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ABSTRACT

Fundamental atomic processes such as collision-induced ionization are of relevance 

in many scientific fields. Describing these reactions can still pose a substantial challenge 

due to the well-known “few-body problem”, which entails that there is no analytical solution 

of the equations of motion for systems of more the 2 mutually interacting particle. Novel 

experimental tools and advancements in theorical methods enable to obtain detailed infor­

mation on atomic dynamics providing insight into both, the phase as well as the amplitude 

of the quantum-mechanical wave functions of the particles. In this project, we developed 

experimental techniques studying multi-photon ionization of lithium in femto-second laser 

fields. A lithium target is prepared either in the polarized 2p (m/ = +1) state or in the un­

polarized 2s ground state. The target is ionized in the laser field by the absorption of two, 

three, or four photons, and the energy and angular distributions of the emitted electrons are 

measured. For these relatively simple systems, several fundamental features are observed: 

First, polarizing the atoms before ionizing them changes the symmetry of the reaction and 

shifts in the photo-electron angular distributions are observed. This symmetry breaking 

process is called Magnetic Dichroism, and we explained it by the interference of partial 

waves with asymmetric distribution of magnetic sub-levels in the final state. Second, the 

experimental spectra are revealing violations of the lowest-order perturbation theory even 

at very low laser intensities, where this theoretical method is typically believed to describe 

the process well. This indicates that in many situations more advanced descriptions are 

required. And third, the simultaneous measurement of the ionization from the 2s and 

2p states enables to extract final state phase information in a very intuitive way using a 

“double-slit” picture. The new results show very clean and fundamental realizations of 

quantum mechanical effects, and they help to improve our understanding of mechanisms 

and symmetries in light-matter interaction.
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SECTION

1. INTRODUCTION

One of the most intriguing concepts in quantum mechanics is wave-particle duality, 

which was postulated by Louis de Broglie in 1924 [1]. This concept implies that interference 

phenomena do not only occur for classical waves, but also for massive elementary or 

compound particles such as electrons or atoms, respectively. In the framework of the 

Schrodinger formalism, the state of particles (or systems of particles) is characterized by 

complex wave functions. Therefore, the complete quantum-mechanical information of such 

states do not only comprise the “real” amplitudes of the wave functions, which are directly 

observable in experiments, but also their “complex” phases, which -  in many cases -  are not 

directly accessible [2, 3]. Experiments, which provide all this information are regarded as a 

“complete” experiment [4, 5]. On the one hand, the data obtained in this type of experiments 

represent a very sensitive test for theoretical models that often rely on approximations or 

sophisticated numerical methods. On the other hand, understanding the phase-dependence 

on the detailed experimental parameters allows regulating it, thereby ultimately controlling 

the outcome of an experimental scheme. This is the basis of the field of “quantum control”.

Photoreactions involving single atoms are ideally suited to perform this type of 

experiments, because these systems are relatively simple and there are numerous experi­

mental tools which allow for some degree of coherence and phase control. The simplest 

conceivable process is single-photon ionization, which is generally dominated by electric 

dipole transitions and the according selection rules. Here the final state can be expressed 

in terms of interfering partial wave, each corresponding to a specific orbital angular mo­

mentum. It is straight-forward to show that extracting the complex phases of these partial 

waves requires the knowledge of the system’s polarization either in the initial or in the final
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state [6-9]. The first experiments of this type were reported by Heinzmann [10] as well 

as Heckenkamp and co-workers [11], who measured not only the angular distribution, but 

also the spin polarization of photo-electrons. In the following decades, further experiments 

on alkali as well as rare gas atoms were performed with novel experimental approaches and 

advanced tools, which allow to prepare the target atoms in polarized initial states, and such 

experiments are performed since almost 30 years (see e. g. [4, 12-16]).

More recently, the interest focused on multiphoton reactions where several photons 

are absorbed while promoting the electron to the continuum. Here, too, the absorption 

process is dominated by electric dipole transitions. Amongst other things, the effect of the 

relative polarization direction of the atom and the laser radiation was studied, which are 

particularly striking, if the atoms are ionized by circularly polarized light with the rotation 

of the lights electric field being either co-rotating or counter-rotating with the initially 

bound electronic current density [17, 18]. Differences in the electron angular and energy 

distributions as well as in the ionization rates for these two geometries are quantitatively 

measured in terms of the “circular dichroism” [18, 19]. At not too high intensities, the 

general features of such multiphoton ionization processes can qualitatively be understood 

already in a rather simple picture using the electric dipole approximation in the lowest-order 

perturbation theory (LOPT) [20]. Each absorbed photon of left- and righthanded circular 

polarization changes the magnetic sublevel of the atom by Am = -1  or +1, respectively. 

For n being the minimum number of photons required to reach the ionization threshold, the 

final magnetic quantum number of the emitted electron’s orbital angular momentum will 

be well-defined and m -  n or m + n, respectively, resulting in very different final states and 

ionization cross sections for the two relative helicities.

For linearly polarized light, the multiphoton ionization of an initially polarized 

atoms can be described much in the same way: If the electric field and atomic polarization 

vectors are perpendicular to one another, there are two possible changes Am of the atomic
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orientation, which are +1 and -1 , resulting in an broad asymmetric m distribution of 

interfering final partial waves (i.e. (m) ^  0) ranging from m -  n to m + n. Surprisingly, 

experimental investigations for this situation are extremely sparse and, to our knowledge, 

limited to the case where a core hole is created in the ionization process while the polarization 

of the initial state is achieved by the excitation of a valence electron [21].

In the last 5 years, a novel experiment has been set up in the Physics Department 

at Missouri S&T. It combines three of the most advanced experimental tools available in 

atomic physics: First, a novel type of all-optical laser atom trap (AOT) [22] has been 

developed which enables to confine a large number of lithium atoms in a small volume 

(about 1mm diameter) in a vacuum chamber, cool it down to temperatures in the milli- 

Kelvin regime, and prepare it either in the atomic (2s) ground state or in the excited and 

polarized 2p(m/ = +1) state. Second, these atoms are then subjected to the intense laser 

radiation (up to 1013 W/cm2) of an optical parametric chirped-pulse amplifier (OPCPA) 

which either can provide very short broad-band laser pulses (down to 5 fs with a spectral 

wavelength range between 600 and 1000 nm) or more narrow-bandwidth but longer pulses 

with tunable center wavelength. And third, after ionization of the atoms, recoil ions and 

emitted electrons are detected in coincidence measuring the three-dimensional momentum 

vectors in a “Reaction Microscope” -  sometimes also referred to as cold target recoil ion 

momentum spectroscopy (COLTRIMS) [23,24]. The combination of these three techniques 

is world-wide unique. It allows for a high level of control of the systems under investigation, 

and it enables to characterize the outcome of the reaction in great detail.

The first experiment performed with this setup was a complete single-photon ion­

ization experiment [25]. Polarized lithium atoms were ionized by the absorption of a single 

photon from a pulsed, low-intensity Nd:YAG laser source operating at a wavelength of 266 

nm. Photo-electron angular distributions (PAD) were measured using COLTRIMS. The
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excellent resolution achieved in the experiment has allowed not only to extract the relative 

phase and amplitude of all partial waves contributing to the final state, but also enabled to 

characterize the experiment regarding target and spectrometer properties.

In a second series of experiments, the multiphoton ionization of lithium by circu­

larly polarized light was investigated [19, 26]. The polarized lithium atoms exposed to a 

circularly polarized external field represents one of the simplest conceivable chiral systems. 

For a field frequency near the excitation energy of the oriented initial state (i.e. at a wave­

length of 665 nm), a strong circular dichroism is observed and the photoelectron energies 

are significantly affected by the helicity-dependent Autler-Townes splitting. Besides its 

fundamental relevance, this system is suited to create spin-polarized electron pulses with 

a reversible switch on a femtosecond timescale at an energy resolution of a few meV. In 

a follow up study, the same effect for wavelengths varying between 665 nm and 920 nm 

was. Strong asymmetries were found and quantitatively analyzed. A very strong sensitivity 

on the center wavelength of the incoming radiation was observed. Overall, the co-rotating 

situation prevails. However, the counter-rotating geometry is strongly favored around 800 

nm due to the 2p-3s resonant transition, which can only be driven by counter-rotating fields. 

The observed features provide insights into the helicity dependence of light-atom interac­

tions, and on the possible control of electron emission in atomic few-photon ionization by 

polarization-selective resonance enhancement.

In the scope of the present thesis, multiphoton ionization for linearly polarized 

light was studied. Compelling results were obtained, revealing three interesting features 

which advance our understanding of multi-photon ionization. First, an angular shift for the 

ionization of polarized atoms is observed. For spherically symmetric or randomly oriented 

targets, the laser polarization direction represents a symmetry axis. This symmetry is broken 

for the ionization of Li(2p,m/ = +1) state electron. Similar effects have been observed in 

the tunnel ionization regime, where they are explained to be caused by the finite tunneling 

time of the active electron that translates into a shift of the mean emission angle due to
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an angular streaking mechanism often referred to as ‘attoclock’. In the presently studied 

multiphoton ionization regime, this asymmetry is regarded in terms of interfering partial 

waves with asymmetric m-distributions. Similar phenomena has been found for the 

absorption by ferromagnetic material and is referred to as Magnetic Dichroism (MD) [27]. 

Our observations are also consistent with earlier studies on electron [28] and ion impact 

[29].

Moreover, the details of the electron emission from the 2p state and observed a 

total number of six peaks in the PAD after absorption of two photons for 665 nm fs-laser 

beam. The number of peaks reflects the interference of partial waves with different magnetic 

quantum number mi. Surprisingly, the observed number of peaks is in direct contradiction 

to the lowest-order perturbation theory (LOPT), where only four peaks are expected. More 

advanced theoretical methods have been used to describe that system in collaboration with 

theoretical groups and found that the calculation and experiment are in good agreement 

with LOPT violation.

Furthermore, for a wavelength of about 670 nm, the ionization of the 2s ground 

state can proceed either through the 2p(m/ = +1) or 2p (mi = -1 )  resembling a double­

slit scheme. Here, the 2s ionization cross section corresponds to the interference of the 

waves from both slits, and the 2p ionization represents the emission of only one of the 

slits. Directly measuring ground as well as excited state ionization data allows to extract the 

interference term and, therefore, it provides information on the phase factors of the wave 

functions. Again, the extracted phases are in very good agreement with our theoretical 

model. Overall, the new observations deepen our understanding of light matter interaction, 

they provide insights into fundamental symmetries, and they help to develop and improve 

tools for the quantum control of atomic and sub-atomic particles.
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2. MULTI-PHOTON IONIZATION OF ULTRA-COLD AND POLARIZED
ATOMS

2.1. MULTI-PHOTON IONIZATION

The photo-electric effect is of tremendous historical importance for the development 

of quantum theory and it has led Einstein already more than hundred years ago [30] to 

postulate a light particle(photon) as flow of the photons is a wave, which was in direct 

contradiction to wave picture of light formulated within Maxwell’s theory, which was 

generally accepted at the early 1900s. According to Einstein, each photon carries a certain 

amount of energy that depends on the wavelength of the light but not on its intensity. The 

observation of discrete energies of photo-electrons is then explained by the absorption of 

a single photon with an energy higher than or equal to the binding energy of the electron 

initially bound in an atom, molecule, or solid. With the development of more advanced 

and high-resolution light sources such as synchrotrons, the photo-electric effect became 

a widely used tool to probe atomic and molecular correlation and structure, and helped 

to shape our very detailed understanding atomic and molecular structure and processes. 

With the development of lasers starting in the 60s of the last century, very high field 

intensities became accessible which allowed to study non-linear processes where more than 

one photon are involved. A prominent example is multi-photon ionization (MPI) [31], where 

an electron is promoted to the continuum by absorbing more than one photon. Nowadays, 

optical intensities are attainable such that the electric field strength is equivalent to, or even 

surpass, the Coulomb-binding fields in atoms and molecules, if an intense laser pulses is 

focused into a volume analogous just slightly exceeding the magnitude of its wavelength 

[32]. In a simple picture, the ionization rate Pi in a multi-photon ionization process can be 

approximated by,

P i  =  < r n I n (2.1)
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where, I is the laser intensity, a n the total cross section of the process, and n the number 

of absorbed photons. In a simplistic picture, each absorbed photon increases the electron’s 

energy, which populates transiently a (virtual) state, before it absorbs the next photon. The 

lifetime of the virtual state that is detuned from an eigenstate by Av follows the Heisenberg 

uncertainty principle [33]. Because these lifetimes are generally very short, the photons 

need to be absorbed in a short time, and MPI is a strongly intensity dependent process. 

Figure 2.1 (left) shows the schematic of multi-photon ionization process.

Figure 2.1. Multi-photon and tunneling ionization(From [34]): At low field intensities the 
ionization process proceeds through absorption of several photons. IP refers to the binding 
energy of the electron in the unperturbed atomic system.

Alternatively, the incoming light can be described in a classical field picture. Here, 

the initially bound electrons can be excited to the continuum through a tunnel ionization, i.e., 

the bound electron can pass through the potential barrier by the quantum-tunneling effect to 

become free. Generally, this semi-classical description of the ionization process represents 

a viable approximation, if the intensity of the laser field is very high and if the photon 

energy is small compared to the binding energy of the active electron. Quantitatively, the 

validitiy of either the multi-photon or the tunnel ionization picture is estimated by the 

Keldysh parameter y  [32, 35],

y  =
Wp

WP 
2U~n

(2.2)
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where, is the laser frequency, the characteristic tunneling rate, Wp the ionization 

potential, Up is the ponderomotive potential which is equal to the time-average kinetic 

energy of a free electron oscillating in an ac field of intensity I. In atomic units, The 

ponderomotive potential is given by Up = 4I—1. For y  > 1, the ionization process is 

well described in the multi-photon picture, while for y  < 1 corresponds to the tunneling 

ionization regime.

2.1.1. Above Threshold Ionization (ATI). In the non-linear regime, an electron 

bound to an atom or molecule absorbs multiple photons, in some cases even more than are 

required to exceed the ionization threshold. This phenomenon is known as “above threshold 

ionization” (ATI). In this case, peaks in the photo-electron spectrum appear at energies

Es = (n + s)hw -  Wp (2.3)

where, the integer n represents the minimum numbers of photons absorbed, the integer s 

represents the number of additional photons absorbed, m is the angular frequency and Wp 

the ionization potential [36]. The multi-photon absorption could also be followed by the 

radiative decay of the electron back to an atomic bound state, resulting in the emission of 

a higher-energetic photon, whose frequency is an odd harmonic of the exciting field. This 

process is known as optical harmonic generation (OHG) [37, 38].

2.1.2. Resonance Enhanced Multi-Photon Ionization (REMPI). Another phenom­

enon occurring in non-linear photoreaction is “resonance enhanced multi-photon ionization” 

(REMPI). It involves the transient resonant excitation to an electronically excited interme­

diate atomic eigenstate state which is followed by the absorption of more photons ionizing 

the atom [39, 40]. This resonant eigenstate typically increases the probability of the multi­

photon absorption and, hence, the ionization cross section.
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Figure 2.2. Photoionization of an atom (Picture taken from [34]), left to right: Single photon 
ionization,multiphoton ionization ( MPI) and Resonance enhanced multiphoton ionization 
(REMPI).

Figure. 2.2 shows a schematic diagram of a REMPI process in which the molecule in the 

initial state absorbs two photons to the electronically excited eigenstate followed by the 

absorption of two more photons ionizing the atom [33, 41, 42].

At relatively lower intensities, the general features of such multiphoton ionization 

processes can qualitatively be understood already in a rather simple picture using the electric 

dipole approximation in the lowest-order perturbation theory (LOPT) [20]. "In the LOPT 

only the absorption of the minimum number of photons is considered that is requires to 

reach the final state. According to electric dipole selection rules (and neglecting electron 

and nuclear spins), the absorption of each photon corresponds to a A l = ±1 and a Am = -1 , 

0, or +1. Consequently, if an initial state featuring an orbital angular momentum orientation 

of m is ionized by the absorption of n photons, the final set of available magnetic sub-level 

ranges from m -  n to m + n. The final state can then be expressed in terms of a sum of the 

corresponding partial waves. [43].

2.2. ULTRA-COLD AND POLARIZED ATOMS

The experiments performed and analyzed within this PhD project stand out to earlier 

studies, because a laser cooled and polarized atomic target is used. Historically, atomic
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laser cooling techniques were pioneered independently by two groups, Hansch et al. [44], 

and Wineland et al. [45] in 1975 exploiting the Doppler cooling effect using near-resonant 

narrow bandwidth laser radiation.

This technique was enhanced making it possible to confine ultra-cold atomic samples 

in a small volume in magneto-optical traps (MOT) [46, 47] cooling the atoms and storing 

the at sub-Millikelvin temperatures for minutes or even longer. Transferring the atoms to 

other traps using conservative forces allows to cool them evaporatively even lower and to 

quantum degeneracy [48-50]. This expanded atomic physics research in ultra-cold region.

2.2.1. Magnet Optical Trap (MOT). Magneto-optical traps are powerful and 

widely used tools for preparing ultra-cold samples of neutral atoms. Here, atoms are 

cooled and trapped by using three pairs of retro-reflected laser beams overlapping in a 

quadrupole magnetic field forming a trapping region (see Figure. 2.3, right). In a simpli­

fied picture, the cooling and trapping of the atoms can be understood by three underlying 

mechanisms (a detailed explanation can be found in, e.g., [46])

The first mechanism is the spontaneous force, which allows to exert a directed force 

on an atom by exposing it resonant laser radiation. The atom will absorb not only the 

photon’s energy but also its momentum, thereby receiving an impulse of ftk (k is the photon 

wave number) in the laser propagation direction. The atoms will stay for some time (typ. tens 

of nanoseconds) in the electronically excited state, before they decay back to the ground 

state emitting a photon and again receiving an impulse, but this time random direction, 

which averages to zero. This process repeats with a rate of typically tens of Megahertz 

effectively resulting in a force in laser direction on the atoms.

The second mechanism is Doppler-cooling, which relies on the velocity dependent 

frequency shift of the laser radiation. If its frequency is slightly down-shifted from the 

resonance, the absorption probability is increased for atoms moving towards the laser source 

due to the well-known Doppler effect. Therefore, the atoms are more likely to be slowed 

down than to be accelerated. If atoms are subjected to laser radiation from all directions,
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they will effectively be cooled. This configuration is often called “optical molasses” due 

to the velocity dependent nature of the force. However, it is important to note that this 

mechanism does not allow to confine the atoms in a trap volume.

The third mechanism is the Zeeman effect, which unfolds as a shift of atomic energy 

levels in an external magnetic field. Generally, the magnitude of the shift depends on the 

strength of the magnetic field and on the orientation of the atomic angular momentum 

relative to the direction of the magnetic field (i.e. it depends on the magnetic quantum 

number m/ ). A simplified one-dimensional scheme neglecting the spins of nucleus and 

electrons and considering the transition between an s ground state and a p  excited state is 

depicted in Figure. 2.3 (left). Here, only the excited state will experience a Zeeman splitting 

for the sub-levels with m = - 1 ,0 ,  and +1. In the center of the trap the magnetic field is 

zero and the order of the sub-levels' energies reverses on both sides of the trap. Due to 

the detuning of the beams, the laser is in resonance slightly outside of the trapping center. 

If the polarization of the laser beams is chosen to be either left or right-handed circularly 

polarized, transitions can selectively be driven to m = - 1  or m = +1, respectively, with an 

individual laser beam. This allows to choose a configuration, where the atoms are always 

pushed back towards the MOT center effectively confining the atoms in a small volume.

Figure 2.3. Trapping mechanism (atomic energy level scheme in MOT) (left) created by 
anti-Helmholtz coils(right), picture taken from [51]

The MOT is a useful tool to prepare atomic targets for different trapping and 

ionization experiments. However, it has limitations for its applicability to the experiments 

described in this thesis. How these are overcome is described in the following chapter.
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2.2.2. All Optical Atom Trap (AOT). Traditional MOTs are not suited for provid­

ing a target for momentum resolved collision experiment involving polarized atoms due to 

two limitations: First, the position dependent direction and intensity of the magnetic field 

makes it essentially impossible to polarize the target atoms, because any oriented atomic 

magnetic moment would precede around the position dependent magnetic field axis. If the 

atoms are polarized at a given point in time, this precession would result in a de-polarization 

of the target sample after typically only hundreds of microseconds. Second, for ionization 

experiments it is desirable to detect electrons, reconstruct their trajectories in a spectrometer, 

and calculate their initial momentum. However, due to the quadrupole magnetic field, the 

electron trajectories depend sensitively on the starting point of the electron, which cannot 

directly be measured with sufficient resolution. Therefore, a momentum-resolved electron 

detection with high resolution is not possible out of a MOT target.

In a previous attempt to combine magneto-optical cooling and electron momentum 

imaging, the magnetic field was periodically switched between a quadrupole magnetic field 

and an homogeneous magnetic field, for the trapping of the atoms and for the detection 

of electrons, respectively [29] (see Figure 2.4). While this is a viable approach, it has the 

drawback of a reduced duty cycle, because trapping and ionization measurement can never 

happen simultaneously. Moreover, there are several technical challenges connected to the 

switching of the magnetic field, because induced voltages can be very high and slowly 

decaying eddy currents can alter the magnetic field from its ideal configuration.

These problems were overcome with the development of a novel all-optical trap 

(AOT), which was developed at Missouri S&T in 2018 [22]. In the AOT, the atoms are 

cooled and trapped by near-resonant laser beams in absence of the quadrupole magnetic 

field but only a weak homogeneous magnetic field used.
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Figure 2.4. Combined B-Field (Homogeneous and quadruple magnetic fields)

Overall, this technique enables to prepare a target in a highly polarized state at very low atom 

temperatures and relatively high number densities up to which makes this trap ideally suited 

for momentum-resolved electron-ion coincidence experiments with excellent momentum 

resolution [25].

Figure 2.5. All Optical Atom Trap(AOT). Picture taken from [22]

The overall configuration of the trap is very similar to conventional magneto-optical 

traps. It mainly requires small modifications of laser beam geometries, polarization, and 

frequency which makes it easily implementable in other existing MOT experiments. A 

complete theoretical description of the observed trapping mechanism is still not available,
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but it is believed that rectified dipole force [52-54] due to the bichromaticity [55] of the 

laser field is significant and might contribute to the trapping of atoms. Similar to previously 

reported trap configurations like “supermolasses” [56] and “Vortex trap” [57, 58], the 

AOT requires a proper mis-alignment from the ideal retro-reflecting configuration and 

the trapping efficiency is very sensitively dependent on the laser parameters. Here, the 

procedure to achieve stable trapping will be briefly discussed: First, the set up is started at 

the standard magneto-optical trap configuration, i.e., there is a quadrupole magnetic field in 

the trapping region and the laser beams are all circularly polarized pushing the atoms back 

in the trap center. Then the quadrupole field is reduced and overlaid with a homogeneous 

magnetic field. This will reduce the trapping efficiency which can (partially) be recovered 

by altering the laser position, frequency, and polarization.This process is repeated iteratively 

until the quadrupole field is completely turned off. At this point, the atoms are in an all­

optical trap. If the polarization of all laser beams is chosen to be in the plane perpendicular to 

the magnetic field direction, a high degree of electronic target polarization can be achieved. 

Several properties of the AOT (see Figure 2.5 have been characterized and compared 

to conventional MOTs. The overall trapping performance of the traps can generally be 

described by the simple rate equation,

dN 2
—  = L -  r N  -  J3N (2.4)
dt

With N  being the number of trapped atoms, L is the absolute loading rate, r  is the relative 

linear loss rate, and y8 is the two-atom loss coefficient due to mutual collisions between 

two trapped atoms. A good trap performance and long trapping times are achieved at high 

loading rates L and at small loss factors r  and y8. These parameters can be measured by 

obtaining the loading profile starting with an empty trap (N = 0) and for the decay curve
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staring with a full trap and switching L to zero. An example of such curves is shown in 

Figure 2.6. Overall, the trapped particle number as well as the trapping time for the AOT 

are slightly below the one of the magneto-optical trap (for details see [22]).

Figure 2.6. Loading (a) and decay (b) curve of the trap in AOT. Open circles show 
experimental data; the solid lines correspond to the fits according to Eq. 1. The dashed lines 
are exponential curves fitting the data for low atom number densities, where the two-atom 
loss term is negligible) [22]

The temperature of the atoms can be determined by measuring the ballistic expansion 

of the atom cloud after switching the colling lasers off for short periods. The width of cloud 

is determined after the switch-off by fluorescence imaging and plotted as a function of 

switch-off time in Figure 2.7.

Figure 2.7. Ballistic expansion of atom cloud in AOT
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Overall, number densities of 109/cm3 at temperatures of about 2 mK are achieved.Moreover, 

the polarization of the target cloud is estimated by measuring the polarization of the fluo­

rescence light. About 93 % of the atoms are in a single magnetic sub-level with m = +1. 

These characteristics make the AOT ideally suited for momentum-resolved atomic ioniza­

tion experiments.

2.2.3. The Optical Parametric Chirp Pulse Amplifier (OPCPA). In the experi­

ments performed in the scope of the PhD project, lithium atoms were ionized in the intense 

field of a commercially available femtosecond light source. It is a Venteon OPCPA pro­

ducing pulses of durations down to 8 fs at bandwidths ranging from 650 to 1000 nm. In the 

laser focus, intensities of up to 1014 W/cm2 can be achieved.

The OPCPA consists three parts as shown in Figure. 2.8,which are an oscillator, 

a high power amplifier (HPA), and a non-collinear optical parametric amplifier (NOPA). 

The oscillator is a mode-locked Ti:Sa laser which produces broadband pulses of about 

5fs duration with a spectrum ranging from about 600 to 1200 nm. The repetition of the 

oscillator is with 80 MHz very high, and the power averages to about 200 mW.

The output of the oscillator cannot be directly used for ionization experiments due to the 

high repetition rate and the comparably low pulse energy. Therefore, a “pulse-picking” 

mechanism is required to reduce the repetition rate, and an amplifier has to increase the 

pulse energy.

Parametric Amplifier Module

Fibre Amplifier Module

Figure 2.8. Optical parametric chirp pulse amplifier (OPCPA)
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The high-power amplifier serves the task to create synchronized pump pulses at a 

reduced repetition rate that can be used to amplify the oscillator output. To this end, a 

small fraction at wavelength of 1030 nm is separated from the oscillator output, stretched in 

time to about 300 fs, and guided into three serial fiber amplifiers and a high power rod-type 

amplifier. Pulse pickers are reducing the repetition rate to 200 kHz. After the amplifier rod, 

the pulse is compressed by grating compressor to a duration of 150 fs with an average power 

of 48 W. These pulses are then focus into a nonlinear crystal to produce second harmonic 

generation at 515 nm with a power of 20W.

The final output of the OPCPA is created in two serial NOPA stages [59, 60]. 

Generally, a NOPA stage consist a nonlinear crystal where energy is transferred from a 

pump beam to a seed beam which both are overlapped in the crystal. In our setup, the seed 

beam is the main broadband output of the oscillator, while the pump beam corresponds to 

the output of the HPA. After the two NOPA stages, an average power of up to 2 W at a 

repetition rate of 200 kHz and pulse durations down to 8 fs can be achieved.

It is important to note that the operation of the NOPA stages can be modified either 

creation broad bandwidth pulses with very short duration or pulses that are longer in time but 

feature a narrower spectrum with tunable center wavelength. The latter mode of operation 

was extensively used throughout the projects reported here.

2.2.4. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS). It is 

an imaging technique to obtain on the fragmentation dynamics of a few body system 

by measuring the outgoing particles’ momentum vectors [23, 24]. In brief, all charged 

fragments from an atomic, molecular reaction are projected by a combination of electric 

and magnetic fields on position sensitive detectors. Knowing the charge and mass of the 

particles, their starting point, and the field configuration, the momentum vectors can be 

calculated for the measured time-of-flight and the position on the detector.
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In the experiments performed for this PhD project, the field configuration was par­

ticularly simple: Both fields, electric and magnetic, were homogeneous and in z-direction. 

The motion of charged particle is obtained in non-relativistic approximation by the Loren- 

tz Force Law. The force on a particle of charge q and mass m traveling in the static electric 

and magnetic fields £ (r) and B ( r ) , respectively, is given by

—2 ~*
F ( T , V) = = Q( E O  +  v x 5 (r))  (2.5)

For both fields pointing in z-direction[51], this differential equation has the solution

x (t) 

y (t)

Z(t)

1
qBz

1
(sin(mct)pox + (1 -  cos mct)poy)

(sin(wct)poy + (cos mct -  1)pox)
QBZ
P0z QFz o — t + t2
m 2 m

(2.6)

(2.7)

(2.8)

For a particle starting with the initial momentum components p 0x, p 0y, and p 0z at the origin. 

Here = qBz/m  is the cyclotron frequency of the particle.

If the particle hits the detector after time T at the (three-dimensional) position 

x (T) = Xd, y (T) = yd, and z(T) = Zd, the starting momentum of the particle can be 

calculated from the above equations to be

P0x
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P0Z

qBz
~ Y

qBz

2
Zdm

sin wcT 
1 -  cos wcT 

sin (wcT)
1 -  cos wcT 
qEzT

Xd -  yd
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(2.9)
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(2.11)
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The achievable momentum resolution depends on the uncertainty of the positions 

and the time-of-flights, which in term depend on the size of the reaction volume as well as 

the initial temperature of the target. Due to extremely low target temperatures and a very 

small laser focus, an final resolution of only about 0.01 a.u. for the electrons and about

0.03 a.u. for the recoil ions was achieved.
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ABSTRACT

We investigate few-photon ionization of an atomic target with linearly polarized light 

and demonstrate that angular asymmetries can occur provided the target atom is initially 

polarized. Specifically, lithium atoms are prepared in an all-optical laser atom trap (AOT), 

excited to the polarized Li(2p, m=+1) state, and ionized by interacting with femtosecond 

laser pulses. Shifts of the main electron emission angles away from the laser electric 

field axis are observed, which vary with laser intensity and wavelength. The experimental 

spectra are in very good agreement with the results of our theoretical model based on the 

numerical solution of the time-dependent Schrodinger equation (TDSE). Qualitatively, the 

observations are explained in a perturbative picture using the electric dipole approximation. 

Here, angular asymmetries are traced back to interferences of partial waves with two or



21

more contributing angular momenta l  and a non-vanishing mean angular momentum (m) 

in the final state. This allows to obtain complete quantum mechanical information of the 

electronic final state including its complex phase.

1. INTRODUCTION

Atomic ionization in optical fields proceeds predominantly through the electric 

dipole interaction of the initially bound atomic system with the external field. Consequently, 

photoelectron angular distributions (PAD) are generally governed by the direction and 

symmetries of the electric field. In the simplest case of an unpolarized target, which is 

ionized by linearly (or circularly) polarized light, the symmetries of the electronic final 

state are (in the electric dipole approximation) identical to the symmetries of the ionizing 

field given by its Stokes parameters. However, there are more complex situations where 

these symmetries are lifted and the electron emission does not geometrically align with the 

dominant electric field direction.

Examples, which have been debated extensively in the past decade, are 'attoclock' 

experiments [3,7,19, 25, 27] where adiabatic tunnel ionization of atoms in carrier-envelope 

phase stabilized elliptically polarized few-cycle pulses is investigated. In these measure­

ments, the electron angular distributions feature a shift from the direction of the strongest 

electric field in the plane perpendicular to the laser propagation direction (i.e. in the az­

imuthal plane). This shift in the azimuthal angle <p is (partially) attributed to a time delay 

of the ionization while the electron tunnels through the barrier formed by the potential 

of the atomic core and the adiabatically changing electric field of the laser. While this 

interpretation is not uncontroversial and the debate about the tunneling time in strong field 

physics is still open (for recent reviews, see [17, 28]), the joint experimental and theoretical 

efforts resulted in a much better understanding of the tunneling dynamics and an improved 

modeling of the complex strong-field atom interaction.
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Already two decades before the first attoclock experiments, a related phenomenon 

has been observed in the multi-photon ionization regime -  the so-called “elliptic dichroism” 

[2]. Here again, the major and minor axes of the polarization ellipse do not represent lines 

of reflection symmetry in PADs measured in noble gas ionization by elliptically polarized 

light. While the observed symmetry breaks are in contradiction to Keldysh-type theories 

[2, 8, 16, 26], they are qualitatively explained in terms of the lowest-order perturbation 

theory (LOPT) [18, 22]. In this description, the asymmetry in the azimuthal electron 

emission angle <p is a result of the interference of phase-shifted partial waves with different 

orbital angular momentum quantum numbers l  and me.

In the following decades, elliptic dichroism attracted considerable interest and it was 

observed, for instance, in above threshold ionization of rare gas targets [23, 24] as well as in 

few-photon ionization of alkali atoms [35]. In contrast to the ionization by purely linearly 

or circularly polarized light, analyzing ionization data for elliptic polarization enables to 

extract phases and amplitudes of the final partial waves, thereby allowing to obtain the 

complete quantum mechanical information of the scattering process [6, 34]. Recently, it 

was predicted that a maximum elliptic dichroism can be achieved in two-photon ionization 

for an appropriate choice of the wavelength of the radiation making it a promising tool, e.g., 

to analyze the polarization state of free electron laser radiation [13]. It is worth noting that 

the ellipticity of the polarization is not a sine qua non for angular asymmetries to occur. 

Similar asymmetric final states are expected, e.g., in the multi-photon ionization by two 

combined laser beams of different color, one with linear and the other one with circular 

polarization [32].

In the present study, we demonstrate that left-right asymmetries can already be 

achieved in the atomic ionization by purely linearly polarized light, if the target atoms are 

initially polarized. On the experimental side, it has been shown previously that optical traps 

are an ideal tool to provide excited and polarized atomic targets for ion-atom scattering 

[14, 20] or photoionization experiments [4, 33, 36]. Here, we use an all-optical atom trap
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(AOT) [30] to prepare an excited lithium target in the polarized Li(2p, m = +1) state. The 

atoms are ionized in femtosecond laser pulses with a wavelength varied between about 

695 nm and 800 nm. We observe strong magnetic dichroism, i.e. a dependence of the 

differential cross sections on the magnetic quantum number of the initial state [21], which 

manifests itself in angular shifts of the main electron emission directions with respect to the 

laser polarization axis. The measured spectra are well reproduced by our model based on 

the numerical solution of the time-dependent Schrodinger equation (TDSE), and strongly 

depend on both the intensity and wavelength of the laser pulse.

The observed asymmetries are qualitatively explained in a perturbative picture in 

terms of the LOPT in the electric dipole approximation analogous to the discussions in 

[13, 18, 22]. Despite its similarities to elliptical dichroism, the present scheme does not 

require non-linear interactions with the laser field in order for asymmetries to appear [13], 

but they are, in principle, present already after the absorption of only a single photon 

[33]. Moreover, the present approach can, in future, contribute to the ongoing discussion 

about tunneling times in attoclock experiments, because it possibly allows to disentangle 

contributions to the angular shifts caused by the tunneling dynamics and by other effects 

such as, e.g., the long-range Coulomb interaction between the emitted electron and the 

target core.

2. EXPERIMENT

The experimental setup has been described previously [4, 31, 33], so only a brief 

summary is given here. It consists of three major components: First, an optical trap 

providing state-prepared lithium target atoms; Second, a tunable femtosecond laser source 

generating the ionizing external field; And third, a "Reaction Microscope” measuring the 

momentum vectors of the ionization products.
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The lithium target cloud is prepared in a near-resonant all-optical laser atom trap 

(AOT) [30], where the atoms are cooled to temperatures in the milli-Kelvin range and 

confined to a small volume of about 1 mm diameter. The cooling laser system consists of 

an external cavity diode laser with a tapered amplifier, whose frequency is stabilized near 

the 6Li D 2-transition at about A= 671 nm. The radiation couples the 2S1/2 to the 2P3/2 

state, and -  in steady state -  about 25 % of the target atoms populate the excited p  level with 

about 93 % of them being in a single magnetic sub-state with me = +1 with respect to the 

direction of a weak magnetic field (the z-direction).

The femtosecond laser source is a commercially available system based on a Ti:Sa 

oscillator with two non-collinear optical parametric amplifier (NOPA) stages (e.g. [12]) 

providing maximum pulse energies of up to 15 pJ at a repetition rate of 200 kHz. The 

system can be operated in a short-pulse (about 7 fs) broadband mode (ca. 660nm-1000nm). 

However, in the present experiment we amplified only a rather narrow bandwidth (±15 nm) 

resulting in pulse durations of about 35 fs. The laser beam is guided into the vacuum 

chamber and focused into the lithium cloud with a minimum beam waist of about 50 pm.

A cold target recoil ion momentum spectrometer (COLTRIMS) -  also referred to as 

"Reaction Microscope” [9, 15] -  is employed to measure the three-dimensional momentum 

vectors of electrons and recoil ions after the ionization process. The differential cross 

section of the ionization of the Li(2s) ground state and of the Li(2p, me = +1) excited state 

are extracted following a switching procedure that is described in more detail in [31]. A 

typical electron momentum resolution of 0.005 to 0.01 a.u. is achieved [33].

3. THEORY

The experimental data is compared to ab initio calculations based on solving the 

time-dependent Schrodinger equation (TDSE) considering a single-active electron (SAE) 

in a He-like 1s1 ionic core. A static Hartree potential [1, 29] is used and supplemented 

by phenomenological terms, which are discussed in [4]. As shown earlier [31], our model
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potential describes the atomic structure with an accuracy of better than 1 meV for the n = 2 

and n = 3 states. Previous calculations using the same code yield excellent agreement with 

experimental data measured under similar conditions [4].

4. RESULTS AND DISCUSSION

In Figure. 1, the momentum and angular distributions for the ionization of the 

initial 2s and 2p  states are shown for a center wavelength of 770 nm and a peak intensity 

of 1.8-1011 W/cm2. The laser field is polarized along the y axis, and the orbital angular 

momentum of the excited p  state is polarized in the z direction perpendicular to the drawing 

plane. For all data presented in this study, the given laser field parameters resulted in 

Keldysh parameters well above 10. Therefore, the ionization process can be described in 

the multi-photon picture. The initial s state is ionized by the absorption of four photons 

resulting in a final state momentum of about 0.28 a.u., reflected in a single ring structure 

in the momentum distribution (see Figure. 1). The p  state ionization proceeds through the 

absorption of three photons corresponding to a slightly larger final state momentum of about 

0.31 a.u.. For the ground state ionization, the angular differential cross section is symmetric 

with respect to the laser polarization axis (the y axis in the graph) with its highest intensity 

in the direction of the laser electric field at <p = 90° and 270°. Notably, this symmetry is 

broken for the p  state ionization and the peaks in the angular distribution are shifted away 

from the electric field direction by about 10°.

For a rigorous comparison of the measured spectra with the calculations, the non­

uniform spatial intensity distribution of the laser field around the focal point needs to be 

considered. In the experiment, the location of a specific ionization event is not precisely 

known and, therefore, our experimental data is not measured for a well-defined intensity, 

but averaged over an intensity range. In previous studies, we have convoluted the theo­

retical cross sections over a broad intensity range (e.g., [4]), which yielded nearly perfect 

agreement between measurement and calculation. In the present case, we omitted this
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Figure 1. Differential cross sections for few photon ionization of lithium atoms initially in 
the 2s (top) and 2^(m=+1) (bottom) state in 35 fs laser pulses at a center wavelength of 
770 nm and a peak intensity of 1 .84011 W/cm2.] The initial 2p  state is polarized along the z 
direction (perpendicular to the drawing plane), the laser field is polarized in the y direction 
(i.e. vertically). Left and center column show experimental and theoretical momentum 
distributions, respectively. The right column shows the distribution of the azimuthal angle. 
All spectra represent cuts in the vy-plane, i.e. z = 0.

convolution. While we expect that this procedure would reduce discrepancies, intensity 

dependent features of the calculated spectra are more clearly visible without the averaging. 

Instead, we performed the calculation for a mean intensity which is by a factor of 1.8 lower 

than the peak intensity applied in the experiment. Overall, the shape of the measured and 

calculated spectra are in excellent agreement (see Figure. 1).

The general features observed in the photoelectron angular distributions can quali­

tatively be explained in a picture based on the lowest order perturbation theory (LOPT). In 

the electric dipole approximation, the selection rules yield a change of the magnetic quan­

tum number m (with respect to the laser propagation direction) by +1 or -1  for right and 

left-handed circularly polarized light, respectively. Because the linearly polarized radiation 

used in our experiment corresponds to the coherent superposition of the two circular polar-



27

0

0

- 5.39

( l ,  m )  =
( 0 ,0 )

( 2 , - 2 ) ( 2 ,0 ) (2 ,2 )
(4 ,  - 4 ) ( 4 , - 2 ) ( 4 ,0 ) (4 ,2 ) ( 4 ,4 )

m  -4 -3 -2 -1 0 +1 +2 +3 +4

Figure 2. Ionization scheme for three-photon ionization of the 2p  excited state (solid arrows) 
as well as for four-photon ionization of the 2s ground state (dashed arrows) in a field with 
linear polarization oriented perpendicular to the atomic quantization direction.

izations, the magnetic quantum number is changed simultaneously by +1 and -1  for each 

absorbed photon. The resulting ionization pathways are depicted in Figure. 1. The angular 

part of the final electronic continuum state can be expressed in terms of a superposition 

of spherical harmonics Ylm (d-,<p) of different dipole-allowed quantum numbers l  and m, 

which are l  = 0, 2, and 4 (corresponding to 5, d , and g waves) and m = -2 , 0, 2, and 4 in 

the presently considered case of 3-photon ionization of a 2p (m = +1) initial state.

Considering only the dependence on the azimuthal angle <p (e.g. for d = 90°), the 

differential cross section can be written as (see e.g. [22])

da  
d ^

2
aemeim*

l,m
(1)

with alm relating to the complex amplitudes of the contributing partial waves. It is important 

to note that the phases of the amplitudes depend on the orbital angular momentum l ,  because 

the radial part of the outgoing electron wave has an asymptotic form of exp(z'fcr+i/k ln r+i8{)
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featuring the phase shift 8( due to the interaction of the outgoing electron with target core, 

which includes generally both Coulombic and non-Coulombic contributions. Performing 

the summation over l ,  the above equation simplifies to

d a
d a

2
J ] c meim* (2)

with cm — X l alm being complex. Any ^-dependence of the cross section is a result of the 

interference of partial waves with different m .

For the specific case shown in Figures. 1 the quantum number m can take four values 

(-2 , 0, 2, and 4). In this case, the differential cross section of Eq. 2 can be written in the 

form

—  — A + B • cos(2<£> + A2 ) + C • cos(4<£> + A4) + 
d a

D • cos(6 <̂ + A6) (3)

with real factors A, B, C , and D . The first term in this equation represents the sum of 

the absolute squares of the partial wave amplitudes, i.e. A — X km|2. The second, third, 

and fourth terms relate to the interferences between pairs of partial waves whose m differs 

by 2, 4, and 6 , respectively. Generally, the expression in Eq. 2 corresponds to an angular 

distribution with six local maxima in accordance with our data shown in Figure. 1 (bottom). 

The lifting of mirror symmetry observed in the data stems from the angular shifts A2 , A4 , 

and A6. It is straight-forward to show, that (at least) two conditions need to be fulfilled 

for the angular shifts not to vanish: (i) The final state needs to feature an asymmetric m 

distribution, i.e. there is a non-zero mean polarization with (m) ^  0. And (ii), there must 

be an additional non-vanishing phase difference between interfering partial waves (apart of 

the trivial ^-dependent phase). The first requirement is generally fulfilled for a polarized
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target in an initial state with m ^  0, or if the target is ionized by elliptically polarized light. 

The latter condition is satisfied if different angular momenta l  contribute to the final state 

due to the phase shift of the radial part of the wave function.

According to the perturbative picture discussed above, the angular shifts observed 

in the data are sensitive not only to the relative magnitude of the partial wave amplitudes, 

but especially to their relative phases. These phases stem from the complex angles 

of the outgoing (radial) wave functions, which are different for each l. Neglecting the 

dressing of the atom in the laser field, the phase angles depend only on the continuum 

energy of the electron and on the target core potential, but not on the detailed parameters 

of the laser field and on the atomic structure. Therefore, the shifts observed in the angular 

distributions are expected to change with the electron continuum energy and, hence, with 

the laser wavelength. However, a change of the angles can also be anticipated for varying 

laser intensities, because they influence the relative magnitudes of final state partial wave 

amplitudes. In order to get a more complete picture of these dependences, we have studied 

the angular distributions for a range of laser parameters (see Figure. 3). In the figure, the 

spectra for the ionization of the 2s and 2p  states are cross-normalized and, when indicated, 

multiplied with a given factor for a better visibility.

Overall, the shape of the angular distributions agrees very well between measured 

and calculated data with some moderate discrepancies at 770 nm and 800 nm. The relative 

magnitudes of the 2s and 2p  ionization cross sections vary vastly over the investigated 

wavelength and intensity regime. Also here, some discrepancies are observed, which are 

largest for 770 nm at 3-10n W/cm2 (with a factor of about 2). As mentioned above, an av­

eraging of our theoretical spectra over the experimental intensity distribution is expected to 

improve the agreement. However, we opted for not doing that in the present study, because 

intensity dependent changes of the cross sections are more clear without this convolution. 

Moreover, we have shown earlier [4, 31] that our theoretical model describes the target 

system very accurately and the numerical uncertainty is extremely small. Remaining dif­
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ferences could still stem from experimental uncertainties in the laser parameters (e.g. pulse 

duration, spectrum, and intensity) which are very challenging to characterize accurately. 

Therefore, our primary aim is not the rigorous test of our theoretical model, but rather a 

better understanding of few-photon ionization dynamics and the mechanisms at play.

All the angular distributions shown in Figure. 3 feature two main peaks in opposite 

directions, which align with the laser polarization axis for the ionization of the 2s ground 

state and are shifted from this axis for the ionization of the polarized 2p  state. This angular 

shifts are towards smaller angles for the wavelengths of 695 nm and 735 nm. For 770 nm, the 

shifts are reversed in the experimental spectra. In the calculation in contrast, the direction 

of the shifts seems to flip with the intensity. For 800 nm, the peaks align closely with the 

laser polarization axis, with the calculation showing a small shift towards smaller angles 

for the higher intensity.

As discussed above, the angular shifts depend sensitively on the relative magnitudes 

of the final state partial wave amplitudes. Atomic resonances can affect these magnitudes 

significantly. The most notable 1-photon resonance close to the investigated wavelength 

range is the 2p-3s  resonance at a wavelength of 812 nm. Because the 35 state is spheri­

cally symmetric, all flux proceeding through this resonance will loose any information on 

the initial polarization direction. Therefore, this resonance can be expected to reduce the 

angular asymmetry. Indeed, the angular shift for a laser wavelength of 800 nm (Figure. 3, 

bottom) is barely noticeable. There are many 2-photon resonances between the 2p  state 

and higher lying states, e.g. with n = 6, 7, 8, and 9 at wavelengths of about 780 nm, 760 nm, 

744 nm, and 735 nm, respectively. Here, only p  and f  states couple to the initial 2p  state 

due to dipole selection rules. It is difficult to pin the effects of these resonances down for 

specific laser parameters. Generally, if ̂ -state is transiently populated after the absorption 

of two photons, the m quantum numbers finally populated range only from - 2  to 2 and the 

contribution of m = 4 is suppressed. This reduces effectively the contribution of the last
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term in Eq. 2, which is responsible for the six peak structure. A resonance to an f  state, in 

contrast, will allow for all even m quantum numbers between - 2  and 4 in the final state.
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Figure 3. Same as Figure. 1(right), but for different laser wavelengths and intensities, which 
are denoted at each graph individually. Black solid squares and black lines correspond to 
experimental and theoretical results for the initial 2p  state, respectively. Red open circles 
and red lines represent the according data for the initial 2s state. The data for the two initial 
states are cross-normalized in each graph, and -  where indicated -  multiplied by the given 
factor for better visibility.

The shortest wavelength studied is 695 nm and it stands out in several respects: First 

and foremost, the absorption of only two photons suffices to promote the 2p  electron to the 

continuum at this wavelength. The final electron energy is just above threshold and the main 

intensity of both 2s and 2p  ionization cross sections is at very small momenta well below 

0.1 a.u. (see Figure. 4). Furthermore, there is no significant resonance-enhancement at this
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wavelength, which makes this system a particularly clean manifestation of the observed 

dichroic asymmetries. Indeed, the observed angular shift of the two dominant peaks is 

with about 15° stronger than in all other cases investigated. The calculations reproduce the 

momentum distributions observed experimentally with excellent agreement.
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Figure 4. Same as Figure. 1 (left and center), but for a laser wavelength of 695 nm at a peak 
intensity of 1* 1011 W/cm2.

The lower number of absorbed photons gives rise to different angular momenta 

contributing to the final state. Here a superposition of p  and f  waves with magnetic 

quantum numbers m = -1 ,1 , and 3 are expected in the LOPT. This results in a vanishing of 

the last term in the angular differential cross section of Eq. 2 and only 4 peaks are expected. 

However, this is in direct contradiction to our measured and calculated spectra where six 

peaks can clearly be identified. While this evident violation of the LOPT at the present 

comparably low intensities might be surprising, it can be explained by a peculiarity of 

the investigated system: The present laser wavelength is close to the 2s-2p  resonance at 

671 nm, and the laser field couples the polarized initial state to the ground state. Therefore,
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a fraction of the flux is passing through the atomic ground state giving rise to a contribution 

of m = -3  to the final state, which is not considered in LOPT and results in the observed 

six peak structure.

5. SUMMARY AND CONCLUSION

We investigated magnetic dichroism in differential cross sections of atomic few- 

photon ionization of polarized atoms by linearly polarized femtosecond optical laser pulses. 

Here, dichroic asymmetries manifest itself in the photoelectron angular distributions as a 

lifting of reflection symmetry with respect to the laser polarization axis, and an angular 

shift of the main electron emission directions away for the electric field orientation is 

observed. Very Similar asymmetries have been reported earlier for rather different reactions, 

e.g., for electron [5] or ion [10, 11, 14] impact ionization of polarized atoms. However, 

compared to these earlier studies the present systems are particularly fundamental, because 

of the well-defined energy and limited angular momentum transfer in the multiphoton 

absorption process. We studied the dependence of the angular shift on laser wavelength and 

intensity, and obtained very good agreement between our experimental data and an ab initio 

calculation based on the numerical solution of the time dependent Schrodinger equation.

The observed asymmetries are qualitatively discussed in a simple picture based on 

the electric dipole approximation in the lowest order perturbation theory. Here, the final 

state is expressed as a superposition of partial waves of different orbital angular momenta l  

with orientations m. Depending on the number of photons absorbed, the quantum numbers 

l  and m are either all even or all odd. For an asymmetry to occur, two conditions have to be 

fulfilled: First, the final state has to feature a non-vanishing mean angular momentum, i.e. 

(m) ^  0. Second, at least two different angular momenta l  have to contribute to the final 

state, because they introduce complex phase differences between partial waves.
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In the presently studied systems, both above mentioned conditions are met. Here, 

the final polarization of the electron angular momentum is essentially a “remnant” of the 

initial target polarization, which is (partially) preserved through the ionization process. 

Furthermore, several final l  quantum numbers are dipole-allowed in the present systems, 

resulting in non-zero phase angles between contributing partial waves and, eventually, in the 

observed angular shifts. In principle, the direct connection between photoelectron angular 

distributions and complex phase shifts enables to extract phase information about the final 

state from the data [33], which is not easily possible in conventional multiphoton exper­

iments with unpolarized targets. It should be mentioned that the qualitative explanation 

given here is consistent with previous analyzes of elliptic dichroism in multiphoton ioniza­

tion of unpolarized atoms [18, 22] where the mean polarization (m) of the final electron 

state stems from an asymmetric transfer of angular momentum by the elliptically polarized 

photon field.

The general methods presented here might help to answer related questions about 

light-matter interaction that are presently under investigation. In ‘Attoclock’ experiments, 

e.g., angular asymmetries are observed in the tunnel ionization regime in elliptically polar­

ized carrier-envelope phase stabilized few-cycle pulses and interpreted in terms of a finite 

time-delay of the tunneling process [7, 25]. Future experiments involving polarized targets 

at much smaller Keldysh parameters than in the present study may shed light on open ques­

tions about the role of tunneling time delays and of phase shifts due to the target potential 

thereby improving our understanding of the fundamentally important quantum mechanical 

tunneling process.
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ABSTRACT

We investigate the resonance-enhanced few-photon ionization of an atomic Li target 

at a photon energy near the resonance between the 2s ground and 2p  excited states. For 

this system, the ground state ionization resembles an atomic “double slit”, because it can 

proceed through the 2p  resonances with the magnetic quantum number mc being either -1  

or +1. In our experiment, the target can be state prepared in one of the polarized excited 2p 

states before subjecting it to the ionizing radiation, thereby effectively closing one of the 

two slits. This allows to extract the interference term between the two pathways and obtain 

complex phase information on the final state. The analysis of our experimental results is 

supported by an ab initio model based on the numerical solution of the time-dependent 

Schrodinger equation.

1. INTRODUCTION

Two-path interference is one of the most intriguing and intensely studied phenomena 

in physics, which was first discovered in 1801 for optical light by Thomas Young in his 

double-slit experiment [42]. Its historic importance for the development of quantum theory



40

cannot be overrated, because it reveals the wave nature of massive particles such as electrons 

[10,24], atoms [25], and even large molecules [3] thereby supporting de Broglie’s hypothesis 

of wave-particle duality [11]. Until today, this phenomenon didn’t loose its appeal, and 

it has been observed in numerous systems. On the one hand, it allows to extract phase 

information, which is commonly not directly observable. On the other hand, it is exploited 

in many quantum-control schemes, because the manipulation of the relative amplitudes 

of the two pathways allows to control of the final state with high sensitivity. In atomic 

and molecular scattering processes, examples include well-known effects like Feshbach, 

shape, and Fano resonances (e.g. [8, 16, 17, 34]), or atomic-scale double slits formed by 

diatomic molecules exhibiting interferences in differential ionization cross sections due to 

ion [14, 30, 38, 43], electron [28, 29], or photon impact [9, 27].

Multiphoton ionization processes of single atoms expose two- and multi-path inter­

ferences in a particularly clean way, because of the well-defined energy and limited angular 

momentum transfer in photon absorption reactions. A prominent example is RABBITT 

spectroscopy (Reconstruction of Attosecond Beating by Interference of Two-Photon Tran­

sitions) [6, 23, 26, 31], which is a common tool to characterize extreme-ultraviolet (XUV) 

attosecond pulse trains and study attosecond atomic dynamics in the time domain. Two- 

color ionization schemes using (lower) harmonic radiation [7,15,19,41] enable the coherent 

control of the reactions’ final state via two-path interferences. Recently, other schemes have 

been considered where double-slit structures in so-called Kramers-Henneberg states emerge 

by the distortion of bound state in the external field resulting in interference patterns [21]. 

Two-path interference has not only been observed in laser pulses but also using two mutually 

incoherent (i.e. without mutual phase lock) continuous-wave (cw) lasers in the two-photon 

ionization of Rubidium atoms [33], where the photon energies are tuned to two different

resonances.
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In the present study, two-path interference occurs in the ground state ionization of 

lithium exposed to single-color femtosecond laser pulses, which are linearly polarized in 

the y-direction. The laser spectrum has its center wavelength at 665 nm and overlaps with 

the 2s-2p  resonance at 671 nm. For the quantization axis in the z-direction, the absorption 

of a single photon results in the excitation to the 2p  state coherently populating the two 

magnetic sub-levels with me = +1 and -1 . These two eigenstates resemble the two “slits” 

in analogy to Young’s double-slit scheme (see Figure. 1). From these two excited levels, 

the atom is ionized without further resonance-enhancement by the absorption of two more 

photons from the same laser pulse resulting in a final superposition of electronic p  and f  

continuum waves.

m=-3 - 1 1 3

Figure 1. Few-photon ionization scheme in the lowest-order perturbation theory. The 
ionization pathways from the 2p  state with me = +1 and -1  are shown as red dashed and 
blue dotted arrows, respectively. The 2s ionization corresponds to the superposition of 
both.

It is important to note that the distinction of these two pathways relies on the choice of 

the quantization direction. However, this choice is motivated by the experimental capability 

of preparing the atoms selectively in one of the two excited and polarized magnetic sub­

levels of the 2p  state before exposing them to the femtosecond laser pulse. This enables us 

to measure not only the final intensity of the two interfering pathways, which corresponds
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to the differential cross sections for the ionization of the 2s state, but also the intensity 

of each pathway individually, which are the cross sections of 2p  ionization. This can be 

approximated in the simple equation

1A • ^ 2s |2 = \ty+ + ^ - |2

= |^+ |2 + |^ _ |2 + 2 l^+l l^-l  cos Â > (1)

where ^ 2s, ^+, and represent the electronic continuum wave functions for the ionization 

of the initial 2s (me = 0), 2p (me = +1), and 2p (me = -1 ) , respectively. The factor A

accounts for the fact that the first excitation step from the initial 2s state to the intermediate 

2p  levels modifies the overall ionization probability.

It should be noted that the picture developed here represents an approximation, 

because the time-dependent population dynamics is not fully accounted for. However, it 

will be shown below that the experimental observations and model calculations presented 

here are in very good agreement with the two-path picture outlined above. Eq. 1 provides 

a direct and intuitive way to extract the phase difference A ip between the continuum waves 

^+ and from the measured cross sections, thereby revealing the effect of the orientation

of the initial electron orbital angular momentum on the final state's phase.

2. METHODS

The experimental technique and the theoretical methods are identical to those re­

ported in previous studies on very similar systems [1, 12, 37]. Therefore, only some key 

features are repeated here and parameters specific to the present study are mentioned.

Lithium atoms are cooled and confined in a volume of about 1 mm diameter in a 

near-resonant all-optical atom trap (AOT) [36] with a fraction of about 25 % being in the 

polarized excited 2p(me=+1) state and about 75 % in the 2s ground state. The atoms are
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ionized in the field of a femtosecond laser based on a Ti:Sa oscillator with two non-collinear 

optical parametric amplifier (NOPA) stages. For the present study, the laser wavelength 

was chosen to center at 665 nm with pulse durations of about 65 fs and peak intensities up 

to 1012 W/cm2. The three-dimensional electron momentum vectors are measured with a 

resolution of about 0.01 a.u. [39] in a reaction microscope (e.g. [18, 22]). It is important 

to note that this experiment allows to obtain differential cross-normalized data for the 

ionization of the 2s and the 2p  initial states simultaneously.

In our theoretical model, the lithium atoms are approximated as a single active 

electron in a 1s1 ionic core described by a static Hartree potential [2, 35] supplemented 

with phenomenological terms [12]. The (complex) final state wave function is obtained 

by propagating the system numerically solving the time-dependent Schrodinger equation 

(TDSE).

3. RESULTS AND DISCUSSION

In the present study, lithium atoms in the 2s ground state and 2p  excited state are 

ionized in a laser field of a wavelength of 665 nm at peak intensities below 1012 W/cm2. 

This situation corresponds to Keldysh parameters larger than 7 and the system is expected 

to be well-described in a multi-photon picture. The two initial states are ionized by the 

absorption of (at least) three or two photons, respectively, resulting in a final electron 

energy of about 200 meV. The measured electron momentum and energy spectra are shown 

in Figure. 2 for three different laser intensities. Before proceeding to the analysis of the two- 

path interference introduced above, three important features of the data should be mentioned 

that were reported already previously in several recent studies [1, 12]:

First, the final electron energy depends on the laser intensity and even a small second 

peak can be identified for 2s ionization at the highest investigated intensity. Such intensity 

dependent energy shifts and splittings were reported recently [12] for the same system 

ionized by circularly polarized femtosecond laser light. They are explained by the coupling
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Figure 2. Photoelectron momentum distributions projected to the xy plane for the few- 
photon ionization of the 2s (top row) and 2p(m i=+1) (middle row) initial states by linearly 
polarized laser pulses of 65 fs duration, at a center wavelength of 665 nm, and with peak 
intensities of 0.31* 1011 W/cm2 (left), 1.5T011 W/cm2 (center), and 7.5-1011 W/cm2 (right). 
The laser polarization direction is along the y axis (i.e. vertical), the atomic initial orbital 
angular momentum is oriented in z direction (perpendicular to the drawing plane). The 
corresponding photoelectron energy spectra are shown in the bottom row. Here, the cross 
sections for 2s (red dashed line) and 2p ionization (solid black line) are cross-normalized 
in each graph.

of the 2s and 2p state in the external field resulting in an Autler-Townes splitting [4] of each 

of these levels. This effect was even considered to be exploited as a femtosecond timescale 

energy switch of a spin-polarized electron source [12].

Second, while the photoelectron momentum distributions for 2s ionization features 

reflection symmetry with respect to the laser electric field direction (the vertical direction 

in the momentum spectra shown in Figure. 2), this symmetry is broken for the ionization of 

the polarized 2p state and the main electron emission direction appears to be shifted. This 

phenomenon is known as magnetic dichroism and its dependence on the laser wavelength 

and intensity was recently investigated by Acharya et al. [1]. In this earlier study, these
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asymmetries were explained in a partial wave picture, and two requirements were identified: 

On the one hand, the final state orbital angular momentum needs to feature a non-vanishing 

mean orientation (m) ^  0, i.e. some information on the initial target polarization needs to 

be preserved throughout the ionization process. On the other hand, two or more orbital 

angular momenta l  need to interfere in the final state, because they introduce complex phase 

shifts between the contributing partial waves which give rise to shifts in the photoelectron 

angular distributions.

And third, the azimuthal photoelectron angular distributions for 2p  ionization fea­

tures 6 peaks, which is in direct contradiction to the lowest-order perturbation theory 

(LOPT). Generally, the dependence of the differential cross sections on the azimuthal angle 

^  is given by [1]

da  
dO

2

Z
r pim $ (2)

where the factors cmi relate to the complex amplitudes of the partial waves. In the LOPT, the 

absorption of only the minimum number of photons is considered. For the present initial 

2p(m f=+1) state, this corresponds to the two-photon absorption, which -  in the electric 

dipole approximation -  results in partial waves with ml = -1 , 1, and 3 contributing to the 

final state (cf. Figure. 1). It is straight-forward to show that for this set of dipole-allowed 

ml the above expression results in a photoelectron angular distribution with not more than 

4 peaks. This evident violation of LOPT close to the 2s-2p  resonance was reported and 

discussed in the previous study, too: Again, it is explained by the coupling between the 2s 

and 2p  states in the external field giving rise to Rabi oscillations between these two states 

and resulting in a contribution of ml = -3  to the final state. Accounting for this additional 

contribution, the expression in Eq. 2 allows for angular distributions with up to 6 peaks, 

which is consistent with the experimental observations.
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In order to analyze two-path interference, we first study the final state wave func­

tions using our theoretical model for the lowest investigated intensity. Figure. 3 shows 

photoelectron momentum distributions for 2p  and 2s ionization as well as final state phase 

information for the former process considering only electron emission in the xy  plane (i.e. 

for a polar angle & = 0). For 2s ionization, measured and calculated spectra are consistent 

featuring a six-peak ring structure, which is symmetric with respect to the laser polarization 

direction. For 2p  ionization, there are some discrepancies. Specifically, the angular shift 

due to magnetic dichroism is larger and the six-peak structure is more pronounced in the 

measured data. Generally, such differences are not surprising, because of the non-uniform 

spatial intensity distribution of the laser field around the focal point in the experiment, 

which results in an averaging over an intensity range in the measured data. This effect 

was accounted for in previous studies (e.g. [12]) by convoluting calculated spectra over 

an estimated laser intensity distribution. While this procedure yields excellent agreement 

between theory and experiment, we opted for not applying this (incoherent) averaging here, 

because the present interest is focused on the complex phase information, where a rigorous 

consideration of this averaging effect is not straight-forward.

In Figure. 3 (bottom, left), the complex phase of the final state wave function ^+ 

for 2p(me=+1) ionization is shown. Generally, it varies between _n  and n and depends on 

both, the energy and the emission direction of the photoelectron. It is important to note that 

the plotted phase information is only meaningful, where the intensity of the wave function is 

significant. This corresponds to the region around a momentum of about 0.1 a.u.. While the 

phase oscillates very fast at smaller and larger momenta, it changes comparably slow with 

energy within this range, and it covers three 2^-cycles for the full range of the azimuthal 

angle <p, which is consistent with Eq. 2.

It is important to note that the two-path interference in Eq. 1 does not directly 

depend on the phase of ^+ plotted in Figure. 3 (bottom, left), but it is rather contingent 

on the phase difference A<p between the final states ^+ and ^_ for opposing initial target
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Figure 3. (Top row) Calculated photoelectron momentum distributions in the plane for 
ionization of the 2p(mc=+1) (left) and 2s (right) initial states. (Bottom row) complex phase 
of the final state wave function ^+ for ionization of the 2p(ml=+1) initial state (left), and 
cosine of the phase difference between ^+ and ^_ (right).

polarizations. This phase difference can be calculated by exploiting the fact that the systems 

with opposing initial orbital angular momentum me = +1 and -1  are mirror images of one 

another, and it is ^ + ( = ifr_(_ip) . The obtained cosine of the phase difference cos A<p is 

plotted in Figure. 3 (bottom, right). Interestingly, it shows only a marginal dependence on 

the photoelectron energy. In the direction of the azimuthal angle <p in contrast, it undergoes 

six full oscillations. The validity of the two-path interference picture formulated in Eq. 1 

can now be tested by comparing the calculated momentum distribution for 2s ionization 

(corresponding to \fcs I ) with the intensity of the superposition of the two wave functions 

for 2p  ionization \^+ + ^_\ . The momentum distributions obtained by these two different 

methods are shown in Figure. 4 and are in excellent agreement with each other.

In the discussion above it is shown that the final momentum distribution for 2s 

ionization (which corresponds to | ^  I ) can be calculated using the (complex) information 

of the final state wave function ^+ of a different process, namely of the ionization of the 

polarized 2p(me=+1) initial state. It is important to note that this is not possible with the
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Figure 4. Intensity of the interfering final state wave function for 2p  ionization with initial 
magnetic quantum numbers me = -1  and +1 (left). Calculated momentum distribution for 
2s ionization (right) (same as Figure. 3, top right).

experimental data, because only the absolute square of the final state wave function ^+ is 

directly measured, but not its phase. However, the relative phase between ^_ and ^+ can 

be extracted by reversing the above procedure and solving Eq. 1 for the phase difference, 

yielding

cos A(p = |A • ^ | 2 _|<A+|2 
2 \&+\ |^ _ |

|<A-|2 (3)

Here, the factor A can be determined, because the total flux is conserved, i.e. -  in terms of 

the well-known picture of Young’s double slit -  the final total intensity has to equal the sum 

of intensities going through each slit individually. Therefore, the interference term does 

not change the total intensity and the factor A must fulfill the condition ^  d3p  | A ^ 2s |2 = 

/  d3 p ( |^ _ |2 + |f+ |2) .

Equation 3 can now be employed in order to calculate the phase difference A<p from 

the experimental data. However, using fully differential data yields unsatisfactory results, 

because the photoelectron energy differs slightly for the ionization of the 2s and 2p  states 

owing to the slight detuning of the femtosecond laser frequency from the 2s-2p  resonance 

(see Figure. 2). However, the theoretical analysis above showed that the phase difference
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Figure 5. (Left) Experimental photoelectron angular distributions as a function of the 
azimuthal angle <p for the few-photon ionization of lithium initially in the 2s (solid green 
line) and 2p  state with me = +1 (red dashed line and solid squares) and -1  (blue dotted 
line and open triangles). The lines are basis splines to guide the eye. (Right) Experimental 
and theoretical cosine of the phase difference cos A<p as a function of the photoelectron 
azimuthal angle <p.

does not depend on the photoelectron energy, but only on its azimuthal angle (see Figure. 3, 

bottom right). Therefore, angular differential data integrated over the photoelectron energy 

suffices to calculate the phase difference.

The experimental photoelectron angular distributions are shown in Figure. 5 (left). 

While the distributions for the ionization for the 2s and the 2p(me=+1) initial states are 

measured directly in our experiment, the data for 2p(me= -1) is obtained by reflecting the 

data for the opposite target polarization on the laser polarization axis. Using these angular 

distributions, the phase difference is calculated with Eq. 3, plotted in Figure. 5 (right), and 

compared to the theoretical model. The distribution features six crests and troughs whose 

positions agree very well for theory and experiment. However, some discrepancies are 

observed in the magnitude. While the calculated curve reaches the maximum and minimum 

values of +1 and -1 , respectively, the oscillation is weaker in the experimental data. Gener­

ally, a value of +1 for cos A<p corresponds to the maximum constructive interference which 

is expected at angles where the angular distribution for 2s ionization has a local maximum. 

Correspondingly, cos A<p = -1  means maximum destructive interference, which should 

occur at local minima in the differential 2s ionization data. There are two effects that might 

blur these interferences in the experimental data: First, a small but non-negligible exper­
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imental angular uncertainty contributes. And second, the experimental data represent an 

average over a laser intensity range, as already discussed above. As the angular distributions 

are not independent of the laser intensity (see Figure. 2), this will also result in a blurring 

of the distribution. Overall, the phase differences obtained from the experimental data 

are consistent with our theoretical model, thereby supporting the validity of the two-path 

picture developed here.

4. CONCLUSION

In conclusion, we studied the details of electron emission in few-photon ionization 

of lithium atoms initially either in the 2s ground state or in the polarized 2p(ml=+1) excited 

state by radiation close to the 2s-2p resonance. We exploited the fact that the 2s state can be 

ionized through two possible pathways, specifically through the 2p  resonance with either 

me = +1 or -1 . These two pathways interfere in the final state and resemble a double-slit. 

Because our experiment allows to obtain the differential cross sections for the 2s and the 

2p  initial states separately, we are able measure the final wave with both "slits" open, or 

with one "slit" closed. Therefore, the data allow to extract the interference term, thereby 

providing information on the phase factors of the wave functions. The obtained phases are 

in good agreement with our theoretical model.

Moreover, several interesting features are observed in the present data, which were 

reported for similar systems in preceding studies: First, the 2s and 2p  energy levels ex­

perience a splitting that depends on the laser intensity due to the Autler-Townes effect. 

The observed splitting is consistent with previously published data for few-photon ioniza­

tion of lithium at the same wavelength with circularly polarized light [12]. Second, the 

photoelectron angular distributions after ionization of the polarized 2p  state are not sym­

metric with respect to the laser polarization, but the peaks are shifted. The wavelength 

and intensity dependence of this effect known as magnetic dichroism was systematically 

studied in [1]. Moreover, the peak structures in the present angular differential spectra are
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in direct contradiction to the lowest-order perturbation theory, which is generally expected 

to yield reasonable results at the rather moderate intensities used in our experiments. These 

discrepancies are explained by Rabi oscillations due to the coupling of the 2s and 2p states 

in the ionizing laser field (see also [1]).

It is worth noting that the present method is not the only way to get access to the final 

state's phase. The angular distributions can be fitted using model functions described by a 

superposition of partial waves (cf. Equation. 2), which -  under certain conditions -  allows to 

extract the complex amplitudes of the final state. For single-photon ionization, these type of 

complete studies were pioneered in the 1990s using polarized atomic targets [5, 20, 32]. In 

the multiphoton ionization regime, phase information was obtained by ionizing atoms with 

elliptically polarized light [13, 40]. However, the present scheme exploiting the resonance 

enhancement through two magnetic sub-levels provides direct and intuitive access to the 

interference term and the final phase information.

Two- are multi-path interferences in few-photon ionization are well suited for quan­

tum control schemes, if the relative phases and intensities of the different paths can be reg­

ulated (e.g. [19]). It is interesting to conceive such a scheme for the present system. In fact, 

controlling the relative (complex) amplitudes of the transient 2p(mc= -1) and 2p(mc=+1) 

populations is experimentally straight-forward. The transitions from the 2s ground state to 

the two polarized excited 2p  levels are driven by left- and right-handed circularly polarized 

laser radiation, respectively, propagating in the z-direction. The superposition of these two 

fields with equal intensity corresponds to linearly polarized light like it is used in the present 

experiment. The change of their relative phase corresponds to a rotation of the polarization 

direction in the vy plane. The change of the relative intensities is achieved by introducing 

an ellipticity to the radiation. In the present scheme, quasi-monochromatic light is used and 

changes of the laser polarization would also affect the ionization steps after populating the 

resonant 2p  levels. However, the effect on the excitation process and the ultimate ionization 

could be de-coupled by using bichromatic laser fields with a weak contribution close to
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the 2s-2p  resonance and a stronger contribution off resonance. Such an experiment would 

allow to prepare an atomic target in a coherent superposition of excited magnetic sub-states 

before ionizing it, thereby providing numerous possibilities to analyze and control the final 

state.
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SECTION

3. SUMMARY AND CONCLUSIONS

This dissertation contains the description of newly developed experimental tools 

using the most advanced methods available in atomic, molecular, and optical physics 

to achieve the control as well as analysis of the systems under investigation. First, we 

developed an all-optical atom trap (AOT) to confine a gaseous lithium atom sample in a 

small volume in an ultra-high vacuum chamber and cool it down to temperatures in the 

millikelvin range. The AOT operates with lasers near the 2s-2p resonance of lithium and 

leaves about 25 % of the atoms in the excited and polarized 2p(ml =+1) state. Second, these 

atoms are subjected to intense laser radiation. To this end, we implemented a femtosecond 

laser source providing pulses at tunable optical frequencies with pulse durations between 

65 and 8fs and intensities of typically about 10n -1012 W/cm2. And third, in order to 

characterize the fragmentation of the atoms in the intense laser field we employed an 

electron and ion momentum spectrometer measuring the three-dimensional momentum 

vectors of the lithium fragments after ionization processes.

These experimental tools were used in several measurements studying two-, three, 

and four-photon ionization of lithium by linearly polarized light. The target initial state 

was prepared either in the unpolarized (spherically symmetric) 2s state or in the polarized 

2p(ml = +1). The data obtained in this experiments revealed several interesting features 

which are subsumed in two manuscripts:

The first paper deals with symmetry breakings in photo-electron angular distribution 

(PAD) for the ionization of polarized atoms is observed. For spherically symmetric or ran­

domly oriented targets, the laser polarization direction represents generally a symmetry axis 

(in the electric dipole approximation). This symmetry is clearly broken for the ionization of
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Li(2p, me = +1). Similar phenomena occur for the absorption by ferromagnetic materials 

and are referred to as Magnetic Dichroism (MD). Our experiment represents a particularly 

clean and fundamental realization of this effect, and we were able to pin the requirements 

down under whihc such asymmetries occur. Our result expected to impact also so-called "at- 

toclock" experiments, which aim to extract time-delays of the uantum-mechanical tunneling 

process in the strong-field ionization of atoms.

For the second manuscript, we studied the details of electron emission if the lithium 

atoms are subjected to radiation close to the 2s-2p resonance (at 670 nm). We observed 

significant impacts of this resonance on the ionization dynamics: First, the energy levels 

experience a splitting that depends on the laser intensity due to the Autler-Townes effect. 

Second, the electron angular distributions after ionization of the excited 2p state feature 

structures that are in direct contradiction to the lowest-order perturbation theory, which is 

generally expected to yield reasonable results at the rather moderate intensities used in our 

experiments. We were able to explain these discrepancies by Rabi oscillations due to the 

coupling of the 2s and 2p states in the ionizing laser field. And Third, we exploited the 

fact that the 2s state can be ionized throught two possible pathways, specifically through 

the 2p resonance with either me = +1 or -1 . These two pathways interfere in the final state 

and resemble a double-slit like in the historical optical experiment performed by Thomas 

Young in 1801. Because our experiment allows to obtain the differential cross sections for 

the 2s and the 2p initial states separately, we are able measure the final wave with both 

"slits" open, or with one "slit" closed. These data allow to extract the interference term and, 

therefore, it provides information on the phase factors of the wave functions. The extracted 

phases are in good agreement with our theoretical model.

Overall, the new observations deepen our understanding of light matter interaction, 

they provide insights into fundamental symmetries, and they help to develope and refine 

tools for the quantum-control of atomic and subatomic particles.
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