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ABSTRACT

Basal cell carcinoma (BCC) is one of the most common types of skin cancer

in the United States. Early detection of BCC by noninvasive techniques can decrease

delay in treatment and save cost. A recent study estimated that 5.4 million cases of

non-melanocytic skin cancer (NMSC) occur each year in the US. BCC accounts for

50% of NMSC cases. Telangiectasia, which appears in most BCCs is an important

feature for identification of BCC for an automatic diagnostic system. In this thesis,

three methods for detection of telangiectasia present in dermoscopy lesion image (DI)

were proposed. Detected telangiectasia in DI was used to predict BCC. Using stepwise

logistic regression, a model was created for which the area under a receiver operating

characteristic (ROC) curve of 88.9% was achieved for detection of BCC.
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1. INTRODUCTION

BCC is one of the most common nonmalignant skin cancers in the USA. Ac-

cording to American Cancer Society, 5.4 million cases of non-melanocytic skin cancer

(NMSC) were recorded in 2012 [1] [2]. BCC accounts for 50% of NMSC, while squa-

mous cell carcinomas (SC) make up other 50% [3]. BCC has a very low metastatic

risk, but they can cause permanent disfigurement, especially around the eye, nose,

and ear [4]. Most BCCs have telangiectasia in their lesion area. Early detection of

BCC is crucial in reducing the cost and delay in treatment. Non-melanocytic skin

cancer is the fifth most costly cancer due to the sheer volume of cases [5].

Detection of telangiectasia can be very useful in the classification of BCC

[6]. Telangiectases are small dilated blood vessels that appear near the skin surface.

Clinically, BCC was detected using biopsy of a tissue sample. Noninvasive dermoscopy

lesion image (DI) were used for analyses. The focus of this research is to improve

the classification accuracy of the work done by Cheng [6]. Two modified models for

better detection of telangiectasia were proposed apart from the Cheng Model (CM).

In addition, a larger image set with more features was used. A comparison with the

Cheng model [6] is also provided.
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2. DATA SET

A total of 1024 BCC and NonBCC dermal images of 1024 x 768 pixels were

used in the analysis, compared to the 175 dermoscopy lesion image (DI) used by

Cheng [6]. DI that were generated using the DermLite HR II with a gel interface

on the lesion were used. Apart from BCC and NonBCC, automatic lesion borders

(ALB), hair mask images (HMI), and manual vessel masks (MVM), were used for the

analysis.

Dermoscopy lesion image used for this analysis were acquired from four clinics

located in Plantation, FL; Rolla, MO; Columbia, MO; and Stamford, CT. Only two

of the BCCs were detected using confocal microscopy, while others were biopsied and

examined by a dermatopathologist.

2.1. BASAL CELL CARCINOMA (BCC) IMAGES

Dermoscopy images were diagnosed with BCC by using biopsy. There are 304

BCC images in the analyzed data set. An example of a BCC dermoscopy lesion image

is shown in Figure 2.1.

Figure 2.1. Sample BCC dermoscopy images
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2.2. BENIGN DERMOSCOPY IMAGES (NONBCC)

Dermoscopy lesion images which were not diagnosed as BCC. Benign images

were either detected by biopsy or by using dermoscopy imagesand following the pa-

tient to make sure the lesion was unchanged. There are 720 NonBCC images, of

which 292 were nevi, 124 were seborrheic keratosis, 89 were dysplastic nevi, 5 were

sebaceous hyperplasia, and the others had various benign diagnoses. An example of

a NonBCC dermoscopy lesion image is shown in Figure 2.2.

Figure 2.2. Sample Benign dermoscopy image

2.3. AUTOMATIC LESION BORDERS (ALB) IMAGES

Lesion border masks for corresponding BCC and NonBCC images are auto-

matically selected by a classifier out of thirteen different borders generated by using

different border algorithms [7]. These borders reduce computational load as analysis

algorithms focus on the interior of the lesion border. An example of ALB is provided

by Figure 2.3.



4

(a) BCC Image (b) Automatic lesion border mask

Figure 2.3. Lesion image for a BCC image

2.4. HAIR MASK IMAGES (HMI)

The lesion area is usually shaved before a dermoscopy image is taken, but

it is not uncommon to find hair in the lesion area. Hair masks generated by Reda

Kasmi were used to filter the hair from the images [7]. Hair masks for corresponding

dermoscopy lesion image are shown in Figure 2.4. Thought the hair mask detects

most of the hair, it also detects vessels as hair, as is visible in Figure 2.4b, which

results in the loss of some important vessels in the final vessel mask.
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(a) BCC Image (b) Hair mask

(c) Benign Image (d) Hair mask

Figure 2.4. Hair masks for dermoscopy lesion image
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3. TELANGIECTASIA ANALYSIS FILTERS

A telangiectasia is a small dilated blood vessel often detected in the lesion of

BCC. Telangiectaes that are narrow and longer are of interest, whereas the wider

and shorter most likely occur in sunburn. Different filters were developed to detect

telangiectasia in BCC, which are discussed below.

3.1. COLOR-DROP VESSEL DETECTION

Color-drop vessel detection is the main algorithm that is used to detect telang-

iectasia in the BCC. By visual analysis of Figure 2.1, telangiectasia seems to be red

compared to the background, but the color drop from surrounding tissue to the telang-

iectasia in red(R), green (G), and blue(B) planes reveals that there is a considerable

drop in the G and B planes, while the R intensity may increase. The center pixel c

shown in Figure 3.1 is slid on every pixel of the image in the lesion. The algorithm

iteratively moves one pixel away from the center pixel c in all possible 135 degree

angles (for instance N, SE has 135 degrees) and requires a minimum color drop of

-2, 7, 4 in R, G, and B planes respectively, until reaching 4 pixels from the center

pixel c. For (N,SE), if any pixel combination from the center c (N1,SE1 or N2,SE2

or N3,SE3 or N4,SE4) satisfies the minimum drop then c is marked as a vessel pixel.

The color-drop vessel detector is very good at detecting vessels in most of the images,

but with present drop values for some images, vessels may be detected as broken

vessels instead of a single vessel. The green color in Figure 3.2b represents a vessel

mask after the colordrop filter is applied.
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Clearly, from Figure 3.2b, it can be seen that all the telangiectasia vessels were

found along with a lot of noise. The next filter attempts to remove this extra noise.

Pixels that satisfy the above mentioned color drop criteria are used to create a vessel

mask.

Figure 3.1. Direction mask

(a) BCC image (b) Color drop image

Figure 3.2. Example for performance of Color-drop vessel detection
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3.2. BROWN NETWORK FILTER

A brown area network is present in the lesion area of many images, especially

NonBCC. Figure 3.3a demonstrates one such image, and its corresponding color drop

filter image is shown in Figure 3.3b. Let R, G, B represent the pixel intensity value in

the three channels and let skin red as an average of the surrounding lesion red value.

As brown is degraded orange, every pixel in Figure 3.3b that satisfies the criteria

G > B + 5 and R < skin red were considered as part of the brown network and thus

removed from the vessel mask, which results in Figure 3.3c.

(a) Dermoscopy image (b) color drop image

(c) Brown network image

Figure 3.3. Example for brown network filter performance



9

3.3. RED CHROMATICITY FILTER

In this filter, the red chromaticity of every pixel inside the lesion area is cal-

culated using equation (3.1).

redchromacity =
R

(R +G+B)
(3.1)

If red chromaticity is greater than 0.33 and less than 0.62 ( Eq. 3.2) and the current

red intensity is greater than 100 ( Eq. 3.3) then the pixel is considered as part of the

vessel mask. It is observed that most vessels have 100 as the minimum intensity for

red values. This filter reduces dark patches, some brown networks, some dark hair,

and some random noise, as shown in the Figure 3.4

(a) Vessel mask after brown area
filter

(b) Red chromaticity filtered image

(c) Vessel mask after brown area fil-
ter

(d) Red chromaticity filtered image

Figure 3.4. Vessel mask before and after red chromaticity filter
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0.33 < redchromacity < 0.62 (3.2)

R > 100 (3.3)

Filtering of noise by the red chromaticity filter is visible from Figure 3.4.

Vessel masks obtained from a colordrop filter were passed through the brown area

network filter to obtain Figure 3.4a and Figure 3.4c. Figure 3.4b and Figure 3.4d

were obtained after filtering the vessels obtained from the brown area network with

a red chromaticity filter.

3.4. WHITE AREA FILTER

White area noise is formed in the dermoscopy lesion image due to reflection

of the light in the gel in addition to noise created due to bubbles in the gel. Let R,

G, and B represent red, green, and blue color planes of a color image. Pixels that

have R, G, B values greater than 200 intensity or R < G+ 40 and R < B + 40 were

removed from the vessel mask (Eq. 3.4):

((R > 200) ∧ (G > 200) ∧ (blue > 200)) ∨ ((R < G+ 40) ∧ (R < B + 40)) (3.4)

This filter removes white area noise and bubble noise, as seen in Figure 3.5. A vessel

mask image obtained after red chromaticity filter is shown in Figure 3.5a and the

resultant vessel mask image after white area mask is shown in Figure 3.5b. It can

be observed that most of the noise in the white area is removed. Figure 3.5c has

noise due to bubbles and white area filter has removed most of the noise as shown in

Figure 3.5d.
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(a) Vessel mask after red chromaticity filter (b) Vessel mask after white area filter

(c) Vessel mask after red chromaticity filter (d) Vessel mask after white area filter

Figure 3.5. Vessel mask before and after white area filter

3.5. HAIR FILTER

Hair is one of the most prominent noises in the vessel mask. A hair mask was

generated by Reda Kasmi [7]. The present version of the hair mask also has some of

the vessels detected as hair which results in loss of some of the important vessels in

the vessel mask. An example of hair filter is shown in Figure 3.6.
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(a) Brown area network filtered image (b) Hair mask filtered image

Figure 3.6. Vessel mask before and after hair mask filter

3.6. BUBBLE FILTER

Bubbles have sharp edges resulting in a steep drop of local intensity compared

to the mean intensity of a large area. This effect is mostly visible in the blue plane.

The removal of bubbles and other noise is done in three stages. Let R, G, B be the

red, green, and blue values of a pixel in the lesion of a dermoscopy lesion image. Skin

red, skin green, skin blue are the average red, green, and blue values of the outside

lesion area, which is normal skin. Analysis for any selected pixel in the vessel mask

is performed on the corresponding dermoscopy pixel.

3.6.1. Stage 1. If R > 2∗G and R > 2∗B (while * represent multiplication)

nothing is changed; if the above condition is false and B < skinblue − 90, then the

pixel is removed from the vessel mask:

if(not(R > 2 ∗G ∧R > 2 ∗B) ∧ (B < skin blue− 90))

VM(x, y) = 0

(3.5)

3.6.2. Stage 2. If any pixel in the vessel mask has (B > G)∧(G > R∗0.7)∧

(skin red − R > 30) ∧ (R > 140) then the pixel in the vessel remains as the pixel
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in a vessel. If the above condition is not met, then R < 130 should be checked. If

R < 130 ∧G > R ∗ 0.6 then the pixel from the vessel should be removed; if R < 130

is false, then the pixel should be checked for R > skin red + 30. If R > skin red + 30

is true and G > R ∗ 0.6, then the pixel should be removed from the vessel mask. If

R > skin red + 30 is false, then the pixel should be checked for R <= skin red. If

R <= skin red is true and G > R ∗ 0.7, then the pixel should be removed from vessel

mask. If (R <= skin red + 30) ∧ (R > skin red) ∧ (|G−B| > 10) is true, then the

pixel should be removed from the vessel mask.

The below equations are used in the flow diagram in Figure 3.7:

(B > G) ∧ (G > R ∗ 0.7) ∧ (skin red−R > 30) ∧ (R > 140) (D1)

R < 130 (D2)

G > R ∗ 0.6 (D3)

R > skin red + 30 (D4)

G > R ∗ 0.6 (D5)

R <= skin red (D6)

G > R ∗ 0.7 (D7)

(R <= skin red + 30) ∧ (R > skin red) ∧ (|G−B| > 10) (D8)

number of unprocessed pixels in image = 0 (D9)
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Figure 3.7. Flow diagram for section 2
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3.6.3. Stage 3. In this stage, the processed vessel mask from Stage 1 and

Stage 2 is taken as input. If R < 1.1 ∗ G ∧ R < 1.1 ∗ B, then the pixel should be

eliminated from the vessel mask. An example of bubble filter is given in Figure 3.8.

R < 1.1 ∗G ∧R < 1.1 ∗B (3.6)

(a) Hair mask filtered image (b) Bubble mask filtered image

Figure 3.8. Vessel mask before and after bubble mask filter

3.7. VESSEL CONNECTOR

Vessels in the vessel mask may be broken because of the bubble filter or an

imperfect hair mask. Dilating the vessel mask with a disk structure of radius 3 in

Matlab followed by erosion with a disk structure of radius 2 was generally successful

in connecting vessels [8]. Though it successfully connects vessels most of the time it

also makes vessels larger than their original size and combines adjacent objects. If a

vessel combines with noise and forms a large object, the blob filter may remove the
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vessel. This stage also makes vessels wider than their original shape. One advantage

of a broken vessel connector is its ability to fix the broken vessel problem caused by

the color drop filter in some images. An example of vessel connector is shown in

Figure 3.9.

(a) Bubble mask filtered image (b) Vessel connector filtered image

Figure 3.9. Vessel mask before and after vessel connector filter

3.8. BLOB FILTER

A 37 x 37 all-ones mask is placed on every pixel of the vessel mask (VM). The

area of the resulting mask is calculated, and if the resulting area is greater than 70%

of the 37 x 37 unity mask area, then the entire connected object was removed from

the vessel mask. An example of blob filter is shown in Figure 3.10.

Area =
18∑

i=−18

18∑
j=−18

1 ∗ VM(x+ i, y + j) (3.7)
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(a) Vessel connector mask filtered image (b) Blob filtered image

Figure 3.10. Vessel mask before and after blob filter

3.9. VESSEL BINDER

The vessel binder filter tries to connect broken vessels without much noise. A

skeleton of vessel mask is created using bwmorph Matlab inbuilt command [8]. The

obtained skeleton of the VM is dilated using a disk structural object of radius 3 using

the imdilate command. A skeleton of the dilated image is generated and is added it

back to the initial vessel mask. The final mask obtained from this step is then passed

through a second color drop vessel detection filter. The vessel binder binding vessels

is shown in Figure 3.11.

3.10. SECOND COLOR DROP VESSEL DETECTION FILTER

This filter uses the same code as the color drop vessel detection described

before. This filter is used after the vessel binder. The vessel mask obtained from

the vessel binder is dilated. The main difference for this algorithm is that instead

of running the color drop vessel detection filter on every pixel inside the lesion of

dermoscopy image, the color drop vessel detection runs on the dermoscopy image

pixels which have a corresponding value of one in the dilated vessel mask. This filter
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can regenerate vessels lost in previous steps but will also add noise. The performance

of second color drop vessel detection filter is shown in Figure 3.12.

3.11. RANDOM NOISE FILTER

After all the above mentioned vessel detection and filtering noise is still left

in the vessel mask. Each object in the vessel mask is detected using the BWLABEL

Matlab inbuilt function. The detected object is skeletonized; the skeleton object area

corresponds to its object length. If the length of the object is less than 30, then the

object is removed from the vessel mask.

After filtering short noise in the VM by length, the remaining noise is filtered

based on area. The vessel mask is passed through morphological closing with a

disk structure of radius 1. Then, each object in the vessel mask is selected and

its corresponding area is recorded. If the measured area is less than 40 pixels or

greater than 20000, the object is removed. Performance of this filter can be seen in

Figure 4.2h, Figure 5.2h, and Figure 6.2j.

(a) Vessel mask after hair filter (b) Vessel mask after vessel binder

Figure 3.11. Vessel mask before and after vessel binder
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(a) Vessel mask after vessel binder
(b) Vessel mask after second color drop vessel de-
tection filter

Figure 3.12. Vessel mask before and after second color drop vessel detection
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4. CHENG METHOD

As described in the third chapter, different filters were used to generate the

telangiectasia vessel mask. Cheng used filters in the order displayed in Figure 4.1 [6].

The color drop filter is found very effective in detecting most of the vessels. In some

images the bubble filter used in the Cheng model was found to break vessels that are

attached by using the broken vessel connector. But the Cheng Model relied on mor-

phological functions which are insensitive to noise and vessels. These morphological

functions may cause near by noise and a vessel to combine and form a single large

object. Big objects may be removed by a blob filter which might result in loss of

some important vessels. The visualization of vessel mask at each filter stage is shown

in Figure 4.2.

Color drop filter

Brown area network

Hair filter

Bubble and noise filter

Broken vessel connector

Blob filter

Random noise filter

Vessel mask

Figure 4.1. Cheng Model [6]
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(a) Dermoscopy lesion image (b) Vessel mask after colordrop filter

(c) Vessel mask after brown area network fil-
ter

(d) Vessel mask after hair mask filter

(e) Vessel mask after bubble filter
(f) Vessel mask after broken vessel connect
filter

(g) Vessel mask after blob filter (h) Vessel mask after short noise filter

Figure 4.2. Cheng Method step.by.step visualization
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5. MODIFIED MODEL 1

The motivation for Modified Model 1 (MM1) was to let the vessels maintain

their original shape and have less noise in the final vessel mask. This resulted in the

removal of bubble filter and the broken vessel connect filters used by Cheng. Two

other filters the red chromaticity filter and the white area filters were introduced to

remove noise. The final vessel mask has less noise compared to the Cheng Model. If

the color drop filter generates a segmented vessel instead of a continuous vessel, some

part of the vessels may be lost due to the random noise filter. The order of filters

resulting in MM1 is shown in Figure 5.1 where as vessel mask at each filter is proved

in Figure 5.2.

Color drop filter

Brown area network

Red chromaticity filter

White area filter

Hair filter

Blob filter

Random noise filter

Vessel mask

Figure 5.1. Modified Model 1
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(a) Dermoscopy lesion image (b) Vessel mask after colordrop filter

(c) Vessel mask after brown area network fil-
ter

(d) Vessel mask after red chromaticity filter

(e) Vessel mask after white area filter (f) Vessel mask after hair mask filter

(g) Vessel mask after blob filter (h) Vessel mask after short noise filter

Figure 5.2. Modified Model 1 step.by.step visualization
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6. MODIFIED MODEL 2

As discussed in previous sections, for some images the color drop filter may

produce segmented vessels which are removed by the random noise filter and the hair

mask. Modified Model 2 use vessel binder and second color drop stages to regenerate

some of the lost vessels which can be observed from Figure 3.11a and Figure 3.12b.

Noise found in this model is more than in Modified Model 1 and less than in the

Cheng Model. The order of filters resulting in MM1 is shown in Figure 6.1 where as

vessel mask at each filter is proved in Figure 6.2.

Color drop filter

Brown area network

Red chromaticity filter

White area filter

Hair filter

Vessel binder

Second color drop filter

Blob filter

Random noise filter

Vessel mask

Figure 6.1. Modified Model 2



25

(a) Dermoscopy lesion image (b) Vessel mask after colordrop filter

(c) Vessel mask after brown area net-
work filter

(d) Vessel mask after red chromaticity
filter

(e) Vessel mask after white area filter (f) Vessel mask after hair mask filter

(g) Vessel mask after blob filter (h) Vessel mask after vessel binder

(i) Vessel mask after second color
drop filter

(j) Vessel mask after short noise filter

Figure 6.2. Modified Model 2 step.by.step visualization
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7. FEATURE EXTRACTION

Features are generated using objects in the vessel mask. Extracted features

were used for the classification of BCC. Two different types of the features sets were

developed. One is based on the Cheng paper [6]. Extra features like skin red, skin

green, skin blue and lesion areas were added to the Cheng features and appear in the

Table 7.1 inaddition to initial Cheng features. The other set of features is shown in

Table 7.2 and consists of 83 features which include some of the features from Table

7.1.

Table 7.1. Features used by Cheng

Index Feature name Explanation

1 Number of ob-

jects

Number of vessels that exist in the final ves-

sel mask

2 Maximum

length

Maximum length of all the vessels in the ves-

sel mask

3 Maximum Area Area of the vessel with largest area in the

vessel mask

4 Average Length Average length of all vessels in the vessel

mask

5 Average area Average area of all vessel areas in vessel mask

6 Average width Average width of all vessels

7 Std width Standard deviation of the width of all vessels
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Table 7.1. Features used by Cheng (cont.)

Index Feature name Explanation

8 Minimum eccen-

tricity

Minimum eccentricity of all vessels

9 Maximum ec-

centricity

Maximum eccentricity of all vessels

10 Average eccen-

tricity

Average eccentricity of all vessels

11 Lesion area Lesion area of the basal cell carcinoma image

12 to 21 Eroded objects Number of object present after the vessel

mask eroded with a disk structure of radius

1 to 10

22 to 31 Eroded objects

area

Area of objects present after the vessel mask

eroded with a disk structure of radius 1 to 10

32 Skin red Average of the red values outside of lesion

33 Skin green Average of the green values outside of lesion

34 Skin blue Average of the blue values outside of lesion

7.1. GENERATION OF OBJECT SURROUND

Every object from the vessel mask is extracted and dilated with a disk struc-

turing element of radius 12 (d1) and radius 5 (d2) resulting two dilation variants of

the object. Removing d2 from d1 gives the object surround. The object surround

may contain vessel pixels so they are eliminated by using the vessel mask.
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7.2. OBJECT SURROUND FEATURES

Regions surrounding the vessels can also be useful in differentiating basal cell

carcinoma; hence Features 1 to 24 mentioned in Table 7.2 were also calculated for the

surround area of the vessel and become Features 25 to 48 in Table 7.2. Similarly, way

Features 51 to 54 were applied on the surrounds of the objects resulting in Features

55 to 58.

Table 7.2. Extended feature set

Index Feature name Explanation

1 Maximum red of

objects

Maximum red of every vessel is extracted

into an array. Average of the obtained ar-

ray is used as the maximum red feature

2 Maximum green

of objects

Maximum green of every vessel is extracted

into an array. Average of the obtained array

is used as the maximum green feature

3 Maximum blue

of objects

Maximum blue of every vessel is extracted

into an array. Average of the obtained array

is used as the maximum blue feature

4 Minimum red of

objects

Minimum red of every vessel is extracted into

an array. Average of the obtained array is

used as the minimum red feature

5 Minimum green

of objects

Minimum green of every vessel is extracted

into an array. Average of the obtained array

is used as the minimum green feature
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Table 7.2. Extended feature set (cont.)

Index Feature name Explanation

6 Minimum blue

of objects

Minimum blue of every vessel is extracted

into an array. Average of the obtained array

is used as the minimum blue feature

7 Average red of

objects

Red value of every pixel in a single vessel of

vessel mask is added and divided by the to-

tal number of pixels in the vessel to obtain

average red of a vessel. Average red of all

the vessels is calculated similarly and accu-

mulated into an array. Average of the array

is performed to obtain the desired feature

8 Average green of

objects

Green value of every pixel in a single vessel of

vessel mask is added and divided by the total

number of pixels in the vessel to obtain av-

erage green of a vessel. Average green of all

the vessels is calculated similarly and accu-

mulated into an array. Average of the array

is performed to obtain the desired feature

9 Average blue of

objects

Blue value of every pixel in a single vessel of

vessel mask is added and divided by the to-

tal number of pixels in the vessel to obtain

average blue of a vessel. Average blue of all

the vessels is calculated similarly and accu-

mulated into an array. Average of the array

is performed to obtain the desired feature
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Table 7.2. Extended feature set (cont.)

Index Feature name Explanation

10 Standard devia-

tion of red for

objects

Standard deviation of red for every single

vessel is calculated. Mean of all the stan-

dard deviation corresponding to every vessel

gives the desired feature

11 Standard devia-

tion of green for

objects

Standard deviation of green for every single

vessel is calculated. Mean of all the standard

deviation corresponding to every vessel gives

the desired feature

12 Standard devia-

tion of blue for

objects

Standard deviation of blue for every single

vessel is calculated. Mean of all the standard

deviation corresponding to every vessel gives

the desired feature

13 to 24 same as 1 to 12 All the above mentioned methods from 1 to

12 applied in HSV plane to obtain Features

13 to 24

25 to 48 Same as 1 to 24

for surround of

objects

All the methods from 1 to 24 are performed

on the surround of objects in the vessels to

obtain desired Features 25 to 48

49 Area Mean of area of all the vessels in vessel mask

50 Average width

of the vessel

Mean of average width of all the vessels in

vessel mask

51 Average eccen-

tricity

Mean of average eccentricity of all the vessels

in vessel mask
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Table 7.2. Extended feature set (cont.)

Index Feature name Explanation

52 Minimum eccen-

tricity

Mean of minimum eccentricity of all the ves-

sels in vessel mask

53 Maximum ec-

centricity

Mean of maximum eccentricity of all the ves-

sels in vessel mask

54 Standard devia-

tion of eccentric-

ity

Mean of standard deviation of eccentricity of

all the vessels in vessel mask

55 to 58 Same as 51 to 54

for surround ob-

jects

Methods used for 51 to 54 are used for the

surrounding objects in the vessel mask

59 to 68 Eroded objects Number of object present after the vessel

mask eroded with a disk structure of radius

1 to 10

69 to 78 Eroded objects

area

Total area of objects present after the vessel

mask eroded with a disk structure of radius

1 to 10

79 Number of ob-

jects

Number of vessels that exist in the final ves-

sel mask

80 Lesion area Lesion area of the dermoscopy lesion image

81 Skin red Average of the red values outside of lesion

82 Skin green Average of the green values outside of lesion

83 Skin blue Average of the blue values outside of lesion
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8. BCC CLASSIFICATION

Detection of basal cell carcinoma is a binary classification problem. Logistic

regression is a widely used, simple, and reliable tool for binary classification; hence it

is employed for analysis.

8.1. LOGISTIC REGRESSION

Dataset X is a matrix with dimensions d and N samples such that the d

dimension also included a constant. let Y be a binary vector with label 1 if yi belong

to a positive set or label 0 if yi belong to a negative set. The risk score of the data set

is given by Equation 8.1, where W gives the weights for X. The logistic regression

function is defined by Equation 8.2:

z = WTX (8.1)

ψ(z) =
1

1 + e−z
(8.2)

Based on the likelihood of X and Y, minimizing the in-sample error of training data

given by equation 8.3 gives the desired hypothesis [9].

Ein =
1

N

N∑
n=1

log (1 + e−ynW
TXn) (8.3)

Minimization of equation 8.3 is done using iterative gradient descent approach as

mentioned by Abu-Mostafa [9]. The algorithm for the minimization is given below

[9] using gradient descent.
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Algorithm 1 Finding optimal W

1: Initialize weights at i=0 to W(0)
2: for i=0,1,2,3........... do
3: Compute the gradient

5Ein =
−1

N

N∑
n=1

ynxn

1 + eynW
T (i)Xn

4: Update the weights : W(i+1)= W(i)-η5 Ein

5: Iterate through the for loop till stopping criteria are met

6: Get the final weights W

8.2. SAS IMPLEMENTATION

Stepwise logistic regression with one fold cross validation is implemented in

SAS software version 9.4. The builtin functions PROC and MODEL are used to

construct the model.

8.3. STEP-WISE FEATURE SELECTION

Stepwise selection is used for feature selection. Stepwise selection starts with

no features in the model. The feature with the smallest P-value that is less than

SLENTRY enters the model. Next another feature with a p-value smaller than

SLENTRY enters the model. Once the second feature enters the model P-values

of any feature greater than the specified SLSTAY exit the model. Selection stops

when none of the features outside the model have a p-value less than SLENTRY and

all the features in the model have a p-value less than SLSTAY [10] [11] [12].
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8.4. DATA DISTRIBUTION FOR BCC CLASSIFICATION

A total of 1024 images were used in the analysis; 527 NonBCC images and 229

BCC images were randomly selected for training while the remaining 193 NonBCC

images and 75 BCC were used for testing as shown in below tables. A random seed

generator is used to keep the random distribution constant for all logistic regression

models. Data distributions are shown in the Table 8.1 and Table 8.2.

Table 8.1. Training set distribution

Type Frequency percentage
NonBCC 537 69.71

BCC 229 30.27

Table 8.2. Test set distribution

Type Frequency percentage
NonBCC 193 72.01

BCC 75 27.99

8.5. CLASSIFICATION RESULTS

In the Feature Extraction section, Table 7.1 and Table 7.2 display two feature

sets. Development of those features happened gradually. Initially only 14 features



35

were used for basal cell carcinoma classification, those features increased to 34 fea-

tures, 63 features, and finally to 83 features. Details of the features are shown in

Table 8.3. Cheng initially used 10 features later upgraded to 30 features as shown in

her paper [6].

Table 8.3. Different features used for BCC Classification

Features Explanation
14 All features from Table 7.1 excluding 12 to 31
34 All features from Table 7.1
63 All features from Table 7.2 excluding 59 to 78
83 All features from Table 7.2

Three models, the Cheng Model, Modified Model 1 and Modified Model 2 were

proposed for the generation of the vessel mask. Cheng has used the Cheng Model

with 10 and 30 features mentioned in Table 8.4. The four feature sets described in

Table 8.3 were generated for each model. These features were used for training and

testing using stepwise logistic regression. Apart from the features, two variations of

SLENTRY and SLSTAY were also used. All this combinations resulted in 48 models

for BCC classification.

Table 8.4. Features used by Cheng

Features Explanation
10 1 to 10 features from Table 7.1
30 All features from Table 7.1 except Features 11, 32, 33, and 34
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Training and test ROC curves for the features 14, 34, 63, and 83 mentioned

in Table 8.3 with SLENTRY (SLE) = 0.01 and SLSTAY (SLS)= 0.15 are shown in

Figure 8.1. Note that in some graphs there appear to be only three curves because

two of the curves overlap completely. It can be observed that there is an increase

in BCC classification performance with an increase in number of features while their

is little to no difference in ROC curves for 63 and 83 features in all six plot shown

in Figure 8.1. From the test ROC curves, it can be observe that all models were

generalized. MM1 tends to perform better than the other models with 14 and 34

features in terms of AUC of the training model. The AUC of the CM training model

is 0.873 for both 63 and 83 features. The AUC of the MM2 training model is almost

as high at 0.87021 for 63 featues and 0.87093 for 83 features.

Training and test ROC curves for the features 14, 34, 63, and 83 features

mentioned in Table 8.3 with SLE = 0.3 and SLS= 0.3 are shown in Figure 8.2. As

the SLE and SLS values increased, more features were selected for the final model.

It can be observed that there is an increase in BCC classification performance with

increase in number of features while there is little to no difference in ROC curves

for 63 and 83 features in all six plots shown in Figure 8.2. It can be observed from

the ROC test curves that all models were generalized. MM1 tends to perform better

than the other models with 14 and 34 features in terms of AUC of the training model.

MM2 with the 83 features dataset had the highest training AUC among all 24 BCC

classification training models shown in Figure 8.1 and Figure 8.2.

Training and test ROC curves for the features 14, 34, 63, and 83 mentioned in

Table 8.3 with up to two variable interactions between features and with SLE = 0.01

and SLS= 0.15 are shown in Figure 8.3. As the SLE and SLS values were small, fewer

features will be in the final model. Products between all possible combinations of two

features were also considered as features in addition to the original feature set. This

is the major difference for classification models in Figure 8.3 compared to Figure 8.1.



37

It can be observed that there is an increase in BCC classification performance with an

increase in number of features while their is little to no difference in ROC curves for

63 and 83 features in all six plots shown in Figure 8.3. From the test ROC curves, it

can be observed that all models were generalized. It can aslo be observed that there

is no significant improvement from previous models.

Training and test ROC curves for the features 14, 34, 63, and 83 mentioned in

Table 8.3 with up to two variable interactions between features and with SLE = 0.3

and SLS= 0.3 are shown in Figure 8.4. Products between all possible combinations

of two features were also considered as features in addition to the original feature

set. This is the major difference for classification models in Figure 8.2 compared

to Figure 8.4. It can be observed that there is an increase in BCC classification

performance with an increase in number of features while their is little to no difference

in ROC curves for 63 and 83 features in all six plots shown in Figure 8.4. Their was

no significant improvement from previous models. Though classification models in

Figure 8.4e show higher AUC, they are clearly overfitted, as evident in Figure 8.4f.

8.6. TEST RESULTS AT A SPECIFIC CUTOFF

Logistic regression has an output from 0 to 1. A cutoff of 0.04 has been

selected which poses 98% sensitivity for most of the models. Test results for all the

classification models are provided in Table 8.6. Most of the test results maintained

sensitivity near 98%, while some have deviated significantly because of overfitting.
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8.7. CHENG OLD RESULTS

BCC classification with 30 features proposed by Cheng [6] was performed

using the Cheng model by stepwise logistic regression with SLE and SLS at 0.3. Two

ROC curves, one without interaction and the other with interactions are shown in

Figure 8.5, while the test performance is shown in Table 8.5.

Table 8.5. Cheng 30 features test set

obs FEA INT SLE SLS SEN SPC ACC fscore
1 30 No 0.3 0.3 100 0 27.985 43.7317
2 30 Yes 0.3 0.3 92 10.3626 33.20895 43.533
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(a) Cheng Model Training ROC (b) Cheng Model Test ROC

(c) MM1 Training ROC (d) MM1 Test ROC

(e) MM2 Training ROC (f) MM2 Test ROC

Figure 8.1. ROC curves for the Cheng model, MM1, and MM2 with SLENTRY=0.01
and SLSTAY=0.15
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(a) Cheng Model Training ROC (b) Cheng Model Test ROC

(c) MM1 Training ROC (d) MM1 Test ROC

(e) MM2 Training ROC (f) MM2 Test ROC

Figure 8.2. ROC curves for the Cheng model, MM1 and MM2 with SLENTRY=0.3
and SLSTAY=0.3
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(a) Cheng Model Training ROC (b) Cheng model Test ROC

(c) MM1 Training ROC (d) MM1 Test ROC

(e) MM2 Training ROC (f) MM2 Test ROC

Figure 8.3. ROC curves for the Cheng model, MM1 and MM2 with SLENTRY=0.01
and SLSTAY=0.15 and up to two variable interaction between features
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(a) Cheng Model Training ROC (b) Cheng Model Test ROC

(c) MM1 Training ROC (d) MM1 Test ROC

(e) MM2 Training ROC (f) MM2 Test ROC

Figure 8.4. ROC curves for Cheng model, MM1 and MM2 with SLENTRY=0.3 and
SLSTAY=0.3 and up to two variable interaction between features
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Figure 8.5. Cheng training results with 30 features

Table 8.6. Test set results for all BCC models

obs INT FEA SLE SLS SEN SPC ACC fscore

1 No 14 0.01 0.15 100 0 27.9851 43.7318

2 No 34 0.01 0.15 100 0 27.9851 43.7318

3 No 63 0.01 0.15 98.6667 2.5907 29.4776 43.9169

4 No 83 0.01 0.15 98.6667 2.5907 29.4776 43.9169

5 No 14 0.01 0.15 100 0 27.9851 43.7318

6 No 34 0.01 0.15 100 0 27.9851 43.7318



44

Table 8.6. Test set results for all BCC models (cont.)

7 No 63 0.01 0.15 100 11.9171 36.5672 46.875

8 No 83 0.01 0.15 100 11.9171 36.5672 46.875

9 No 14 0.01 0.15 100 0.5102 27.2388 42.4779

10 No 34 0.01 0.15 100 1.0363 28.7313 43.9883

11 No 63 0.01 0.15 98.6667 12.9534 36.9403 46.6877

12 No 83 0.01 0.15 98.6667 13.9896 37.6866 46.9841

13 No 14 0.3 0.3 100 0 27.9851 43.7318

14 No 34 0.3 0.3 100 1.0363 28.7313 43.9883

15 No 63 0.3 0.3 98.6667 4.1451 30.597 44.3114

16 No 83 0.3 0.3 98.6667 4.1451 30.597 44.3114

17 No 14 0.3 0.3 100 0 27.9851 43.7318

18 No 34 0.3 0.3 100 0 27.9851 43.7318

19 No 63 0.3 0.3 98.6667 12.4352 36.5672 46.5409

20 No 83 0.3 0.3 98.6667 12.4352 36.5672 46.5409

21 No 14 0.3 0.3 100 0.5102 27.2388 42.4779

22 No 34 0.3 0.3 100 2.5907 29.8507 44.3787

23 No 63 0.3 0.3 98.6667 16.5803 39.5522 47.7419

24 No 83 0.3 0.3 98.6667 17.6166 40.2985 48.0519

25 Yes 14 0.01 0.15 100 0.51813 28.3582 43.8596

26 Yes 34 0.01 0.15 100 1.0363 28.7313 43.9883

27 Yes 63 0.01 0.15 100 3.6269 30.597 44.6429

28 Yes 83 0.01 0.15 97.3333 9.3264 33.9552 45.2012

29 Yes 14 0.01 0.15 100 1.5544 29.1045 44.1176

30 Yes 34 0.01 0.15 98.6667 5.6995 31.7164 44.713

31 Yes 63 0.01 0.15 97.3333 11.399 35.4478 45.768
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Table 8.6. Test set results for all BCC models (cont.)

32 Yes 83 0.01 0.15 97.3333 11.399 35.4478 45.768

33 Yes 14 0.01 0.15 100 1.0204 27.6119 42.6036

34 Yes 34 0.01 0.15 100 5.1813 31.7164 45.045

35 Yes 63 0.01 0.15 98.6667 14.5078 38.0597 47.1338

36 Yes 83 0.01 0.15 98.6667 16.5803 39.5522 47.7419

37 Yes 14 0.3 0.3 100 1.5544 29.1045 44.1176

38 Yes 34 0.3 0.3 100 2.0725 29.4776 44.2478

39 Yes 63 0.3 0.3 93.3333 12.4352 35.0746 44.586

40 Yes 83 0.3 0.3 98.6667 7.2539 32.8358 45.122

41 Yes 14 0.3 0.3 100 1.5544 29.1045 44.1176

42 Yes 34 0.3 0.3 98.6667 6.7358 32.4627 44.9848

43 Yes 63 0.3 0.3 94.6667 18.1347 39.5522 46.7105

44 Yes 83 0.3 0.3 94.6667 18.1347 39.5522 46.7105

45 Yes 14 0.3 0.3 100 4.0816 29.8507 43.3735

46 Yes 34 0.3 0.3 97.3333 18.1347 40.2985 47.7124

47 Yes 63 0.3 0.3 61.3333 58.5492 59.3284 45.7711

48 Yes 83 0.3 0.3 92 24.8705 43.6567 47.7509
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9. CONCLUSION

It can be observed from Figure 8.1, Figure 8.2, Figure 8.3 and Figure 8.4 that

MM1 has performed better with fewer features (14, 34) while MM2 and the Cheng

Model performed better with more features. From all the explored 48 classification

models Figure 8.2e has relatively better performance in the training set and test set.

MM2 tends to have less noise than CM and more noise than MM1. In some cases

MM2 preserved most of telangiectasia vessels better than MM1 and the Cheng model.

This implies that detection of vessels and reduction of noise in the final vessel mask

has boosted the performance of detecting BCC along with an increase in the number

of features.
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10. FUTURE WORK

1. Though sensitivity above 98% is achieved, methods to improve specificity must

be explored.

2. Filters mentioned in the third chapter had static thresholds. As lesion are

dynamic in nature, having a dynamic threshold can reduce noise in the vessel

mask.

3. The performance of the model needs to be analyzed using other classification

techniques such as lasso regression, neural networks and support vector machine

SVM.

4. The performance of the model should be observed based on other feature selec-

tion methods like PCA.

5. A new hair mask should be developed as the present hair mask was found to

remove some of the main telangiectasia in the vessel mask.

6. More experimentation needs to be done with the green and blue plane drops for

the Second color drop vessel detection filter so that more vessels are detected

even at the cost of extra noise.
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