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Abstract— Input-output mapping for a given power system 
problem, such as loads versus economic dispatch (ED) results, has 
been demonstrated to be learnable through artificial intelligence 
(AI) techniques, including neural networks. However, the process 
of identifying and constructing a comprehensive dataset for the 
training of such input-output mapping remains a challenge to be 
solved. Conventionally, load samples are generated by a pre-
defined distribution, and then ED is solved based on those load 
samples to form training datasets, but this paper demonstrates 
that such dataset generation is biased regarding load-ED mapping. 
The marginal unit and line congestion (i.e., marginal pattern) 
exhibit a unique characteristic called “step change” in which the 
marginal pattern changes when the load goes from one critical 
loading level (CLL) to another, and there is no change of marginal 
units within the interval of the two adjacent CLLs. Those loading 
intervals differ significantly in size. The randomly generated 
training dataset overfills intervals with large sizes and underfits 
intervals with small sizes, so it is biased. In this paper, three 
algorithms are proposed to construct a marginal pattern library 
to examine this bias according to different computational needs, 
and an enhancement algorithm is proposed to eliminate the bias 
for the load-ED dataset generation. Three illustrative test cases 
demonstrate the proposed algorithms, and comparative studies 
are constructed to show the superiority of the enhanced, unbiased 
dataset. 

Index Terms—Neural networks, Critical load level (CLL), 
Locational marginal price (LMP), Economic dispatch (ED), 
Optimal power flow (OPF), Electricity market.  

NOMENCLATURE 

Sets and Indices   

NG, Nb Number of generators and number of buses 
Nl Number of lines 
Nco Number of marginal pattern combinations 
CL, UL Set of congested and uncongested lines  
MG, NG Set of marginal units and non-marginal 

units 
LP, LN Set of positive congested lines and negative 

congested lines 

Parameters 
 

Ci Cost of unit i 

DFi Delivery factor of unit i 
GSFl-i Generation shift factor of bus i to line l 
Pi

max, Pi
min Upper and lower generation capacity limits 

of unit i 
Ll

max, Ll
min Upper and lower transmission thermal 

limits of line l 
ε Small positive number, such as 0.01  
ρ, σ 
 

User-defined value for perturbations of 
variable βi 

ωmax, ωmin User-defined upper and lower limits for 
variable βi 

Variables 
 

Pi, ΔPi Power output of unit i and incremental 
power output of unit i  

FLl, ΔFLl Line flow at line l and incremental line 
flow at line l 

MP Power output of marginal units 
SCL, SUL Slack variables for congested and 

uncongested line constraints 
di, Δdi Load at bus i and incremental load at bus i 
ΔD∑ Incremental loading level 
LMPi Locational marginal price at bus i 
βi Incremental variable for the iterative 

process in Algorithm DE 
λ Lagrangian multiplier for power balance 

constraint  
μl

+, μl
- Lagrangian multiplier for lth upper and 

lower line flow limits 
ηi

+, ηi
- Lagrangian multiplier for ith upper and 

lower generator output limits 

I.  INTRODUCTION 

HE 2016 victory of AlphaGo, a computer program that 
defeated the strongest human Go player in the world, 

demonstrated the potential of artificial intelligence (AI) for 
solving complex decision-making problems [1]. The 
continuous development of AI is profoundly impacting 
everyday life and industrial developments. The increasing 
digitalization of the power grid and impressive leaps in 
computation capabilities are unlocking the possibility of AI-
enhanced power systems [2]. The speed of development of AI 
techniques is revolutionizing traditional power system planning 
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and operations. Ref. [3] compared power system AI with the 
epic AlphaGo computer program and sketched promising 
prospects of implementing AI techniques in the power system. 
Ref. [4] analyzed the opportunities and challenges of adapting 
and developing AI techniques in transmission, distribution, 
microgrids, and multi-energy systems. 

One of the most recent applications of an AI technique in 
power systems is the use of AI in economic dispatch (ED), 
which is essentially a security-constrained optimal power flow 
(OPF) problem. Note, once the ED is solved, some results, such 
as generation dispatches, unsupplied loads, and system total 
cost, are directly available. Meanwhile, indirect results such as 
reliability indices and locational marginal prices (LMPs) can be 
easily obtained.    

The ED problem must be solved repetitively within a short 
time during daily operations. Therefore, recent research has 
attempted to directly predict the results of the OPF-based ED 
problem through neural networks without solving the 
optimization model. In ref. [5], various regression models, 
including a support vector regression model and a fully 
connected neural network, were applied to predict optimal 
dispatch results based on load and contingency data. Similarly, 
ref. [6] built a neural network to learn the mapping between the 
load and generation dispatches. In ref. [7], a graph neural 
network was constructed to predict the optimal dispatch results 
based on loads. In ref. [8], a deep neural network was combined 
with the Lagrangian dual method to improve the accuracy of the 
prediction of optimal dispatch results. 

Most recently, ref. [9] developed the DeepOPF approach, 
which applies a deep neural network to predict the dispatch 
result of a linearized OPF problem. With a linearized power 
flow, the OPF-based ED problem becomes convex. Although 
solving the linearized ED problem is generally efficient, it 
incurs computational complexity depending on different 
applications [10][11]. Some of the literature has applied data-
driven learning techniques to identify specific patterns of the 
linearized ED problem instead of directly predicting ED 
outputs. In ref. [12], a neural network was proposed to predict 
the umbrella constraints that form the feasibility regions of the 
ED problem. In ref. [13], a neural network classifier was 
proposed to learn the binding constraint of the ED problem. In 
ref. [14], statistic learning was applied to learn the mapping 
between the optimal basis of ED and uncertainties.  

In summary, previous research has applied different types of 
neural networks to predict the following four outputs, direct or 
indirect, of the ED problem: (1) the optimal dispatch results; (2) 
the optimal cost; (3) the reliability index/status; and (4) the 
characteristic of the optimal solutions. However, the dataset 
(i.e., load versus above four outputs) is generally produced by 
a pre-defined distribution without considering the intrinsic 
characteristic of the ED problem. For example, research works 
[8] and [9] apply uniform distribution to generate load samples. 
Research works [13] and [14] use normal distribution to 
generate load samples. In general, the most straightforward way 
to generate a large set of load samples is to directly apply a 
certain distribution. However, in this paper, we demonstrate 
that the randomly generated load samples are biased in relation 

to ED outputs, such as generator dispatches and LMPs. Here, 
three algorithms are proposed to construct the marginal pattern 
library, and another algorithm is proposed to enhance the 
dataset for model-free applications in ED and LMP calculations. 
In summary, this paper provides a better way to generate load 
samples for the training dataset of load-ED mapping. 

The main contributions of this paper are two-fold:  
 This work identifies that a randomly generated dataset is 

biased for ED output prediction, even when the dataset 
capacity is large. The loading intervals for different 
marginal patterns differ significantly in size. It is possible 
that the randomly generated datasets overfill the intervals 
with large sizes and underfit the intervals with small sizes. 
It is worth noting that a loading interval with a large size is 
not necessarily more important than a loading interval with 
a small size. It is possible that load vs. ED outputs may vary 
considerably in a small loading interval for an intra-day 
operation, so it is important to understand the behavior of 
load vs. ED in this small interval.  

 This work proposes three algorithms to construct a marginal 
pattern library and examine the dataset: (1) a comprehensive 
enumeration algorithm; (2) an iterative search algorithm; 
and (3) a fast screening algorithm. An enhancement 
algorithm is also proposed to enhance the training dataset 
according to the marginal pattern library. The characteristics 
of the proposed algorithms are illustrated with several 
examples, and a comparative study demonstrates the 
effectiveness of the enhancement algorithm.  

The rest of this paper is organized as follows. Section II 
briefly reviews the formulations of the ED problem. Section III 
discusses the phenomenon that a randomly generated dataset is 
biased for predicting ED-based problems. In Section IV, the 
three proposed algorithms for marginal pattern collection and 
the dataset enhancement algorithm are presented with 
illustrative cases. Section V describes a comparative study 
demonstrating the effectiveness of the enhanced dataset. 
Finally, a conclusion is drawn in Section VI.  

II.  PRELIMINARIES ON ED AND LMPS 

The ED problem is typically formulated as a linearized OPF 
problem in most of the ISOs due to the computation issue [15]. 
A general ED problem with line flow limits and unit capacity 
constraints is formed in (1a)-(1d). Other technical constraints, 
such as N-1 contingency scenarios and reserves, could be added 
by modifying the constraint set in problem (1) but they are not 
explicitly modeled here for illustration simplicity. 

 min
GN

i i
i

PC  (1a) 

  0 :i i i i
i i
DF P DF d       (1b) 

 min max , : ,bii iP P P i N       (1c) 

 min max

1
( ) : ,

bN

l l i i i l L
i

L GSF P d L l N   



      (1d)  

The LMP is calculated after the ED result in (1a)-(1d) is 
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obtained, so it is an indirect result of the ED problem. The LMP 
pricing scheme has been widely adopted in U.S. electricity 
markets to provide economic signals to market participants. 
LMPs are defined as the marginal increase in dispatch costs 
versus the marginal increase in load consumption at a particular 
bus, as given in (2) [16].  

 ( ) (1 )
BN

i l i i
i

LMP GSF DF    
      (2) 

III.  THE BIASED DATASET FOR DATA-DRIVEN ED MODEL 

The ED results, such as generation dispatches or LMPs, 
have a unique characteristic called “step change” [17] at some 
specific system load levels. The load level at which a step 
change of LMP occurs is referred to as a critical load level 
(CLL). As discussed in [17], when the loading level varies 
within a certain interval, the marginal unit output and load flow 
also vary w.r.t. the loads according to a certain pattern. In this 
paper, loading level refers to the sum of loads in the system or 
system loading level. This phenomenon is also identified as 
“system pattern regions” in [18] and [19]. When the loading 
level steps out of the interval, the pattern changes 
instantaneously with a step change of LMP [20].   

If the load at each bus can be grouped by a set of 
participating factors, then each marginal pattern corresponds to 
a continuous loading interval. If the load at each bus changes 
individually, then each marginal pattern corresponds to a multi-
dimensional region (also referred to as loading interval in this 
paper). Under either situation, some of the marginal patterns 
correspond to large loading intervals, while the others 
correspond to small loading intervals. Fig. 1 shows an 
illustrative example of marginal patterns and various CLLs 
where price step changes occur. The loading intervals between 
two adjacent CLLs for MP1, MP5, and MP6 are larger than the 
loading intervals for MP2, MP3, and MP4. Below are some 
crucial observations of marginal patterns (MPs) and loading 
levels in Fig. 1: 

 

Fig. 1. Marginal patterns at three large intervals (MP1, MP5, 
and MP6) and three small intervals (MP2, MP3, and MP4) 

 If load samples are generated according to pre-defined 
distributions (e.g., uniform, normal or Weibull distribution), 

the marginal pattern of a large interval will have many more 
training samples than the marginal pattern of a small interval. 
For example, if the dataset is generated randomly according 
to a uniform distribution, the probability of samples landing 
on different marginal patterns is shown in Table I, where the 
percentages are rounded to the nearest integers.  Most of the 
training samples will locate in MP1, MP5, and MP6, and only 
a small portion of the samples will locate in MP2, MP3, and 
MP4. Seemingly, this is reasonable because large intervals 
have more training samples. However, this may lead to 
insufficient number of training samples in a small interval to 
have good results. In plain language, a large interval may 
have an unnecessarily large number of training samples, 
while a small interval may not have enough training samples 
– possibly 0 samples in an extreme case.  

 Note, a small interval is not necessarily less important than a 
large interval. It is possible that load vs. ED outputs may vary 
considerably in a small loading interval for an intra-day 
operation, so it is important to understand the behavior of 
load vs. ED in this small interval.   

 Ideally, the number of training samples across all marginal 
patterns should be sufficiently large. It is preferred that the 
number of training samples is the same in each interval, rather 
than based on the width of intervals. 

Table I. Probability of a load sample falling within marginal 
patterns 

Pattern MP 1 MP 2 MP 3 MP 4 MP 5 MP 6 

Probability 33% 3% 3% 3% 23% 33% 

In summary, if the training dataset and test dataset are 
generated together by a pre-determined distribution, then the 
test dataset also contains few test samples in the marginal 
pattern with small sizes, making the data-driven prediction less 
accurate. In other words, the biased training dataset eventually 
leads to a biased neural network. A detailed example is 
provided in Section V for comparative case studies. 

IV.  DATASETS EXAMINATION AND ENHANCEMENT 

ALGORITHMS 

The phenomenon of dataset absence in a marginal pattern 
with small loading intervals calls for efficient examination and 
enhancement methods. This section consists of two parts: (1) 
three algorithms are proposed to collect marginal patterns, 
which construct a marginal pattern library examining the 
training dataset; (2) if the marginal pattern library contains 
patterns that are missing in the training dataset, an enhancement 
algorithm is proposed to eliminate the bias in samples by 
generating samples for those marginal patterns. 

A.  Constructing marginal patterns library 

Algorithm CE: comprehensive enumerations  

The optimality of the optimization problem (1) always lies 
in the extrema of the constraint set [23], namely the intercepts 
of binding constraints. Therefore, solving problem (1) is equal 
to solving a system of linear equations, which means the 
optimum of problem (1) can be represented by (3) in a matrix 
representation. The generation variables are divided into the 
generation of marginal unit MG and the generation of non-
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marginal unit NG. The binding and non-binding line flow 
constraints are indicated by CL and UL, respectively. Equation 
(3) holds for any solution to problem (1).  

max
,

max
,

1

, ,

, ,

01 0
0

1 1 0
                  ...

0
B

MG
CL MG CL

UL
UL MG UL

NG
CL d CL NG

CL
UL d N UL NG

P
GSF L

S
GSF I L

d
P

GSF GSF I
S

GSF d GSF

                              
                                    





(3) 

Under a given network, the value of GSF is constant. Thus, 
a sensitivity matrix W of loads and basic variables (i.e., PMG 
and SUL) can be obtained as in (4), which represents the change 
of marginal unit output and the line flow change in uncongested 
lines if there is a load increase at a particular bus.  

1
...

B

MG

UL
N

d
P
S

d

                  

W  where 

1

, ,

, ,

1 0 1
0CL MG CL d

UL MG UL d

GSF GSF
GSF I GSF

   
            
      

W =   (4) 

 The selection of MG and UL in (4) determines the marginal 
pattern. A marginal pattern is uniquely labeled by LMPs, as 
shown in (5). Each marginal pattern corresponds to a CLL. It is 
worth noting that outputs of the ED problem, such as optimal 
dispatches, marginal patterns, and LMPs, are consistent, which 
means identifying one of them is equivalent to identifying all 
[21]. The following discussion will focus on identifying LMPs. 
 ( , )LMP f MG CL  (5) 

If the binding constraints in the market-clearing model (1) are 
determined, the LMP is also determined. LMPs can be 
represented as the cost of serving the next incremental load that 
is covered by the marginal units, as shown in (6).  

 

( )
G

i i MG
i

i i
i ii

N

i
P

P
L

C

d
MP C

d





 




  (6) 

By substituting (4) into (6), LMPs can be formulated as in (7), 
where matrix WMG represents the row that corresponds to 
marginal units in matrix W. The values of matrix WMG are 
determined by the set of marginal units and congested lines. 

 
1

1... ...
MG

B

N

N

LMP
C C

LMP

 
 
           

MGW  (7) 

From (7), any combination of congestion pattern and 
marginal unit pattern (i.e., potential marginal patterns) produces 
LMPs. However, some obtained LMPs are invalid, which 
means some combinations are invalid. For a specific system, 
the number of units and the number of transmission lines are 
both limited, and thus, the number of potential marginal 
patterns and LMPs are also limited or finite. The enumeration 
of the potential marginal patterns gives all the possible LMP 
values. The number of combinations is given in (8). 

 
0 0

! !
( )! ( )!

G LN N
G L

co
i iG L

N NN
N i N i 

 
    (8) 

However, problem (1) is solvable only if the first matrix in 
(2) is invertible, which means the number of binding line flow 
constraints must equal the number of marginal units minus 1, as 
shown in (9). Therefore, the value of Nco can be reduced as in 
(10).  
 1UL MG CL UL     (9) 

 
1

0 0

! !( )
( )! ( )!

GN i
G L

co
i jG L

N NN
N i N j



 
 

    (10) 

The above steps give all the potential values of LMPs by 
enumerating all the potential marginal patterns. However, some 
patterns are nonexistent under any load.  

Problem (1) can be equivalently represented by a system of 
constrained equations (i.e., Karush-Kuhn-Tucker (KKT) 
conditions) [22]. Traditionally, the load di is known, and solving 
the KKT system provides the value of the Lagrangian 
multipliers, which construct the values of LMPs. However, for 
given marginal patterns and LMPs, there may be multiple 
suitable load patterns. If any load pattern leads to such marginal 
patterns and LMPs, the obtained marginal pattern and LMPs are 
valid. Therefore, the load di at each bus is treated as a variable 
to examine if there is a solution for (11) and (12). 

 μ  LMP GSF   (11) 

      1  KKT system of problem  (12) 

The KKT system is a necessary and sufficient condition for 
the convex problem (1). Therefore, if the KKT system is 
solvable, then the variables construct the optimal solution for 
the problem (1). In (11), the value of LMPs is specified. If any 
solution for (12) exists, there are corresponding LMPs and a 
marginal pattern for the solution. Thus, for each combination 

Table II. Marginal patterns for PJM-5 bus system in Algorithm 1 
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from (10), equations (7), (11), and (12) are solved to remove 
invalid marginal patterns. Although the potential combinations 
are generally a large set, the possible number of congested lines 
is generally less than the number of branches, which could 
further reduce the value of Nco. For example, the ISO New 
England system has 2771 branches but the average active 
transmission constraint in January 2020, their winter peak 
month, only has 142 branches [11]. 

The detailed procedures of this comprehensive enumeration 
are shown in Algorithm CE, where CE stands for 
“comprehensive enumeration.” 

Algorithm CE Function CE (market model parameters, potential line of 
congestions) 

        Input  Market model parameters and potential line of congestions 
       Output Marginal pattern and LMP library 

1 Construct the set for all potential combinations of congestion 
patterns and marginal unit patterns with (10). 

2 For each combination do 
3 Obtain the potential LMPs with (7). 
4  Solving equation set (11) and (12) 
6 If (11) and (12) are solvable do     
7 Record the marginal pattern and LMPs. 
8 Else 
9 Continue. 

10 End if 
11 End for 
12 Return the marginal pattern and LMPs library 

A test system based on the PJM 5-bus system in [24]-[25] is 
provided to demonstrate the proposed Algorithm CE. The 
marginal pattern library for this test system is constructed by 
Algorithm CE, as shown in Table II (on the previous page). Any 
load sample will correspond to one of the marginal patterns in 
Table II. Future research will validate the implementation of 
Algorithm CE by comparing the results with Table II. 
Algorithm 1 provides a comprehensive enumeration method for 
collecting marginal patterns and LMPs. This test system 
contains 85 potential combinations, and 70 of them are invalid 
and removed. For example, unit 1, unit 4, and unit 5 cannot be 
marginal units simultaneously under any load pattern. The 
whole process takes 89.81s.  

Algorithm IS: an iterative search method  

Algorithm CE enumerates all the potential marginal patterns 
and then removes invalid patterns. When the system becomes 
larger, the number of potential marginal patterns becomes 
astronomical, making the validation process computationally 
expensive. Therefore, Algorithm IS  aims to link one valid 
marginal pattern to another. Then, the marginal patterns and 
LMPs can be collected iteratively.  

Equation (4) shows the incremental change in unit output 
and power flow with respect to incremental change in loads. 
When the incremental change in unit output and power flow are 
equal to the distance between the current value and the 
constraint limit (i.e., become binding), the required load 
increase at each bus can be represented as a matrix Δd as shown 
in (13). Each element in matrix Dis indicates a constraint that is 
one binding constraint away (denoted as “surrounding” 
marginal patterns) from the current marginal pattern. If a new 
binding constraint is identified, a new marginal pattern is found. 

Thus, if the load changes as indicated in the matrix’s Δd 
column, all surrounding marginal patterns are obtained 
iteratively. 

 MG

UL

P
S

        
Dis W d     where 

1,1

,

...
...

bN UL MG

       

d
d

d  and 

max

max

min

P MP
L FL
L FL

  
   
 
  

Dis (13) 

However, it should be noted that the sensitivity matrix W is 
only valid under the current marginal pattern, which means that 
although some columns in the matrix Δd may lead to a new 
marginal pattern, it does not correspond to the constraint as 
indicated in the matrix Dis. Under the assumption of the 
constant load participating factors, the value of the matrix Δd is 
deterministic. Thus, the constraint corresponding to a lower 
value of load increase is always reached first (i.e., the next 
binding constraint). Under the assumption of varying load 
participating factors, each element in the matrix Δd becomes a 
variable, and different participating factors correspond to 
different next binding constraints. Equation (13) is, however, 
always valid in terms of linking the current marginal pattern to 
other marginal patterns.  
 Thus, a bilevel optimization model can be constructed to 
determine if the surrounding marginal pattern is valid. As 
shown in problem (14), the upper level aims to find a valid load 
increase Δd under the current marginal pattern such that it can 
make the corresponding constraint in matrix Dis become 
binding, as shown in (14d)-(14f). The lower level is the original 
ED model in problem (1) with the load increase Δd. Iteratively 
solving the optimization problem (14) with respect to the 
element in matrix Dis gives all the valid surrounding marginal 
patterns from the current marginal pattern. If the problem (14) 
is not solvable, then the obtained marginal pattern is not valid.  
Upper-level problem: 

 ,min  i j
i

d  (14a) 

 ,0i bd i N    (14b) 

 , ,i j i j jW d Dis   (14c) 

If the element in Dis corresponds to a capacity constraint: 

 max ,i i i MP P    (14d) 

If the element in Dis corresponds to a negative line limit: 

 ,
min

1
(  =    )

bN
n

li i
i

jl i iG F d L l LdS P


    (14e) 

If the element in Dis corresponds to a positive line limit: 

 ,
max

1
(  =)    

bN
p

l i ji
i

i i lG F d L l LdS P


    (14f) 

Lower-level problem: 

   ,  1  with i i jproblem d d   (14g) 

The obtained surrounding marginal patterns are recorded in 
the library. Next, one of the surrounding marginal patterns is 
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selected to be the next step. To collect as many marginal 
patterns as possible, the closest marginal pattern, which is the 
one with the smallest loading level increase, is selected. Then, 
(13) is recalculated at the new marginal pattern. The search is 
performed iteratively until problem (14) is unsolvable for all 
elements in matrix Dis or all elements in matrix Dis have been 
stepped. Then, a new step is selected from the library, until all 
the patterns in the library have also been stepped. This 
algorithm searches around the current marginal pattern and 
collects marginal patterns iteratively, which may miss some 
marginal patterns during the search. Therefore, Algorithm IS  
could be performed iteratively under different initial marginal 
patterns until the library is sufficient. The detailed procedures 
of this collection method are shown in Algorithm IS, where IS 
stands for “iterative search.” 

Algorithm IS Function IS (market model parameters, initial marginal 
pattern) 

        Input  Market model parameters and initial load pattern 
       Output Marginal pattern and LMP library 

1 Include the initial marginal pattern in the library 
2 For unvisited marginal pattern in the library do 
3 While true do 
4 Solving (13) under current marginal pattern 
5 If all elements in matrix Dis have been stepped do 
6 Break 
7 End if 
8 For each element in matrix Dis do 
9 Solving optimization problem (14)  

10 Record marginal pattern and LMPs in the library 
11 End for 
12 Identify the least load increase  
13 Step to the identified marginal pattern and denote it as 

stepped 
14 End while 
15 End for 
16 Return the marginal pattern and LMPs library 

A test case is applied to demonstrate Algorithm IS via the 
European transmission network 89-bus system [26]. First, 
Algorithm CE is performed on this system to obtain all the 
marginal patterns, which indicates how many percentages of 
marginal patterns Algorithm IS can capture. The flow limits of 
three lines (line 34, line 66, and line 73) are considered. The 
remaining flow constraints are removed because excessive line 
limits prevent the implementation of Algorithm CE. The 
collected marginal patterns for Algorithm CE, Algorithm IS, and 
randomly generated by a uniform distribution are shown in 
Table III. The computation times for Algorithm CE and 
Algorithm IS are 133,237 s and 31,352 s, respectively. 
Algorithm IS collects 79% of the marginal patterns, with only 
17% of the computation time of Algorithm CE. The randomly 
generated load sample has 5 million samples. By contrast, 
Algorithm CE only collects 12% of the marginal patterns at 274% 
of the computation time of Algorithm IS. The computation time 
of Algorithm IS is reduced significantly compared to Algorithm 
CE, and most marginal patterns are collected. 

Table III. Comparisons of Algorithm CE and Algorithm IS 

 

Algorithm FS: a fast screening method 

 The training dataset is usually generated offline, which may 
make the computation time of dataset generation a minor 
concern. However, a fast screening method is preferred for 
collecting marginal patterns when the system operates in 
complicated conditions. For example, solving the bilevel model 
in Algorithm IS becomes computationally expensive when the 
potential line of congestion is a large set. 
 Algorithm FS proposes a fast screening method, which is a 
variant of Algorithm IS. The iterative searching procedure of 
Algorithm FS is similar to Algorithm IS, but instead of solving 
the bilevel model (14), Algorithm FS only solves the Δd at the 
most sensitive bus for each element in the matrix Dis, as shown 
in (15). Solving the load increase at the most sensitive bus 
provides the smallest load increase. 

   (15) 

All surrounding marginal patterns are scanned by solving the 
linear equation (15), which is much faster than solving the 
bilevel optimization model (14). Both Algorithm IS and 
Algorithm FS miss a few marginal patterns during the iterative 
collection process. However, Algorithm FS is an “incomplete” 
local search, meaning that part of the surrounding marginal 
pattern will also be missed, while Algorithm IS is a “complete” 
local search, which can obtain all surrounding marginal 
patterns. It is worth noting that the missing marginal patterns 
under the current step could still be collected in later steps.  
 The detailed procedures of this collection method are shown 
in Algorithm FS, where FS stands for “fast screening.”  
 
Algorithm FS Function FS (market model parameters, initial marginal 

pattern) 
        Input  Market model parameters and initial marginal pattern 
       Output Marginal pattern and LMP library 

1 Include the initial marginal pattern in the library 
2 For unvisited marginal patterns in the library do 
3 While true do 
4 If all elements in matrix Dis have been stepped do 
5 Break 
6 End if 
7 For each element in matrix Dis do 
8 Solving equation (15) 
9 Record marginal pattern and LMPs in the library 

10 End for 
11 Identify the least load increase.  
12 Step to the identified marginal pattern and demote 

it as stepped 
13 End while 
14 End for 
15 Return the marginal pattern and LMPs library 

 Algorithm FS is also performed on the 89-bus system for the 
benefit of comparison to Algorithm CE and Algorithm IS. 
Algorithm FS collects 465 marginal patterns with a 4088s 
computation time, as shown in Table IV. 
 If compared to Algorithm IS, Algorithm FS further reduces 
the computational time, although some marginal patterns may 
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be missed. However, if compared with the random dataset 
generation, it collects more marginal patterns within a much 
shorter computational time. Algorithm FS is preferred if 
computational time of dataset generation is critical.  

Table IV. Performance of Algorithm FS 

 

B.  Dataset Enhancement  

Section A constructs the marginal pattern library using three 
different algorithms to examine the completeness of the training 
dataset. However, this is not the end of the effort. As previously 
mentioned, even if we identify many possible marginal 
patterns, the generated dataset may not contain samples in some 
CLL intervals, typically small ones. Thus, the samples can be 
biased. 

Therefore, to fix the above potential problems, this section 
proposes Algorithm DE, where DE represents “dataset 
enhancement” with unbiased dataset generation.  

The three algorithms (i.e., Algorithms CE, IS, and FS) in 
Section A construct a marginal pattern library. Marginal 
patterns in the unenhanced training dataset are compared with 
the marginal pattern library. For each marginal pattern in the 
library that does not exist in the training dataset, the following 
bilevel optimization model (16) is solved iteratively to generate 
extra samples to enhance the training dataset.  
Upper-level problem: 

 min  i i
i
d   (16a) 

 min max
i     (16b) 

 max ,ii i GP UP i M     (16c) 

 min max ,i ii i NGP P P     (16d) 

 min

1
( ) =    

bN
n

l i i i i l
i

GSF P d L l L


     (16e) 

 max

1
( ) =   

bN
p

l i i i i l
i

GSF P d L l L


     (16f) 

 min max

1
( )    

bN

l l i i i i l
i

L GSF P d L l UL  


        (16g) 

Lower-level problem: 

   1  with i ip droblem   (16h) 

The goal of the upper-level problem (16a)-(16g) is to find a 
minimal loading level that leads to a specified marginal pattern. 
Constraint (16b) restricts the value of βi, which results in 
different load samples at each iteration. In constraint (16c), the 
output of the non-marginal unit is restricted to either 0 or the 
maximum. In constraint (16d), the ε is a small positive value 
that restricts the generation of marginal units to be larger than 0 
and smaller than the maximum. Similarly, the pattern of line 
flow is restricted through (16e)-(16g). Thus, this bilevel 
problem means that the upper-level problem tries to find a load 
sample, which makes the lower-level dispatch problem produce 
the marginal pattern as indicated in the upper-level constraints. 
Multiple load samples can be obtained by solving problem (16) 
iteratively. The obtained load samples are integrated to enhance 
the original training dataset. Then, the enhanced training dataset 
has enough load samples at all the marginal patterns. Thus, an 
unbiased dataset can be achieved to enhance the mapping 
library. 

 The detailed procedures of this enhancement method are 
shown in Algorithm DE. The effectiveness of Algorithm DE and 
the enhanced dataset are demonstrated with comparative case 
studies in Section V.  

Algorithm DE Function DE (market model parameters, sample number ν) 

        Input  Market model parameters and sample number ν 
       Output Samples to be included in the dataset 

1 For each pattern that training dataset fails to include Do 
2 ωmin and ωmax = 0; 
3 While ν! = 0 do 

Fig. 2. Biased dataset based on pre-determined distributions  
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4 Solve the problem (16)  
5 Record the load and the desired outputs   
6 ν = ν -1. 
7 ωmin = ωmin + σ, ωmax = ωmax + ρ ∙ σ 
8 End while 
9 End for 

10 Return the recorded samples 

V.  COMPARATIVE CASE STUDIES 

The marginal pattern collection algorithms (i.e., Algorithm 
CE, Algorithm IS, and Algorithm FS) and the dataset 
enhancement algorithm (Algorithm DE) are discussed in the 
previous section. In this section, comparative case studies are 
presented to exemplify the biased dataset and demonstrate the 
superiority of the enhanced (unbiased) dataset obtained by 
Algorithm DE. Simulation runs were performed in MATLAB 
2017 on a PC with an Intel i7-8650U processor and 16 GB 
RAM. 

A.  Insufficiency of the biased dataset 

Three different distributions including a uniform 
distribution, a normal distribution, and a Weibull distribution, 
are considered here for scenario sampling at each nodal load to 
demonstrate that the model-free approach based on randomized 
datasets is biased for ED-based problems. In Algorithm CE, all 
the marginal patterns for the modified PJM 5-bus system have 
been collected as in Table II.  

One hundred thousand load samples are generated based on 
the above three distributions, and the corresponding marginal 
patterns are shown in Fig. 2. It should be noted that a few 
marginal patterns contain most of the samples in those datasets. 
For example, marginal pattern 13 contains more than half of the 
samples for the dataset generated by the normal distribution. 
However, most of the marginal patterns have insufficient 
samples. For example, marginal patterns 6, 10, 12, and 14 
contain less than 400 training samples in any of the three 
datasets compared with the total of 100,000 samples. 

Three neural networks (NN1, NN2, and NN3) with the same 
settings are trained with the above three different datasets, 
respectively. The load-LMP mapping is selected as a 
representative for the ED-based mapping problem. The neural 
networks are structured with two layers and 20 neurons under 
the Levenberg-Marquardt training algorithm. One hundred 
illustrative test samples are generated for marginal pattern 10 
(small loading interval) and marginal pattern 13 (large loading 
interval), respectively.  

Fig. 3 illustrates the prediction errors for patterns 10 and 13 
in three different datasets. The x-axis sorts the test sample from 
the smallest error to the largest error. The average prediction 
errors for pattern 13 are 6.2% in NN1, 4.1% in NN2, and 6.1% 
in NN3, while the average prediction errors for pattern 10 are 
29.2% in NN1, 34.1% in NN2, and 33.4% in NN3. This 
performance difference occurs because marginal pattern 10 
contains considerably fewer samples than marginal pattern 13, 
as shown in Fig. 2. Thus, the prediction for marginal pattern 10 
is much less accurate than for marginal pattern 13. Note, at this 
point, the Algorithm DE for dataset enhancement has not been 
applied. Fig. 3 shows poor performance due to a small number 
of training samples in a small loading interval (pattern 10) 
under biased dataset generation.  

If the number of training samples in a marginal pattern is 
not enough, any type of input-output mapping in this marginal 
pattern will not be accurate because marginal patterns 
determine the optimal solution of ED-based problems. This 
insufficiency will be exacerbated in larger systems that have 
more marginal patterns. Note, in general, this phenomenon 
exists in any model-free application for ED-based problems due 
to the step change nature shown in Fig. 1, and this paper uses 
the neural networks for load-LMP mapping as an example. 

The next subsection shows a comparison of the enhanced 
dataset (unbiased) and the randomly generated dataset (biased) 
in this subsection on the modified PJM 5-bus system and an 89-
bus PEGASE system.  

B.  Comparison of the enhanced (unbiased) training dataset 
and biased training dataset 

 

Fig. 3. Sorted prediction error for 100 test samples associated with 
patterns 10 and 13 by the three biased neural networks. 

    1)  Modified PJM 5-bus system  

 A neural network is trained with the enhanced (unbiased) 
training dataset generated by Algorithm DE. In the enhanced 
dataset, 666 new samples are generated for each marginal 
pattern, which constitutes a total of 9,990 new samples. The 
same 100,000 initial training dataset samples (i.e., biased 
samples) as from the last subsection are applied, and the neural 
network trained by the enhanced dataset is compared with the 
neural network results trained by the biased dataset using 
uniform distribution-based sampling (i.e., NN1 in Fig. 3 in the 
previous subsection) as an example. 

 The predication errors for marginal pattern 10 (small loading 
interval) and marginal pattern 13 (large loading interval) are 
shown in Fig. 4. The x-axis sorts the test sample from the 
smallest error to the largest error. The prediction errors of the 
enhanced training dataset for marginal pattern 10 is 5.0% on 
average. In contrast, the prediction errors of NN1 in the 
previous subsection are 29.2% on average. Thus, the prediction 
error on marginal pattern 10 is significantly reduced because 
the enhanced dataset has filled more samples in marginal 
pattern 10, which has a narrow loading interval. The only cost 
is the new 9,990 training samples generated from Algorithm 
DE, which is less than 10% of the initial 100,000 samples in the 
biased training dataset, so Algorithm DE should be a helpful and 
worthy effort. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OAJPE.2022.3149308, IEEE Open
Access Journal of Power and Energy

 

 
 

9 

 
Fig. 4. Sorted prediction error comparison between the enhanced 

dataset and the biased dataset (from NN1) for the modified PJM 5-
bus system.  

However, the prediction accuracy on marginal pattern 13 on 
the enhanced, unbiased dataset is very close to the accuracy 
from the biased dataset. The errors are 3.9% vs. 5.5% on 
average, and 4.2% vs. 4.3% at median, respectively. The reason 
for this very minor improvement is that marginal pattern 13 has 
a large loading interval which already contains ample training 
samples in the biased dataset, and the extra dataset provided by 
Algorithm DE does not offer much help. 

Note, although the comparison is carried out for NN1, 
similar conclusions hold for NN2 and NN3 since they have 
similar performance in prediction accuracy, as shown in Fig. 3. 

    2)  89-bus PEGASE system 

Next, a similar prediction accuracy comparison between the 
enhanced (unbiased) training dataset and the biased training 
dataset is performed on the 89-bus PEGASE system. The biased 
dataset is the same as the example in Section IV, which contains 
5 million samples. This dataset is enhanced with the marginal 
pattern library obtained in Section IV using Algorithm DE. Two 
marginal patterns (205 and 339) with small loading intervals are 
selected as illustrative examples, which are shown in Fig. 5. The 
x-axis sorts the test sample from the smallest error to the largest 
error. In the biased training dataset, patterns 205 and 339 
contain less than 10 samples, and thus, the average prediction 
errors are 41.7% and 37.8%, which are extremely high. In 
contrast, the enhanced dataset adds 1500 extra training samples 
to each marginal pattern. This significantly reduces the average 
prediction error to 9.3% and 4.2%, respectively. 
 In both the 5-bus and the 89-bus systems, the enhanced 
(unbiased) dataset significantly improves the prediction 
accuracy for load-ED mapping in marginal patterns with small 
intervals (i.e., insufficient training samples).  

Advanced learning techniques with the enhanced dataset 
will be investigated in future works, since the focus of this paper 
lies in the enhancement of dataset generation to provide 
unbiased training samples.  

 
Fig. 5. Sorted prediction error comparison between the enhanced 
dataset and the biased dataset (from NN1) for the 89-bus systems. 

VI.  CONCLUSION 

In this paper, we have identified a phenomenon that training 
datasets generated by pre-determined distributions are biased 
for load-ED mapping. Marginal patterns characterize the 
optimal solution of ED-based problems, and different marginal 
patterns differ significantly in size, which causes the dataset to 
overfill patterns with large sizes while underfilling patterns 
with small sizes. Thus, this paper proposes three marginal 
pattern collection algorithms to construct a marginal patterns 
library. Then, a dataset enhancement algorithm is proposed to 
generate unbiased samples for each marginal pattern in the 
library. The proposed algorithms and enhanced training dataset 
are illustrated and examined with the modified PJM 5-bus 
system and the 89-bus PEGASE system. The case studies 
clearly demonstrate the effectiveness of the proposed approach 
which significantly improves the prediction accuracy of data-
driven load-ED mapping.  

 Our future work will combine the enhanced dataset with 
advanced learning techniques to provide a comprehensive 
model-free load-ED mapping platform.  
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