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ABSTRACT 

In this research three artificial intelligent (AI)-based techniques are proposed to 

regulate the voltage and frequency of a grid-connected inverter. The increase in the 

penetration of renewable energy sources (RESs) into the power grid has led to the 

increase in the penetration of fast-responding inertia-less power converters. The increase 

in the penetration of these power electronics converters changes the nature of the 

conventional grid, in which the existing kinetic inertia in the rotating parts of the 

enormous generators plays a vital role. The concept of virtual inertia control scheme is 

proposed to make the behavior of grid connected inverters more similar to the 

synchronous generators, by mimicking the mechanical behavior of a synchronous 

generator. Conventional control techniques lack to perform optimally in nonlinear, 

uncertain, inaccurate power grids. Besides, the decoupled control assumption in 

conventional VSGs makes them nonoptimal in resistive grids.  

The neural network predictive controller, the heuristic dynamic programming, and 

the dual heuristic dynamic programming techniques are presented in this research to 

overcome the draw backs of conventional VSGs. The nonlinear characteristics of neural 

networks, and the online training enable the proposed methods to perform as robust and 

optimal controllers. The simulation and the experimental laboratory prototype results are 

provided to demonstrate the effectiveness of the proposed techniques. 



 

 

v

ACKNOWLEDGMENTS 

First, I would like to thank my family, my parents, brother, and my lovely wife, 

who have always been supportive, caring, and helpful. They have always been 

encouraging me to do better, and to be successful.  

I would like to express my special gratitude to my PhD advisor Dr. Pourya 

Shamsi and my co-advisor Dr. Mehdi Ferdowsi. I would not be here if they had not 

believed in me and trusted me. They have been supporting me in all aspects of my life, 

including technical support, financial support, and so other perspectives of my life for the 

past three years.  

I would like to thank my committee members, Dr. Jonathan Kimball and Dr. Rui 

Bo. During my PhD studies, I was lucky to get the chance to cooperate in the extreme 

fast charging project. I have learnt a lot, gained a great variety of experiences, and used 

their valuable advises. Moreover, I would like to thank Dr. Ali Rownaghi for accepting to 

be a member of my technical committee and giving me several appreciated recommends. 

My journey in the machine learning world would not be started if it were not for Dr. 

Donald Wunsch’s suggestions, and I will always be grateful for his support and 

recommendations.  

Finally, I would like to thank all the friends who have helped to finish my long 

academic journey.  

 



 

 

vi

TABLE OF CONTENTS 

Page 

PUBLICATION DISSERTATION OPTION ................................................................... iii 

ABSTRACT ....................................................................................................................... iv  

ACKNOWLEDGMENTS ...................................................................................................v 

LIST OF ILLUSTRATIONS ...............................................................................................x 

LIST OF TABLES ........................................................................................................... xiii 

NOMENCLATURE ........................................................................................................ xiv  

SECTION 

1. INTRODUCTION ................................................................................................. 1 

PAPER 

I.  POWER AND FREQUENCY REGULATION OF SYNCHRONVERTERS                                     
USING A MODEL FREE NEURAL NETWORK-BASED PREDICTIVE 
CONTROLLER ..................................................................................................... 5 

ABSTRACT .................................................................................................... 5 

1. INTRODUCTION ....................................................................................... 6 

2. VIRTUAL SYNCHRONOUS GENERATOR ........................................... 9 

2.1. PRINCIPLE OF VSG ......................................................................... 9 

2.2. POWER FLOW EQUATION .......................................................... 11 

3. NEURAL NETWORK PREDICTIVE CONTROL FOR VSG ................ 12 

3.1. MODEL PREDICTIVE CONTROL (MPC) ................................... 13 

3.2. NEURAL NETWORK PREDICTIVE CONTROLLER ................. 14 

3.3. IMPLEMENTATION OF NNPC ON VSG ..................................... 18 



 

 

vii

4. SIMULATION RESULTS ........................................................................ 21 

4.1. INDUCTIVE TRANSMISSION LINE ........................................... 21 

4.2. RESISTIVE TRANSMISSION LINE ............................................. 22 

5. EXPERIMENTAL RESULTS .................................................................. 24 

6. CONCLUSION ......................................................................................... 29 

REFERENCES .............................................................................................. 30 

II. ADAPTIVE CRITIC DESIGN-BASED REINFORCEMENT LEARNING 
APPROACH IN CONTROLLING VIRTUAL INERTIA-BASED   GRID-
CONNECTED INVERTERS .............................................................................. 33 

ABSTRACT .................................................................................................. 33 

1. INTRODUCTION ..................................................................................... 34 

2. GRID-CONNECTED VIRTUAL SYNCHRONOUS GENERATOR ..... 37 

2.1. VIRTUAL SYNCHRONOUS GENERATOR ................................ 38 

2.2. POWER ANGLE AND POWER FLOW EQUATIONS................. 40 

3. HEURISTIC DYNAMIC PROGRAMING .............................................. 42 

3.1. CRITIC NEURAL NETWORK ....................................................... 44 

3.2. ACTION NEURAL NETWORK ..................................................... 46 

4. SIMULATION RESULTS ........................................................................ 48 

4.1. INDUCTIVE GRID ......................................................................... 50 

4.2. RESISTIVE GRID ........................................................................... 51 

5. EXPERIMENTAL RESULTS .................................................................. 52 

5.1. GRID CONNECTING PROCEDURE ............................................ 53 

5.2. PROTECTION ................................................................................. 54 

5.3. TRAINING THE NETWORKS ....................................................... 55 



 

 

viii 

5.4. RESISTIVE GRID CONNECTION ................................................ 59 

6. CONCLUSION ......................................................................................... 62 

REFERENCES .............................................................................................. 63 

III. THE ACTIVE AND REACTIVE POWER REGULATION OF GRID-
CONNECTED VIRTUAL INERTIA-BASED INVERTERS BASED ON    
THE VALUE GRADIENT LEARNING .......................................................... 67 

ABSTRACT .................................................................................................. 67 

1. INTRODUCTION ..................................................................................... 68 

2. GRID-CONNECTED VIRTUAL SYNCHRONOUS GENERATOR ..... 72 

2.1. VIRTUAL SYNCHRONOUS GENERATOR ................................ 72 

2.2. POWER ANGLE AND POWER FLOW EQUATIONS................. 75 

3. DUAL HEURISTIC DYNAMIC PROGRAMING .................................. 77 

3.1. CRITIC NEURAL NETWORK ....................................................... 79 

3.2. ACTION NEURAL NETWORK ..................................................... 81 

4. SIMULATION RESULTS ........................................................................ 82 

4.1. INDUCTIVE GRID ......................................................................... 84 

4.2. RESISTIVE GRID ........................................................................... 84 

5. EXPERIMENTAL RESULTS .................................................................. 86 

5.1. TRAINING THE NETWORKS ....................................................... 87 

5.2. RESISTIVE GRID CONNECTION ................................................ 89 

6. CONCLUSION ......................................................................................... 93 

REFERENCES .............................................................................................. 94 

 

 



 

 

ix

SECTION 

2. CONCLUSIONS AND RECOMMENDATIONS .............................................. 97 

REFERENCES ................................................................................................................. 99  

VITA ................................................................................................................................101  

 

  



 

 

x

LIST OF ILLUSTRATIONS 

PAPER I Page 

Figure 1. Block diagram of a typical grid-connected synchronverter .............................. 10 

Figure 2.  (a)  The inverter averaging model of a grid-connected inverter (b) The 
equivalent circuit of the inverter averaging model of a grid-connected    
inverter .............................................................................................................. 11 

Figure 3.  Multi-layer feedforward neural network .......................................................... 15 

Figure 4.  Training procedure for a feedforward neural network presenting the system 
model ................................................................................................................ 16 

Figure 5.  Neural network predictive controller block diagram ........................................ 17 

Figure 6.  VSGs block diagram using NNPC ................................................................... 18 

Figure 7.  Comparison of the performance of NNPC VSG and traditional VSG   
connected to the inductive grid ........................................................................ 21 

Figure 8.  Comparison of the performance of NNPC VSG and traditional VSG   
connected to the resistive grid. ......................................................................... 22 

Figure 9.  Block diagram of tuned PI controller for resistive grids .................................. 23 

Figure 10.  Three-phase grid-connected inverter test bed ................................................. 25 

Figure 11.  Injected active and reactive power from a three-phase grid connected 
synchronousverter facing active power reference changes ............................. 27 

Figure 12.  The phase output voltage and the line current of synchronousverter            
after the low-pass filter .................................................................................. 28 

Figure 13.  Injected active and reactive power from a three-phase grid connected 
synchronverter facing reactive power reference changes .............................. 28 

PAPER II 

Figure 1. The block diagram of the traditional VSGs ....................................................... 39 

Figure 2. The block diagram of the decoupled approach for VSGs. ................................ 40 



 

 

xi

Figure 3. The simplified circuit diagram of a grid-tied VSG based on the average      
model ................................................................................................................ 40 

Figure 4. The block diagram of HDP including two subnetworks ................................... 44 

Figure 5. Fully connected feedforward neural network .................................................... 45 

Figure 6. The grid-connected VSG controlled by a neural-network-based HDP ............. 48 

Figure 7. The active/reactive tracking of a conventional VSG and an HDP-based        
VSG in an inductive grid connection ............................................................... 50 

Figure 8. The active/reactive tracking of a conventional VSG and an HDP-based        
VSG in a resistive grid connection ................................................................... 51 

Figure 9. Three-phase grid-connected inverter test bed .................................................... 52 

Figure 10. The block diagram of the test bed ................................................................... 53 

Figure 11. The block diagram of the protection ............................................................... 55 

Figure 12. The phase output voltage and the line current of synchronverter after the     
low-pass filter.................................................................................................. 60 

Figure 13. Injected active and reactive power from a three-phase grid connected 
synchronverter facing reactive power reference changes ............................... 61 

Figure 14. Injected active and reactive power from a three-phase grid connected 
synchronverter facing active power reference changes .................................. 62 

PAPER III 

Figure 1. The block diagram of the traditional VSGs ....................................................... 73 

Figure 2. The block diagram of the decoupled approach for VSGs ................................. 74 

Figure 3. Equivalent circuit diagram of a grid connected VSG ........................................ 75  

Figure 4. The block diagram of the proposed controller for VSG .................................... 79 

Figure 5. DHP-based synchronverter block diagram ........................................................ 82  

Figure 6. The performance of the DHP-based VSG and the conventional PI-based      
VSG in an inductive grid .................................................................................. 85 

Figure 7. The performance of the DHP-based VSG and the conventional PI-based      
VSG in a resistive grid ..................................................................................... 86 



 

 

xii

Figure 8. Three-phase grid-connected inverter test bed .................................................... 87 

Figure 9. The phase output voltage and the line current of synchronverter after              
the low-pass filter ............................................................................................. 90 

Figure 10. Injected active and reactive power from a three-phase grid connected 
synchronverter facing active power reference changes .................................. 91 

Figure 11. Injected active and reactive power from a three-phase grid connected 
synchronverter facing reactive power reference changes ............................... 92 

 



 

 

xiii 

LIST OF TABLES 

PAPER I Page 

Table 1. Simulation parameters ........................................................................................ 19 

Table 2. PI parameters for the simulation design ............................................................. 24 

Table 3. Experimental testbed parameters ........................................................................ 26 

Table 4. PI parameters ...................................................................................................... 26 

PAPER II 

Table 1. PI parameters ...................................................................................................... 49 

Table 2. VSG and power system parameters .................................................................... 49 

Table 3. PI parameter for the experimental testbed .......................................................... 58 

Table 4. Experimental testbed parameters ........................................................................ 58 

PAPER III 

Table 1. System parameters used in simulation ................................................................ 83  

Table 2. Experimental test bed parameters ....................................................................... 89 

 

 



 

 

xiv

NOMENCLATURE 

Symbol    Description  

RES Renewable Energy Source 

SG Synchronous Generator 

VSG Virtual Synchronous Generator 

PLL Phase-Locked Loop 

PI Proportional Integral 

NNPC Neural Network Predictive Controller 

MPC Model Predictive Controller 

HDP Heuristic Dynamic Programming 

ACD Adaptive Critic Design 

DHP Dual Heuristic Programming 

PV Photovoltaic 

VSG Voltage Source Converter 

W Kinetic Energy 

J Moment of Inertia 

ω  Rotational Speed 

P  Input Power 

P  Output Power 

θ  Rotational Angle 

Q  Reactive Power Reference 

Q  Reactive Power Output 



 

 

xv

D  Voltage Droop Coefficient 

k Regulation Factor 

E Inverter Voltage Amplitude 

L  Filter Inductance 

R  Filter Resistance 

L  Line Inductance 

R  Line Resistance 

Z  Equivalent Impedance 

δ Power Angle 

Xc(t) State Space Vector 

Uc(t) Control VEctor 

Yc(t) Output Vector 

T  Sampling Time 

γ Discount Factor 

W  Neural Network Weight Matrix 

b  Neural Network Bias Vector 

 

 



 

 

SECTION 

1. INTRODUCTION 

The concern regarding the environmental and energy crisis has been increase 

during the last decades. Therefore,  the penetration of renewable energy sources (RESs) 

into the power grid, as clean a source of energy, have been increased significantly. The 

most conventional approach to integrate renewable energy resources into the power grid 

is through grid-connected inverters. The conventional method to control a grid-connected 

inverter is through the utilization of the direct current/power regulation control scheme. 

The fast-responding and inertia-less inherence of the conventional power electronics 

converter distinguish them from conventional synchronous generators (SGs), as the main 

source of generation in the power grid. The increase in penetration of power electronics-

based renewable energy resources into the power grid changes the power grid and 

extremely affects the stability of the power grid, particularly in weak grids and 

microgrids [1]-[3]. 

 The balance between the load and generation defines the frequency stability of 

the power system. The existing kinetic inertia in the rotating parts of the enormous 

synchronous generators and turbines plays a significant role in improving the stability of 

the power grid by maintaining the balance between the demand and generation. The 

rotating parts can maintain the generation-load balance by absorbing/releasing the 

excessive energy. The concept of virtual synchronous generator (VSG) has been 

introduced to tackle the drawbacks of conventional direct-power grid-connected 
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inverters. The VSG concept is a control scheme which mimics the mechanical behavior 

of a synchronous generator. In other words, the mechanical characteristics such as the 

moment of inertia and the damping parameter are implemented in the form of differential 

equations to behave like a synchronous generator. In this method, the difference between 

the reference active power and the generated active power defines the frequency of the 

inverter based on the swing power equation [4]-[6].  

The main drawback of the VSG concept is to increase the stability of the power 

system by emulating a virtual inertia to absorb/generate the excessive power. Unlike the 

conventional grid-connected inverter which requires a phase-locked loop (PLL), the VSG 

control scheme does not need a PLL. The implementation of highly nonlinear PLL adds 

to instability of the controller, particularly during the transient. Therefore, not only the 

stability of the power system is improved by the concept of virtual inertia, but also 

removing a PLL significantly improves the performance of the VSG-based inverters. 

Besides, by mimicking the behavior of the synchronous generator, penetration of 

renewable energy resources does not change the conventional SG-based power grids [7]  

The conventional VSG control scheme has two main disadvantages: (i) designed 

for the inductive grids, and (ii) designed based on the conventional linear controller. The 

first drawback of the VSG is that the system is designed for the high voltage grids, which 

are basically inductive grids. It means that the transmission line between the inverter and 

the grid is mostly inductive. Therefore, the active power and reactive power can be 

controlled in a decoupled approach. Consequently, the active power can be controlled by 

the frequency or the rotating angle, and the reactive power can be regulated by the 

magnitude of the inverter voltage. However, if the connection is semi-resistive or 
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resistive, which is the case for low-voltage grids and micro grids, the decoupled 

assumption is no longer valid. In other words, both the rotating angle and the magnitude 

of the voltage play role in controlling the active and reactive power. The reactive power 

is controlled by a conventional proportional integral (PI) or integral (I) controller. The 

conventional PI/I controller are linear controllers, which are designed to control linear 

system. The power system consists of  various nonlinear parts such as inductors and 

transformer which makes the system highly nonlinear.  To be able to design and 

implement a conventional linear controller, the nonlinear system requires to be linearized 

in the neighborhood of the nominal operating point. Therefore, if the operating point 

changes the controller parameters require to be redesigned. Consequently, conventional 

VSG controller are not suitable for the resistive grids or the system with varying 

operating point [8]-[10].  

In this research three approaches are proposed to tackle the drawbacks and to 

improve the performance of a grid connected VSG. The first approach is the utilization of 

a model-free neural network predictive controller (NNPC) [11] and [12]. In this 

approach, the exact model and parameters of the system are not required. The model 

neural network can be trained to perform as an approximator for the model of the system. 

Besides, the NNPC is based on the model predictive control (MPC), which is a nonlinear 

optimal controller for a finite time horizon. Therefore, this approach tackles both 

drawbacks of the conventional VSG. The optimization in a finite time horizon is the 

limitation of this method. By increasing the optimization time period, the computation 

gets more time consuming. To address this limitation, a control approach based on the 

heuristic dynamic programming (HDP) is proposed in the second paper. The HDP is an 
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approximation for the optimal dynamic programming. The HDP is an adaptive critic 

design (ACD) technique which optimally performs as a controller in an infinite time 

horizon. This approach tackles both drawbacks of the conventional VSG as an adaptive 

nonlinear controller. Since the training procedure should be done in the entire state space, 

training the neural network in the HDP controller is time consuming [13] and [14]. In the 

third paper, a dual heuristic dynamic programming (DHP) is proposed to regulate a grid-

connected inverter. To train the neural network regarding the DHP, it is sufficient to 

perform the exploitation in the vicinity of the optimal trajectory [15]-[18]. Therefore, this 

method can be trained faster and perform similar advantages of the HDP-based VSG.  
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PAPER 

I. POWER AND FREQUENCY REGULATION OF SYNCHRONVERTERS 
USING A MODEL FREE NEURAL NETWORK-BASED PREDICTIVE 

CONTROLLER 

Sepehr Saadatmand, Pourya Shamsi, and Mehdi Ferdowsi 

Department of Electrical Engineering, Missouri University of Science and Technology, 
Rolla, MO 65409 

ABSTRACT 

Recent trends in the utilization of renewable and sustainable energy sources have 

led to an increased penetration of inertia-less power electronics-based energy resources 

into the electrical grid.  The concept of the virtual synchronous generator (VSG) has 

recently been studied to overcome the drawbacks of the fast-responding inertia-less 

inverter by mimicking the behavior of a traditional synchronous generator. The majority 

of literature on VSGs assume the operation of VSGs in inductive networks; however, 

such control algorithms do not operate well in a more resistive network such as a low 

voltage distribution network. This paper introduces a new neural network–based 

predictive control for VSGs that is capable of operating optimally in both inductive and 

resistive networks by optimizing the total tracking error during transients. After the 

introduction of the control scheme, simulation and experimental results are provided to 

evaluate the effectiveness of the proposed algorithm in reducing oscillations and settling 

time. 
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1. INTRODUCTION 

Integration of renewable energy sources (RESs), such as wind turbines and 

photovoltaic (PV) arrays, into the traditional power grid has been steadily rising. Energy 

produced by these resources is often injected into the power grid using Voltage Source 

Converters (VSC). Consequently, the penetration of power inverters is increasing rapidly. 

Direct power/current control through methods such as vector control is the most common 

approach in controlling these inverters [1]–[3].  

Although direct power control is a popular approach and is easy to implement, 

there have been studies on how to replace it with new control schemes to overcome its 

drawbacks. There are two main issues with direct power controllers: (i) lack of inertia 

and frequency irresponsiveness and (ii) the requirement for a phase-locked loop (PLL). 

The frequency of conventional power grids is stabilized by the rotating mass of 

synchronize generators (SGs). Due to the rotating rotor/turbine, there is a large amount of 

angular momentum available in the grid, which compensates for sudden changes or 

disturbances in the power flow. Hence, the existence of kinetic inertia in traditional 

power systems makes the systems robust against instability. Increasing the penetration of 

inverter-based DGs that do not have inertia leads to vulnerability of the system against 

sudden variations in the power flow [4]–[7]. Additionally, the direct power control 

requires a PLL to measure the grid’s frequency and the initial angle. PLLs dynamics can 

impose additional stability concerns during transients, which can lead to instability of the 

system [8]–[12]. To overcome the aforementioned drawbacks associated with direct 

power control, the virtual synchronous generator (VSG) technology has been proposed 
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[13]–[15]. In the VSG concept, the inverter mimics the characteristics of a synchronous 

generator through the implementation of a virtual inertia in its dynamic model. By 

feeding the power reference commands as inputs to the VSG, the frequency, phase angle, 

and the voltage amplitude will be generated unlike a traditional direct power/current 

control approach, a VSG acts similarly to a synchronous generator. This will lead to 

improved system robustness and will eliminate the PLL requirements [16]–[19]. 

Several studies have explored different aspects of VSG controllers. The 

fundamental component in a VSG control scheme is the standard generator swing 

equation.  Hence, in the majority of the literature, researchers have limited their work to 

optimizing the swing parameters, including the virtual inertia and the damping factor. In 

[20], the damping parameter and the moment of inertia parameter is defined using the 

particle swarm optimization (PSO) algorithm to optimize the deviation in the voltage and 

the frequency. A fuzzy-logic technique is used in [21] to compute the virtual inertia 

constant.  A VSG with an alternating moment of inertia is suggested in [22] to improve 

the oscillation damping. However, in all of these studies, the main focus is on tuning 

VSG parameters. There have been several methods proposed to improve the VSG’s main 

equations. Most of the proposed VSGs are studied for high-voltage grids with inductive 

transmission lines, and decoupled control techniques were used for the active and the 

reactive power [23]. To address this drawback, a power-angle synchronization method 

has been studied by several authors. In this technique, the inverter is a VSC, and its 

output voltage is adjusted to deliver the active and the reactive power demands. In this 

method, the active and the reactive power equations are changed in a way to enhance the 

power stability. The existing study on the power-angle synchronization method is limited 
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to high or medium-voltage systems [24]–[27], except for [28], which has investigated 

low voltage networks.  In [29], the grid is analyzed, and a resistive compensator is 

designed to ensure the decoupled control for the active and reactive power.  

Distinctively, this paper focuses on low-voltage grids. A microgrid with a weak 

grid and RESs and local loads, such as electric vehicles, can be a good example of this 

type of grid. The proposed method can be used to interconnect a storage source into the 

grid and enhance the grid stability by applying VSG control. As mentioned previously, 

the transmission line in low voltage grids is mostly resistive meaning that the 

active/reactive equations are completely different from those of an inductive grid. The 

main contributions of this paper include: 

1) Analyzing the power delivery equations for the VSGs in a low voltage grid. 

2) Proposing a neural network–based predictive controller to optimize the power 

system stability and the power fluctuations in both inductive and resistive grid 

connections. 

3) Using the proposed neural network predictive controller to improve the system 

robustness under severe reference changes 

The proposed controller inherits both inertia properties of SGs and the fast 

dynamic of the power inverters.  

The rest of this paper is organized as follows. Section 2 describes a brief review 

of frequency regulation and power control in virtual inertia–based power inverters. In 

Section 3, the power flow equations are presented and the difficulties of the 

implementation of VSGs in low voltage grids are explained. The neural network 

predictive controller concept is introduced in Section 4.  Lastly, simulation and 
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experimental results are provided in Section 5 to validate the effectiveness of the 

proposed controller method. 

 

2. VIRTUAL SYNCHRONOUS GENERATOR 

The matching between the load and demand in a grid defines the frequency 

deviation. During steady state operation of the system, secondary and tertiary control 

methods, including the power dispatch commands, will balance the load-demand 

equation. During transients, the rotating kinetic inertia of SGs is the primary stabilization 

mechanism used to smoothen the variations in frequency. To mimic this behavior, a VSC 

model has to be integrated into a power inverter. In this section, a VSG model is 

developed that can be used for both resistive and inductive grids. 

2.1. PRINCIPLE OF VSG 

The controller block diagram of a grid-connected VSG is shown in Figure 1. The 

concept of the VSG is based on the kinetic energy of the rotor which can be expressed as 

 𝑊 =
1

2
J𝜔  (1) 

where 𝑊 is the kinetic energy of the rotor, and  J and 𝜔  are the rotor moment of inertia 

and the rotor rotational speed, respectively. By taking the derivative of both sides of (1) 

and adding the damping factor, the swing equation can be written as 

 𝑃 − 𝑃 = J𝜔
𝑑𝜔

𝑑𝑡
− D ∙ ∆𝜔  (2) 

where 𝑃 and 𝑃  are the input and output power, respectively. The damping coefficient 

of the active power is represented by D. In (2), ∆𝜔  can be defined as ∆𝜔 = 𝜔 −
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𝜔 , where 𝜔 is the reference frequency or the grid frequency. The virtual 

mechanical phase 𝜃   can be computed by taking the integral from 𝜔 as 

 𝜃  =  𝜔 ∙ dt (3) 

where 𝜃  can be the phase control command fed to the inverter for different amplitudes 

of voltage. Moreover, the following equation is employed for the reactive power 

command as 

 𝐸 =  
1

𝑘
𝑄 − 𝑄 + 𝐷 𝑉 − 𝑉  (4) 

where 𝑄 , and 𝑄  represent the reactive power reference and the output reactive 

power, respectively. The parameters 𝐷   and 𝑘 are presenting the voltage droop 

coefficient of reactive power and the regulating factor of reactive power, respectively. In 

addition, 𝑉 , 𝑉, and 𝐸 are the reference voltage amplitude, the inverter output voltage 

amplitude, and the amplitude of electromotive force or in the case of VSG the virtual 

electromotive force, respectively.  

 

 
Figure 1. Block diagram of a typical grid-connected synchronverter 
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2.2. POWER FLOW EQUATION 

The averaging model of a three-phase grid-connected inverter is shown in Figure 

2. To simplify the equations and to highlight the importance of the line parameters, 

filtering capacitors and local loads are ignored. As shown, an inverter is connected to the 

grid with the per phase filtering inductance of Lf with the internal resistance of Rf where 

the subscript ‘f’ stands for filter. The inverter is connected to the grid with a transmission 

line with the per phase inductance of Ll and the resistance of Rl where the subscript ‘l’ 

stands for line. Assuming that the grid rotational frequency is ωg, the total impedance 

between the inverter and the grid can be written as Zeq = Req+ jXeq where Req= Rf+ Rl, 

Xeq= ωg Leq, and Leq= Lf+ Ll; the subscript ‘eq’ stands for equivalent. The per phase 

power flow equation from inverter to the grid can be written as: 

 𝑄 =
1

2

𝐸

𝑍
−

𝐸𝑉 cos 𝛿

𝑍
𝑋 −

𝐸𝑉

𝑍
𝑅 sin 𝛿  (5) 

 𝑃 =
1

2

𝐸

𝑍
−

𝐸𝑉 cos 𝛿

𝑍
𝑅 +

𝐸𝑉

𝑍
𝑋 sin 𝛿  (6) 

 
(a) 

 
(b) 

Figure 2.   (a)  The inverter averaging model of a grid-connected inverter (b) The 
equivalent circuit of the inverter averaging model of a grid-connected inverter 
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where 𝑃  and 𝑄  are the per phase active and reactive power transferred from the 

inverter to the grid, respectively. In (5) and (6), E, Vg, and δ are the peak value of the 

phase voltage for the inverter, the peak value of the phase voltage of the grid, and δ  is the 

phase angle between the inverter output voltage and the grid voltage. As analyzed in [30], 

the main idea behind the typical VSG design described in part A of this section is that in 

inductive grids where Xeq>> Req  the power equation (5), (6) can be rewritten as 

 𝑄 ≈
𝐸

2𝑋
(E − V cos 𝛿) (7) 

 𝑃 ≈
𝐸𝑉

2𝑋
sin 𝛿. (8) 

Generally, the power angle δ is small; therefore, the inverter voltage E and the 

phase angle δ can be used as two decoupled parameters to control the active and the 

reactive power. However, in low-voltage grids, the inductive transmission line 

assumption is no longer valid. Consequently, the decoupled control strategy causes 

instability or long term power fluctuations. In order to overcome this issue, several 

solutions have been proposed to change (2) and (4) to coupled equations. The problem is 

that, by changing (2), the behavior of the VSG will no longer mimic an actual 

synchronous generator. Hence, in this paper, a new approach is proposed that tackles the 

voltage control problem.  

 

3. NEURAL NETWORK PREDICTIVE CONTROL FOR VSG 

In this section, a neural network–based model predictive controller (NNPC) is 

proposed based on the model predictive control, which provides the state-of-art output 
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voltage magnitude for three-phase synchronverters. This controller includes two parts: 

(i) the neural network representing the system model that needs to be trained off-line, and 

(ii) the proposed controller which is employed to compare the results with the traditional 

PI controller.  

3.1. MODEL PREDICTIVE CONTROL (MPC) 

In this paper, the state space equations are chosen to mathematically represent a 

system with known dynamics. The state space equations can be written as 

 
𝑋̇ (𝑡) = F (X (𝑡), 𝑈 (𝑡)) (9) 

 
𝑌 (𝑡) = G (X (𝑡), 𝑈 (𝑡)) (10) 

where X (𝑡) is the state vector,  U (𝑡) is the input vector, and Y (𝑡) is the output vector. 

The derivative of state vector is a function of the state vector and the control vector, 

defined as F (∙). Moreover, the output vector is a function of the state vector and the 

input vector, defined as G (∙). The subscript ‘c’ in (9) and (10) stands for continuous 

time. Implementing the control algorithm in the micro controller forces us to model and 

implement the system in discontinuous criteria. In other words, (9) and (10) can be 

written as 

 𝑋(𝑘 + 1) = F(X(𝑘), 𝑈(𝑘)) (11) 

 𝑌(𝑘) = G X(𝑘), 𝑈(𝑘)  (12) 

where k is the step number, and the time difference between each step is defined as 

sampling time Ts. Equations (11) and (12) state that with a known input vector and a 

control vector, the next state can be predicted. The main objective of the predictive 
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control is to define a series of control vectors, forcing the output to follow a reference 

trajectory as closely as possible.  In traditional model predictive control (MPC), the 

system model or state space model of the system is used to predict the future outputs. In 

other words, the predictive controller defines a control policy to minimize a cost function 

in a specific time horizon, which is defined as: 

 𝐽(𝑘) = 𝛾 [ ‖𝑅(𝑘 + 𝑖) − 𝑌(𝑘 + 𝑖)‖ + 𝑤 ∙ ‖Δ𝑈(𝑘 + 𝑖 − 1)‖  ]. (13) 

In (13), 𝑅(∙) represents the reference vector, N  represents the maximum horizon 

step time,  𝛾 is the discount factor (0 < 𝛾 < 1) to define the importance of the future cost 

(for both the finite and infinite horizons), and to guarantee the convergence of the cost 

function for the infinite horizon. Parameter 𝑤  is the gain vector for the control effort. 

There have been a great variety of solutions for the finite and infinite horizon of time 

both analytically and by numerical methods [31], which is out of scope of this study. In 

this paper, the objective is to optimize the cost function for a finite time horizon. 

Therefore, instead of directly dealing with the Bellman’s equation (infinite time horizon), 

a predictive controller is applied. 

3.2. NEURAL NETWORK PREDICTIVE CONTROLLER 

To employ the MPC in an optimization problem, it is necessary to know the exact 

model of the system. However, there are many cases where the model of the system is too 

complicated and time consuming to implement, the exact model of the system is 

unknown, or the model parameters are uncertain, which leads to an ill-designed MPC. 

Feedforward neural networks are powerful tools to model an unknown system with 
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uncertain parameters. The neural network can be used as a system identifier and replace 

the discrete system equations (11) and (12) with an easy-to-implement method.  

 Figure 3 demonstrates a fully connected multilayer feedforward neural network. 

In this figure, 𝑋  is the next step state estimation by the neural network. A feedforward 

multilayer neural network is an artificial neural network with no circle between the 

nodes’ connections on the contrary of recurrent neural networks. A multilayer 

feedforward neural network includes several layers in which there can be several nodes. 

The value of each node can be computed as 

 𝑁 = 𝑓(𝑊 ∙ 𝑁 + 𝑏 ) (14) 

where 𝑁 ,  𝑊 ,  𝑏 , and 𝑓(∙) are the node value vector for the layer 𝑖, the weight matrix 

forming the layer 𝑖, the bias vector for layer 𝑖, and the activation function, respectively. 

There are several different activation functions such as sigmoid, hyperbolic tangent, and 

linear; however, their differences are out of the scope of this paper [32].  

 

 Figure 3.  Multi-layer feedforward neural network 
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The neural network presenting the system model needs to be trained offline in 

advance. Figure  4 shows the training process where the neural network goal is to predict 

the next state as accurately as possible. In this procedure, random control vectors are 

applied to the model, and the next state values are measured. This is supervised learning; 

hence, we know the output for the specific input. The training procedure goal is to 

minimize the total error by setting the weight matrices. There have been several studies 

on different method to train a neural network that are out of the scope of this paper. The 

main goal is to sweep the system’s state variables for learning the model. As shown in 

Figure 4, a sufficiently stabilizing control, (or in our case, a traditional PI controller to 

avoid large signal instability), will be applied to the plant. The neural network input 

includes the state vector and the control vector, and its output is an estimation of the next 

step state. A sample and hold unit needs to be implemented to make sure that the control 

signal applied to the plant does not change between two steps. Finally, after comparing 

 

 

 

 Figure 4.  Training procedure for a feedforward neural network presenting the system 
model 
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the neural network estimation and the plant output, the weight matrices will be 

updated. Based on the definition of the neural network predictive controller, it is 

necessary to pretrain the neural network before implementation. If the neural network is 

well-trained, and the system is fixed, the NNPC can perform similar to a model predictive 

controller. If the system parameter changes, there are two approaches: (i) to train the 

neural network online, which makes the control system more complicated and timely 

expensive to implement, and (ii) to pretrain (offline training) the neural network offline 

after any changes in the system parameters [33]. After the first stage of the training, the 

NNPC is ready to be implemented. By replacing the system model in the traditional MPC 

with the presented neural network, the neural network–based model predictive control 

can be constructed as shown in Figure 5. As illustrated, NNPC includes two fundamental 

blocks: (i) the neural network block which predicts the next step state vector, and (ii) the 

optimization block, which minimizes the cost function defined in (13) by providing a set 

of control vectors. Only the first control vector is used as the optimal control, and in the 

 

 

Figure 5.  Neural network predictive controller block diagram 
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next step the entire computational procedure needs to be repeated. In this paper, all the 

system parameters are fixed during both simulations and experiments, therefore the 

neural network is pretrained once.  

3.3. IMPLEMENTATION OF NNPC ON VSG 

As mentioned in Section 2, the objective in this paper is to keep the swing 

equation unchanged. In other words, the NNPC optimizes the cost function only by 

controlling the voltage amplitude. To employ the NNPC algorithm, the reactive power 

controller in traditional VSGs, which is typically a proportional or proportional integral 

controller, is replaced with the proposed controller. Figure 6 shows the block diagram of 

the proposed controller. As shown, a fault detection and controller selection unit is also 

added to the traditional block diagram. Two current thresholds are defined as Tr1 and Tr2, 

 

 

 

Figure 6.  VSGs block diagram using NNPC 
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where Tr1>Tr2. If the current goes beyond Tr1 it activates the circuit breakers, and if the 

current goes beyond Tr2, it goes back to the traditional direct current control to avoid 

triggering the circuit breakers.  

 The state vector and the control signal for the model predictive controller is 

defined as 

 𝑋 = { 𝑃, Δ𝑃, 𝑄, Δ𝑄, Δ𝜔, 𝛿} (15) 

 𝑈 = 𝐸 (16) 

In order to model the system, a feedforward neural network is used with two 

hidden layers and 4 nodes at each layer. The activation function for the hidden layer is 

Table 1. Simulation parameters 

Parameter Value Unit 

 
VSG 

DC voltage 400 V 
AC line voltage 110 V 
AC frequency 60 Hz 

Moment of inertia 0.1 Kg. m2 
Frequency droop %4 -- 

Inverter power rating 5 kW 

 
Inductive line 

Filter reactance 753 mΩ 
Line reactance 377 mΩ 

Line resistance 10 mΩ 

 
Resistive line 

Filter inductance 753 mΩ 
Line inductance 30 mΩ 
Line resistance 1000 mΩ 

 
NNPC parameters 

Time step (Ts) 1 msec 
Time horizon 10 msec 
Hidden layer 2 -- 

Node per hidden layer 6 -- 
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the sigmoid function, and for the output layer, the linear activation function is used. To 

train the neural network, a sample and hold unit is used, which is associated with the 

traditional PI controller to avoid instability. The system works and 10,000 data epochs 

are collected. 70% of the data were used to train the network, 15% were used for the 

validation, and 15% were used for the testing procedure. The Levenberg- Marquardt 

algorithm was used as the training algorithm. The accuracy of the neural network for the 

simulation and experimental results are 90% and 81%, respectively. Measurement noise 

from sensors can reduce the accuracy in experimental results.  

The cost function in the optimizer is defined as 

 𝐽(𝑘) =
Δ𝑃

𝑆
+

Δ𝑄

𝑆
+

Δ𝜔

𝜔
  (17) 

where  𝑆   are the base power and 𝜔 = 120𝜋. To minimize the following cost 

function, there is a list of choices for the control signal. As shown in (17), the optimizer 

objective is to minimize the cost over the next ten steps. By applying the control signal 

and using the neural network representing the state space model, the approximated state 

can be generated. Using this step and by reapplying the neural network model, following 

steps can also be estimated iteratively. Also, the new control strategy is selected in the 

neighborhood of the prior control signal to prevent large jumps in the voltage magnitude. 

At each control cycle, every 1 millisecond, based on the magnitude of the total error, 

there is a list of possible values for the inverter voltage. The value with the best results is 

chosen to generate the inverter voltage magnitude. 
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4. SIMULATION RESULTS 

To evaluate the performance of the proposed controller, two scenarios are 

analyzed. The first scenario is when the line is inductive, and the second scenario is for 

the resistive transmission line. The simulation is in the MATLAB environment and the 

PLECS is used to simulate the electrical parts and connections. The VSG parameters, the 

line reactance and resistance, and the neural network features and parameters are 

illustrated in Table 1. Figure 7 and Figure 8 illustrate the simulation results.  

4.1. INDUCTIVE TRANSMISSION LINE  

As discussed in Section 2, the performance of the traditional VSGs with an 

inductive line connecting to the grid, is acceptable. Where the line is inductive, the 

 

 

(a) (b) 

 

(c) (d) 

Figure 7.  Comparison of the performance of NNPC VSG and traditional VSG connected 
to the inductive grid (a) active power, (b) reactive power, (c) active power (zoomed in), 

(d) reactive power (zoomed in) 
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relation between the active power and the power angle and the relation between the 

reactive power and the voltage amplitude can be considered as two decoupled control 

equation. Consequently, the performance of the traditional VSG is acceptable. Figure 7 

compares the performance of the NNPC and the traditional PI controller. As expected, 

both controllers perform with good behavior in tracking the power references. However, 

the NNPC performs relatively better than the traditional controller, because the line is not 

completely inductive.  

4.2. RESISTIVE TRANSMISSION LINE 

In this part the performance of the NNPC for the VSG is evaluated and compared 

with the traditional PI-based decoupled active and reactive controller. This paper 

 

 

(a) (b) 

(c) (d) 

Figure 8.  Comparison of the performance of NNPC VSG and traditional VSG connected 
to the resistive grid. (a) active power, (b) reactive power, (c) active power (zoomed in), 

(d) reactive power (zoomed in) 
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proposes NNPC for a model-free system, therefore the MPC, which needs the system 

model, is not implemented. In Section 2, it is mentioned that in resistive grids, the swing 

equation and reactive power-voltage droop equation is no longer valid. Therefore, as was 

expected, the traditional PI-based VSG performance is not acceptable, and there are many 

power swings and fluctuations that occur until it reaches the steady state. A more 

advanced PI-based control tuned for resistive conditions is also simulated. In this 

controller, both active and reactive error contribute to control the voltage. However, the 

portion of contribution of each one is not fixed and depends on the system parameters 

and hence, a large signal tuning is not possible. This method improves the performance 

but is not ideal and cannot guarantee the stability on the large variations of commands 

(particularly, large steps on the reactive power injection). On the contrary, the NNPC 

VSG is trained for the resistive line and adjusted itself to provide an optimum control for 

following the active and reactive power reference changes. Figure 8 shows the 

comparison between the traditional and tuned VSGs and the proposed NNPC. Figure 9 

 

 

 

Figure 9.  Block diagram of tuned PI controller for resistive grids 
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illustrates the block diagram of the proposed tune PI controller. In this figure η is in [0,1] 

which defines the portion of each error in to adjust the voltage magnitude. Table 2 

illustrates the controller parameter which is used for the simulation. 

 

5. EXPERIMENTAL RESULTS 

The experimental results are reported for a 1kVA laboratory prototype. The grid 

voltage is a three-phase with 190V/60Hz line-line voltage. The control algorithm is 

implemented in Texas instrument signal processor TMS320F28377. The direct current 

control, the traditional VSG, and the NNPC VSG are implemented to regulate the active 

and reactive power and the frequency. The prototype is shown in Figure 10.  

The first step of the procedure is to connect the inverter to the grid. There are 

several methods to connect the inverter to the grid; however, in this paper, a PLL with a 

low-pass filter is used to detect the grid rotational angle. Moreover, the zero crossing 

Table 2. PI parameters for the simulation design 

Parameter Value 

 
Inductive grid 

Kp .8 
Ki 65 

 
Resistive grid 

Kp .4 
Ki 30 

 
Resistive grid (tuned) 

Kp .7 
Ki 45 
η 0.6 
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method is available to avoid using the PLL. After connecting the inverter to the grid, it 

works under the traditional VSG control scheme until the neural network is trained.  

At first, the neural network presenting the system model needs to be trained. To 

collect the data, the inverter functions under several random and bounded active and 

reactive references. The state information was sent to the computer to be stored. After 

collecting 10 million data samples to cover a vast operating domain, 10,000 of the 

samples were selected randomly to train the neural network to avoid overfitting. In order 

to train the neural network, MATLAB was used with a similar setting for the neural 

network. By training the weight matrices and the bias vectors, the neural network is 

formed and implemented into the microprocessor  

As mentioned previously, the objective of this paper is to improve the 

performance of the VSG in resistive grid connections. Furthermore, the inductive case is 

not analyzed for the experimental results, and thus it was simulated and investigated in 

 

Figure 10.  Three-phase grid-connected inverter test bed 
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Section 3. Table 3 illustrates the prototype data and parameters. Table 4 illustrates the PI 

parameters. 

The optimization procedure for the short time horizon can be done in the DSP. 

However, in this case the optimization is done by MATLAB.  

Figure 11 shows the performance of the VSG in regards to the active power 

reference changing. In this experiment, the reactive reference power is fixed within 0.1 

p.u, and the active power reference changes four times in the following sequence {0.05 

0.1 0.2 0.4 0.6} p.u. In this figure, the top signal is the output reactive power where 2.5V 

is set to zero VAR, 5V is set to 500VAR, and 0V is set to -500VAR. Moreover, the 

bottom signal is the active power output where 5V is 1000W and 0V is 0W. Figure 11 (a) 

shows the response of the traditional PI-based VSG, and the active power changing and 

 

Table 4. PI parameters 

Parameter Value 

 
Resistive grid 

Kp 0.19 
Ki 40 

 

Table 3. Experimental testbed parameters 

Parameter Value Unit 

 
VSG 

DC voltage 400 V 
AC line voltage 110 V 
AC frequency 60 Hz 

Moment of inertia 0.5 Kg. m2 
Frequency droop %4 -- 

Inverter power rating 1 kW 

 
Line Parameters 

Filter reactance 900 mΩ 
Line reactance 150 mΩ 
Line resistance 1800 mΩ 
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the magnified version is illustrated in (b). As shown, the traditional response causes 

oscillations and relatively large overshoots. The NNPC performance in regards to 

changing active power references is shown in (c), and the magnified version is shown in 

(d). Needless to say, the NNPC demonstrates a better response compared to the 

traditional VSG and significantly improves the overshoot rate and the oscillation 

problem. The line voltage and the line current are also shown in Figure 12, which 

illustrates the changes in the voltage and in the current with regards to the change in 

power.  

The experiment is repeated with changes in the reactive power reference. Similar 

to Figure 11, in Figure 13, the top and bottom signals show the reactive and the active 

 

 
(a) (b) 

(c) (d) 
 

Figure 11.  Injected active and reactive power from a three-phase grid connected 
synchronousverter facing active power reference changes (a) traditional VSG, (b) 

magnified response for traditional VSG, (c) NNPC  (d) magnified NNPC 
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output, respectively. As shown in Figure 13, the active power is fixed on 0.1 p.u. The 

reactive power changes in sequence of {0.1, 0.4, -0.1, 0.2, 0.5}  p.u. Figure  13(a) 

illustrates that the PI-based VSG controller responds with large overshoots or even 

 

Figure 12.  The phase output voltage and the line current of synchronousverter after 
the low-pass filter 

 
  

 
(a) (b) 

 
(c) (d) 

Figure 13.  Injected active and reactive power from a three-phase grid connected 
synchronverter facing reactive power reference changes (a) traditional VSG, (b) 

magnified response for traditional VSG, (c) NNPC  (d) magnified NNPC 
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becomes unstable. In this figure, the active power is shown with a dc output on prob 1, 

where 1000W is shown by 5v and -1000W is shown by 0v; moreover, the reactive power 

is measured through a voltage signal where 700VA is 5v and -700 VA is 0v.  On the 

other hand, as expected from the mathematical point of view and the simulation results, 

the proposed NNPC performs much better than the traditional VSG. The spikes in active 

and reactive power can be minimized if the swing equation changes as well; nevertheless, 

the assumption of this paper is to keep the swing equation part of the VSG model 

unchanged.  

 

6. CONCLUSION 

In this paper, a new neural network predictive control method was presented to 

optimize the performance of VSGs in non-inductive grids. This controller has two main 

blocks: (i) the neural network block, which models the system, and (ii), the optimizer, 

which optimize the total error during the transient time. The traditional VSGs are based 

on decoupled control methods for the active-phase angle and the reactive power-voltage, 

which is not the case in non-inductive grids. The proposed controller sets the inverter 

output voltage to minimize the active and reactive errors and the frequency deviation. A 

well-trained NNPC for VSG can improve the VSG’s performance in inductive grids, but 

especially in non-inductive grids. The simulations and experimental results illustrate the 

enhancement in tracking the power references. 
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ABSTRACT 

In this paper, an adaptive critic design (ACD) approach is proposed to control the 

phase and voltage of a grid-connected virtual synchronous generator (VSG). The 

penetration of fast responding inertia-less power converters significantly affect the 

stability of the power system, especially weak systems such as micro grids. The concept 

of virtual inertia addresses this concern by virtually emulating the behavior of a 

synchronous generator. However, the conventional VSG is designed based on two 

conditions: (i) fixed operating point and (ii) inductive grid connections. The performance 

of VSGs in low-voltage semi-resistive microgrids is far from optimal. To overcome the 

aforementioned concerns, a heuristic dynamic programing (HDP) approach is proposed 

to optimally control grid-connected VSGs. The neural-network-based inherence of the 

HDP enables the proposed technique to adapt to any impedance angle. The HDP 

controller includes two subnetworks: (i) the action network that controls the system 

optimally and (ii) the critic network, which evaluates the effectiveness of the action 

network. The simulation and experimental results are provided to evaluate the 

effectiveness of the proposed technique. As shown, the HDP-based approach illustrates a 
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better performance in comparison with the conventional PI-based VSG in various 

operating conditions.  

 

1. INTRODUCTION 

The significance of environmental and energy crises has become highlighted in 

recent decades; therefore, distributed generations (DGs) have attracted a great variety of 

considerations in modern power systems [1,2]. The environmentally friendly and 

sustainability characteristics of renewable energy resources (RESs), such as photovoltaics 

[3] and wind turbines, have caused a rising increase in the penetration of RESs into the 

power grid. Three-phase inverters are the most common technique used to connect DGs 

into the power grid. The accelerating growth in the integration of RESs into the power 

grid drastically changes the conventional power grid [4]. The stored kinetic energy in the 

enormous rotating parts of synchronous generators plays a vital role in stabilizing the 

power system. The balance between the demand and generation is the main factor in 

maintaining the frequency stability. The unbalanced condition between the generation 

and demand leads to voltage and frequency fluctuations. These fluctuations can result in 

system instability and trigger the protection systems. The existing kinetic inertia in 

traditional power systems can maintain the balance between the generation and the 

demand by releasing or absorbing the difference between the generation and demand. 

The inertia-less and fast-responding characteristics of power electronics inverters 

drastically reduce the power system stability and robustness, especially in weak grids 

such as microgrids  [5–7].  
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The existing kinetic inertia in traditional power systems inspired researchers to 

tackle these drawbacks by emulating the mechanical behavior of synchronous generators 

into the control block of grid-connected inverters. A great variety of studies have been 

done to introduce a general solution to overcome the inertia-less characteristic of 

inverter-based DGs. Eventually, the concept of the virtual synchronous 

machine/generator (VSM/VSG) was introduced to improve the system inertia, output 

impedance, and  resiliency of the power system [8–10]. The VSG concept is based on the 

behavior of synchronous generators and the so-called swing equation that enables the 

inverter to store/release energy during transients to maintain the balance between the 

generation and demand. To elaborate the importance of the virtual inertia concept, a 

comparison between the traditional droop control and VSG technique has been proposed 

in [11] that highlights the positive sides of the virtual inertia-based controller. The 

authors in [12] have illustrated that by considering the dynamics of the line and 

converter, the virtual inertia parameters are constrained by the stability considerations. 

The small-signal angular stability of a power system is examined in [13] when it is 

connected to VSGs.  In order to damp the power and frequency perturbations, a fuzzy 

controller approach is implemented to regulate grid-connected VSGs [14].  An extended 

virtual synchronous generator concept is proposed in [15], where an H∞ control method 

is used to tune the VSG parameters. The characteristics of frequency response of the 

alternating current  is analyzed in [16] to enhance the performance of VSGs. The authors 

in [17] have enhanced the performance of multi-VSG grids by focusing on the center of 

inertia frequency during the short circuit.  In all of the proposed techniques, the system’s 

model is required to design the controller. Changes in the parameters of the system affect 
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the behavior of the controller. Therefore, several studies have tackled this drawback by 

proposing adaptive control techniques. An adaptive virtual inertia control scheme using 

the bang-bang control strategy is proposed in [18] to improve the stability of the system. 

A neural network predictive VSG [19], self-tuning VSG in photovoltaic-diesel 

microgrids [20], and an adaptive VSG based on a small-signal model [21] are also 

proposed. However, all of these methods lack the implementation of a model-free, 

adaptive, optimal control. The reinforcement learning techniques are powerful tools to 

address these concerns and they are widely used in various applications. For example, an 

action-critic network is proposed in [22] to learn the optimal policy in internet of 

vehicles, by considering the unknown environment’s dynamics. A deep post-decision 

state (PDS)-based experience replay and transfer (PDS-ERT) have been implemented in 

[23] as a reinforcement learning technique to learn the optimal policy in a heterogeneous 

network. To tackle the aforementioned drawbacks in regulating VSGs, two control 

approaches based on reinforcement learning have been proposed in  [21] and [22] to 

regulate a grid-connected VSG. However, none of those provides the implementation of 

online training and the current protection in an experimental prototype.  

The main contribution of this paper is to propose a heuristic dynamic 

programming control technique to improve the power and frequency stability of grid-

connected inverters. This paper  

• Presents a neural-network-based adaptive controller, which can adjust the 

controller setting based on the system’s parameters.  

• Provides online training to prevent tuning of the controller’s parameters by the 

operator. 



 

 

37

• Describes an optimal control to regulate the power and the frequency of a 

grid-connected inverter facing resistive grid.  

The controller is designed to be applicable to both virtual synchronous generators 

and synchronous generators. The proposed reinforcement technique improves the 

performance of the VSG by considering the transmission line parameters and operating 

points. Although the virtual parameters such as virtual moment of inertia, or the droop 

coefficient can be set by the reinforcement technique, but in this paper, it is assumed that 

these parameters are predefined by the operator which enables this technique to be 

compatible with synchronous generators as well.  

The rest of the paper is organized as follows. Section 2 explains the concept of 

virtual synchronous generators and highlights the weakness of the conventional VSG 

controllers. The heuristic dynamic programing concept, design procedure, and training 

algorithm are discussed in Section 3. In section 4, the proposed HDP-based VSG is 

proposed, and the simulation results are provided to evaluate the effectiveness of the 

proposed technique. The implementation procedure including the prototype’s parameters 

are explained in Section 5, and the experimental results are illustrated to evaluate the 

effectiveness of the proposed technique in a laboratory prototype. 

 

2. GRID-CONNECTED VIRTUAL SYNCHRONOUS GENERATOR 

As explained in Section 1, the performance of virtual-inertia-based inverters 

depends on the system’s parameters. To address this concern, the concept of VSG is 
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explained, and the effect of grid types on the VSG performances is discussed in this 

section. 

2.1. VIRTUAL SYNCHRONOUS GENERATOR 

A significant concern about the virtual-inertia-based inverters is the availability of 

the energy storage to perform as a source for the virtual inertia. Therefore, it is assumed 

that a regular dc source is connected to the dc side. Figure 1 illustrates the block diagram 

of conventional VSGs. In this figure, the resistance and reactance of the grid line are RL 

and XL, respectively. The filter reactance is XF. The swing equation is the main 

component of any virtual-inertia-based inverter, which can be written as 

𝑃 − 𝑃 = 𝐽𝜔
𝑑𝜔

𝑑𝑡
+ 𝐷∆𝜔 (1) 

where the angular frequency of the virtual rotor is defined as 𝜔 , and the angular 

frequency deviation is defined as ∆𝜔 =  𝜔 − 𝜔 . In this expression, parameter 𝜔  is the 

reference angular frequency when the inverter functions in a standalone mode or the grid 

angular frequency when it operates in a grid-connected mode. The virtual moment of 

inertia and the droop coefficient are defined as 𝐽 and 𝐷. The electric output power and the 

input power are noted as 𝑃  and 𝑃 , respectively.  

In order to drive an inverter two parameters are required: (i) the peak/RMS value ( 

𝐸 ) of the inverter voltage and the inverter phase (𝛿) with respect to a reference, (the grid 

phase is assumed as the reference). A power meter unit is used to convert the inverter 

three-phase current and voltage to the output electric active/reactive power. By 

implementing all the parameters in (1), the frequency deviation can be found. By taking 

the integral of the frequency deviation, the inverter phase can be computed as: 
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𝛿 = ∆𝜔 ∙ 𝑑𝑡. (2) 

Voltage-droop-based reactive power compensator is the most common approach 

in regulating the inverter voltage in inductive grid. Therefore, the inverter voltage can be 

computed as: 

𝐸 =
1

𝐾
∆𝑄 ∙ 𝑑𝑡 − 𝐷 ∆𝑉 (3) 

where 𝐷  and 𝐾  are the voltage droop and the integrator coefficient, respectively. The 

error signals for the reactive power and the inverter voltage are defined as ∆𝑄 = 𝑄 −

𝑄  and ∆𝑉 = 𝑉 − 𝑉 , respectively. The notation 𝑉  and  𝑉  are the inverter reference 

voltage and the inverter output voltage, respectively. The block diagram of the active-

power-phase and reactive-power-voltage of a VSG are shown in Figure 2.  

 

Figure 1. The block diagram of the traditional VSGs 
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2.2. POWER ANGLE AND POWER FLOW EQUATIONS 

A simplified circuit diagram of a grid-tied VSG based on the average model is 

depicted in Figure 3. In this figure, the total reactance including filter and line is defined 

by 𝑋 = 𝑋 + 𝑋 .  The line equivalent resistance is presented by 𝑅 = 𝑅 . Lastly, the 

 
(a) 

 
(b) 

Figure 2. The block diagram of the decoupled approach for VSGs. (a) the block diagram 
of active power-frequency, (b) the block diagram of reactive 

 

 

Figure 3. The simplified circuit diagram of a grid-tied VSG based on the average model 

 



 

 

41

equivalent impedance can be presented by 𝑍 = 𝑗𝑋 + 𝑅 . The delivered active and 

reactive power from inverter to the grid can be computed as: 

𝑃 =
1

2

𝐸

𝑍
−

𝐸𝑉 cos 𝛿

𝑍
𝑅 +

𝐸𝑉

𝑍
𝑋 sin 𝛿  (4) 

𝑄 =
1

2

𝐸

𝑍
−

𝐸𝑉 cos 𝛿

𝑍
𝑋 −

𝐸𝑉

𝑍
𝑅 sin 𝛿  (5) 

where E, V,  𝛿, P and 𝑄 are the peak value of the inverter voltage, the peak value of the 

grid voltage, the inverter power angle, the active power delivered from the inverter into the 

grid, and the reactive power delivered from the inverter into the grid, respectively. For an 

inductive equivalent impedance (i.e. 𝑋 ≫ 𝑅  as in [7,26]) the active and reactive power 

can be estimated as: 

Considering the fact that the power angle is typically small, by approximating 

sin 𝛿 and cos 𝛿, the power equations can be rewritten as follows: 

𝑃 ≈
𝐸𝑉

2𝑋
𝛿 (8) 

𝑄 ≈
𝐸

2𝑋
(E − V) (9) 

Equations (8) and (9) validate the decoupled assumption in inductive grids. In 

other words, the reactive and active power are proportional to the voltage magnitude and 

the power angle of the inverter, respectively. Based on (8) and (9) the performance of the 

traditional VSG is acceptable in inductive grid connections; nevertheless, in noninductive 

𝑃 ≈
𝐸𝑉

2𝑋
sin 𝛿 (6) 

𝑃 ≈
𝐸𝑉

2𝑋
sin 𝛿 (7) 
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grids, such as low-voltage grids, this assumption is no longer valid. It means both the 

voltage magnitude and the phase angle contribute in generating the reactive power. This 

issue changes the control problem from a decoupled single input single output (SISO) 

into a coupled multiple input multiple output (MIMO). The conventional linear 

controllers are not suitable for MIMO cases. Although there are other methods, such as 

the model predictive control (MPC) or nonlinear control techniques that are able to deal 

with MIMO, but the accurate values of system model parameters are required to 

guarantee an ideal performance. This is not always the case in power system with several 

uncertainties and unknown parameters, such as nonlinear behaviors (e.g. transformer 

saturation), missing system parameters, or line impedance changes. To overcome these 

concerns, an adaptive critic design approach based on the approximate dynamic 

programming is proposed in this paper. The proposed technique allows parameters to be 

adjusted to guarantee an optimal solution for a grid-connected VSG.  

 

3. HEURISTIC DYNAMIC PROGRAMING  

Conventional VSGs are based on a conventional linear controller such as 

integral/proportional-integral controllers, which limits the performance of a VSG in 

several aspects. First, the conventional controllers require redesigning or tuning after any 

significant change in system parameters. This process can be done online, or it can be 

done offline by an experienced designer. Secondly, conventional linear controllers are 

designed for linear systems. Grid-connected VSGs are highly nonlinear, hence the 

linearized model in the vicinity of their nominal operating point is used. In other words, 
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operating in conditions far from the nominal operating point changes the linearized 

model, and it affects the performance of the linear controller. Lastly, as discussed in 

Section 2, linear controllers are designed for the SISO systems and non-inductive grids, 

and where the system is MIMO, the proposed integral-controller-based VSG is infeasible.  

Therefore, an adaptive critic design (ACD) approach is proposed in this paper to address 

the aforementioned disadvantages.  

To cope with nonlinear noisy environment and uncertain systems, neurocontrol 

adaptive critic designs are ideal choices. The concept of ACD was introduced in [27] as a 

new optimization technique stimulated by the reinforcement learning and the 

approximate/adaptive dynamic programing (ADP). 

Typical ACDs include two subnetworks: the critic neural network and the action 

neural network. The goal of the critic network is to provide the required feedback signal 

to train the action network. Different feedback signals distinguish between different types 

of ACDs.  

The heuristic dynamic programming (HDP) is the most straightforward ACDs. 

Figure 4 shows the block diagram of an HDP controller. The main objective of critic 

networks is to approximate the cumulative discounted utility function (known as the cost-

to-go function), which in dynamic programing is known as the Bellman’s equation. The 

action network generates the control signal and feeds it to the system and to the critic 

network. The state vector and the control signal feed the critic network when its goal is to 

estimate the cost-to-go function. In Figure 5, the dashed lines illustrate the corresponding 

error signal for the learning procedure of the action and the critic neural network. 
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3.1. CRITIC NEURAL NETWORK  

The Bellman’s equation or the cost-to-go function can be written as 

𝐽(𝑘) = 𝛾 𝑈(𝑘 + 1). (10) 

A discount factor is presented by 𝛾, in the range of zero and one, to highlight the 

significance of the future costs, and to guarantee that the cost-to-go function is 

constrained in the infinite horizon.   Function U(k) is the utility function that, in this 

paper, is defined as: 

𝑈(𝑘) = 𝐾 𝑒 + 𝐾 𝑒 + 𝐾 𝑒  (11) 

where 𝑒  , 𝑒 , and 𝑒 ,  are the error signals for the inverter frequency, reactive power, and 

active power, respectively defined as: 

𝑒 = 𝑓 − 𝑓 (12) 

 

Figure 4. The block diagram of HDP including two subnetworks 
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𝑒 = 𝑄 − 𝑄 (13) 

𝑒 = 𝑃 − 𝑃 (14) 

and 𝐾 , 𝐾 , 𝐾  are the frequency coefficient, the reactive power coefficient, and the 

active power coefficient, respectively. A feedforward fully-connected multilayer neural 

network is used to perform as the critic network, which is depicted in Figure 5. The 

proposed network includes two hidden layers and eight nodes at each layer. The proposed 

critic network in this paper, is based on state-value-functions. It means that the cost-to-go 

function can be defined based on the system state variables. The main state variables of 

the system are the active/reactive error signals, the frequency deviation, and the power 

angle. The changes in reference signals alter the active/reactive error signals; therefor  the 

active/reactive power are also required to be presented as state variables. Therefore, the 

state variable vector, which is the input to the critic network, can be defines as follows.  

𝐼𝑁{  } = 𝑃 𝑄 𝑒  𝑒  𝑒   𝜃  𝐸 . (15) 

 

Figure 5. Fully connected feedforward neural network 
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The critic network is trained forward in time, because the system operates in real-time. 

The goal of the critic network is to estimate 𝐽(∙); therefore, by subtracting two successive 

cost-o-go function using the Bellman’s equation, the error signal can be written as: 

[𝐽(𝑘) − 𝛾𝐽(𝑘 + 1) − 𝑈(𝑘)] . (16) 

The weights are updated using the gradient decent method as 

𝑊 (𝑘 + 1) = 𝑊 (𝑘) + Δ𝑊  (17) 

where 𝑊  is the critic network’s weight and 𝛼  is the learning rate. 

3.2. ACTION NEURAL NETWORK  

 The main objective of the action network is to generate the control signal to 

minimize the 𝐽 function for the immediate future. The action network is formed similar to 

the critic network as a feedforward neural network with two hidden layers and four nodes 

at each layer. The input signal to the action network is a vector similar to the input of the 

critic network; however, it does not include the voltage magnitude and can be written as 

𝐼𝑁{  } = 𝑃 𝑄 𝑒  𝑒  𝑒   𝜃 . (18) 

The output of the action network is the peak value of the output voltage of the 

inverter (𝐸(𝑘)). This peak value can be selected in a range of the minimum and the 

maximum of the acceptable voltage. The maximum voltage is also bounded by the 

voltage of the DC link where 𝑉 ≈ 0.62 𝑉  [28]. 

The backpropagation procedure is utilized to update weights in the action network. The 

objective is to minimize the cost-to-go function. Therefore, the derivative of the cost-to-
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go function with respect to the control signal is used as the training feedback signal for 

the action network. 

𝜁 =
𝜕𝐽(𝑘 + 1)

𝜕𝐸(𝑘)
 (19) 

This signal can be used to update the weights as 

Δ𝑊 = −𝛼 𝜁
𝜕𝜁

𝜕𝑊
 (20) 

𝑊 (𝑘 + 1) = 𝑊 (𝑘) + Δ𝑊  (21) 

where 𝛼  and 𝑊  are the learning rate and the action network weights, respectively.   

Hyper parameters selection, and training procedure are two of the most important 

concerns when it comes to the neurocontrol techniques. In order to fine tune the hyper 

parameters, such as learning rate or the discount factor, the trial-and-error technique is 

used to achieve the best performance. Another main issue which is required to be 

discussed is whether the data for the training procedure is enough or not. Since the 

controller never stops learning, to stay updated for any changes in the system, there is no 

reason to be concerned about the size of the training set. In cases that model dependent 

HDP (MDHDP) is implemented, a neural network is utilized which models the dynamic 

behavior of the system. Pretraining this neural network improves the performance of the 

controller. Considering that the model of a grid-connected VSG has small number of 

inputs and outputs, a data set with couple of thousand samples are enough to pretrain the 

system. These samples can be collected in the order of seconds. However, in this paper an 

action dependent (ADHDP) is utilized [29].   
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4. SIMULATION RESULTS  

The proposed HDP-based, grid-connected VSG is illustrated in Figure  6. As 

depicted, the proposed approach is formed by replacing the conventional I/PI controller 

in the traditional VSG with an HDP controller. In this figure, the “network input 

generator” is implemented to prepare the input vector for the neural networks.   

The training procedure is listed as follows: 

1. Generate a random initial state. 

2. Generate a random set of active/reactive power references. 

3. Initialize the weights of the networks randomly. 

4. Keep updating the Weights.  

 

 

Figure 6. The grid-connected VSG controlled by a neural-network-based HDP 
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Table 2 illustrates the system parameters, and the controller parameter for the 

conventional VSG are provided in Table 1. 

. 

 
Table 2. VSG and power system parameters 

Parameter Value Unit 
DC voltage 250 V 

AC line voltage 110 V 

AC frequency 60 Hz 

Moment of inertia 1 Kg.m2 

Frequency droop %2 -- 

Inverter power 
rating 

5 kW 

Inductive line 

Filter inductance 1 μH 

Line inductance 100 μH 

Line resistance 10 mΩ 
Resistive line 

Filter inductance 1 μH 

Line inductance 1 μH 

Line resistance 500 mΩ 
HDP parameters 

ℽ 1  
Sampling time 1 ms 

[αc αc] [1 1] -- 
[kP  kQ   kf] [1  1  0] -- 

 
 

Table 1. PI parameters 

Parameter Value 

 
Inductive grid 

Kp 0.8 
Ki 65 

 
Resistive grid 

Kp 0.4 
Ki 30 
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4.1. INDUCTIVE GRID 

The performance of a conventional VSG and an HDP-based VSG is illustrated in 

Figure 7. In this figure, the inverter is connected to an inductive grid. As discussed in 

Section 2, the decoupled control assumption in the inductive grid is valid; therefore, the 

performance of the conventional VSG is acceptable. In this part, different active and 

reactive power references are applied to both the conventional and HDP-based VSG. A 

precise look into the magnified version confirms that the proposed controller performs 

slightly faster with a smaller percentage of overshoot. The reason is that the conventional 

controllers are designed for the nominal operating point, and changes in the operating 

point affect the performance. In addition, the system is not purely inductive; hence, the 

 

(a) (b) 

(c) (d) 

Figure 7. The active/reactive tracking of a conventional VSG and an HDP-based VSG in 
an inductive grid connection 
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proposed HDP-based VSG performs better by applying the impact of both the inverter 

voltage and power angle in controlling the reactive power. 

4.2.  RESISTIVE GRID 

In this part, the inverter is connected to a resistive grid. The performance of the 

conventional and HDP-based VSG is depicted in Figure 8.  As discussed in Section 2, in 

noninductive grids, the performance of the conventional VSG is not acceptable. As it was 

expected from the mathematical point of view, the conventional VSG generates 

active/reactive power fluctuations. On the other hand, the HDP-based VSG shows a 

better performance in tracking the active and reactive power references. The reason is 

that the system adjust itself with any power angles. In other word, the action neural 

 

 

(a) (b) 

 

(c) (d) 

Figure 8. The active/reactive tracking of a conventional VSG and an HDP-based VSG in 
a resistive grid connection 
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network adjust itself to control the inverter voltage to regulate both the active and the 

reactive power.  

 

5. EXPERIMENTAL RESULTS 

A laboratory prototype is prepared to evaluate the performance of the proposed 

technique. A grid-connected inverter with the power rating of 1 kVA with the grid 

connection compatibility is set up. The grid voltage is a three-phase with a 190V/60Hz 

line-line voltage. The control algorithm is implemented in a Texas Instruments signal 

processor TMS320F28377, and MATLAB R2018a. The direct current control, the 

traditional VSG, and the HDP-based VSG are implemented to regulate the active and 

reactive power and the frequency. The prototype is shown in Figure 9.  As shown, the 

prototype includes a DC voltage source that provides the inertia needed for the DC side. 

 

 

Figure 9. Three-phase grid-connected inverter test bed 
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A three-phase inverter is connected to the grid via a three-phase transformer to boost up 

the voltage and to provide the isolation. Three relays protect the system from faults. The 

embedded analog-to-digital converter can read the inverter current and voltage. A USB to 

serial adaptor provides the connection mechanism between the microcontroller and the 

computer. Data acquisition and basic protections such as voltage and current are 

implemented inside the microcontroller. The computationally expensive calculations, 

such as the neural network training, are implemented in the computer. At each control 

cycle, the weights are updated to provide the ability to adaptively control the system. 

Figure 10 illustrates the block diagram of the experimental control mechanism.  

5.1. GRID CONNECTING PROCEDURE 

The goal of this paper is to control the power interaction between the grid and the 

inverter by regulating the frequency and the voltage of the inverter. One of the most 

critical points of controlling a grid-connected inverter is to connect it to the grid. There 

are several techniques to connect an inverter into the grid, and this paper implemented 

 

Figure 10. The block diagram of the test bed 
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two of them. The first method uses a PLL to find the frequency and the theta of the 

grid in order to connect the inverter to the grid in the synchronized mode. However, it 

was discussed that in the transient conditions, the performance of the PLL is highly 

affected. A low-pass filter can be used to decrease the imperfect performance during the 

transient time; however, it is not the best solution. Therefore, the second method, zero 

crossing, is implemented to connect the inverter into the grid. In this technique, by 

reading the voltage, the inverter is connected to the grid when the grid voltage crosses the 

zero voltage. This method is easier to implement and does not have the disadvantages of 

PLL-based techniques. The only drawback of this technique compared to the PLL-based 

techniques is that the inverter can only be connected to the grid when the voltage crosses 

zero, which is not the concern of this paper.  

5.2. PROTECTION 

The experimental testbed is designed for a specific operating point. Therefore, to 

protect the electrical elements, a protection system is required. In this paper, the 

protection system includes two mechanisms. The first mechanism protects the electrical 

elements from a fault current in a short period of time. In order to do that, the switch 

currents are read at every control cycle. If the current is higher than the fault threshold, it 

will trigger the relays and disconnects the inverter. The second mechanism is 

implemented to protect the inverter from injecting excessive power to the grid. In virtual 

inertia techniques, a mechanism is needed to limit the power injected to the grid. In order 

to implement the second mechanism, using the virtual rotating angle, the switch currents 

in the three-phase platform will be transformed into a d-q platform. If the current is 
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greater than the overload threshold, the control mechanism moves back to the 

conventional direct-current mode. Figure 11 shows the block diagram of the proposed 

protection mechanism.  

5.3. TRAINING THE NETWORKS 

Similar to all of the adaptive critic design techniques, the heuristic dynamic 

programming includes two main networks. Therefore, the training procedure is divided 

into two different mechanisms. In order to train the action network, the critic network is 

required to provide the feedback signal. This signal evaluates the performance of the 

action network. As mathematically explained in Section 3, the action network’s weights 

are updated. The highlighted concern in training the action network is the accuracy of the 

feedback signal. Regarding the timing of the training procedure of the HDP network, 

there are two different approaches. In the first approach, the action network and the critic 

 

Figure 11. The block diagram of the protection 
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network are trained simultaneously, which means that until the critic network is 

trained, the feedback signal to train the action network is not accurate. However, when 

the critic network is well-trained, the feedback can be used to train the action network 

and to update its weights. Considering the fact that training the critic network is time 

consuming, the action network performance is not improved. Controlling a grid-

connected inverter with a random controller for a period leads the system to instability. 

Although the first approach can be applied to several applications, it is not applicable for 

controlling a grid-connected inverter. In the second approach, the critic network is 

pretrained in advance; afterwards, the online training procedure keeps the critic network 

tuned. To train the critic network, a stable conventional PI-based VSG scheme regulates 

the voltage and the frequency of the inverter. This procedure starts with a random state 

and uses the feedback signal at the next step. By using Bellman’s equation as the 

feedback signal and implementing (5) and (6), the critic network is trained and the 

network weights are updated. The critic network output is the cost-to-go value. The error 

signal can be generated by subtracting the estimated cost-to-go value and the discounted, 

estimated cost-to-go value for the next step and comparing it with the utility function. 

This error signal can be used to train the critic network. Based on the amount of time 

needed to train the network, a time step of 1 millisecond is selected. By reading the state 

variables through the DSP and computing the active/reactive power, utility function, 

frequency, and error signal, the data package is ready to be sent to the computer. The 

training procedure and updating-weights process is utilized by the computer. This 

procedure continues until the critic network is trained. To train the critic network, 500 
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random initial states were generated and 50000 data sets were collected. Using the 

backpropagation technique, the gradient decent is used to train the network.  

After training the critic network, the conventional PI-based VSG will be replaced 

by the HDP-based VSG. Similar to the critic network training procedure, the time step to 

train the action network is 1 millisecond. The action network is trained by applying 

random active and reactive power references, receiving the feedback signal from the 

critic network, and transmitting all of the data to the computer. Equations (7) and (8) are 

used to train the action network. After finishing the training procedure, the proposed 

VSG approach can operate in nominal conditions. The training procedure continues for 

the whole operating time to adjust and fine-tune the network parameters.  

As mentioned, the conventional VSGs are designed based on linearized model of 

the system. Consequently, changes in system’s parameters or operating point affects the 

behavior of the controller. Therefore, the parameters are required to be tuned or even 

redesigned. On the other hand, the neural network characteristics of the proposed 

technique adaptively tunes itself in various conditions. The computational complexity is 

the main concern of the proposed method, specially in experimental implementation. All 

the neural networks are required to be perform and trained in a control cycle, which is 

defined by the switching frequency.  Implementation of feedforward neural networks, 

gradient decent backpropagation, and nonlinear activation functions are computationally 

expensive. There are two main approaches to tackle this concern. In the first approach the 

controller is implemented in the microcontroller with less computational power. The 

controller is required to be simplified to meet the timing constraints. Decreasing neurons 

or using look-up tables to perform as the activation functions are some of the solutions. 



 

 

58

However, this approach decreases the accuracy of the system. In the second approach, 

controller structure is implemented into a computer. In this approach the microcontroller 

collects the system data and transfer them into the computer. The computer computes the 

control signal and trains the neural networks and send the control command into the 

microcontroller. Finally, the microcontroller uses the control command to generates the 

switching signals.  

It was explained in Section 2 that the conventional VSGs are suitable for 

inductive grids; however, their performance is significantly affected when facing a 

noninductive/resistive grid. The simulation results in Section 4 also confirm this. 

Therefore, to evaluate the performance of the proposed VSG, only the resistive grid is 

Table 4. Experimental testbed parameters 

Parameter Value Unit 

 
VSG 

DC voltage 400 V 
AC line voltage 110 V 
AC frequency 60 Hz 

Moment of inertia 0.5 Kg. m2 
Frequency droop %4 -- 

Inverter power rating 1 kW 

 
Line Parameters 

Filter reactance 900 mΩ 
Line reactance 150 mΩ 
Line resistance 1800 mΩ 

 

 

Table 3. PI parameter for the experimental testbed 

Parameter Value 

 
Resistive grid 

Kp 0.19 
Ki 40 
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studied illustrates the parameters of the test bed and the PI parameter used to control 

the conventional VSG is presented in Table 3 and Table 4.  

5.4. RESISTIVE GRID CONNECTION 

The experimental results regarding the changes in active power reference is 

illustrated in Figure 13. In this figure, the green (top) waveform presents the active power 

and the blue (bottom) waveform presents the reactive power. For the first part of the 

experiment, the active power reference changes in {0.1, 0.5, 0.25, 0.6, 0.15, 0.1} (p.u), 

while the reactive power reference is fixed at 0.1 p.u. An analog signal is used to 

illustrate the active and a reactive power on the oscilloscope. The signal presenting the 

active power is tuned in a way that maps the power -1000 to 1000 W into an analog 

voltage in ranging from zero to five volts. The signal presenting the reactive power is 

tuned in a way that maps the reactive power in [-700, 700] (VAR) to an analog voltage in 

[0, 5] (V). In this figure, the conventional VSG performance facing changes in the active 

power is shown in (a), and the magnified view is shown in (b). To compare the results 

with the proposed HDP-based VSG controller, (c) illustrates the performance of the 

HDP-based VSG facing the same changes in active power. The magnified version is 

illustrated in (d). As expected from the mathematical modeling proposed in Section 2 and 

the simulation results in Section 4, the conventional VSG control scheme is unable to 

perform well when it is connected to a resistive grid. The ringing and oscillation in active 

and reactive power illustrates the weakness of the conventional PI-based VSGs. On the 

other hand, the HDP-based VSG control scheme adapts its input regarding the grid 

parameters. As the experimental results show, the HDP-based VSG performs better in 
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tracking the power references. The frequency and voltage performance of the proposed 

HDP-based VSG is depicted in Figure 12. As shown, the proposed controller tracks the 

references for the active and reactive power smoothly by changing the voltage and the 

phase of the inverter. In this figure, the green wave shows the line current, and the blue 

waveform depicts the inverter output voltage.    

In the second step, we perform the experiment under the conditions that the active 

power reference is fixed and the reference of the reactive power changes. The scaling 

condition used to illustrate the active and the reactive power on the oscilloscope, is 

similar to the first part of the experiment. In this part, the reference of the active power is 

fixed on 0.1 p.u and the reactive power changes in {0.1, -0.15, -0.3, 0.4, 0.15, 0.1} (p.u). 

To illustrate the effectiveness of the proposed control scheme, the performance of the 

conventional PI-based VSG, and the performance of the proposed HDP-based VSG are 

shown in Figure 12. In this figure, the performance of the conventional VSG is shown in 

(a). The magnified view is illustrated in (b), the performance of the HDP-based VSG is 

 

Figure 12. The phase output voltage and the line current of synchronverter after the low-
pass filter 
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shown in (c), and the magnified waveform is illustrated in (d). Needless to say, the 

experimental results highlighted the weakness of the conventional VSGs. As mentioned, 

a stable PI-based VSG can lead to instability if the operating point is different from what 

the system is designed for. It is shown, for some operating points, the traditional VSG is 

unstable and cannot regulate the power. The HDP-based VSG tracks the references with 

much less oscillation and with lower overshoots. The HDP characteristics of the 

controller guarantee optimal performance in regulating the voltage and the frequency 

while tracking the active and the reactive references.  

 

 

  

(a) (b) 

  

(c) (d) 

Figure 13. Injected active and reactive power from a three-phase grid connected 
synchronverter facing reactive power reference changes (a) traditional VSG, (b) 

magnified response for traditional VSG, (c) HDP-based VSG  (d) magnified waveform of 
HDP-Value VSG 
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6. CONCLUSION 

By increasing the penetration of the renewable energy sources into the power 

grid, the utilization of the three-phase grid-connected inverters has increased. The most 

common technique to control grid-connected inverters is the direct current/power control, 

which decreases the system inertia. This significantly affects the stability of the power 

system in weak grids. The virtual-inertia-based technique has been introduced to 

overcome those drawbacks, but the PI-based design and decoupled assumption features 

of the conventional VSGs affects the performance of the controller when the system faces 

noninductive grids or various operating points. An HDP-based technique, as a machine-

  

(a) (b) 

 
 

Figure 14. Injected active and reactive power from a three-phase grid connected 
synchronverter facing active power reference changes (a) traditional VSG, (b) 

magnified response for traditional VSG, (c) HDP-based VSG (d) magnified output 
waveform of HDP-based VSG 
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learning algorithm, is proposed in this paper to tackle the aforementioned drawbacks 

and to enable the inverter to optimally regulate the voltage and the frequency. The 

simulation results and the experimental results are shown to evaluate the performance of 

the proposed HDP-based controller in facing critical conditions. The performance of the 

proposed approach is compared with the performance of the conventional VSG 

controllers. As illustrated, an adaptive-critic-based controller with a well-tuned neural 

network can improve the performance of the virtual inertia-based grid-connected 

inverters.  
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ABSTRACT 

The value gradient learning (VGL) is one of the most powerful state-of-the-art 

methods in the field of machine learning. In this paper, a dual heuristic dynamic 

programming (DHP) control technique, as the most straightforward VGL, is introduced 

to control a virtual inertia-based grid-connected inverter. The stability of power systems 

is extremely affected by the increase in the penetration of fast-responding inertia-less 

inverters. The virtual synchronous generator (VSG) control scheme addresses this 

drawback; however, the proposed technique is not designed for noninductive grids, and it 

is sensitive to the operating point due to its linear control-based inherence. The DHP 

approach as an adaptive critic design with three embedded neural networks is presented 

in this paper to overcome the aforementioned drawbacks. On the contrary of the 

conventional PI-based synchronverters that operate based on two decoupled single-input 

single-output (SISO), the proposed method provides a multiple-input multiple-output 

(MIMO) platform to regulate the power and frequency of a grid-connected 

synchronverter. The simulation and experimental results are provided to evaluate the 

effectiveness of the proposed DHP-based VSG. The results illustrate that a well-designed 
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well-trained DHP-based VSG demonstrates an optimal performance in different 

scenarios compared to the conventional PI-based VSG.  

Keywords: Adaptive critic design, DC/AC converters, Dual heuristic dynamic 

programming, Machine learning, Reinforcement learning, Value gradient learning, 

Virtual inertia, Synchronverter  

 

1. INTRODUCTION 

Recently, the energy and environmental crises have become two of the most 

critical concerns for all governments worldwide. Consequently, the implementation of 

distributed energy (DG) sources has rapidly increased [1], [2]. Renewable energy sources 

(RESs), such as wind farms and solar panels, have attracted significant attention due to 

their sustainability and environmentally friendly behavior. The traditional power grid has 

been significantly affected by the increase in penetration of RESs [3]. The existing 

kinetic inertia in the enormous rotating parts of synchronous generators plays a vital role 

in stabilizing power systems. The frequency stability is directly related to the balance 

between the demand and generation. This kinetic inertia enables the power system to 

release/store energy during transients, which improves the performance of the grid by 

maintaining the balance between the demand and generation. The most common 

technique to connect RESs into the power grid is via three-phase direct current/power 

inverters. The fast-responding inertia-less inherences of these converters considerably 

reduces the power system stability and robustness, especially in weak grids, such as 

micro grids [4]–[6].  
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Direct current/power grid-connected inverters require the frequency and the 

phase angle of the grid to use it as a reference. In order to read these essential data, the 

phase-locked-loop (PLL) is used. The behavior of PLLs is highly nonlinear, which affects 

their performance, especially during transients [7]. Therefore, to address drawbacks 

regarding the inertia and PLL, the concept of the virtual synchronous generator (VSG) 

has been introduced. The concept of VSG is a control scheme to govern three-phase 

inverters, which emulates the mechanical behavior of a synchronous generator (SG) [8]–

[10]. The mechanical behavior of synchronous generators, known as the swing equation, 

functions as the main part of the VSG concept. Several studies have implemented the 

VSG control scheme to regulate the voltage and frequency of inverters based on the 

power balance equations and state of charge (SoC) of the storage device [11], [12], in 

which no DG is implemented. The concept of static synchronous generator (SSG) was 

introduced in [13] which performs like VSG but does not emulate the behavior of a 

synchronous generator exactly. Regarding the real synchronous generators, the power 

system stabilizer (PSS) damps the power oscillation; however, PSSs are unable to set the 

parameters in a highly nonlinear system in exitance of DGs. Since the VSG is only a 

control scheme it is not bounded by its mechanical characteristics and can be changed to 

perform better, for example by reducing the rate of change of frequency (RoCoF) [14]. 

Several studies have addressed new approaches regarding virtual-inertia-based 

techniques to control inverters. Ref [15] has proposed a stability analysis for a grid 

connected inverter when it performs as a VSG versus the droop control performance. In 

[16], it can be seen that considering the line and converter dynamics constraints the 

control parameters in a VSG design.  The small-signal angular stability of a power 
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system is examined in [17] when it is connected to VSGs. A fuzzy control approach 

has been proposed in [18] to improve the stability of the power system and to decrease 

frequency fluctuations. To enhance the performance of VSGs, the characteristic of the 

alternating current has been studied in [19]. Ref [20] has proposed an extended 

synchronverter to improve the power system stability. By targeting the center of inertia 

frequency during short circuits, an enhanced method has been proposed for multi-VSG in 

[21].  

The exact model of the system with accurate parameters is required for all the 

aforementioned techniques. However, a real power system includes uncertain conditions, 

approximated system model, missing or inaccurate system parameters. Several 

parameters of a power system can be read from the data sheet or can be measured which 

can be costly and time consuming. There are several nonlinear electric parts in a real 

power system such as transformers and inductors that can add to the nonlinearity and 

uncertainty of the model of the system. Besides, changing the power system parts, for 

example replacing a line or the aging concept, can alter the system parameters. The 

online autotuning characteristic of neural network-based machine learning techniques 

tackles these drawbacks. 

In addition, the performance of a conventional VSG is not acceptable in 

noninductive grids, such as distributed systems. To tackle these concerns, several studies 

have addressed adaptive or machine learning-based approaches, such as the adaptive 

bang-bang technique [22] or the neural network predictive control [23]; however, the 

proposed methods lack online training. A neural network predictive VSG, self-tuning 

VSG in photovoltaic-diesel microgrids [24], and an adaptive VSG based on a small-
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signal model [25] are also proposed. Nonetheless, these methods lack the 

implementation of an optimal, adaptive, and online-tuned VSG. To the best of the 

author’s knowledge, only [26], [27] have all the aforementioned characteristics by 

implementing a neural-network-based adaptive critic design technique. A Value Learning 

(VL) technique is used in [26] to control the voltage of the inverter. The main drawback 

of the proposed technique is that the VL methods are significantly slow because it is 

required to search for the optimal solution in the whole state-space. To tackle this 

concern, a Value Gradient Learning technique is proposed in [27]  to improve the training 

speed. There are two main draw backs regarding [27]: (i) it lacks the experimental 

implementation and (ii) the active/reactive combination is only used to control the 

voltage value, not the angle of the inverter. However, in this manuscript, both the active 

and reactive power errors are used  regulate both the magnitude of the voltage and the 

frequency deviation of the inverter. The proposed techniques have not been evaluated by 

an experimental prototype.  

The most highlighted contribution of this paper is to propose a dual heuristic 

programming as a value gradient learning technique to improve the power and frequency 

stability of grid-connected inverters. This paper does the following: 

• Proposes a model-free neural network-based adaptive critic design technique to 

optimally regulate a grid connected VSG 

• Presents online training to adjust the controller parameters when changes happen 

in the power system 

• Presents a multiple-input and multiple-output (MIMO) to overcome the 

drawbacks of single-input and single-output (SISO) in traditional decoupled VSGs 
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The rest of the paper is organized as follows. Section 2 explains the concept of 

virtual synchronous generators and the weaknesses of the conventional VSG controller. 

The dual heuristic dynamic programing concept, design procedure, and training algorithm 

are discussed in Section 3. In section 4, the proposed DHP-based VSG is proposed, and 

the simulation results are provided to evaluate the effectiveness of the proposed 

technique. The implementation procedure including the system parameters are explained 

in Section 5, and the experimental results are provided.  

 

2. GRID-CONNECTED VIRTUAL SYNCHRONOUS GENERATOR 

As briefly mentioned in Section 1, the system model and parameters have direct 

impact on the effectiveness of the VSG control scheme. Transmission line parameters 

significantly alter the performance of conventional VSGs. In this section, the 

mathematical model of the virtual synchronous generator is explained. The impact of the 

transmission line parameters on the performance of VSG is illustrated by deriving the 

mathematical equation of the delivered power to the grid by the VSG.  

2.1. VIRTUAL SYNCHRONOUS GENERATOR 

The availability of an inertia source, which can keep the balance between the 

demand and the generation is one the most highlighted concerns in designing virtual-

inertia-based inverters. To address this concern, it is assumed that a regular dc source is 

connected to the dc side. A block diagram of a virtual synchronous generator is depicted 

in Figure 1. The line resistance and reluctance are represented by RL and XL, and the 
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equivalent inverter reluctance is represented by XF. The so-called swing equation can be 

written as: 

𝑃 − 𝑃 = 𝐽𝜔
𝑑𝜔

𝑑𝑡
+ 𝐷∆𝜔 (1) 

where the input/reference power and the output power are Pin and Pout, the virtual 

moment of inertia and virtual droop coefficient are J and D, and the virtual rotating 

velocity is 𝜔 . The rotational frequency deviation can be defined as ∆𝜔 =  𝜔 − 𝜔 , 

where 𝜔  represents the grid rotational frequency when the inverter is in grid-connected 

mode, or the reference rotational frequency when the inverter operates in stand-alone 

mode.  

A grid-connected inverter is controlled by a pulse width modulation (PWM) unit. 

In order to generate the switching signals by the PWM unit, two parameters are required: 

 

Figure 1. The block diagram of the traditional VSGs 
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(i) the magnitude/peak of the voltage ( E ) and the phase of the voltage (𝛿) with respect 

to the grid phase as the reference phase, which can be computed as: 

𝛿 = ∆𝜔 ∙ 𝑑𝑡. (2) 

The most common technique to control the voltage of a grid-connected inverter is 

to use conventional controllers, such as the integral (I) or the proportional-integral (PI), 

with the reactive power deviation as the error signal. In order to constraint the voltage, a 

voltage droop coefficient is also applied. Therefore, the inverter voltage can be computed 

as: 

𝐸 =
1

𝐾
∆𝑄 ∙ 𝑑𝑡 − 𝐷 ∆𝑉 (3) 

where the integral coefficient, voltage droop coefficient, the reactive power deviation, 

and the voltage deviation are represented by 𝐾 , 𝐷 ,  ∆𝑄 = 𝑄 − 𝑄 , and ∆𝑉 = 𝑉 −

𝑉 , respectively. The reference voltage, 𝑉 , is the grid voltage, and the reactive power 

reference is represented by  𝑄 . The block diagram of the active-power-phase and 

reactive-power-voltage of a VSG are shown in Figure 2. 

 
 

 
 

(a) (b) 

Figure 2. The block diagram of the decoupled approach for VSGs. (a) the block diagram 
of active power-frequency, (b) the block diagram of reactive power-voltage 
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2.2. POWER ANGLE AND POWER FLOW EQUATIONS 

 Figure 3 shows the circuit diagram of a grid-connected VSG with the total 

reactance, resistance, and impedance of  𝑋 = 𝑋 + 𝑋 ,    𝑅 = 𝑅 , and 𝑍 = 𝑗𝑋 +

𝑅 , respectively. The active and reactive power injected by the inverter into the grid can 

be computed as: 

𝑃 =
1

2

𝐸

𝑍
−

𝐸𝑉 cos 𝛿

𝑍
𝑅 +

𝐸𝑉

𝑍
𝑋 sin 𝛿  (4) 

𝑄 =
1

2

𝐸

𝑍
−

𝐸𝑉 cos 𝛿

𝑍
𝑋 −

𝐸𝑉

𝑍
𝑅 sin 𝛿  (5) 

where the grid voltage, the inverter voltage, the injected active and reactive power, and the 

power angle are represented by V, E, P, Q, and 𝛿, respectively. In inductive grids, such as 

high voltage grids, 𝑋 ≫ 𝑅  , (4) and (5) can be simplified as: 

𝑃 ≈
𝐸𝑉

2𝑋
sin 𝛿 (6) 

𝑄 ≈
𝐸

2𝑋
(E − V cos 𝛿). (7) 

For the relatively small line inductance, the power angle is small; therefore, by 

simplifying expressions sin 𝛿 and cos 𝛿, (6) and (7) can be simplified as: 

 

 

Figure 3. Equivalent circuit diagram of a grid connected VSG 
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𝑃 ≈
𝐸𝑉

2𝑋
𝛿 (8) 

𝑄 ≈
𝐸

2𝑋
(E − V).  (9) 

Equations (8) and (9) authenticate the decoupled assumption in inductive grids. 

As it is shown, P can be controlled by the power angle and Q can be regulated by the 

magnitude of the inverter voltage, which confirms that the conventional VSGs are 

effective in inductive grids. conventional VSGs are based on the decoupled-control 

assumption. In other words, for conditions where the assumption is not valid, such as 

distributed systems and resistive/semi-resistive grids, conventional VSGs are unable to 

perform well. Besides, conventional VSGs are designed based on linear controller such as 

PI/I. In semi-resistive grids, the control loop is coupled. It means that the system is a 

multiple-input and multiple-output (MIMO). The linear controllers are not well suited for 

MIMO systems. Therefore, nonlinear control techniques such as feedback linearization or 

model predictive control can merge as potential replacements, but their behavior is highly 

dependent on the system model and the value of the parameters. However, a real power 

system with nonlinear elements, missing data parameters, and several uncertain 

conditions makes it infeasible to implement model-dependent techniques.  Adaptive, 

model-free techniques can overcome the aforementioned drawbacks. An adaptive critic 

design technique based on the DHP is presented to regulate the power and frequency of a 

grid-connected VSG.  
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3. DUAL HEURISTIC DYNAMIC PROGRAMING  

Adaptive critic design (ACD) techniques are neural-network-based optimization 

techniques. Besides, ACDs are well suited for noisy environment and system with 

uncertainties.  The ACD was first introduced in [28] by combining the reinforcement 

learning technique and the dynamic programming technique. A typical ACD controller 

consists of two subnetworks: (i) the critic network and (ii) the action network. Some 

other types of ACDs also use a third model network. There are two methods to connect 

the action and critic network. The action network can be connected to the critic network 

directly, which is called an action-dependent ACD, or it can be connected through an 

identification model, which is called a model-dependent design. The ACD is based on 

Approximate Dynamic Programming (ADP). In other words, to penalized or reward 

(criticize) the agent (action network), the cost-to-go function is used. The critic neural 

network can be trained using the Bellman’s equation which will be explained in this 

section. To train the action network, the derivative of the cost-to-function with respect to 

the state variables is required. The result of this concept is introduced as two main types 

of ACDs. The first type is the Value Learning (VL) technique in which the critic network 

objective is to approximate the value or cost-to-go function. Then, using the critic 

network and taking the derivative of the approximated value function the feedback signal 

can be generated to train the action network. The most common Value learning technique 

is the Heuristic Dynamic Programming technique. The second type of ACD is the Value 

Gradient Learning (VGL) in which the main objective of the critic function is to 

approximate the derivative of the value function with respect to the state variables 
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directly. The dual heuristic dynamic Programming (DHP) is the most common 

technique in VGLs. The main drawback of the VLs compared to the VGL is the slow 

training process due to search or optimal solution in the entire state. However, the VGL is 

much faster because it only requires scanning in the vicinity of the trajectory [29]. 

The main objective of the dynamic programming approach is to provide a control policy 

that minimizes a cost function over time. This cost function, which is a discounted 

cumulative utility function, 𝑈(∙), is also known as cost-to-go function and can be 

computed as: 

𝐽(𝑡) = 𝛾 𝑈(𝑡 + 𝑘). (10) 

A discount factor, 𝛾 ∈ [0, 1], is defined to guarantee that the cost-to-go function is 

bounded. Besides, this factor determines the importance of the future costs. At any time 

t=t0, by subtracting the cost function of the next time step 𝐽(𝑘 + 1) from the cost-to-go 

function  𝐽(𝑘) it can be written as:  

𝐽(𝑘) = 𝑈(𝑘) + γ 𝐽(𝑘 + 1). (11) 

In this paper, the utility function is defined based on the active power error 𝑒 , the 

reactive power error 𝑒 , and the rotational frequency error 𝑒  as: 

𝑈(𝑘) = 𝐾 𝑒 + 𝐾 𝑒 + 𝐾 𝑒  (12) 

𝑒 = 𝑃 − 𝑃 (13) 

𝑒 = 𝑄 − 𝑄 (14) 

𝑒 = 𝜔 − 𝜔 . (15) 
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The coefficients/weights 𝐾 , 𝐾 , 𝐾  are defined to represent the importance of 

the active power, reactive power, and the frequency error, respectively. In dynamic 

programming techniques, computationally expensive techniques are used to compute the 

cost-to-go function. However, the ACDs use the neural network to estimate either the 

cost-to-go function or its derivative.  

The block diagram of a DHP is illustrated in Figure 4. In this figure, the input 

vector to the action network and the output control vector is represented by X (t) and u (t), 

respectively. The critic network provides an estimation of the derivative of the cost-to-go 

function as the feedback signal for training the action network.  The structure and the 

training procedure of the action network and the credit network are explained in this 

section. The feedback signal to train the critic and the action network is shown by the 

dotted lines.   

3.1. CRITIC NEURAL NETWORK  

In order to train the action network, a well-designed and well-trained critic 

network is required. As mentioned, the main objective of the critic network in DHPs is to 

 

Figure 4. The block diagram of the proposed controller for VSG  
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estimate the derivative of the cost-to-go function with respect to the control signal. By 

taking the derivative of both sides of (11), it can be written as: 

𝜕

𝜕𝑋 (𝑡)
𝐽(𝑡) =

𝜕

𝜕𝑋 (𝑡)
(𝑈(𝑡) + γ 𝐽(𝑡 + 1)). (16) 

The required error signal to train the critic network can be defined as: 

‖𝐸𝑟‖ = 𝑒 (𝑡)𝑒 (𝑡), (17) 

where 𝑒 (𝑡) can be defined as: 

𝑒 (𝑡) =
𝜕

𝜕𝑋(𝑡)
𝐽(𝑡) −

𝜕

𝜕𝑋(𝑡)
𝑈(𝑡) + γ 𝐽(𝑡 + 1) . (18) 

Equation (10) can be rewritten by applying the chain rule as: 

𝜕𝐽(𝑡 + 1)

𝜕𝑋 (𝑡)
= 𝜆 (𝑡 + 1)

𝜕𝑋 (𝑡 + 1)

𝜕𝑋 (𝑡)
+ 𝜆 (𝑡 + 1)

𝜕𝑋 (𝑡 + 1)

𝜕𝑢 (𝑡)

𝜕𝑢 (𝑡)

𝜕𝑋 (𝑡)
 (19) 

where the number of control signals and the number of states are represented by m and n, 

respectively. The expression 𝜆  (𝑡 + 1) can be defined as: 

𝜆  (𝑡 + 1) =
𝜕𝐽(𝑡 + 1)

𝜕𝑋  (𝑡 + 1)
 

 In this paper, the input signal to the action network is defined as 𝑋 =

𝑃 𝑄 𝑒  𝑒  𝑒   𝛿 . Considering the important rule of the inverter power angle (𝛿 ) in 

defining the injected active/reactive  power from the inverter into the power grid, the 

inverter power angle is being fed to the neural network as well. The input signal for the 

critic network can be defined as 𝐶𝑟 = [𝑋 𝐸]. By replacing (19) in (18), it can be 

rewritten as 

𝑒 (𝑡) =
𝜕𝐽(𝑡)

𝜕𝑋 (𝑡)
−

𝜕

𝜕𝑋(𝑡)
𝑈(𝑡) + γ 𝐽(𝑡 + 1) . (20) 
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The training signal for the critic network is expressed in (20). Either the exact 

model of the system or a neural network representing the system is required to compute 

the partial derivative of the next state with respect to the current state. In this paper, a 

neural network is used as a system identifier to estimate the state space model of the 

system. A fully connected, feedforward, neural network with one hidden layer consisting 

of seven neurons is used as the system identifier. To model the critic network, a 

multilayer, feedforward, fully connected neural network with two hidden layers and with 

four neurons at each layer is used.  

3.2. ACTION NEURAL NETWORK  

The main objective of the action network is to provide a set of controls to 

minimize the cost-to-go function for the immediate future. In other words, the goal is to 

minimize the discounted cumulative utility function for the infinite time horizon. To 

implement the action network, a fully connected, feedforward, multilayer NN is used. 

This neural network includes two hidden layers, and there are five neurons at each hidden 

layer. The backpropagation approach using the gradient decent technique is used to train 

the action network. The only difference between training the action network and a typical 

neural network is that the derivative of the cost-to-go function provided by the critic 

network is used as the error signal. As introduced in part A, the input of the action 

network is vector X, and the output of the action network is the peak value of the inverter 

voltage.  
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4. SIMULATION RESULTS  

Figure 5 depicts the block diagram of the proposed DHP-based VSG. As 

explained in Section 3, the proposed DHP controller includes three neural networks: (i) 

the action network, (ii) the critic network, and (iii) the system identifier network. The 

system identifier neural network can be pretrained to perform as the model of the system. 

The action and the critic network are trained at each control cycle. The power meter 

block computes the active and reactive power transferred into the grid by reading the 

three-phase voltages and currents. A network input generator prepares the input vector X 

by receiving the active/reactive power and their references, and the frequency of the 

 

 

Figure 5. DHP-based synchronverter block diagram 
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inverter. The action network generates the optimal control signal, ( 𝐸 (𝑡) ), based on its 

input vector, and the input to the virtual inertia block (Virin(t) ). Then, the critic network 

estimates the derivative of the cost-to-go function ( 𝜆  (𝑡) ). The system identifier block is 

applied to predict the next states. The predicted next states are used to compute the next 

state control signal ( 𝐸 (𝑡 + 𝑇 ) ). The predicted control and state signals are fed to the 

critic network to compute the next state output ( 𝜆  (𝑡 + 𝑇 ) ).  

As discussed, conventional VSGs are unable to perform well in noninductive 

grids. To evaluate the effectiveness of the proposed DHP-based controller compared with 

a conventional VSG, the simulation results in both inductive and resistive grids are 

provided.  The parameters of the grid and the VSG is provided in Table 1. 

Table 1. System parameters used in simulation 

Parameter Value Unit 

DC voltage 250 V 
AC line voltage 110 V 
AC frequency 60 Hz 

Moment of inertia 0.1 Kg.m2 
Frequency droop %4 -- 
Inverter power 

rating 
5 kW 

Inductive line 
Filter inductance 1 μH 
Line inductance 100 μH 
Line resistance 10 mΩ 

Resistive line 
Filter inductance 1 μH 
Line inductance 1 μH 
Line resistance 500 mΩ 

DHP parameters 
ℽ 1  

Sampling time 1 ms 
[kP  kQ   kf] [1  1  0] -- 

 

 



 

 

84

4.1.  INDUCTIVE GRID 

In Section 2, it is discussed that the conventional VSG is designed based on 

inductive grid assumption. In other words, a well-designed PI-based VSG can perform 

well in inductive grids. In this section, active and reactive power reference changes are 

applied to both the conventional and the DHP-based VSGs. As the simulation results 

show, and as it was expected from the mathematical point of view, the conventional 

performance is acceptable in tracking the power references. The DHP-based VSG 

performs an optimal response in tracking the power references. The performance of the 

DHP-based VSG is slightly better than the conventional VSG for two reasons: (i) the 

conventional VSG are designed based on inductive connections and the simulation is for 

a semi-inductive grid, and (ii) the PI parameters in the VSG is designed for the nominal 

operating point and the alteration in the operating point reduces the effectiveness of the 

conventional VSG. On the other hand, the reinforcement learning characteristic of the 

DHP enables the controller to adjust itself with the line impedance and different 

operating point conditions. Figure 6 illustrates the performance of the conventional and 

DHP-based controller.  

4.2. RESISTIVE GRID 

As analyzed in Section 2, the conventional VSG design is not well suited for 

noninductive grids. In noninductive grids, the decoupled control assumption is no longer 

valid and extremely affects the performance of the VSG. In this part, the performance of 

the DHP-based VSG is compared with the conventional VSG to evaluate the 

effectiveness of the proposed approach. The simulation results illustrate that the 
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conventional VSG is unable to perform well in tracking the active and reactive power 

references, because it only utilizes the frequency to control the power, and the magnitude 

of the voltage to control the reactive power, which is not the case in 

resistive/noninductive grids. The main goal of the VSG is to improve the dynamics of the 

inverter, however as shown in Figure 6, the performance is far from optimal. One method 

is to switch the controller platform to the conventional direct power direct current 

controller, which would have the main two drawbacks of inertia-less and PLL 

requirement. In the second approach, the proposed controller based on the value gradient 

is used to improve the dynamics while maintaining the advantages of inertia-based and 

PLL-less. The performance of the conventional VSG is nonoptimal and includes 

oscillations in the output power. On the other hand, the DHP-based VSG tracks the power 

references smoothly, because it uses both active and reactive power error to regulate the 

 

  
(a) (b) 

 
 

(c) (d) 
Figure 6.   The performance of the DHP-based VSG and the conventional PI-based VSG 
in an inductive grid(a) active power (b) reactive power (c) active power (zoomed in)  (d) 

reactive power (zoomed in) 
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inverter voltage. The active and reactive power signals for the conventional and DHP-

based VSGs are depicted in Figure 7.  

 

5. EXPERIMENTAL RESULTS 

To evaluate the effectiveness of the proposed approach, a laboratory prototype is 

prepared. The prototype is a 1VA grid-connected VSG. The inverter is connected to a 

three-phase grid with the line-line voltage of 190V/60Hz. The control block diagram 

includes two parts: (i) the embedded controller, which is implemented by a Texas 

Instruments (TI) digital signal processor (DSP), TMS320F28377, and (ii) MATLAB 

R2018. The embedded controller includes the direct current control and conventional 

VSG. The DHP-based control scheme is utilized by a computer using MATLAB. Figure 

8  illustrates the prototype. As discussed earlier, to provide enough power during 

 

(a) (b) 

 
(c) (d) 

Figure 7. The performance of the DHP-based VSG and the conventional PI-based 
VSG in a resistive grid (a) active power (b) reactive power (c) active power (zoomed 

in)  (d) reactive power (zoomed in)  
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transients, the dc side is connected to a dc power supply. A three-phase transformer is 

implemented in the output side of the inverter to provide the electrical isolation and to 

boost up the voltage. A three-phase relay connects the inverter into the grid. The DSP 

communicates with the computer via a USB2SERIAL adaptor. The current and voltage 

signals are read by the embedded analog to digital converter (ADC) in the DSP. The DSP 

is responsible to generate the PWM signals based on the magnitude and the phase of the 

voltage provided by each one of controllers. The neural networks presenting the action 

network, critic network and system identifier are trained every 1 millisecond. The action 

network generates the control signal at every control cycle.  

5.1. TRAINING THE NETWORKS 

As discussed earlier, the proposed technique includes three neural networks. The 

first neural network is the system identifier. The model neural network estimates the 

behavior of the model of the system to predict the next state of the system. This network 

 

Figure 8. Three-phase grid-connected inverter test bed 

 



 

 

88

does not depend on the controller, and it is pretrained using a conventional VSG. After 

the model network is trained, the critic network is pretrained to smoothen the training of 

the action network. Lastly, the action network can be trained online, and all the 

parameters for the critic and the model network can be trained forward in time. It is 

shown in Algorithm I.  

To train the model network, the state of the inverter and the control signal of the 

inverter form an input vector for the neural network. The states’ values for the next time 

step are the output of the neural network. This network is pretrained offline by the 10000 

samples of collected data.  

 To train the critic network, as explained in Section 3, the error signal is required. 

To compute the error signal, the derivative signal for the current state and the next state is 

required. The next state estimation can be generated by the model network and be fed to 

the critic network to generate the output for the next step. The output of the critic network 

Algorithm I. HDP-based controller  

 Prepare state variables: Read the current and the output voltage of the 
inverter and compute the injected active/reactive power 

 Generate the neural network input vector 
 Train the pretrained model neural network 
 Feed the states to the action network and generate the output 
 Feed the outputs of the action network to the PWM block and the 

swing equation block 
 Compute the utility function 
 Feed the state vector to the system neural network and estimate the 

next state vector 
 Compute the current and the next state Lambda and generate the error 

signal for the critic network 
 Train and update the critic network 
 Using the critic network train and update the action network 
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plays a significant rule in training the action network. To enhance the performance of 

the proposed controller, the critic network is also pretrained in advance. The 

mathematical equations to update the critic network is expressed by (16)-(20). Another 

approach in training the critic network is to train the critic network simultaneously with 

the action network. The training procedure for the action network is much faster in the 

first approach.  

To train the action network, the feedback signal from the critic network is 

required. Similar to the critic network and the `millisecond. The regular backpropagation 

technique using the gradient decent is used to train the action network.   

5.2. RESISTIVE GRID CONNECTION 

As discussed earlier, the performance of the conventional VSG in inductive grids 

are acceptable, and the simulation results confirm that. On the other hand, the 

conventional VSG performance in noninductive grids is nonoptimal, which is confirmed 

 

Table 2. Experimental test bed parameters 

Parameter Value Unit 

 
VSG 

DC voltage 400 V 
AC line voltage 110 V 
AC frequency 60 Hz 

Moment of inertia 0.5 Kg. m2 
Frequency droop %4 -- 

Inverter power rating 1 kW 

 
Line Parameters 

Filter reactance 900 mΩ 
Line reactance 150 mΩ 
Line resistance 1800 mΩ 
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by the simulation results. Therefore, in this part, the behavior of the VSG in a resistive 

grid is only evaluated. The parameters of the prototype are illustrated in Table 2.  

In the first part of the experiment, the reactive power reference is fixed in 0.1 

(p.u), and the active power reference changes in {0.1, 0.05, 0.2, 0.4, 0.1, 0.2, 0.1} (p.u). 

Figure 10 illustrates the inverter’s current and voltage when it faces a change in the active 

power reference. As shown, the inverter voltage and the inverter phase change to regulate 

the power. The output active and reactive power is shown in Figure 9. In this figure, the 

active power and reactive power are shown by green (top) and blue (bottom) waveform, 

respectively. The active and reactive power output are generated as analog signals in a 

range of zero to five volts. The power compute unit maps the active power in range of [-

1000,1000] (W) to [0,5] (V), and the reactive power in range of [-700,700] (VAR) to 

[0,5] (V). In this figure, the conventional VSG performance facing changes in the active 

power is shown in (a), and the magnified view is shown in (b). To compare the results 

with the proposed DHP-based VSG controller, figure (c) illustrates the performance of 

 

 

Figure 9. The phase output voltage and the line current of synchronverter after the low-
pass filter 
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the DHP-based VSG facing the same changes in active power references. The magnified 

version is illustrated in figure (d).  

As expected, based on the analytical computation in Section 2, and the simulation 

results in Section 4, the conventional VSG is not well-suited for the resistive grids and 

generates oscillation in active and reactive power. In contrast, the DHP-based VSG tracks 

the power references smoothly.  

  

(a) (b) 

  

(c) (d) 

Figure 10.   Injected active and reactive power from a three-phase grid connected 
synchronverter facing active power reference changes (a) traditional VSG, (b) magnified 

response for traditional VSG, (c) HDP-based VSG (d) magnified waveform of HDP-
based VS 
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In the second part of the experiment, the active power reference is fixed in 0.1 

(p.u) and the reactive reference changes in {0.1, 0.2, 0.3, -0.05, -0.2, 0.2, 0.1} (p.u).  The 

output active and reactive power of the inverter is shown in Figure 11. As shown in this 

experiment, the conventional VSG is unstable, and the system goes to instability. It is 

important to mention this point that since the conventional VSGs are based on linear 

controllers, they depend on the linearized model around the operating point. In other 

words, a stable controller in some operating point can go to instability in another 

operating point. The nonlinearity of the filter inductor and transformer in the laboratory 

prototype escalates this concern. The experimental results highlight the weakness of the 

conventional VSGs. The DHP-based VSG tracks the references with much less 

  

(a) (b) 

  
(c) (d) 

Figure 11. Injected active and reactive power from a three-phase grid connected 
synchronverter facing reactive power reference changes (a) traditional VSG, (b) 

magnified response for traditional VSG, (c) HDP-based VSG  (d) magnified output 
waveform of HDP-based VSG 
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oscillations and with lower overshoots. The adaptation characteristic of DHP-based 

VSG guarantees optimal performance in regulating the voltage and the frequency while 

tracking the active and the reactive references.  

 

6. CONCLUSION 

Grid-connected inverters are widely used to connect renewable energy resources 

into the power grid. The fast-responding inertia-less inherence of these power electronics 

converters significantly affects the power system stability. The concept of the virtual 

synchronous generator is a suitable replacement for the conventional controller. This 

approach improves the power system’s stability, but it is designed for inductive grids, and 

it is not optimal for noninductive grids such as low voltage grids. To overcome this 

drawback, a reinforcement learning-based controller is introduced in this paper to 

regulate the power and the frequency of a grid-connected VSG. A dual heuristic dynamic 

programming approach is presented in this paper to optimally control the transmitted 

power into the grid by adjusting the voltage and frequency of the inverter. The proposed 

approach is simulated in MATLAB in both inductive and resistive grids to confirm its 

effectiveness compared to a conventional VSG. A laboratory prototype is provided to 

confirm the feasibility of the proposed approach. As the simulation and experimental 

results confirm, the proposed approach demonstrates better performance while facing 

different power angles in various operating points.  
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SECTION 

2. CONCLUSIONS AND RECOMMENDATIONS 

The increase in penetration of renewable energy sources as distributed generations 

(DGs) has increased the integration of fast-responding inertia-less power electronics 

converter. The conventional grid-connected inverters are controlled through the direct 

current control scheme, which affects the stability of the power system, in particular in 

weak grids. The concept of the virtual synchronous generator has been introduced to 

address these concerns by mimicking the mechanical behavior of synchronous 

generators. However, the conventional VSG has two main drawbacks: (i) this method is 

unable to perform optimally in resistive grids, and (ii) the conventional VSG is designed 

based on linear controllers, which is not suitable for varying operating point. Three 

approaches are proposed in this research to address the aforementioned drawbacks. In the 

first approach the NNPC is proposed to regulate the voltage and frequency of a grid-

connected VSG. This method addresses the conventional VSG drawback; however, it 

only optimizes the cost function for a specific time horizon. In the second approach the 

HDP-based VSG is proposed to control the grid-connected inverter, which optimizes the 

cost function for an infinite time horizon. Nevertheless, the training procedure is time 

consuming because the critic neural network requires to search the entire state space. 

Therefore, in the third approach, a DHP-based VSG is proposed to perform as an 

approximate dynamic programming with a faster training rate. The simulation and 
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experimental results are provided to evaluate the effectiveness of the proposed 

approaches, and the results are compared with the conventional VSG performance when 

facing active and reactive power reference changes.  
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