrix into a graph, we can consider τ1, τ5, and τ8 as the node of the graph

48

and put an edge between τ1 and τ5. Similarly, we put another edge between τ5 and τ8. By

following this transformation rule, we can get a disconnected graph with three islands as

shown in Figure 5.2. Here each island represents the inter-dependent tasks. Note that, an

island can consist of only a single task (τ4 in this case) if it is fully independent.

1 5

8

2 3

76

4

Figure 5.2. Graph transformation of the covariance matrix

Definition 5. (Transitive failure-dependency.) If two tasks are not directly failure-dependent

to each other but they have a common failure-dependent task, then we call the failure-

dependency between the first two tasks transitive failure-dependency. In Figure 5.2, τ1 and

τ8 are not directly failure-dependent (i.e., independent tasks), but they both have failure

dependency with τ5. Hence, if we schedule these three tasks together, they will exceed their

lo-WCET budget simultaneously. However, if we schedule τ5 in a separate processor, τ1

and τ8 will have no failure-dependency and can act as independent tasks.

Upon transforming the covariance matrix into a graph, we apply our clustering

heuristics. In the previous LFF-Clustering algorithm we sorted all the tasks in descending

order based on their additional utilization δi value and we keep adding the tasks one by one

to clusters until the Equation 5.2 is not violated. While scheduling the task set including

failure-dependent tasks, we isolate the tasks of each island into m (number of processors)

number of groups in a way such that there are no failure-dependent tasks in any group. By

doing that, we ensure that no two inter-dependent tasks are grouped into a single processor.

49

ISOLATING TASKS OF EACH ISLAND: Once we convert the task set as a graph

with different islands, we create m number of groups of independent tasks. We can visualize

this problem as a m − coloring graph problem. In a m − coloring problem, the nodes of

a graph are colored with at most m number of colors where no two nodes are adjacent

to each other (i.e., there is no edge between them). If we can properly color the graph

with m or less number of colors then we can easily allocate each colored nodes to distinct

processors. However, the m−coloring problem is an NP-Complete problem (Irving, 1983).

As a result, we will need an approximate algorithm to solve such problems. Furthermore,

it may not always be possible to color the subgraph in each island with m− colors by using

the approximate algorithm (even by using an optimal algorithm). Hence, we propose a

modified approximate algorithm to color each subgraph with m colors.

To accomplish this goal, we use a modified greedy coloring algorithm. As our

base greedy coloring algorithm, we use The Welsh Powell algorithm (Welsh and Powell,

1967) also known as Largest-First (LF) coloring algorithm. In LF algorithm, the vertices

are sorted in non-increasing order of their degrees (number of edges). Then at each

step, the nodes with largest degrees and its non-adjacent nodes are colored with the same

color. This procedure is done repeatedly until all the nodes are colored. We choose this

heuristic because, if we isolate the nodes with the highest degrees first, we can eliminate the

largest number of transitive failure-dependencies. Then we gradually reduce the number of

transitive failure-dependencies and increase the number of independent tasks.

So we start coloring from the node with the highest degree and its adjacent nodes.

Thenwe delete the edge of all the colored nodes. By doing this, we remove the dependencies

of other nodes with the colored nodes. However, when we already use m − 1 colors and

only one color is left to use, we need to contract (merge) the remaining failure-dependent

tasks. When at the last processor, there are still some nodes which are connected (failure-

50

dependent), we contract those nodes in a single node and use the ulo
i and δi of the node as

the sum of the corresponding values of all the connected nodes. The steps of the coloring

technique are shown in Algorithm 5 and further demonstrated in Example 5.4.2.

Algorithm 5: m − coloring algorithm
Data: G = {V, E}, m
Result: m − colored graph
Sort all nodes Vis in non-increasing order or their degrees;
for i ← 1 to m do
/* All nodes are colored */
if ∀Vi is colored then

return;
end
/* If at last processor, there exists some connected nodes */
if (i == m) and (∃Ei) then

forall Connected subgraph do
Vnew ← {connected_nodes};
Vnew .ulo

i ← {connected_nodes}.ulo
i ;

Vnew .δi ← {connected_nodes}.δi;
end

end
else

Color the nodes following LF (Welsh and Powell, 1967) Algorithm;
end

end

Example 5.4.2. In Figure 5.3, the tasks of one island is shown. Here, we need to allocate

the tasks on two processors, i.e., we have to color the graph with 2 colors. To do this, we

first take the node with the highest degree (τ4 with degree 4) and color it with green. Then

we color the non-adjacent nodes of τ4 (i.e., τ1, τ2, and τ8 with green and remove the edges

of those nodes. We can no longer use green in this graph. Now we have one processor

(color) left but there is still two tasks τ6 and τ7, which are failure-dependent to each other.

So, we merge these two tasks and all the nodes become independent. Finally, we color all

the nodes with blue (τ3, τ5, and τ6+7).

5.4.3. Task Allocation and Scheduling. To schedule the task set, we first allocate

the tasks by leveraging the above-mentioned techniques. We first run DFS over the covari-

ance matrix and convert them to different number of islands. Then we use the m− coloring

51

6 7

43 5

1
2

8

6 7

43 5

1
2

8

6+7

43 5

1
2

8

Figure 5.3. Graph coloring with m = 2

algorithm presented in Algorithm 5 to color the nodes of each island with at most m number

of distinct colors. Then the nodes in each island are sorted in descending order with respect

to their δi values and the islands themselves are then sorted in descending order based on

max(δi) values of the member nodes. hi-criticality tasks are allocated by following rules:

• First we assign the tasks of each color of each island by to a distinct processor by

following the WF heuristics on processor capacity.

• While assigning a task to a processor, we create a cluster following the LFF-Clustering

algorithm. First, we keep adding the same colored tasks in an island to the existing

task/s assigned to that processor. If we cannot assign the new task to an existing

cluster, we create a new cluster. Once all nodes of the same color are allocated, we

allocate the next color tasks to a different processor.

• Every time we add a new task to a processor, we update the ∆ value of the processor.

• Once all islands with multiple tasks are assigned, we assign the remaining single-task

islands by following the WF partitioning heuristic.

If all the tasks are allocated, the task set becomes strongly allocated, while only the

allocation of hi-criticality tasks results in a weakly allocation. Upon successful allocation,

we run the pMCMP algorithm to check the schedulability of the task set. The task allocation

procedure is presented in Algorithm 6.

52

Algorithm 6: Task Allocation Algorithm with Covariance
Data: FS , { fi}nHI

i=1 , {ulo
i }

n
i=1 {δi}

n
i=1, covariance matrix

Result: Task allocation result
Run DFS on covariance matrix and get islands {Ij}kj=1;
Color the nodes of each island using Algorithm 5;
Sort ∀τi ∈ ∀Ij in descending order w.r.to δi;
Sort ∀Ii based on max(δi) ∈ Ii;
P = {p1, p2, . . . , pm};
forall multi-task islands Ii do

allocated = φ;
forall ∀τj ∈ Ii do

allocate τj into pk ∈ {P − allocated} following WF and update ∆k ;
allocated = allocated ∪ pk

end
end
if all lo tasks are allocated using WF then

return strongly − allocated;
end
return weakly − allocated;

5.5. EXPERIMENTAL EVALUATION

In this section, we present extensive experimental evaluations to show the perfor-

mance of algorithm pMCMP. To the best of our knowledge, our work is the first to propose

probabilistic MC scheduling on multiprocessor platforms. As a result, there is no baseline

to be compared with. We have performed a number of experiments by varying different

important factors to observe the efficiency of our algorithm.

5.5.1. Workload Generation. To conduct the experiments, we have generated MC

tasks based on the following parameters.

• M : The number of processor cores.

• Ua : The average utilization for the task set. The average is calculated by averaging

the lo and hi-criticality utilization of the task set.

• Phi = 0.5: The probability of a task to be a hi-criticality one.

53

• R = 4: Denotes the maximum ratio of uhi
i to ulo

i . uhi
i is generated uniformly from

[ulo
i , R × ulo

i].

• FS: The system-wide permitted failure probability. We use 10−6 as the value of FS

for all of our experiments.

We performed the simulation for average utilization ranging from 0.05M to 2M

with increasing at step size 0.05M . For every average utilization, we generate 100 task sets

which consist of 20 tasks each. Note that, for most of the experiments, we have measured

the performance with respect to average utilization as we wanted to show the improved

quality of service for normally generated MC task sets.

At first, for a specific average utilization, we use UUniFast algorithm Bolado et al.

(2004) to generate a lognormal distribution of Ua for all the tasks in a task set. The values

of ulo
i is uniformly generated from [2×ua

i

R+1 , u
a
i] so that the value of uhi

i is always in the range

[ulo
i , R × ulo

i].

5.5.2. Evaluation Results. We execute a set of MC tasks under our proposed

algorithm by varying different parameters. Simulation results for various scenarios are

presented in Figure 5.2 to Figure 5.7. We perform the following simulations:

The schedulability performance of pMCMP is shown in Figure 5.6. While the

Figure 5.4a shows the acceptance ratio (ratio of successfully scheduled task sets over total

number of task sets) with respect to average utilization Ua, the results in Figure 5.4a shows

the acceptance ratio with respect to ulo
i . In both figures, we show the acceptance ratio for

both strongly schedulable and weakly schedulable task sets. In Figure 5.4a, we can see

that a good number of task sets is schedulable when the average utilization of the task set

is one or even higher as the average utilization is calculated based on both ulo
i and uhi

i but

pMCMP doesn’t need to allocate full hi-WCET budget. To understand the schedulability

with respect to ulo
i , we further performed the experiment presented in Figure 5.4b where the

ulo
i is generated following the lognormal distribution using the UUniFast algorithm Bolado

et al. (2004) algorithm.

54

0 0.5 1 1.5 2
0

20

40

60

80

100

Average utilization per processor

A
cc

ep
ta

nc
e

R
at

io
 %

strongly schedulable
weakly schedulable

(a) for varying average utilization Ua

0 0.5 1 1.5 2
0

20

40

60

80

100

Average low utilization per processor

A
cc

ep
ta

nc
e

R
at

io
 %

strongly schedulable
weakly schedulable

(b) for varying average low utilization Ulo

Figure 5.4. Acceptance ratio for pMCMP in an 4-core platform under different utilizations

55

Next, in Figure 5.5, we present the acceptance ratio for all three heuristics (FF,BF,

andWF) discussed in Section 5.2.1. Previously we discussed that all RAD algorithms share

the same utilization bound while task partitioning, and the result shows the same. Note

that, we use only strongly schedulable task set to calculate the acceptance ratio from this

experiment as only the strongly schedulable task sets provide the graceful degradation to

lo-criticality tasks.

0 0.5 1 1.5 2
0

20

40

60

80

100

Average utilization per processor

A
cc

ep
ta

nc
e

R
at

io
 %

FF partition
BF partition
wF partition

Figure 5.5. Performance of pMCMP in an 4-core platformunder different partition heuristics

We also present the percentage of successful strongly schedulable task set under

different number of processors (Figure 5.6a) and different number of fi values (Figure 5.6b).

As expected, the performance of schedulability decreases with the increase of the number

of the processors by following the performance of the partition heuristics. On the other

hand, with the lower fi values, we get better acceptance ration as the algorithm can create

more clusters and thus needs to allocate a smaller ∆.

56

0 0.5 1 1.5 2
0

20

40

60

80

100

Average utilization per processor

A
cc

ep
ta

nc
e

R
at

io
 %

m = 2
m = 4
m = 8
m = 16

(a) for various number of processors (m)

0 0.5 1 1.5 2
0

20

40

60

80

100

Average utilization per processor

A
cc

ep
ta

nc
e

R
at

io
 %

f = 1e-2
f = 1e-3
f = 1e-4
f ~ 1eU[-5,-1]
f ~ 1eU[-4,-2]
f ~ U[0.5,1.5]e-3}

(b) for various distribution assumptions made to fis

Figure 5.6. Acceptance ratio for pMCMP under various parameters

57

We also performed simulation on different density of covariance. The number of

edges of the covariance graph (1 in covariance matrix) are randomly generated based on the

density of edge. The simulation result is presented in Figure 5.7. Under lower densities,

our algorithms perofmred surprisingly well. With the increase of density, the possibility of

merging also increases and the acceptance ratio decreases.

0 0.5 1 1.5 2
0

20

40

60

80

100

Average utilization per processor

A
cc

ep
ta

nc
e

R
at

io
 %

density = 0%
density = 10%
density = 20%
density = 50%

Figure 5.7. Performance of pMCMP in an 4-core platform under different density of
covariance

58

6. CONCLUSION

Themain objective of this thesis is to enable graceful degradation tomixed-criticality

task systems. In this thesis, we consider two different system model to provide enhanced

service to lo-criticality tasks which improve the overall quality of service of the system.

The first contribution of this thesis is the study of mixed-criticality scheduling where

graceful degradation is provided in the form of a minimum cumulative completion rate. The

key point of this technique is thatwe provide a guaranteed service to lo-criticality tasks under

hi-criticalitymode. Two admission-control algorithms are presented to decide the add/drops

of lo-criticality jobs in himode. We study the pseudo-polynomial time schedulability test

and present a mechanism for the backward mode switch. The performance efficiency of our

approach is presented in several experimental results.

Our second condition is to provide probabilistic schedulability to mixed-criticality

task systems onmultiprocessor platforms. It is assumed that a system-wide permitted failure

probability along with the probability of each hi-criticality tasks exceeding their lo-WCET

is known. Based on the assumption, we provide the necessary algorithm and schedulability

analysis. This approach enhances the schedulability of lo-criticality tasks as it doesn’t drop

them until the permitted failure probability is violated. We further consider the failure

dependencies between tasks while scheduling on multiprocessor platforms and present the

detailed simulation results.

59

REFERENCES

Abeni, L. and Buttazzo, G., ‘Qos guarantee using probabilistic deadlines,’ in ‘Proceedings
of the 11th Euromicro Conference on Real-Time Systems (ECRTS’99),’ 1999 .

ARINC, ‘Aeronautical Radio, INCorporated,’ http://www.arinc.com/, ????, accessed: July
21, 2017.

AUTOSAR, ‘AUTOSAR (AUTomotive Open system ARchitecture),’
https://www.autosar.org/, ????, accessed: July 21, 2017.

Awan, M., Bletsas, K., Souto, P., and Tovar, E., ‘Semi-partitioned mixed-criticality schedul-
ing,’ in ‘Proceedings of the International Conference on Architecture of Computing
Systems (ARCS),’ Springer, 2017 pp. 205–218.

Barhorst, J., Belote, T., Binns, P., Hoffman, J., Paunicka, J., Sarathy, P., Stanfill, J., Stu-
art, D., and Urzi, R., ‘White paper: A research agenda for mixed criticality sys-
tems,’ Available: https://www.cse.wustl.edu/ cdgill/CPSWEEK09MCAR/RBO −
09 − 130????, accessed : July12, 2017.

Baruah, S., ‘Optimal utilization bounds for the fixed-priority scheduling of periodic task
systems on identical multiprocessors,’ IEEE Transactions on Computers, 2004,
53(6), pp. 781–784.

Baruah, S., ‘A scheduling model inspired by control theory,’ in ‘Proceedings of the 6th
International Real-Time Scheduling Open Problems Seminar,’ 2015 .

Baruah, S., ‘Mixed-criticality scheduling theory: Scope, promise, and limitations,’ IEEE
Design and Test, 2018, 35(2), pp. 31–37.

Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., Megow, N., and
Stougie, L., ‘Scheduling real-time mixed-criticality jobs,’ in ‘Proceedings of the
35th International Symposium on Mathematical Foundations of Computer Science
(MFCS),’ 2010 pp. 90–101.

Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., Megow, N., and
Stougie, L., ‘Scheduling real-time mixed-criticality jobs,’ IEEE Transactions on
Computers, 2012a, 61(8), pp. 1140–1152.

Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., van der Ster,
S., and Stougie, L., ‘The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems,’ in ‘Proceedings of the 24th Euromicro
Conference on Real-Time Systems (ECRTS),’ 2012b .

Baruah, S., Bonifaci, V., D’angelo, G., Li, H., Marchetti-Spaccamela, A., Van Der Ster, S.,
and Stougie, L., ‘Preemptive uniprocessor scheduling of mixed-criticality sporadic
task systems,’ Journal of the ACM (JACM), 2015, 62(2), p. 14.

60

Baruah, S., Burns, A., and Davis, R., ‘Response-time analysis for mixed criticality systems,’
in ‘Proceedings of the 32nd International Real-Time Systems Symposium (RTSS),’
IEEE, 2011a pp. 34–43.

Baruah, S., Burns, A., and Davis, R., ‘Response-time analysis for mixed criticality systems,’
in ‘Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS),’ 2011b .

Baruah, S., Burns, A., andGuo, Z., ‘Schedulingmixed-criticality systems to guarantee some
service under all non-erroneous behaviors,’ in ‘Proceedings of the 28th Euromicro
Conference on Real-Time Systems (ECRTS’16),’ 2016 .

Baruah, S. K., Bonifaci, V., DâĂŹAngelo, G., Marchetti-Spaccamela, A., Van Der Ster,
S., and Stougie, L., ‘Mixed-criticality scheduling of sporadic task systems,’ in
‘European Symposium on Algorithms,’ Springer, 2011c pp. 555–566.

Baruah, S. K., Mok, A. K., and Rosier, L. E., ‘Preemptively scheduling hard-real-time
sporadic tasks on one processor,’ in ‘Proceedings of the 11th IEEE Real-Time
Systems Symposium,’ ISBN 0818621125, 1990 doi:10.1109/REAL.1990.128746.

Bernat, G., Burns, A., and Liamosi, A., ‘Weakly Hard Real-Time Systems,’ IEEE Transac-
tions on Computers, 2001, 50(4), pp. 308–321, doi:10.1109/12.919277.

Bletsas, K. and Petters, S., ‘Using NPS-F for mixed-criticality multicore systems,’ in
‘Proceedings of the 33rd International Real-Time Systems Symposium (RTSS),’
IEEE, 2012 pp. 36–36.

Bolado, M., Posadas, H., Castillo, J., Huerta, P., Sanchez, P., Sánchez, C., Fouren, H.,
and Blasco, F., ‘Platform based on open-source cores for industrial applications,’
in ‘Design, Automation and Test in Europe Conference and Exhibition, 2004. Pro-
ceedings,’ volume 2, IEEE, 2004 pp. 1014–1019.

Branicky, M., Phillips, S., and Wei Zhang, ‘Scheduling and feedback co-design for net-
worked control systems,’ in ‘Proceedings of the 41st IEEE Conference on Decision
and Control,’ ISBN 0-7803-7516-5, 2002 doi:10.1109/CDC.2002.1184679.

Burns, A., ‘How to gracefully degrade,’ 2017, keynote given at Dagstuhl Seminar 17131.

Burns, A. and Davis, R., ‘Mixed-Criticality systems: A review,’ Available: https://www-
users.cs.york.ac.uk/burns/review.pdf, 2017a.

Burns, A. and Davis, R., ‘Mixed-criticality systems: A review,’ 2017b.

Burns, A. and Davis, R. I., ‘A survey of research into mixed criticality systems,’ ACM
Computing Surveys (CSUR), 2017c, 50(6), p. 82.

Chen, Y., Li, Q., Li, Z., andXiong, H., ‘Efficient schedulability analysis formixed-criticality
systems under deadline-based scheduling,’ Chinese Journal of Aeronautics, 2014,
27(4), pp. 856–866.

61

Chwa, H. S., Shin, K. G., and Lee, J., ‘Closing the gap between stability and schedulability:
a new task model for Cyber-Physical Systems,’ in ‘Proceedings of the 24th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS’18),’
2018 .

Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis, L., Abella,
J., Mezzetti, E., Quinones, E., and Cazorla, F., ‘Measurement-based probabilistic
timing analysis for multi-path programs,’ in ‘Proceedings of the 24th Euromicro
Conference on Real-Time Systems (ECRTS’12),’ 2012 .

David, L. and Puaut, I., ‘Static determination of probabilistic execution times,’ in ‘Proceed-
ings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04),’ 2004
.

Davis, R. I., Santinelli, L., Altmeyer, S., Maiza, C., and Cucu-Grosjean, L., ‘Analysis
of probabilistic cache related pre-emption delays,’ Proceedings of the 25th IEEE
Euromicro Conference on Real-Time Systems (ECRTS’13), 2013.

Díaz, J., Garcia, D., Lee, C., Bello, L., López, J., and Mirabella, O., ‘Stochastic analysis of
periodic real-time systems,’ in ‘Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS’02),’ 2002 .

Easwaran, A., ‘Demand-based scheduling of mixed-criticality sporadic tasks on one pro-
cessor,’ in ‘Proceedings of the 34th IEEE Real-Time Systems Symposium (RTSS),’
IEEE, 2013 pp. 78–87.

Edgar, S. and Burns, A., ‘Statistical analysis of wcet for scheduling,’ in ‘Proceedings of the
22nd IEEE Real-Time Systems Symposium (RTSS’01),’ 2001 .

Ekberg, P. and Yi, W., ‘Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems,’ Real-Time Systems, 2014, 50, pp. 48–86, doi:
10.1007/s11241-013-9187-z.

Fleming, T. and Burns, A., ‘Incorporating The Notion of Importance into Mixed Criticality
Systems,’ in ‘Proceedings of the 2ndWorkshop onMixed Criticality Systems,’ 2014
.

Gardner, M. and Liu, J., ‘Analyzing stochastic fixed-priority real-time systems,’ in ‘Pro-
ceedings of the 5th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’99),’ 1999 .

Gettings, O., Quinton, S., and Davis, R. I., ‘Mixed criticality systems with weakly-hard
constraints,’ in ‘Proceedings of the 23rd International Conference on Real Time and
Networks Systems,’ ISBN 9781450335911, 2015 doi:10.1145/2834848.2834850.

Gratia, R., Robert, T., and Pautet, L., ‘Generalized mixed-criticality scheduling based on
RUN,’ in ‘Proceedings of the 23rd International Conference on Real Time and
Networks Systems (RTNS),’ ACM, 2015a pp. 267–276.

62

Gratia, R., Robert, T., and Pautet, L., ‘Scheduling of mixed-criticality systems with RUN,’
in ‘Proceedings of the 20th International Conference on Emerging Technologies &
Factory Automation (ETFA),’ IEEE, 2015b pp. 1–8.

Griffin, D. and Burns, A., ‘Realism in statistical analysis of worst case execution times,’
in ‘Proceedings of the 10th International Workshop on Worst-Case Execution Time
Analysis (WCET’10),’ 2010 .

Gu, X. and Easwaran, A., ‘Dynamic Budget Management with Service Guarantees for
Mixed-Criticality Systems,’ in ‘Proceedings of the 37th IEEE Real-Time Systems
Symposium,’ ISBN 978-1-5090-5303-2, 2016 doi:10.1109/RTSS.2016.014.

Guan, N., Ekberg, P., Stigge, M., andYi,W., ‘Effective and efficient scheduling of certifiable
mixed-criticality sporadic task systems,’ in ‘Proceedings of the 32nd International
Real-Time Systems Symposium (RTSS),’ IEEE, 2011 pp. 13–23.

Guo, Z., Real-time scheduling of mixed-critical workloads upon platforms with uncertain-
ties, Ph.D. thesis, The University of North Carolina at Chapel Hill, 2016.

Guo, Z. and Baruah, S., Mixed-Criticality Real-Time Systems, pp. 1–20, Springer Berlin
Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-54477-4, 2018, doi:10.1007/978-
3-642-54477-4_6-1.

Guo, Z., Santinelli, L., and Yang, K., ‘EDF schedulability analysis on mixed-criticality
systemswith permitted failure probability,’ in ‘Proceedings - IEEE21st International
Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA 2015,’ ISBN 9781467378550, 2015 doi:10.1109/RTCSA.2015.8.

Guo et al., S. V. S. A. S. K. D. H. X., K. Yang, ‘Uniprocessor mixed-criticality scheduling
with graceful degradation by completion rate,’ 2018, accepted in the proceedings of
the 39th IEEE Real-Time Systems Symposium (RTSS).

Hamdaoui, M. andRamanathan, P., ‘ADynamic PriorityAssignment Technique for Streams
with (m, k)-Firm Deadlines,’ IEEE Transactions on Computers, 1995, 44(12), pp.
1443–1451, doi:10.1109/12.477249.

Hansen, J., Hissam, S., and Moreno, G., ‘Statistical-based wcet estimation and validation,’
in ‘Proceedings of the 9th International Workshop on Worst-Case Execution Time
Analysis (WCET’09),’ 2009 .

Hansen, J., Lehoczky, J., Zhu, H., and Rajkumar, R., ‘Quantized EDF scheduling in a
stochastic enviroment,’ in ‘Proceedings of the 16th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’02),’ 2002 .

Hardy, D. and Puaut, I., ‘Static probabilistic worst case execution time estimation for
architectureswith faulty instruction caches,’ in ‘Proceedings of the 21st International
Conference on Real-Time and Networked Systems (RTNS’13),’ 2013 .

63

Irving, R.W., ‘Np-completeness of a family of graph-colouring problems,’ Discrete Applied
Mathematics, 1983, 5(1), pp. 111–117.

Jan, M., Zaourar, L., and Pitel, M., ‘Maximizing the execution rate of low-criticality tasks
in mixed criticality systems,’ in ‘Proceedings of the 34th IEEE Real-Time Systems
Symposium,’ 2013 .

Korte, B. and Vygen, J., Bin-Packing, pp. 471–488, Springer Berlin Heidelberg, Berlin,
Heidelberg, ISBN 978-3-642-24488-9, 2012, doi:10.1007/978-3-642-24488-9_18.

Lee, J., Phan, K.-M., Gu, X., Lee, J., Easwaran, A., Shin, I., and Lee, I., ‘Mc-fluid: Fluid
model-based mixed-criticality scheduling on multiprocessors,’ in ‘Proceedings of
the 35th IEEE Real-Time Systems Symposium (RTSS),’ IEEE, 2014 pp. 41–52.

Lehoczky, J., ‘Real-time queueing theory,’ in ‘Proceedings of the 17th IEEE Real-Time
Systems Symposium (RTSS’96),’ 1996 .

Li, H., Scheduling mixed-criticality real-time systems, Ph.D. thesis, The University of North
Carolina at Chapel Hill, 2013.

Li, H. andBaruah, S., ‘An algorithm for scheduling certifiablemixed-criticality sporadic task
systems,’ in ‘Proceedings of the 31st International Real-Time Systems Symposium
(RTSS),’ IEEE, 2010 pp. 183–192.

Li, H. and Baruah, S., ‘Global mixed-criticality scheduling on multiprocessors,’ in ‘Pro-
ceedings of the 24th Euromicro Conference on Real-Time Systems (ECRTS),’ 2012
pp. 166–175.

Liu, D., Spasic, J., Guan, N., Chen, G., Liu, S., Stefanov, T., and Yi, W., ‘EDF-VD
Scheduling of Mixed-Criticality Systems with Degraded Quality Guarantees,’ in
‘Proceedings of the 37th IEEE Real-Time Systems Symposium,’ ISBN 978-1-5090-
5303-2, 2016 doi:10.1109/RTSS.2016.013.

López, J. M., Díaz, J. L., and García, D. F., ‘Utilization bounds for edf scheduling on
real-time multiprocessor systems,’ Real-Time Systems, 2004, 28(1), pp. 39–68.

Majumdar, R., Saha, I., and Zamani, M., ‘Performance-aware scheduler synthesis for control
systems,’ in ‘Proceedings of the 9th ACM International Conference on Embedded
Software,’ ISBN 9781450307147, 2011 doi:10.1145/2038642.2038689.

Manolache, S., Eles, P., and Peng, Z., ‘Schedulability analysis of applicationswith stochastic
task execution times,’ ACM Trans. Embedded Computing Systems (TECS), 2004,
3(4), pp. 706–735.

Masrur, A., Müller, D., and Werner, M., ‘Bi-level deadline scaling for admission control in
mixed-criticality systems,’ in ‘Proceedings of the 21st International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA),’ IEEE,
2015 pp. 100–109.

64

Maxim, D. and Cucu-Grosjean, L., ‘Response time analysis for fixed-priority tasks with
multiple probabilistic parameters,’ in ‘Proceedings of the 34th IEEE Real-Time
Systems Symposium (RTSS’13),’ 2013 .

Niz, D., Lakshmanan, K., and Rajkumar, R., ‘On the scheduling of mixed-criticality real-
time task sets,’ in ‘Proceedings of the 30th International Real-Time Systems Sym-
posium (RTSS),’ IEEE, 2009 pp. 291–300.

Pathan, R., ‘Schedulability analysis of mixed-criticality systems on multiprocessors,’ in
‘Proceedings of the 24th Euromicro Conference on Real-Time Systems (ECRTS),’
2012 pp. 309–320.

Rodriguez, P., George, L., Abdeddaım, Y., and Goossens, J., ‘Multicriteria evaluation of
partitioned EDF-VD for mixed-criticality systems upon identical processors,’ in
‘Proceedings of the Workshop on Mixed Criticality Systems (WMC),’ 2013 .

S. Baruah and A. Burns, ‘Towards a more practical model for mixed criticality systems,’ in
‘Proceedings of the Workshop on Mixed-Criticality Systems (WMC),’ 2014 .

Saha, I., Baruah, S., and Majumdar, R., ‘Dynamic Scheduling for Networked Control
Systems,’ in ‘Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control,’ 2015 doi:10.1145/2728606.2728636.

Santy, F. F., George, L., Thierry, P., and Goossens, J. J., ‘Relaxing Mixed-Criticality
Scheduling Strictness for Task Sets Scheduled with FP,’ in ‘Proceedings of the 24th
Euromicro Conference on Real-Time Systems,’ ISBN 978-1-4673-2032-0, 2012
doi:10.1109/ECRTS.2012.39.

Slijepcevic, M., Kosmidis, L., Abella, J., Nones, E. Q., and Cazorla, F. J., ‘Dtm: Degraded
test mode for fault-aware probabilistic timing analysis,’ in ‘Proceedings of the 25th
Euromicro Conference on Real-Time Systems (ECRTS’13),’ 2013 .

Su, H. and Zhu, D., ‘An Elastic Mixed-Criticality Task Model and Its Scheduling Algo-
rithm,’ in ‘Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition,’ ISBN 9781467350716, 2013 doi:10.7873/DATE.2013.043.

Tia, T., Deng, Z., Storch, M., Sun, J., Wu, L., and Liu, J., ‘Probabilistic performance
guarantee for real-time tasks with varying computation times,’ in ‘Proceedings
of 1st IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’95),’ 1995 .

Vestal, S., ‘Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance,’ in ‘Proceedings of the 28th IEEE Real-Time Systems
Symposium (RTSS),’ 2007 .

Welsh, D. J. and Powell, M. B., ‘An upper bound for the chromatic number of a graph and
its application to timetabling problems,’ The Computer Journal, 1967, 10(1), pp.
85–86.

65

Xu, H. and Burns, A., ‘Semi-partitioned model for dual-core mixed criticality system,’
in ‘Proceedings of the 23rd International Conference on Real Time and Networks
Systems (RTNS),’ ACM, 2015 pp. 257–266.

Zhu, H., Hansen, J., Lehoczky, J., and Rajkumar, R., ‘Optimal partitioning for quantized
EDF scheduling,’ in ‘Proceedings of the 23rd IEEE Real-Time Systems Symposium
(RTSS’02),’ 2002 .

66

VITA

The author, Samsil Arefin, was born in Khulna, Bangladesh. Since his childhood,

he developed a passion for technology and eventually completed his bachelor’s degree

in Computer Science and Engineering from Bangladesh University of Engineering and

Technology. After his bachelor’s degree, he worked as a software engineer in multiple top

companies in Bangladesh, working in cutting-edge technologies. In 2017, he enrolled in

Missouri University of Science and Technology to pursue his master’s degree. During his

time at Missouri S&T, the author worked in the Real-Time Systems research group as a

Graduate Research Assistant under the supervision of Dr. Zhishan Guo.

In partial fulfillment of the requirements for the Master of Science in Computer

Science from Missouri University of Science and Technology, this thesis is the culmination

of that degree. The author received his Master of Science in Computer Science from

Missouri S&T in December 2018.

	Mixed-criticality real-time task scheduling with graceful degradation
	Recommended Citation

	tmp.1650988442.pdf.m2BzU

