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ABSTRACT

The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) is a

science facility in the United States devoted to the observation of gravitational waves (GWs).

It comprises two kilometer-scale laser interferometers. It is a part of a global ground-based

GW detector network that also includes Virgo in Italy and KAGRA in Japan. Calibration of

the LIGO detectors is achieved using displacement fiducials generated by radiation pressure

based systems called Photon Calibrators (Pcals). The first part of this research described

here details the developments implemented during the third LIGO-Virgo-KAGRA (LVK)

observation run, O3, in the propagation of laser power calibration via transfer standards to

on-line power sensors. These developments have enabled generation of length fiducials with

improved accuracy of 0.41 %. This estimated uncertainty is almost a factor of two smaller

than the lowest values previously reported. This result enabled reducing the uncertainty

in overall calibration of the LIGO interferometers during the O3 observing run to the 2 %

level.

GW source parameter estimation and localization rely on accurately calibrated strain

data. The second part of the research reported here investigates the impact of overall,

systematic detector calibration errors on the sky localization of burst-like GW sources,

specifically core collapse supernovae (CCSN). This analysis is performed using simulated

waveforms from different CCSN models and one of the standard LVK pipelines used to

search for burst-like GW signals. Overall calibration errors as large as ±10 % are imposed

on a single detector in the LIGO-Virgo network. Preliminary results indicate that this causes

average changes in the area of 90 % sky localization confidence regions as large as 18 %.

Associated average errors in estimated probabilities for these regions are as large as 5 %.

Furthermore, for sources located in some regions of the sky, source localization errors are

as large as 90 %, indicating that counterparts to GW signals would not be found within the

90 % confidence regions in follow-up observations by electromagnetic observatories.
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1. INTRODUCTION

Gravitational waves (GWs) are ‘ripples’ in space-time caused by some of the most

cataclysmic events in the Universe such as colliding black holes and neutron stars, super-

novae (SN), rotating neutron stars that do not have axisymmetry (Riles (2013)). Any system

that has a non zero quadrupole mass moment is a source of GWs (Einstein (1918)). Albert

Einstein predicted the existence of GWs in 1916 as a consequence of his general theory of

relativity (GR) (Einstein (1915)). Einstein showed that massive accelerating objects (such

as neutron stars or black holes orbiting each other) disrupt the space-time in such a way

that GWs propagate in all directions away from the source at the speed of light, carrying

information about their origins as well as the nature of gravity itself (Einstein (1918)).

Although the processes that generate GWs can be extremely violent and destructive,

by the time the waves reach Earth the wave amplitudes are typically about 10, 000 times

smaller than the nucleus of an atom. Since GWs are so faint and their interaction with matter

so weak, Einstein himself suspected that they could ever be detected (Einstein (1914-1918)).

The first observational proof of existence of these GWs came in 1974, when two

astronomers, Russell Hulse and Joseph Taylor, using the Arecibo Radio Observatory in

PuertoRico, discovered a binary pulsar 21, 000 light years fromEarth, the type of system that

GR predicted should radiate GWs (Hulse and Taylor (1975)). To test Einstein’s prediction,

Hulse and Taylor started measuring how the stars’s orbits changed over time. After years

of observations, they determined that the stars were getting closer to each other at precisely

the rate predicted by GR if they were emitting GWs (Taylor et al. (1979)). Since then,

many astronomers have studied pulsar radio-emissions and found similar effects, further

confirming the existence of these waves (Abbott et al. (2008); Backer et al. (1982); Jones

(2010)). However, all these observations were indirect detections of GWs.
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That changed when about 100 years after Einstein proposed his theory, on 14

September 2015, GWs were directly observed for the first time by the twin Laser Inter-

ferometer Gravitational wave Observatory (LIGO) detectors (Abbott et al. (2016b)). The

following section is a brief history of the search for GWs, including their conceptualization

in the early twentieth century and thereafter the efforts towards detection.

1.1. DISCOVERING GWS

Sir Isaac Newton introduced his law of gravity in 1686 (Newton (1686)). His theory

implied that the gravitational force is transmitted instantaneously.

In years to follow, scientists proposed the notion of a field, a continuously varying

entity which propagates (Forbes (2014)). In 1865, James Clerk Maxwell, by treating

electricity and magnetism as fields concluded that light itself was an electromagnetic (EM)

wave (Maxwell (1865)). In his ’The dynamical theory of EMfields’ he put forth the question

if one can think of gravity as being propagated by a field (Maxwell (1865)).

Almost forty years after Maxwell published his work on electricity and magnetism,

Einstein completed Maxwell’s unification of electricity and magnetism by showing that the

two fields were really one with his publication of the special theory of relativity (SR) in

1905 (Einstein (1905)). He based his theory of SR on two postulates: the laws of physics

are invariant in any inertial frame of reference and the speed of light is the same for all

inertial observers. As a consequence of SR no information can travel faster than the speed

of light in vacuum, and that demanded a thorough modification of Newtonian physics.

During the same months that Einstein was working on special relativity, Henri

Poincaré was independently writing up his own research along similar lines, where he

assumed that the gravitational force propagates at the speed of light (Poincare (1905)). If

that is the case, there should be a time lag between any change in gravity and its effect.

These changes, Poincaré explicitly stated, are propagated by GWs.
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Finally in 1915, Einstein postulated in the theory ofGR that gravity is amanifestation

of the curvature of space–time. Einstein’s equations relate the Einstein tensor which express

the curvature of local space–time to the local stress energy and momentum tensor. The

GWs are a consequence of his theory of GR. Although Einstein initially suspected that

these waves are mathematical constructs and not physical, he was later convinced about

their existence (Einstein (1914-1918)).

Later, in 1956 Felix A. E. Pirani published a work that became a classic article in

the further development of the GR (Pirani (1956)). He showed that a set of freely-falling

particles would experience motions with respect to one another in the presence of GWs,

see Figure 1.1. This proved that GWs were real and not could not be made vanishing with

a gauge transformation. However Pirani’s work remained mostly unknown in the mid-50s,

since scientists were focused on finding the answer to the question whether GWs carry

energy or not. In classical mechanics, energy is conserved if the system is invariant under

time. However, in GR, energy is not conserved globally. But any curved space-time can

be considered locally flat, and hence energy is conserved locally. The question whether

GWs carry energy or not, was answered because of Pirani’s aforementioned work and to

the ’sticky bead argument’ that Richard Feynmann proposed in 1957 Chapel Hill meeting

(De-Witt and Rickles (2011)).

Among the audience in the Chapel Hill meeting was Joseph Weber. Fascinated by

the discussions onGWs, he decided to build a device to detect them (Weber (1960)). In 1960

he published a paper in which he proposed to measure vibrations induced in a mechanical

system to detect GWs (Weber (1960)). Weber designed and built a large metal cylinder

‘antenna’ to observe resonant vibrations induced by a transit of a GW pulse, analogous

to someone hitting a bell with a hammer to hear its ring. Weber built two detectors,

the first one was located at the University of Maryland and the other was situated 950

km away, in Argonne National Laboratory (Weber (1966)). If a detected signal was not

recorded simultaneously in both laboratories, it was discarded as spurious signal produced
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Figure 1.1. Illustration of the effect of a GW propagating along Z-axis on a ring of freely
falling particles arranged in a circle. GWs have two polarizations, plus and cross. As a GW
with plus polarization passes through the particles (top), spacetime is stretched in X-axis
and compressed in Y-axis and vice versa. For a GW with cross polarization (bottom), a
similar effect is observed but rotated by 45 degrees. credit:

by local disturbances. In 1969 Weber published a paper announcing the detection of GWs

(Weber (1969)). AlthoughWeber’s claims of GWwere eventually dismissed, he is generally

credited to be the founder of experimental GW physics.

Weber outlined several methods on how to detect GWs. Among other various

projects, he conceived the use of interferometric detectors. However, he did not pursue

this concept and his work is only documented in the pages of his laboratory notebook

(Stephen Hawking (1987)). In the 1970s, Rainer Weiss independently conceived the idea

of building a laser interferometer. Weiss built a 1.5-m prototype at MIT, while at Caltech
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Ronald Drever was building a 40 m prototype of an interferometric GW detectors. In 1979,

Weiss offered to conduct a study in collaboration with industry partners to determine the

feasibility and cost of an interferometer whose arms would measure in kilometers. The

results of his study funded by National Science Foundation (NSF) was documented in a

paper “A study of a long Baseline Gravitational Wave Antenna System,” co-authored by

Peter Saulson and Paul Linsay (Russell (1992)). This fundamental document is popularly

called “The Blue Book” and covers many important issues in the construction and operation

of such a large interferometer. NSF provided a grant jointly to the MIT and Caltech groups

and named the project “Laser Interferometer Gravitational-Wave Observatory”.

1.2. LIGO

GWs, as mentioned earlier, are very faint by the time they reach Earth and their

effect on matter is almost negligible. A dimensionless strain factor, ℎ, is defined to evaluate

the effect of a GW on matter. The factor ℎ describes the relative displacement per unit

length produced by the waves between two objects. The strain induced by the astrophysical

GWs are typically 10−21. This value of ℎ depends on how the wave was produced and how

far its source is from an observer.

At their cores, design of a LIGO detector is that of a Michelson interferometer

(Michelson and Morley (1887)). Their basic design is L-shaped and consists of a beam

splitter, two end mirrors, and a photodetector that records the interference pattern as shown

in Figure 1.2 (A). The LIGO interferometers differ from simple Michelson interferometers

in their size and added complexities (Abbott et al. (2009a)). The scale of the LIGO

instruments is crucial to their search for GWs. The longer the arms of an interferometer,

the smaller the strain measurements they can make. LIGO has to be sensitive to changes

in distance less than 1/10, 000 times a proton. Observing such small changes in distance

requires the interferometer arms to be hundreds of kilometers long. Construction of such

long arms poses a lot of practical challenges. So the Michelson design is altered to include
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Figure 1.2. Schematic diagram showing the components of Dual Recycle Fabry Perot
Michelson interferometer. credit: LIGO

Fabry-Perot cavities, which increase the effective arm lengths by ∼ 300 times (Michelson

and Morley (1887)). Additional mirrors are placed in each arm near the beam splitter, 4km

from the mirror at the end of that arm, see Figure 1.2) (B). The Fabry-Perot cavities also

help increase the laser power build up, which in turn increases the interferometer’s resolving

power. LIGO’s laser first enters the interferometer at about 40 Watts, but it needs to operate

closer to 750kW in order to make any detection (Abbott et al. (2014)). To achieve such high

powers, LIGO uses power recycling mirrors shown in Figure 1.2 (C). As the laser power

is constantly entering the interferometer, the power recycling mirror continually ‘recycles’

the laser light that has traveled through the instrument back into the interferometer. This
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process greatly boosts the power of the laser beam inside the Fabry Perot cavities without

the need to generate such a powerful laser beam at the onset. LIGO interferometers also

have signal recycling mirrors which enhance the signal that is received by the photodetector,

as shown in Figure 1.2) (D), in a way similar to what power recycling mirror does to the

laser power. The digital counts of the photodetector at the output of the interferometer is

converted to the measured differential arm (DARM) length variation of the interferometer.

The strain ℎ is the DARM length divided by the average arm length of the interferometer

and it depends upon the geometry of the measurement device, the arrival direction, and the

frequency and polarization of the GW.

With these modifications, LIGO’s interferometer is known as a Dual Recycled,

Fabry-Perot Michelson. The LIGO detectors are discussed in much more detail in Section

4.

1.3. DETECTIONS BY LIGO

Since the discovery of GWs from a binary black hole (BBH) coalescence in 2015

(Abbott et al. (2016b)), ground-based GW detectors have opened a new window on our

Universe. Today there is a network of ground based GW detectors that consists of the twin

LIGO detectors in Livingston, Louisiana and Hanford, Washington in the US, VIRGO in

Cascina, Italy (Acernese et al. (2015)) and KAGRA located underground in Kamioka mine,

Japan (Akutsu et al. (2019)). Another LIGO detector in India is slated to come online

by 2025 (Iyer et al. (2011)). The global network of currently operational or planned GW

detectors is shown in Figure 1.3.

Such a world-wide network of widely-separated facilities enables extraction of more

accurate astrophysical information from GWs. Specifically, adding more detectors to the

network improves the ability to locate sources and test alternative theories of gravity (Abbott

et al. (2019f)). BBH observations have also provided means to establish the rate and

determine the population properties of BBH coalescences (Abbott et al. (2019c)). In
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)

Figure 1.3. The global network of ground based interferometric GW detectors that currently
operational and planned. Credit: https://www.ligo.caltech.edu

addition to BBHs, the first GW signal from a binary neutron star (BNS) coalescence,

GW170817 was observed. This was also the first joint detection of GWs and EM emission

(Abbott et al. (2017c)).

Depending on the process that generates the waves, there are 4 types of GW signals;

compact binary inspiral, continuous, stochastic, and burst. The GW signals that the ground-

based GW observatories have observed so far are GWs from compact binary coalescence.

They are produced by orbiting pairs of massive dense objects, such as BBH, BNS or a

neutron star - black hole pair (NSBH). To date, LIGO has published confident detection of

GWs generated by about 90 pairs of merging black holes and neutron stars (Abbott et al.

(2021a)). We will discuss the various sources and types of GWs in detail in Section 3.

The Sections in this dissertation are arranged in the following order: Section 2

describe how GWs mathematically follow from Einstein’s GR. Section 3 elaborates the

various sources of GWs in detail. Section 4 explains the design and working of LIGO

detectors. It also provides a brief description of the various sources of noise that limit the
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detector’s sensitivity to the GW signals. The sensitivity of the detector is characterized by

a noise equivalent strain curve and for detection of GWs it is required that the signal have

a signal-to-noise ratio (SNR) of 8 or higher. Section 5 describes calibration of the LIGO

detectors i.e., the procedure to convert the digital counts of the output photodetector to the

dimensionless strain. This requires the interferometers to be characterized and modeled as

accurately as possible (Abbott et al. (2017b)). The calibrated strain is then used for data

analysis to determine the presence of the GWs which are typically buried in the detector

noise and to extract astrophysical information from the signals. Section 6 elaborates

how displacement fiducials are generated, the process that enables characterization and

modeling of the interferometers and thus facilitate accurate and precise calibration of the

entire detectors. It also explains how the uncertainty on the displacement fiducials are

estimated. Section 7 implements the methodology explained in Section 6 to estimate the

uncertainty in the generated displacement fiducials for the recent LIGO observing run O3.

Section 8 and 9 describe a study of the effect of an overall calibration uncertainty on the

information derived from the GWs, in particular, the impact of overall calibration errors on

sky localizations of burst-like sources.
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2. GRAVITATIONALWAVES

The theory of SR was proposed by Albert Einstein in 1905. His theory was based

on the postulate that the laws of physics are invariant in any inertial reference system.

A consequence of SR is that the speed of light in vacuum is the same for all inertial

observers, regardless of the motion of the source. A defining feature of SR is that time

and space are not defined separately, instead space and time are interwoven into a single

"spacetime". In spacetime, an event can be defined by the four coordinates G, H, I and C. If

an observer measures two events as being separated in time by 3C and by a spatial distance

3A2 = 3G2 + 3H2 + 3I2, then according to this theory, the spacetime interval is invariant

and in free space is defined as 3B2 = [`a3G`3Ga where [`a is the Minkowski metric given

by [`a = 3806(−, +, +, +) and 3G` = (23C, 3G, 3H, 3I) (Einstein (1905); Griffiths (1999)).

2 = 2.997 924 58 × 108 m/s is the speed of light in vacuum. Space and time are not

separately invariant, but the combined spacetime interval is invariant.

The SR doesn’t account for the effect of gravitational field on spacetime. The

theory of GR was developed by Einstein in the years 1907–1915 to include the effects of

gravitational field into the relativistic theory (Einstein (1915)) and will be discussed briefly

in the following subsections. The derivations follow the notation in (Maggiore (2008)).

2.1. EINSTEIN’S EQUATION

In his theory of GR published in 1915, Einstein proposed matter and energy in the

spacetime produces distortion resulting in curved spacetime. Gravity is an effect of the

curvature of spacetime. Mathematically,

'`a −
1
2
6`a' =

8c�
24 )`a , (2.1)
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where 6`a is the metric tensor for curved spacetime, '`a is the Ricci tensor and R is the

Ricci scalar. )`a is the stress-energy tensor that gives the flux of the `-th component

of the 4-momentum vector ?U = (�, ®?) across a surface with constant Ga coordinate.

� = 6.67 × 10−11 N kg−2 m2 is the Newton’s universal gravitational constant. Equations

(2.1) are the Einstein’s equations.

GR is a theory invariant under general coordinate transformations. Thus when

G` −→ G′` (G), where G′` is invertible, differentiable and has a differentiable inverse, the

metric transforms as

6`a (G) −→ 6′`a (G′) =
mGU

mG′`
mGV

mG′a
6UV (G) , (2.2)

where repeated indices indicate summation. This symmetry is referred to as the gauge

symmetry of GR. The Ricci tensor '`a is obtained from Riemann curvature tensor 'U
`Va

which is given by:

'U`Va = mVΓ
U
a` − maΓU`V + Γ

f
a`Γ

U
fV − Γ

f
`VΓ

U
fa , (2.3)

where the ΓU`a are the Christoffel symbols, given by:

ΓU`a =
1
2
[UV (m`ℎaV + maℎ`V − mVℎa`). (2.4)

The Ricci tensor is obtained by contracting the Riemann tensor, '`a = 'U`Ua and the Ricci

scalar is obtained by contracting the Ricci tensor, ' = 6`a'`a

In the weak gravitational field limit, when the observer is far away from a given

matter distribution so that spacetime is almost flat, the metric can be written as a sum of the

Minkowski metric, [`a, and a small perturbation ℎ`a:

6`a = [`a + ℎ`a , (2.5)
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where |ℎ`a | � 1 is a tensor describing the deformations of the geometry of flat spacetime

induced due to matter distribution )`a. By expanding the equations in h and keeping up to

the first order, one gets the linearized equations.

After choosing a frame where Equation (2.5) holds true and the condition |ℎ`a | � 1

is satisfied, a residual gauge symmetry remains. Let us consider a coordinate transformation

such that

G` −→ G′` = G` + b` (G). (2.6)

Using the metric transformation as described in equation (2.2), the first order ℎ`a transforms

as

ℎ`a (G) −→ ℎ′`a (G′) = ℎ`a (G) − (m`ba + mab`). (2.7)

Since ℎ`a is assumed to be small, the metric can be approximated by the Minkowski metric

in a small region around a point of interest. Therefore in that region there is invariance under

Lorentz transformations. If G` −→ Λ
`
a G

a, then by the definition of Lorentz transformation

the matrix Λ`a satisfies

Λ`dΛ
a
f[

df = [`a , (2.8)

and the metric transforms as

6`a (G) −→ 6′`a (G′) = [`a + ΛU`ΛVaℎUV (G) , (2.9)

which means ℎ`a transforms as

ℎ′`a (G′) = ΛU`ΛVaℎUV (G). (2.10)

The above equation shows that ℎ`a is a tensor under Lorentz transformations. Rotations

don’t break the condition |ℎ`a | � 1. Also boosts are restricted to only those which satisfies

the condition. In addition, from Equation (2.2) it can be shown that ℎ`a is invariant
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under translations. Thus the linearized theory is invariant under Poincaré transformations.

Equation (2.7) shows that linearized theory is invariant under a special class of local

transformations as well. On the other hand, full GR does not have Poincaré symmetry, but

has full coordinate invariance unlike the infintesimal version in Equation (2.7).

To linear order in ℎ`a, the Ricci tensor is given by

'`a =
1
2
(m`mUℎaU + mamUℎ`U − �ℎ`a − m`maℎ) , (2.11)

and the Ricci scalar is given by

' = m`mUℎ`U − �ℎ , (2.12)

where [`aℎ`a = ℎ and � ≡ − 1
22

m2

mC2
+ ∇2 is the d’Alembert operator. To linear order of ℎ`a,

the 6`a in the left-hand-side (LHS) of Equation (2.1) is replaced by [`a. Thus the Einstein’s

equations can be rewritten by putting in the expressions for Ricci tensor and Ricci scalar

from equations (2.11) and (2.12) as

'`a −
1
2
6`a' =

1
2
(m`mUℎaU + mamUℎ`U −�ℎ`a − m`maℎ−[`amUmVℎUV +[`a�ℎ) =

8c�
24 )`a .

(2.13)

The linearized equations of motion can be written in a more compact form by

defining

ℎ`a = ℎ`a −
1
2
[`aℎ. (2.14)

Equation (2.13) becomes:

�ℎ`a + [`amdmfℎdf − mdmaℎd` − mdm`ℎda = −
16c�
24 )`a . (2.15)

This is the linearized Einstein’s equations.
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Using gauge freedom, Equation (2.7), the Lorentz gauge can be chosen such that

m`ℎ`a = 0. (2.16)

In terms of ℎ`a, equation (2.7) takes the form

ℎ`a −→ ℎ
′
`a = ℎ`a − (m`ba + mab` − [`amUbU) , (2.17)

and the gauge condition can be written as

m`ℎ`a −→ (m`ℎ`a)′ = m`ℎ`a − �b` = 0. (2.18)

Thus if initially m`ℎ`a = 5` (G), where 5` (G) is some function, to impose Lorentz gauge, b`

must be

�b` = 5` (G). (2.19)

Given any 5`, the above equation can be solved. The solution is given by

b` =

∫
34H � (G − H) 5` (G) , (2.20)

where � (G) is the Green’s function of the d’Alembertian operator.

In the Lorentz gauge, the last three terms on the LHS of the Equation (2.15) vanish

and the linearized Einstein’s equations become

�ℎ`a = −
16c�
24 )`a . (2.21)
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The above equation is a wave equation which tells us that )`a is the source of the metric

perturbation, ℎ`a. Therefore, ℎ`a can be interpreted as describing a GWs which propagates

through spacetime (Einstein (1916)).Note that ℎ`a is a symmetric 4 × 4 matrix, , i.e. , it

should have ten independent components. But, Equation (2.16) gives us four conditions,

which reduces the number of independent components to six from ten.

Equations (2.16) and (2.21) together imply m`)`a = 0, which is the energy-

momentum conservation in linearized theory.

2.1.1. GWs in Vacuum. Equation (2.21) tells us about the generation and prop-

agation of GWs. To study how these GWs propagate, first consider regions of spacetime

where )`a = 0, , i.e. , outside the source:

�ℎ`a = 0. (2.22)

Now, the Lorentz gauge does not fix the gauge completely. Under the coordinate

transformation, m`ℎ`a transforms as in Equation (2.18). The condition that m`ℎ`a = 0 can

be preserved by an additional coordinate transformation G` → G` + b` with �b` = 0.

The component b0 can be chosen such that ℎ = 0, which implies ℎ`a = ℎ`a along

with the three b8 (G) such that ℎ08 (G) = 0. Thus the Lorentz condition with ` = 0 is

m0ℎ00 + m8ℎ08 = 0. (2.23)

Roman indices indicate the three spatial coordinates only and the Greek indices indicate all

the four coordinates. Since ℎ08 (G) = 0 is fixed, the above equation reduces to

m0ℎ00 = 0. (2.24)
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Thus ℎ00 is constant in time. A time-independent term ℎ00 corresponds to the Newtonian

potential of the source that generated the GWs. The GWs itself is time-dependent, therefore

m0ℎ00 = 0 implies ℎ00 = 0. Therefore, all the 4 components of ℎ0` is zero. The Lorentz

gauge now reduces to m8ℎ8 9 = 0 and the condition for vanishing trace can be rewritten as

ℎ88 = 0. The set of conditions

ℎ0` = 0 , (2.25a)

ℎ88 = 0 , (2.25b)

m8ℎ8 9 = 0 , (2.25c)

define the transverse-traceless (TT) gauge. The TT gauge is imposed, in addition to the

Lorentz gauge, to completely fix the gauge. By imposing the Lorentz gauge, the number

of independent components of the symmetric ℎ`a matrix reduces from ten to six in the

previous subsection. By imposing the TT gauge, the number of independent components

further reduces to two, since four more conditions are imposed from �b` = 0.

The solutions of Equation (2.22) in the TT gauge are

ℎ))`a = �`a (k)48:
fGf , (2.26)

where :f = (l/2, k) is the wave vector and �`a is the polarization tensor which gives

us information about the wave amplitude and polarization. : d:d = 0, , i.e. , the wave

vector is null which implies that the frequency of the GWs, l, is given by l/2 ≡ |k|. For a

plane wave with =̂ = k/|k| the non-zero components of ℎ))
8 9

are in a plane transverse to k.
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Assuming that the wave propagates in the I-direction,

ℎ))`a =

©«

0 0 0 0

0 �11 �12 0

0 �12 −�11 0

0 0 0 0

ª®®®®®®®®®®®¬
48(:I−lC) (2.27)

�`a has only two independent components which means that a GWs can be completely

described by two dimensionless amplitudes �11 and �12. It is shown later that in the TT

gauge, �11 and �12 are commonly called the ’plus’ and ’cross’ polarizations of the wave,

respectively. Since they are orthogonal polarization states, it is impossible to construct the

(+) pattern from the (×) pattern and vice versa.

2.1.2. GWs From Weak-field Sources. Next, consider a situation in which the

stress-energy tensor is non-zero, but the linearized theory is still valid.

Themetric perturbation contains both radiative and non-radiative degrees of freedom

tied to the matter sources along with gauge degrees of freedom. The TT part of the metric

perturbation obeys a wave equation in all gauges and hence is truly radiative.

Using the retardedGreen function,� (G−G′)which gives the effect for the d’Alembertian

operator, �, at x of a source element located at x′, the solution to the Equation (2.21) is

ℎ`a = −
16c�
24

∫
34G′� (G − G′))`a (G′) . (2.28)

In the above equation � (G − G′) satisfies

�G� (G − G′) = X4(G − G′) , (2.29)
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where �G is the d’Alembertian operator with the derivatives taken with respect to G. The

solution of the Equation (2.29) is given by

� (G − G′) = − 1
4c |x − x′| X(G

0
ret − G0) , (2.30)

where G′0 = 2C′, G′0A4C = 2C′A4C and the retarded time is Cret = C − |x − x′|/2.

Then the Equation (2.28) becomes

ℎ`a (GU) = −
4�
24

∫
33G′

1
|x − x′|)`a (C −

|x − x′|
2

, x′). (2.31)

The notation x = An̂ is used and the typical radius of the source is defined as d. Assuming

that the size of the GWs source is much less than the distance to the observer, then at A � 3

|x − x′| = A − x′ · n̂ + ... (2.32)

At large distances from the source, when expanding Equation (2.31) only the leading order

term in 1/A in the limit A → ∞ at fixed C is retained, thus Equation(2.32) reduces to

|x− x′| = A. In addition, it is assumed that _/2c � 3, i.e. the internal motion of the source

can be ignored and the radiation emission is governed by the lowest multipole moment.

Under these assumptions, Equation (2.31) reduces to

ℎ`a (GU) = −
4�
24A

∫
33G′)`a (C − A/2, x′). (2.33)

The stress-energy tensor is non-zero only inside the source, so the integral in Equation

(2.33) is restricted to |x′| ≤ 3. As the radiative degrees of freedom are contained in the

spatial part of the metric, ℎ8 9 is considered from now on. Combining Equation (2.33) with

the conservation of the stress-energy tensor in linearized gravity, the spatial components of
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the metric ℎ`a is obtained. From the conservation of the stress-energy tensor, it follows that

m2
0)

00 = m:m;)
:; . (2.34)

Multiplying both sides of the above equation by G8G 9 it can be shown that,

) 8 9 =
1
2
[m2

0 ()
00G8G 9 ) − m:m; () :;G8G 9 ) + 2m: () 8:G 9 + ) : 9G8)] . (2.35)

Thus the spatial components of l.h.s of the Equation (2.33) can be written as

4�
24A

∫
33G)8 9 =

2�
24A

m2
0

∫
33G()00G

8G 9 ). (2.36)

Using the definition )00 = d22, where d is the energy density and Equation (2.33) and

Equation (2.36), the spatial components of ℎ`a are

ℎ8 9 (GU) = −
2�
24A

m2

mC2

∫
33G′d(C, G′)G′8G′ 9

= −2�
24A

m2

mC2
�8 9 (C − A/2) ,

(2.37)

where �8 9 is the second moment of the mass distribution defined by

�8 9 =

∫
33G′d(C, G′)G′8G′ 9 . (2.38)

The tensor, �8 9 , is the moment of inertia tensor. When the trace part is removed from the

moment of inertia tensor, the quadrupole moment tensor is obtained, which is given by

&8 9 =

∫
33G′d(C, x) (G8G 9 −

1
3
G2X8 9 ). (2.39)
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The perturbation in TT gauge becomes

ℎ))8 9 (GU) = −
2�
24A

m2

mC2
&8 9 (C − A/2). (2.40)

To leading order in a multipolar expansion, gravitational waves are generated by any time-

varying quadrupole moment. Mass conservation excludes any monopole radiation. For

gravity, the rate of change of themass dipolemoment is proportional to the linearmomentum

of the system and the change of themagnetic dipole is proportional to the angularmomentum

of the system, both ofwhich are conserved quantities. The conservation of linear and angular

momentum exclude dipole radiation. Thus, the lowest order term is quadrupolar radiation.

Equation (2.40) is referred to as the quadrupolar approximation.

2.2. ANGULAR DISTRIBUTION OF QUADRUPOLE RADIATION

It is desirable to obtain the waveform of GWs emitted in a generic direction =̂

within the quadrupolar approximation. In order to do that, the non-TT components of ℎ8 9

in Equation (2.37) can be projected out by defining a tensor Λ8 9 ,:; such that ℎ))8 9 = Λ8 9 ,:;ℎ:;

where ℎ8 9 is the spatial component of ℎ`a. The tensor, Λ8 9 ,:; , is given by

Λ8 9 ,:; = %8:% 9 ; −
1
2
%8 9%:; , (2.41)

where %8 9 is a projector operator defined as %8 9 = X8 9 − =8= 9 with =̂ being the direction

in which the GWs propagates. The projector operator eliminates the vector components

parallel to =̂, leaving only the transverse components. Λ8 9 ,:; is also a projector operator

which is transverse in all indices and traceless in (8 9). Therefore, if the GWs propagates

along the I-direction, the projector operator %8 9 is a diagonal matrix, diag(0,1,1,0), i.e., the

projection is on the G-H plane and =̂ = Î. Then Λ8 9 ,:; ¥&8 9 can be computed, where the double
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dots indicate the second derivative with respect to time, which gives

Λ8 9 ,:; ¥&8 9 = (%8:% 9 ; −
1
2
%8 9%:;) ¥&:; = (% ¥&%)8 9 −

1
2
%8 9Tr(% ¥&). (2.42)

For %8 9 = diag(1, 1, 0), in the matrix form is given by,

Λ8 9 ,:; ¥&:; =

©«

0 0 0 0

0 ( ¥&11 − ¥&22)/2 ¥&12 0

0 ¥&21 −( ¥&11 − ¥&22)/2 0

0 0 0 0

ª®®®®®®®®®®®¬8 9
. (2.43)

Equation (2.40) gives the amplitude of the plus- and cross-polarized wave propagating in

the I-direction to be

ℎ+ =
�

A24 ( ¥&11 − ¥&22) , (2.44a)

ℎ× =
2�
A24
¥&12 , (2.44b)

where the RHS is computed at a retarded time (C − A/2). The ℎ+ and ℎx are defined as the

components of ℎ8 9 in the plane perpendicular to the direction of propagation. Thus these

are the polarization amplitudes.

For a wave propagating in an arbitrary direction =̂, a frame (′ can be introduced with

unit vectors (D̂, Ê, =̂) such that =̂ in the (′ frame is given by (0,0,1) and in the ( frame with

unit vectors (Ĝ, Ĥ, Î) it is given by =̂ = (sin \ sin q, sin \ cos q, cos \). Alternately, it can be

written as =8 = '8 9=′9 where '8 9 is the rotation matrix given by

' =

©«
cos q sin q 0

− sin q cos q 0

0 0 1

ª®®®®®®®¬

©«
1 0 0

0 cos \ sin \

0 − sin \ cos \

ª®®®®®®®¬
(2.45)
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In the (′ frame, the wave propagates along the I′ direction. Thus using Equation (2.44) with

&8 9 being replaced by &′
8 9
which is the quadrupole moment in (′ frame. They are related

by&′
8 9
= ')&' where ') is the transpose of the matrix '. Plugging the resulting values of

&′
8 9
in Equation (2.44) for the primed frame, the amplitude of the plus- and cross-polarized

wave propagating in a generic direction can be obtained.

ℎ+(C, \, q) =
�

A24 [ ¥&11(cos2 q − sin2 q cos2 \) + ¥&22(sin2 q − 2>B2q cos2 \)

− ¥&33 sin2 \ − ¥&12 sin 2q(1 + cos2 \) + ¥&13 sin q sin 2\ + ¥&23 cos q sin 2\]

(2.46a)

ℎ× =
�

A24 [( ¥&11 − ¥&22) sin 2q cos \ + 2 ¥&12 cos 2q cos \

− 2 ¥&13 cos q sin \ + 2 ¥&23 sin q sin \
(2.46b)

The above equations enable calculation of the angular distribution of the quadrupolar

radiation for a given &8 9 .

Now that we have discussed expression for the waveform of GWs emitted in a

generic direction, in the next section, we will discuss some of the astrophysical sources that

generate these waveforms and the techniques employed by the LIGO-Virgo-KAGRA (LVK)

network to identify these waveforms.
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3. ASTROPHYSICAL SOURCES OF GRAVITATIONALWAVES

In the previous section, we showed that sources of GWsmust possess a time-varying

quadrupole mass moment or higher order mass moments. This section is a summary of

the different astrophysical sources of GWs and techniques to detect their signals. It also

summarizes the current results of the LVK searches for different GW signals.

3.1. GWS FROM COMPACT BINARY COALESCING OBJECTS

The GW signals from binary compact objects such as BBHs, BNSs and NSBHs are

short-lived, lasting for a few milliseconds to minutes in the detectors. As the GWs carry

away energy, the orbit of the binary system decays further increasing the amplitude of the

waves until the compact objects merge. The increasing amplitude and frequency of the

waves result in a ‘chirp’ waveform. A binary system can radiate up to a few percent of its

total mass as GWs in the last stages of the inspiral process (Maggiore (2008)).

In a simple approximation, one can calculate the waveform of the GWs emitted

during the inspiral phase of a compact binary coalescence (CBC) by treating the two

compact objects as point-like masses <1 and <2 at positions A1 and A2. In the center-of-

mass frame (COM), the system is described by the reduced mass ` = <1<2/(<1 +<2) and

the relative coordinate A = A2 − A1. Assuming that there is no back-reaction on the motion

of the system due to GW emission and choosing a frame so that the orbit lies on the (G, H)

plane, the trajectory of the system is given by

G0(C) = ' cos (lC) ,

H0(C) = ' sin (lC) ,
(3.1)
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where l is the orbital frequency and ' is in initial the orbital radius. In the COM frame,

from Equation (2.38) the non-zero components of the mass quadrupole moment are given

by

�11 = `'
2 1 + cos (2lC)

2
,

�22 = `'
2 1 − cos (2lC)

2
,

�12 = `'
2 sin (2lC)

2
.

(3.2)

Plugging these values into Equation (2.37), the GW amplitudes are, for a system when the

normal to the plane of the orbit is along the line of sight:

ℎ+ =
4�`l2'2

24A
cos(2lCret) ,

ℎ× =
4�`l2'2

24A
sin(2lCret) ,

(3.3)

where Cret = (C − A/2) is the retarded time. The GW frequency is twice the orbital frequency

of the binary system and the GW amplitude is inversely proportional to A .

The masses of the objects involved determine how long the emitted GWs last in

the detector’s frequency band. Compact binaries like BBHs produce signals that typically

last only a fraction of seconds long in the LIGO sensitive band. On the other hand, BNS

mergers can produce signals that may last minutes in the detector. Advanced ground-based

GW detectors can detect coalescing BBHs with component masses of the order of 10 M�

up to a distance of several gigaparsecs (Gpc) (Abbott et al. (2021a)).

If the plane of the orbit is tilted at an angle ], Eqs. (3.3) become

ℎ+ =
4�`l2'2

24A

(
1 + cos2 ]

2

)
cos(2lCret) ,

ℎ× =
4�`l2'2

24A
cos ] sin(2lCret) .

(3.4)
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The GW is linearly polarized for an edge-on orbit, ℎ× = 0. For ] = 0, both ℎ+ and ℎ×

have the same amplitude, but ℎ+ ∝ cos (2lCret) and ℎ× ∝ sin (2lCret). Thus the GWs are

circularly polarized in (ℎ+, ℎ×) plane. The GW is elliptically polarized for any other value

of ].

Matched filtering is the standard method to extract CBC signals from the detector

noise. For the details on matched filtering , see (Maggiore (2008)).

The Advanced LVK network of GW detectors have identified confirmed 90 CBC

detections so far. 76 of these detections were observed in the latest observing run, O3

(Abbott et al. (2021a)). They include the first NSBH detections (Abbott et al. (2021c),

cite), a BBH with total mass over 150"� (Abbott et al. (2020b)), and a highly asymmetric

system with mass ratio q ∼ 9 of ambiguous nature (Abbott et al. (2021b)). Additionally,

the BNS detection of GW170817 (Abbott et al. (2017c)) with an EM counterpart heralded

the era of multi-messenger astronomy (MMA). A second BNS without an EM counterpart

was also observed GW190425 Abbott et al. (2021a).

3.2. CONTINUOUS GWS

The most likely sources of continuous waves (CWs) that can be observed by ground-

based GW detectors are non-axisymmetric, rapidly rotating NS. Searches for CWs have

been carried out targeting various isolated sources, including known pulsars (Abbott et al.

(2005)), NSs close to the galactic center and young supernova (SN) remnants (Aasi et al.

(2013, 2015b)) and NSs in globular clusters (Abbott et al. (2017f)). Searches have also

been conducted over the whole sky for CWs (Abbott et al. (2021d)). Young NSs may

have larger non-axisymmetries than older ones and consequently may produce stronger GW

emissions (Riles (2017)). As the star ages, various processes such as tectonic, thermal, or

other relaxation processes work to reduce the asymmetries introduced in the birth process.
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Young NSs are therefore promising targets for CW searches. Characterizing properties

of these continuous GWs will provide insights into their internal structure. The expected

amplitude of these generated GWs is of the order of 10−25.

The latest all-sky search for continuous, nearly monochromatic GWs in the range

20 − 2000 Hz from rapidly rotating isolated NS using LIGO and Virgo data yielded no

credible CW signals (Abbott et al. (2021e)). Instead, 95% confidence level upper limits

were placed on possible source signal amplitudes. The lowest upper limits on linearly

polarized GW strain amplitudes are ∼ 1.7 × 10−25, whereas for the circularly-polarized GW

strain amplitudes are ∼ 6.3 × 10−26 (Abbott et al. (2021e)). A targeted search for CWs from

NSs in young SN remnants with the O3a data also yielded no evidence of CWs but placed

constraints on the GW strain, as well as the ellipticity and r-mode amplitudes of the sources

(Abbott et al. (2021i)).

3.3. STOCHASTIC GW BACKGROUND

A Stochastic GW background (SGWB) consists of random signals produced by

the superposition of many weak, uncorrelated and unresolved sources that can be of cos-

mological or astrophysical origin (Martinovic et al. (2021)). A variety of early universe

processes, like quantum vacuum fluctuations during inflation (Guth (1981)), first order

phase transitions, or cosmic strings can lead to a SGWB (Jeannerot et al. (2003)). An

astrophysical contribution to the SGWB comes from the superposition of unresolved GW

transients signals for example from CBC events. Detecting an astrophysical SGWB would

be important to obtain information about the mass range for NS and BH progenitors and the

rate of compact binaries.

LVK searches generally assume the SGWB to be stationary, isotropic and not polar-

ized. The SGWB can be quantified in terms of
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Ω
�,

=
4c2

3�2
0
5 3(ℎ ( 5 ) , (3.5)

where �0 is the Hubble constant, f is the frequency and (ℎ ( 5 ) is the single-sided power

spectal density (PSD) of the stochastic background.

No evidence of a SGWB has been found to date. However, 95% confidence-level

upper limits were placed on the normalized GW energy density spectrum from extended

sources (Ω�, < (0.57 − 9.3) × 10−9sr−1) and other parameters using data from the O3

LIGO-Virgo observing runs. These limits improve upon by a factor of 2.9−3.5 with respect

to the previous observing runs (Abbott et al. (2021g)).

When a SGWB is successfully detected, there will be the challenge of identifying

the sources that contribute to it. Untangling these signals will deepen our knowledge

of merger rates and population models (Zhu et al. (2013)), our understanding of exotic

objects (Jeannerot et al. (2003); Regimbau and Pacheco (2006)) and in particular early

universe models (Abbott et al. (2009b)). Although efforts have been made to separate the

astrophysical and cosmological contributions to the SGWB using the data from the O3 run,

the current network of GWdetectors may not be sufficiently sensitive to distinguish different

sources. However, the detection of SGWB may look promising for the future generation

detectors (Martinovic et al. (2021)).

3.4. GW BURSTS

Burst GW transients are emitted by extremely energetic events such as core collapse

supernova (CCSN) explosions, magnetars, gamma ray bursts (GRBs) or even cosmic strings.

They may also be originated by unknown and/or unforeseen GW sources. As GW bursts

come from explosive and complicated phenomena, it is difficult to accurately predict their

waveforms. Therefore, algorithms to detect them are designed to use minimal assumptions.

Current LVK searches target burst transients in the frequency range from 32 Hz to 4096 Hz
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(Abbott et al. (2019b)). This frequency range covers a wide parameter space of sources,

including GWs from mergers of compact objects. Different algorithms increase our ability

to detect a wide range of signals from both CBC and GW bursts. Thus, multiple algorithms

are used to independently verify search results (Abbott et al. (2019b)). One of these

algorithms which is widely used in LVK searches is coherent WaveBurst (cWB) (Drago

et al. (2020)). In this section we will briefly describe its basic features. A more detailed

discussion is included in Section 8.

cWB is a wavelet-based algorithm which applies the maximum-likelihood-ratio

statistics on detected excess power (Drago et al. (2020)). Data streams from all detectors

are first conditioned to remove persistent lines and noise artifacts. Next, data is converted

to the time-frequency (TF) domain with the Wilson-Daubechies-Meyer wavelet transform

and whitened. Pixels whose energy are larger than a given threshold are retained for further

analyses. The chosen TF pixels from all detectors are combined by a constrained likelihood

function that for each incoming direction takes into account the interferometer antenna

patterns and the detected time delays. The likelihood is then maximized with respect to

the sky position. An event is identified when a signal coherence test statistic calculated

on the selected TF pixels exceeds a predetermined threshold. The cWB analyses are

performed by dividing the observing run into reduced periods of consecutive time epochs

(called “chunks”). The background distribution of triggers for each individual chunk is

then calculated by time-shifting the data of one detector with respect to the other detectors

by an amount larger than the time of flights between detectors. Performing the analyses in

chunks also accounts for the fluctuating noise levels of the detectors over the duration of

the observing run. The significance of each trigger found in real coincident data is then

calculated by comparing the coherent network SNR with the background distribution of the

chunk to which it belongs (Abbott et al. (2019b)).
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LVK searches for GW bursts have not yet yielded any detection, although some

theoretical models suggest that a CCSN can produce a GW signal with amplitude of the

order of ∼ 10−21 at a distance of 10 kpc under the assumption that 10−7"� is radiated

in GWs (Sathyaprakash and Schutz (2009)). A search for GW transients associated with

five CCSNs within approximately 20 Mpc using Advanced LIGO and Advanced Virgo

data yielded no GW detections (Abbott et al. (2020c)). However, detection efficiency

as a function of the distance for waveforms derived from multidimensional numerical

simulations and phenomenological extreme emission models were calculated. The sources

with neutrino-driven explosions may be detectable up to a distance of ∼ 5 kpc at 50 %

efficiency. Magnetorotationally driven extreme emission CCSNs may be detected up to

a distance of ∼ 54 kpc and ∼ 28 Mpc, respectively (Abbott et al. (2020c)). For the first

time, the first supernova model constraints were provided based on GW data with a standard

candle approach. GW energy released at 235 and 1304 Hz was constrained to be around

∼ 10−3"�22 and ∼ 10−1"�22, respectively (Abbott et al. (2020c)). In case of magnetars,

results of a search for short and intermediate-duration GW signals in Advanced LIGO’s

second observing run provided no evidence of a signal. However, upper bounds were placed

on the dimensionless strain ranging from 1.1× 10−22 at 150 Hz to 4.4× 10−22 at 1550 Hz at

50% detection efficiency. Also the upper bounds were placed on the isotropic GW energy

at 3.4 × 1044erg at 150 Hz assuming optimal orientation (Abbott et al. (2019e)). Targeted

analyses for GWs associated with Fermi (Meegan et al. (2009)) and Swift (Gehrels et al.

(2004)) GRBs reported during the O3a LIGO–Virgo observing run yielded no GW signal in

association with the GRBs (Abbott et al. (2021h)). Lower bounds have been placed on the

distances to the progenitors of all GRBs that were analyzed for different emission models

(Abbott et al. (2021h)). Among all sky searches long duration search, which covers the

range of 2 − 500 sec in duration and a frequency band of 24 − 2048 Hz, also yielded no

significant triggers using GW data from the O3 run. However, sensitivity limits could be

placed on the signal strength of GWs characterized by the root-sum-square amplitude as a
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function of waveformmorphology. These limits improve upon the results from the previous

observing run by an average factor of 1.8 (Abbott et al. (2021f)). The short duration all-sky

search detected GWs from several BBH mergers which have been identified by previous

analyses. No other significant events were found (Abbott et al. (2019b)). However, the

search established upper limits on the source rate-density as function of the characteristic

frequency of the signal and sensitivity for a variety of signal waveforms. These upper limits

are a factor of ∼ 3 lower than the first observing run, with a 50% detection probability for

GW emissions with energies of ∼ 10−9 M�22 at 153 Hz (Abbott et al. (2019b)).

In the next section we will describe how LIGO operates and detects GW signals

produced by the various sources mentioned here. The following sections primarily focus on

LIGO since the experimental work described in the later sections were carried out at LIGO.

Virgo and KAGRA detectors follow the same basic design with some technical differences.
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4. LIGO DETECTORS

In the previous section it was shown that GWs are quadrupolar and transverse in

nature. As GWs travel, they compress the spacetime in one direction while stretching

it in a perpendicular direction in a plane perpendicular to their direction of propagation.

This feature is exploited when employing laser interferometer as GW detectors. Typical

differential length variations induced by a GW are of the order of 10−18 m. Detecting these

small effects require a highly sensitive interferometer (Abbott et al. (2009a)). Advanced

LIGO is a ground-based interferometric GW observatory that is a part of a wider global

network of ground-based GW detectors. To date the detector network has detected ∼ 90

GW signals all from CBCs (Abbott et al. (2021a)). This section provides a brief description

of the LIGO detectors, the major sources of noise that limits LIGO’s sensitivity and how

LIGO detects GWs. The derivations in Subsection 4.3 follow the notations in Maggiore

(2008).

4.1. LIGO DETECTORS

Advanced LIGO consists of two identical interferometric detectors with 4 km long

arms, one at Hanford, WA USA and the second one at Livingston, LA USA (Aasi et al.

(2015a)). Apart from the twin LIGO detectors, there are other interferometric GWdetectors

operational around the world. This global network includes the VIRGO detector in Cascina,

Italy (Acernese et al. (2015)) which has 3 km long arms, the KAGRA detector in Japan

which operates underground and has cryogenically cooled mirrors to reduce unwanted

contributions from seismic and thermal noise (Akutsu et al. (2019)), and the GEO600

detector in Hannover, Germany with 600 m long arms (Luck et al. (2010)). A third LIGO

detector is slated to join the global network in a few years time in India (Iyer et al. (2011)).

Employingmultiple geographically distributed detectors around theworld enable coincident

GW detection with increased confidence and improved source sky localization.
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The LIGO detectors are designed to be sensitive to GW frequencies in the range

20 − 2000 Hz with a peak sensitivity to differential length variations of the order of

1.0 × 10−20 m/
√

Hz at frequencies near 200 Hz. The sensitivity of the detectors are limited

by noise contributions from different sources at various frequency regions. A few of the

main sources of noise will be discussed in Section 4.2.

4.1.1. Power-recycled Fabry-Perot Michelson Interferometers. The LIGO de-

tectors are kilometer-scale Michelson interferometers, see Figure 4.1. The interferometer

laser beam is split into two equal beams, which travel through the perpendicular vacuum

tubes, or arms of the interferometer. These beams are reflected by highly reflective mirrors

at the end of the arms, referred to as the end test masses (ETMs). The two reflected beams

them recombine at the beamsplitter (BS). LIGO operates close to the dark fringe such that

nearly all carrier power is directed towards the symmetric port and the signal towards the

antisymmetric port (Abbott et al. (2009a)).

The interferometer laser is a diode-pumped Nd:YAG laser operating at 1064 nm

(Abbott et al. (2009a)). Before entering the interferometer, the pre-stabilized laser beam is

sent through a series of mode cleaners and input optics to further improve the power stability

and to filter out higher transverse electromagnetic (TEM) modes. The input mode cleaner

(IMC) is a triangular cavity that allows only (TEM00) mode to resonate in the cavity and

completely transmit it to the interferometer (Abbott et al. (2009a). The IMC also suppresses

frequency fluctuations of the laser when employing Pound-Drever-Hall locking technique

to lock the cavity in resonance (Drever et al. (1983)). There is also an output mode cleaner

(OMC) at the antisymmetric port before the laser beam reaches the photodetector. The

OMC rejects the non-fundamental modes that might have reappeared as the laser traveled

through the interferometer (Smith (2012)).

As a GW propagates through the plane of the detector, the spacetime stretches

and compresses in perpendicular direction in the plane orthogonal to the direction of the

propagation of the wave. As a result, the interferometer output at the antisymmetric port
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Figure 4.1. Schematic diagram of the LIGO interferometer layout showing the Michelson
interferometer with the power recycling cavity at the input end, the signal-recycling cavity at
the signal readout port and the Fabry-Perot cavities∼ 4 km-long in each of the perpendicular
arms.

changes indicating presence of the GW. As mentioned earlier, in order to detect GWs, LIGO

must be sensitive to DARM length variations of the order of 10−18 m. To achieve this level

of sensitivity, several enhancements to the basic Michelson interferometer design have been

introduced over the years.

4.1.1.1. Fabry-Perot cavities. The most significant of these enhancements are the

Fabry-Perot optical cavities in each arm of the interferometer. These cavities increase the

effective lengths of the arms and the interaction time of the interferometer carrier light with

the GWs, thus amplifying the signal at the output photodetector. These cavities are realized

by placing partially reflective mirrors at the beginning of the arms, referred to as the input

test masses (ITMs), as shown in Figure 4.1. These cavities are on resonance if their length

is an integer multiple of the laser half-wavelength, or the phase q is an integer multiple of
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2c. The round trip phase in each arm is given by q = 4c!/_, where _ is the wavelength

of the laser light and L is the average length of the interferometer arm. In the case of a

simple Michelson interferometer, the phase shift Δq is proportional to L. However, with

Fabry-Perot cavities, phase shift is proportional to ! × F , where F is the finesse of the

cavity (Staley (2015)). Therefore, the higher the finesse of the cavity, the greater the phase

shift, resulting in an amplified signal. In the LIGO detectors the Fabry–Perot cavities lead

to a signal amplification by a factor ∼ 100 at 100 Hz. (Abbott et al. (2009a)).

4.1.1.2. Power recycling cavity. A partially reflecting mirror, called the power

recycling mirror (PRM) is placed between the laser and the BS to reflect back the light

returning to the main laser source. The recycled light resonates within the optical cavity

formed between the PRM and the Michelson symmetric port. This configuration, known

as a power recycled Fabry–Perot Michelson, leads to an increase in the power by a factor of

∼ 8000 with respect to a simple Michelson design (Abbott et al. (2009a)).

4.1.1.3. Signal recycling cavity. A signal recyclingmirror (SRM) is located before

the photodetector at the antisymmetric port to forma signal recycling cavity. This is designed

to enhance the GW signals at the frequencies of scientific interest. The signal recycling

cavity effectively reduces the finesse of the Fabry-Perot cavities without compromising the

detector sensitivity, while enabling a broad detector bandwidth (Staley (2015)).

4.2. LIGO SENSITIVITY AND NOISE SOURCES

Advanced LIGO is designed to measure a GW strain as small as 4 × 10−24 /
√

Hz

at a frequency ∼ 100 Hz (Barsotti et al. (2018)). Figure 4.2 shows a comparison of the

noise-equivalent strain sensitivity curve of Advanced LIGO for its various observing runs.

During its O3 run, which started in April 2019 and ended in March 2020, Advanced LIGO

had a strain sensitivity of 2 × 10−23 /
√

Hz in the 200 − 1000 Hz region. Another way to

describe the sensitivity of the LIGO detectors is by specifying the binary inspiral range

(Abbott et al. (2015)). This range is the volume- and orientation-averaged distance to which
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Figure 4.2. A comparison the sensitivity achieved or estimated to achieve by Advanced
LIGO during its observing runs (Abbott et al. (2019a)).

the GW signal emitted by a binary neutron star (BNS) coalescence with component masses

of 1.4"� is detectable with a single detector SNR of 8. The BNS inspiral range of the

Advanced LIGO detectors at design sensitivity is ∼ 200 Mpc. During the O3 run, the BNS

inspiral range for the LIGO Hanford and Livingston sites was on average ∼ 115 Mpc and

∼ 135 Mpc, respectively.

There are various sources of noise that hinders LIGO from achieving its design

sensitivity. The major sources of noise include seismic noise at low frequencies, Brownian

noise at intermediate frequencies and quantum noise at low and high frequencies.
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4.2.1. Seismic Noise. Seismic noise arises from ground motion that can couple

to the suspended test masses. Seismometers are located throughout the interferometer to

monitor the seismic motion near the test masses. Information from these seismometers are

used to subtract the noise from the detector waveform. The test mass motion requirement

is less than 10 × 10−19 m/
√

Hz at 10 Hz whereas the nominal ground motion at 10 Hz is

∼ 10 × 10−9 m/
√

Hz (D. V. Martynov et al. (2016)).

LIGO’s ETMs and ITMs are suspended as quadruple pendula to isolate them from

seismic noise. These stages are also shown in Figure 5.1. This configuration provides

suppression of the horizontal motion as 1/ 5 2= for the =-th stage of the quadruple pendulum.

Thus, at high frequencies, the mirrors can be considered as free-falling objects (Staley

(2015)).

To further mitigate the effects of the seismic noise, LIGO employs active and

passive feedback controls. The quadruple pendulum system is actually a pair of adjacent

quadruple suspensions, with the main chain holding the suspended test mass, and the

reaction chain suspending equally isolated masses upon which the actuators are mounted.

Among the lowest three stages of each quadruple suspension, the upper intermediate (UIM),

and penultimate (PUM) are driven by magnetic coil actuators. The lowest stage of the

suspension, the test mass (TST) stage, is driven by an electrostatic actuator system.

4.2.2. Thermal or Brownian Noise. The thermal motion of the test masses can

causemirror displacements and is a source of noise. Low-loss coatings and high-Qmaterials

are used to limit this thermal noise (Staley (2015)). The masses in the lower two stages of

the quadruple pendulum (34 cm in diameter, 20 cm in thickness, and 40 kg of mass) are

made of a high purity fused silica. They are suspended using fibers creating a monolithic

suspension (Abbott et al. (2016b)). Thermal noise can also appear in the form of thermal

aberrations. As the laser power is partially absorbed by the test masses, the deformations in
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the mirrors can create higher order TEMmodes (Staley (2015)). Advanced LIGO employs a

thermal compensation system to heat up the test masses and reduce the mirror deformations

in the region of the incident beam (Brooks et al. (2009)).

4.2.3. Quantum Radiation Pressure and Shot Noise. The quantum radiation

pressure arises due to the quantum nature of the light in the low-frequency band 10 − 50

Hz (Pitkin et al. (2016)). This noise can be mitigated by decreasing the laser power and

increasing the mass of the test masses. However, this leads to an increase of shot noise.

Shot noise arise at the sensing or readout of the interferometer and limits the sensitivity at

high frequencies (Matone (2012)).

4.3. LIGO AND GWS

This subsection describes the interaction of GWs with the LIGO detectors and the

angular sensitivity of the detector to the GWs. The notations follow Maggiore (2008).

4.3.1. Interaction of GWs With Test Masses. As the GWs have a simple form in

TT gauge, it is convenient to work in a coordinate system that satify this TT gauge. The

geodesic equation of a test mass is given by

32G`

3g2 + Γ
`
df

3Gd

3g

3Gf

3g
= 0 , (4.1)

where Γ`df are the Christoffel symbols given by Equation (2.4) and g is the proper time

defined as the time measured by a clock carried along the time-like geodesics. If the test

mass is at rest at g = 0, then the geodesic equation can be written as

32G8

3g2 |g=0 = −Γ800

(
3G0

3g

)2

. (4.2)

Writing 6`a = [`a + ℎ`a and expanding to the first order in ℎ`a, Γ800 is given by

Γ800 =
1
2
(2m0ℎ08 − m8ℎ00). (4.3)
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In a TT frame, the gauge conditions imply that ℎ08 = 0 and ℎ00 = 0. Thus
32G8

3g2 |g=0 = 0. Test masses which are at rest initially remain at rest.

Consider two nearby geodesics, parametrized by G` (g) and G` (g) + n ` (g) respec-

tively. If |n ` (g) | is much smaller than the typical variation scale of the gravitational field,

the equation of geodesic deviation at first order in n is given by

32n `

3g2 + 2Γ`df
3Gd

3g

3nf

3g
+ nUmUΓ`df

3Gd

3g

3Gf

3g
= 0 . (4.4)

Assuming 3G8/3g = 0 at g = 0 and given 3G0/3g = 2, Equation (4.4) reduces to

32n 8

3g2 |g=0 = −¤ℎ8 9
3n 8

3g
|g=0 , (4.5)

where we have used Γ800 = 0, Γ80 9 = (1/2)m0ℎ8 9 and that Γ80f is non-zero only if f is a spatial

index. If 3n 8

3g
= 0 at g = 0 then the ®n remains constant at all times. This means that the

coordinates of the test masses do not change.

Consider two events at (C, G1, 0, 0) and (C, G2, 0, 0), respectively. The coordinate

distance between them, (G2 − G1) = !, remains constant in the TT gauge. However, for a

GW propagating along the I-direction, the proper distance B between the two events is given

at first order in ℎ by

B = !

[
1 + 1

2
ℎ+4

8:fGf

]
. (4.6)

The proper distance changes periodically in time because of the GWs. If the spatial

separation between the two events is given by a vector L, the proper distance is given by

B2 ≈ ! + ℎ8 9!8! 9 . At first order in ℎ it follows,

¥B ∼ 1
2
¥ℎ8 9
!8

!
! 9 . (4.7)
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Since by definition B = =8B8, where =8 = !8/!, the above equation can be rewritten as

¥B8 ∼
1
2
¥ℎ8 9! 9 ∼

1
2
¥ℎ8 9 B 9 , (4.8)

Equation (4.8) is the geodesic equation equation in terms of proper distance.

In the case of LIGO, the two test masses are the end mirrors. GWs affect the proper

distance between these mirrors and can be detected by measuring the time that the light

takes to complete a round-trip in the interferometer arms.

4.3.2. Interaction ofGWsWithLIGODetectors. The testmasses are at a distance

much less than the reduced wavelength of the GW (_/2c). Thus the displacement of the

interferometricmirrors due to the stretching and squeezing of the spacetime can be described

by the equation of geodesic deviation. The local spacetime metric can be considered to be

flat with the origin of the coordinate system fixed on the BS. For a GWwith plus polarization

propagating perpendicularly towards the interferometer from the I - direction, the geodesic

equation for the X-end mirror, is described in the coordinates (b- , b. ) by Equation (4.8)

¥b- =
1
2
¥ℎ+b- . (4.9)

At zeroth order b- = !- , and the equation of geodesic deviation is given by ¥b- =

(1/2) ¥ℎ+!- . The solution of the equation is

b- = !- +
ℎ0!-

2
cos

(
l6FC

)
, (4.10)

where ℎ+ = ℎ0 cos
(
l6FC

)
, l6F is the angular frequency of the GWs and ℎ0 is the amplitude

of the GW at C = 0. The integration constants are chosen such that the average value of b-

over one GW period is !- and the average value of ¤b- vanishes. Under these conditions

and b. (0) = ¥b. = 0, b. (C) = 0 at all times.
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Since the local spacetime is flat, a photon starting at the BS at time C0 and moving

along the X-axis reaches the ETM at time C1 = C0 + b- (C). Since the photon follows the

trajectory G(C) = 2(C1 − C0), at zeroth order in ℎ0, C1 = C0 + !-/2. Therefore Equation (4.10)

is given by

2(C1 − C0) = !- +
ℎ0!-

2
cos

(
l6F (C0 + !-/2)

)
. (4.11)

The round-trip time ΔC that a photon takes to get back to the BS is twice the time C1 − C0.

Thus

ΔC =
2!-
2
+ ℎ0!-

2
cos

(
l6F (C0 + !-/2)

)
. (4.12)

The first term in the r.h.s is the photon round trip time in the absence of the GW. The second

term is the variation in propagation time due to its interaction with the GW along the X-arm:

Xg- =
ℎ0!-
2

cos
(
l6F (C0 + !-/2)

)
. (4.13)

The light traveling in the Y-arm will also acquire the same amount of perturbation but in

the opposite direction. Thus the total travel time difference due to the interaction of the

light with the GW along the two arms of the interferometer is given by Xg- + Xg. . If the

average length of the two arms of the interferometer is the same, i.e. !- = !. = !, then

the variation in the propagation time is

Δg =
Δ!

2
=

2!ℎ0 cos
(
l6F (C − !/2)

)
2

, (4.14)

where Δ! = Δ!- − Δ!. . Δ!- and Δ!. are the arm length variation along the X- and

Y-arm of the interferometer, respectively. The above equation can be rewritten as a phase

shift between the lights in the two arms

Δq(C) = 4cΔ!
_

=
4c!ℎ0 cos

(
l6F (C − !/2)

)
_

,

=
4c!ℎ+(C − !/2)

_
.

(4.15)
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The phase shift is directly proportional to the amplitude of the GW and the length of the

interferometer arm. The strain produced by the gravitational wave is ℎ+ ≈ Δ!/!. Therefore,

larger the interferometers arms smaller the GW strain can be detected.

4.3.3. Antenna Pattern. For a detector sensitive to GWs with wavelengths much

larger than its size, such that =̂ · x/_ � 1 over the whole detector, we can neglect the spatial

dependence of ℎ8 9 (C, x). When a GW impinges on such a detector, the GW amplitude can

be as

ℎ8 9 (C) =
∑
%=+,×

�%8 9 (=̂)ℎ% (C) , (4.16)

where �%
8 9
(=̂) is the polarization tensor introduced in Equation (2.26) and ℎ% is one of the

ℎ+ and ℎ× amplitude.

Since the output of the GW detector is a timeseries, the input of the detector can be

written as ℎ(C) = �8 9ℎ8 9 (C), where �8 9 is a constant tensor that depends on the geometry of

the detector and is known as the detector tensor. Using Equation (4.16), the scalar output

of the detector can be written as

ℎ(C) =
∑
%=+,G

�8 9 �%8 9 (=̂)ℎ% (C). (4.17)

Defining the detector pattern function as

�% (=̂) = �8 9 �%8 9 (=̂) , (4.18)

Equation (4.17) can be rewritten as

ℎ(C) = �+(\, q)ℎ+(C) + �×(\, q)ℎ×(C) , (4.19)

where =̂ is the direction of propagation of the GW.
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The response of the detector to a GW with arbitrary direction of propagation and

arbitrary polarization is encoded in detector pattern functions. In the long-wavelength

approximation limit, where l6F!/2 � 1, for mirrors located at (L,0,0) and (0,L,0), the

displacements along the X- and Y-direction are

¥b- =
1
2
¥ℎ--! , (4.20a)

¥b. =
1
2
¥ℎ..! . (4.20b)

The relative phase shift between the X and Y arms is given by ( ¥ℎ-- − ¥ℎ.. )/2 since the

motions of the mirrors are governed by the geodesic equation. The detector tensor for the

interferometer is�8 9 = (Ĝ8 Ĝ 9− Ĥ8 Ĥ 9 )/2 and the detector output will be ℎ(C) = (ℎ--−ℎ.. )/2.

Introducing as in Subsection 2.2, the frame (′ with the GW propagating along the

I′ direction, the GW amplitude in the (′ frame is

ℎ′8 9 =

©«
ℎ+ ℎ× 0

ℎ× −ℎ+ 0

0 0 0

ª®®®®®®®¬8 9
. (4.21)

The matrix that transforms (′ frame into the ( frame is given by the rotation matrix

' =

©«
cos q sin q 0

− sin q cos q 0

0 0 1

ª®®®®®®®¬

©«
cos \ 0 sin \

0 1 0

− sin \ 0 cos \

ª®®®®®®®¬
, (4.22)
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Figure 4.3. Geometry used in calculating the detector antenna pattern. The (′ frame is the
source frame in which the GWs propagate along the I′ direction. ( frame is the detector
frame. The rotation that brings (′ frame to ( frame, is rotation by an angle \ around y-axis
followed by a rotation by angle q around z axis.

where the polar angles \ and q are defined as in Figure 4.3. The GW in the ( frame is given

by ℎ8 9 = '8:' 9 ;ℎ′:; , i.e.,

ℎGG = ℎ+(cos2 \ cos2 q − sin2 q) + 2ℎ×(cos \ cos q sin q) , (4.23a)

ℎHH = ℎ+(cos2 \ sin2 q − cos2 q) − 2ℎ×(cos \ cos q sin q) . (4.23b)

Thus the output of the interferometer is given by

ℎ(C) = 1
2
ℎ+(1 + cos2 \) cos 2q + ℎ×(cos \ sin 2q) . (4.24)
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Figure 4.4. Antenna patterns for a single LIGO detector under the long-wavelength approx-
imation for the plus polarization (left), the cross polarization (center) and the root mean
squared antenna pattern (right). The BS is located at the center of each pattern and the
interferometer arms denoted by the black lines.

Comparing the above equation with Equation (4.19) the antenna factors can be written as

�+(\, q) =
1
2
(1 + cos2 \) cos 2q , (4.25a)

�×(\, q) = cos \ sin 2q . (4.25b)

Note that Equation (4.25) has been obtained under the long-wavelength approxima-

tion. From Equation (4.25), it can be seen that the detector has blind spots. For example,

for a GW with plus polarization, the area of the sky defined by q = c/4 is a blind direction.

This occurs because the GWproduces the same displacement in X andY-arm, so the relative

phase shift is zero. Figure (4.4) shows the plus and cross antenna patterns along with the

root mean squared antenna pattern for a single LIGO detector.

In summary, GWdetectors are not omnidirectional, but exhibit directional variations

in sensitivity.
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The generalized antenna pattern for a network of N detectors, �# , under the as-

sumption that the detector noise streams are uncorrelated, is given by

�# =

√∑
:

(�2
+,: + �

2
×,:
) , (4.26)

where �+,: and �×,: are the detector pattern functions of the :-th detector (Schutz (2011)).

Co-aligned detectors can miss events that could be detected if the detectors were

misaligned (Schutz (2011)). For example, the orientation of the Livingston and Hanford

detectors with respect to each other implies there are four low sensitivity spots, see left

panel of Figure 4.5.

Relative alignment of the detectors is crucial when searching for GW signals, es-

pecially the SGWB. The ability to determine polarization and sky position of a burst-like

signal is also affected by the relative alignment of the detectors (Schutz (2011)). Adding

more detectors with misaligned antenna patterns enables more accurate sky localizations

from time-delay triangulation. For example, addition of Virgo to the LIGO network, the

right panel of Figure 4.5, increases the sensitivity in LIGO’s blind spots, which allows better

detection and sky localization of the source.

Figure 4.5. Left: Network antenna pattern for LIGO-Livingston and LIGO-Hanford detec-
tors (LH). Right: Network antenna pattern for LIGO-Virgo detectors (LHV).
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Section 8 provides a more detailed discussion on the importance of accurate sky

localization, specially for multi-messenger astronomy. The next section discusses how the

LIGO detectors are calibrated to extract accurate source information from the GW signals.
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5. LIGO CALIBRATION

Calibration of the GW detector requires conversion of digital counts read by the

photodetector at the output of the interferometer into a dimensionless strain, ℎ. This

calibrated strain data is then analyzed to determine the presence of a GW signal in the data

and to extract astrophysical information about the source from it.

5.1. MOTIVATION FOR ACCURATE AND PRECISE DETECTOR CALIBRA-
TION

Detected GW signals have been used to understand the evolution of binary mergers

(Abbott et al. (2017a)), check the validity of equation of state models of NSs (Radice

et al. (2018)), estimate the values of cosmological parameters (Abbott et al. (2019d)),

test alternative theories of relativity (Abbott et al. (2019f)) and measure the speed of GW

propagation (Vitale et al. (2012b)).

In 2009, it was estimated that a calibration accuracy of 0.5 % or better would be

required to optimally extract information from the GW signals (Lindblom (2009)). Sub-

sequent analyses have also highlighted the importance of reducing calibration uncertain-

ties (Abbott et al. (2016a); Vitale et al. (2012a)). Accurate determination of the distance

to GW sources requires low overall network calibration uncertainty. Also, precise rela-

tive calibration between the detectors is necessary for accurate sky localization of sources

(Fairhurst (2009)) and to enable follow-up observations by EM observatories.

In O3, the estimated calibration accuracy was at the 2 % level (Sun et al. (2020)).

This was typically considered to be sufficient for source parameter estimation of single

events. However, calibration accuracy may become the limiting factor for statistically based

investigations that use a set of events, such as the determination of the Hubble parameter. In

2017, the LIGO andVirgo collaborations reported the observation of a BNS inspiral (Abbott

et al. (2017c)). While the LIGO-Virgo observation provided information on the distance of
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the event, follow-up observations of an EM counterpart at multiple wavelengths by over 70

EM observatories provided information on the redshift of the host galaxy, thus enabling the

estimation of the Hubble parameter, �0 = 70.0+12.0
−8.0 Km/s/Mpc (Abbott et al. (2019d)).

The observations of GW170817 by the LIGO and Virgo network, together with the

kilonova AT2017gfo (cite) and the gamma-ray burst GRB170817A (Abbott et al. (2021h)),

served as the first demonstration of the bright siren approach. This result was constrained

by the SNR rather than calibration accuracy. In fact, a recent study by Huang et al. (In

preparation) shows that the 90 % confidence interval for the �0 posterior includes the true

value of �0 even in the presence of systematic calibration errors as large as 2 − 3 % in the

detectors’ most sensitive frequency band.

The �0 estimate with GW150914 lies mid-way between the results reported by

Planck (Aghanim et al. (2018)) (�0 = 67.8 ± 0.9 Km/s/Mpc) and the SHoES (Riess et al.

(2016)) collaboration (�0 = 73.24 ± 1.74 Km/s/Mpc). To resolve this tension, the Hubble

parameter will need to be measured with a ∼ 1% accuracy (Chen et al. (2018)). This will

require a GW detector calibration accuracy of 1 % or better, i.e., an accuracy of the fiducial

length variation calibration at sub-percent level. The various techniques for generating

accurate and precise fiducial length variation calibration are briefly discussed in the Section

5.3.

5.2. INTERFEROMETER CALIBRATION

Calibration of a ground-based GWdetector is achieved using an accurate and precise

model of the detector’s response to the differential arm length variations. In this subsec-

tion, we discuss how to model the detector’s response to these variations. The following

discussion is mostly based on Sun et al. (2020) including D.Bhattacharjee and Sun et al.

(2021) including D.Bhattacharjee.
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The detectors measure the dimensionless strain ℎ. The latter is proportional to the

DARM length changes Δ! 5 A44:

ℎ =
Δ! 5 A44

!
=
!- − !.

!
, (5.1)

where !- and !. are the displacements in the two perpendicular arms X and Y, respectively

and ! is the average arm length of the detector. Tomaintain the optical cavities on resonance

condition, Δ! 5 A44 is calculated using the error and control signals of a DARM control loop

rather than being directly measured (Abbott et al. (2017b); Cahillane et al. (2017)).

The interferometer response function is used suppress the DARM length variation

and reconstruct thee strain from the residual displacement Δ!A4B. A reasonably accurate

estimate of the strain is generated almost in real-time for quick EM follow-up. These

low-latency estimate is produced from a model in two steps. First, a crude “front-end”

production of Δ! 5 A44 is obtained with large systematic errors, through a simple model. In

the second step“, a low-latency (∼ 10sec) “online" estimate of the strain is generated using

the best models of the detector response with lower systematic error. A final more accurate

estimate of the calibrated strain is generated “offline" with latency of few months if needed.

The following subsections provide a brief description of the different steps involved in the

interferometer calibration process. A more detailed description can be found in (Cahillane

et al. (2017); Sun et al. (2020)).

5.2.1. DARM Loop. The DARM loop consists of the interferometer, analog elec-

tronics, analog-to-digital converters, “front-end" computers, and digital-to-analog convert-

ers. A schematic diagram of the DARM loop is shown in Figure 5.1. The residual DARM

length variation, Δ!A4B, is converted to a digital error signal 34AA by a sensing function �.

The error signal is filtered by a set of digital filters, �, to produce a digital control signal,

32CA; . The actuation function, �, converts 32CA; to the displacement Δ!2CA; , which suppress

Δ! 5 A44, caused by either noise or the GWs, thus keeping the optical cavities in resonance.
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There remains a small residual Δ!A4B in the DARM loop. Thus, Δ! 5 A44 is given by the

sensing and the actuation function models according to

Δ! 5 A44 = Δ!A4B + Δ!2CA; =
1
�<
∗ 34AA + �< ∗ 32CA; , (5.2)

where the superscript < denotes the models for the functions. The symbol ∗ denotes

convolution in the time domain and multiplication in the frequency domain. As mentioned

before, the error signal is converted to digital control signal using the digital filters � =

32CA;/34AA , which are known to negligible uncertainty. Therefore, for a DARM open loop

gain of �< = �< ∗ � ∗ �<, Equation (5.2) can be rewritten as

Δ! 5 A44 =
1 + �< ∗ � ∗ �<

�<
∗ 34AA =

1 + �<

�<
∗ 34AA . (5.3)

Combining Equation (5.1) and Equation (5.3), the calibrated strain can be expressed as

ℎ =
Δ! 5 A44

!
=

1 + �<

�<
∗ 34AA
!

=
'< ∗ 34AA

!
,

(5.4)

where the model DARM loop response function '< is given by

'< =
1 + �<

�<
=

1 + �< ∗ � ∗ �<
�<

. (5.5)

In the frequency domain, the response function error X' is equivalent to the GW strain

data error and the response function uncertainty f' is equivalent to the GW strain data

uncertainty.

The DARM loop transfer functions � and � are measured and modeled in the

frequency domain. The values of � and � can drift slowly over time, thus they are both

frequency and time dependent, � ( 5 , C) and �( 5 , C). The online calibration model functions

1/�< and �< do not fully capture all the complexities of the LIGO interferometer. This
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Figure 5.1. Schematic diagram of the differential arm length (DARM) feedback control
loop. The sensing function, �, produces the DARM output signal, which is filtered using
digital filters, �, known to negligible uncertainty. The actuation function, �, then uses the
digitized control signal to move the test mass, suspended as a quadruple pendulum, to hold
the interferometer resonance condition. The lower three stages UIM, PUM and the TST
masses, are shown in the figure.

leads to known systematic errors in the reconstruction of ℎ(C), determined by the sensing

and actuation systematic errors X� ( 5 , C) and X�( 5 , C), respectively.

X� ( 5 , C)
�<

=
� ( 5 , C)
�<

− 1 , (5.6a)

X�( 5 , C)
�<

=
�( 5 , C)
�<

− 1 , (5.6b)
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where � ( 5 , C) and �( 5 , C) are the measured sensing and actuation transfer functions.

Similarly, the systematic error for the response function model '< is given by

X'( 5 , C)
'<

=
'( 5 , C)
'<

− 1

=
1

1 + �<

[
�< X�( 5 , C)

�<
− X� ( 5 , C)/�<

1 + X� ( 5 , C)/�<

]
,

(5.7)

where '( 5 , C) is the measured response function.

The uncertainty on the sensing and actuation functions, f� and f�, propagate to the

relative response function uncertainty f'/'< as

f'

'<
=

1
'<

√(
m'

m�

)2
f2
�
+

(
m'

m�

)2
f2
�

=
�<

1 + �<

√
1

�4( 5 , C)
f2
�
+ �2( 5 )f2

�
.

(5.8)

Together X'/'< and f'/'< provide the entire calibration error and uncertainty budget.

5.2.2. Sensing and Actuation FunctionModels. From Equation (5.5) one can see

that the sensing and actuation function reference models are required to construct the model

DARM loop response function '<. This subsection describes the various components and

parameters of the sensing and actuation function models.

The sensing function model, �<, accounts for the interferometric transfer function

from DARM displacement to the laser power on the photodetector at the antisymmetric

port, the response of the photodiodes and their analog readout electronics, and the effects

from the digitization process. The Advanced LIGO detectors operate in a configuration

where the SRM is detuned from the resonance condition to increase the bandwidth of the

detector. When the mirrors are detuned to exactly 90 degrees, the sensing model can be

approximated as a single pole system. An optical spring response is created by any detuning

present between the signal recycling cavity and the arm cavities. If 5B and&B are the optical

spring pole frequency and the quality factor, respectively, the sensing function model in the
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frequency domain is given by

�< ( 5 ) = ^� (C)
(

��

1 + 8 5 5 −1
22

) (
5 2

5 2 + 5 2
B − 8 5 5B&−1

B

)
�' ( 5 )4G?(−2c8 5 g�). (5.9)

Here �� is the combined gain of the interferometric response and the analog-to-digital con-

verter (ADC), which gives the digital counts produced in 34AA in response to differential arm

length displacement. The differential coupled-cavity pole frequency, 522, is the character-

istic frequency defining the detector bandwidth. The time delay g� , which is ∼ 77.6 `B for

both the detectors, includes the light travel time along the length of the arms, computational

delay in the digital data acquisition (DAQ) system, and the delay introduced due to the single

pole approximation. The dimensionless quantity �' ( 5 ) accounts for additional collective

frequency dependencies of the DAQ system, which are known to negligible uncertainty.

The parameters �� , 522, 5B and&B fluctuate on a time-scale of minutes due to the variations

of optical alignment in the arm cavities, the relative alignment between the arm cavities and

the SRC, and the laser power. The scale factor characterizing the frequency independent

variations in �� is defined as ^� (C).

The actuation function is the response of the control DARM displacement to the

digital control signal. Δ!2CA; may be induced by actuating on any one of the four stages of

the quadruple pendulum systems on any of the four arm cavity optics (the two ITMs and the

two ETMs). As shown in Figure 5.1, the quadruple pendulum system is actually comprises

the main chain holding the suspended test mass, and the reaction chain upon which the

actuators are mounted. To estimate the displacement of the test mass, only the response on

the main chain is modeled to avoid the added complexity due to the reaction chain.
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The total actuation model at a given time can be described by the sum of the paths

the digital control signal takes through each stage to displace the TST:

�< ( 5 ) = [^* (C)�* ( 5 )�*�* ( 5 )4G?(−2c8 5 g*)]

+ [^% (C)�% ( 5 )�%�% ( 5 )4G?(−2c8 5 g%)] + [^) (C)�) ( 5 )�) �) ( 5 )4G?(−2c8 5 g) )] ,

(5.10)

where *, %, and ) represent the UIM, PUM, and TST stages, respectively. The functions

�8 ( 5 ) and�8 are the gain and the normalized frequency response of the 8-th suspension stage

actuator, defining the actuation transfer function for each suspension stage (8 = *, %,)).

The function �8 ( 5 ) is the digital frequency-dependent filter function, and g8 is the total

time delay in the digital-to-analog conversion. The �8 are slowly varying over time due to

various physical mechanisms. For example, the overall strength of the TST electrostatic

actuator changes slowly on a time-scale of days to weeks due to the slow accumulation of

static charges around the test masses and reaction masses. The overall strengths of the UIM

and PUM magnetic coil actuators are expected to be static in time, but occasional changes

in actuator electronics path often require compensation.

The ^8 (C) are dimensionless time-dependent complex scale factors for the 8-th stage

accounting for variations in�8. These time-dependent parameters, ^� (C), 522 (C), 5B (C), &(C),

and ^8 (C) are collectively referred to as time-dependent correction factors (TDCFs). Addi-

tional details can be found in Sun et al. (2020).

5.2.3. Model Parameter Estimation and Interferometer Measurement. The

parameter vectors _� = [�� , 522, 5B, &, g�] and _� = [�8, g8] define a set of time-

independent, reference sensing and actuation parameters whose values are fit to non-

negligible precision. Thus the sensing function �< ( 5 , C, _�) and the actuation function

�< ( 5 , C, _�) = [�8, g8] models for the 8-th stage actuator are approximated. The reference

parameters in _� and ®_� are determined from measurements using a Markov Chain Monte

Carlo (MCMC) fitting algorithm. The maximum a posteriori (MAP) values, _�
"�%

and
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_�
"�%

from the MCMC fitting are used to create the DARM response model. Equation (5.5)

for '< is rewritten in the frequency domain as

'< ( 5 ) = 1
�< ( ®_�

"�%
; 5 )
+ �< ( ®_�"�%; 5 ))� ( 5 ) . (5.11)

Any physical change in the interferometer that is too large to be accounted for by the TDCFs

requires a new calibration epoch. If one or more parameters from the existing epoch ®_�
"�%

and ®_�
"�%

are no longer valid, the MCMC parameter estimation process is repeated using

newmeasurements of sensing and actuation functions to create an updated reference model.

A fiducial displacement of the ETM is required to measure the detector’s response

to the DARM motion, i.e., to calibrate the detector. The DARM model transfer functions

� ( 5 , C) and �( 5 , C) of each of the actuation stages are measured by performing sweep sine

transfer function measurements of the DARM control loop. A swept sine transfer function

is a collection of single frequency, sequential excitations of the ETM across the relevant

frequency band of the detector. A sensing function measurement is made by comparing

34AA ( 5 ) to a reference length variation, Δ!A4 5 , and then compensating for the suppression

caused by the differential arm length (DARM) feedback control loop shown in Figure 5.1.

The measured interferometer sensing function is given by

� ( 5 ) = 34AA ( 5 )
Δ!A4 5 ( 5 )

[1 + � ( 5 )] , (5.12)

where � ( 5 ) is the open loop transfer function measured separately using the in-loop

suspension actuators. Measurements of the sensing function and the open-loop transfer

function are taken sufficiently close in time such that any time dependencies of the sensing

and actuation functions can be ignored. For frequencies above 1 kHz, the open-loop gain is

negligible and the sensing function is well approximated by � = 34AA/Δ!A4 5 .
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The actuation function measurement for the 8-th stage is realized by first measuring

the ratio of the error signal to amplitude of the excitations induced using the actuators on

each stage of the quadruple pendulum, Δ!8:

34AA

Δ!8
=
�8 ( 5 )� ( 5 )
1 + � ( 5 ) . (5.13)

A second measurement is made by comparing 34AA ( 5 ), to Δ!A4 5 at the same frequencies as

the actuation stage transfer function measurement.

34AA

Δ!A4 5
=

� ( 5 )
1 + � ( 5 ) . (5.14)

The two measurements are taken within a few minutes of each other so that the response

of the interferometer does not change over time and one measurement does not corrupt the

other. Combining the two measurements, the actuation function for the 8-th stage of the

quadruple pendulum is

�8 ( 5 ) =
(
34AA

Δ!8 ( 5 )

) (
Δ!A4 5 ( 5 )
34AA

)
. (5.15)

Finally, the complete response of the detector to GWs is estimated by measuring the DARM

loop error signal 34AA in the presence of a reference actuator excitation, Δ!A4 5 :

34AA

Δ!A4 5
=

1
'
, (5.16)

where ' is the measured response function of the detector.

The combined systematic error and the uncertainty in the detector’s response func-

tion at a given time C are numerically estimated by constructing thousands of response

functions, ' 9 ( 5 ; C), where 9 indexes each response function and all draws associated with

it. The 9-th sensing and actuation functions are constructed using Equation (5.9) and

Equation (5.10), with the 9-th draw from the MCMC posterior distributions of the ref-

erence model parameters. TDCFs at time C are applied. Each ' 9 ( 5 ; C) is divided by
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'< ( 5 ; C) given by Equation (5.11) to create the probability distribution of the residual

[' ( 5 ; C) = [' 9 ( 5 ; C)/'< ( 5 ; C)] − 1. At any given time C and frequency 5 , the 50-th per-

centile value (the median) of the distribution [' ( 5 ; C) represents the total systematic error

in '< ( 5 ; C). The 16-th and 84-th percentiles represent the lower and upper bounds, respec-

tively, of the combined systematic error and 1−f statistical uncertainty in '< ( 5 ; C). These

percentiles represent the overall uncertainty and systematic error bounds of the reconstructed

strain, ℎ, at time C.

In O3, the systematic error in the detection frequency band 20 − 2000 Hz was at

levels of less than 2% in magnitude and less than 2 deg in phase, see Figure 5.2. In the

LVK searches for astrophysical signals, the offline calibrated data and the 68 % percentile

curve, (the central curve in Figure 5.2) are used as representatives of the uncertainty and

systematic error estimates for the entire duration of search.

As LIGO and Virgo detectors improve their sensitivity and as the third-generation

GW detectors with much higher sensitivity come online, improving current calibration

methods to keep pace with greater number of detections with higher SNR may become

challenging. Alternatively, calibration of the detector using the properties of the detected

astrophysical signals have been suggested but this requires that the SNR of the detected

signal be very high. However, the detected signals are comparatively weak. Only the signals

above a threshold SNR at frequencies where the signals are strongest can be used (Pitkin

et al. (2011)) , but it makes it difficult to attain the accuracy level enabled by the current

calibration methods. According to another study by Schutz and Sathyaprakash (2020), in

principle detector calibration at sub-1% accuracy level can be achieved using joint data

streams with only calibration errors called the null streams from a network of three or

more detectors. It uses an ensemble of all detected signals, not just the loud ones, in the

framework of coherent detections to extract calibration errors of all detectors. However, an
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Figure 5.2. Combined frequency dependent systematic error and uncertainty in LIGO
Hanford’s (LHO) response function during “epoch" 1, which lasted from March 28, 2019
to June 11, 2019. The central line represents the estimated systematic error with respect
to the interferometer response model and the color band represents 1 − f uncertainties for
68 %, 95 %, and 99 % of the run time. (Figure credit: Sun et al. (2020))

overall error in absolute calibration shared by all detectors in the network get canceled out

in the null stream, and thus needs to be supplemented by some other method for at least one

detector at a single frequency.

The astrophysical calibration and/or self calibrationmay become the optimalmethod

of calibrating the detector, when it reaches the design sensitivity of the future generation of

GW detectors. But these methods are not viable to provide the calibration accuracy level

of the existing technique for the current network ground-based GW detectors.
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5.3. ABSOLUTE REFERENCE LENGTH VARIATIONS

The following subsections provide a brief overview of the different techniques that

have been applied in the past or are currently being used for generation of the fiducial length

variations.

5.3.1. Free Swinging Michelson Method. The Free Swinging Michelson method

(FSM) uses the interferometer laser wavelength as a length reference to calibrate the ETM

actuation function. It relies on the measurement of interference fringes when the ETMs

are misaligned but the ITMs and the BS are aligned to form a simple, short Michelson

interferometer. The length control servo electronics are configured to lock this setup

in the destructive interference condition at the output photodetector. Transfer function

measurements are made by actuating on the position of the ITM. Next, the suspended

mirrors are allowed to swing freely as the Michelson length difference changes, causing

the output to vary between the maximum (bright-fringe) and the minimum (dark-fringe)

levels. Thus the difference between the maximum and minimum values corresponds to

relative ITM motion of _/4, yielding an output signal calibration in nm/count. Combining

this result with the transfer functions from the ITM actuation yields a calibrated actuation

function for the ITM. The next step in the process is to misalign one of the ITMs and realign

the ETM on the opposite arm. The servo electronics are then configured to feed back to the

position of the ETM forming a resonant Fabry-Perot arm cavity, this is called a single-arm

configuration. The ratio of ITM and ETM actuation along with the calibration of the ITM

actuation functions yield the ETM actuation function. Similar measurements with the other

interferometer arm cavity aligned provide the calibrated actuation function for the other

ETM.

The measurements performed in the single-arm configuration require the actuation

path electronics to be in acquire-mode rather than the nominal run-mode used for GW

searches. In acquire mode the electronic noise-induced ETM displacement is 3-4 orders

of magnitude higher than in run-mode. Propagating the calibration performed in the FSM
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method to the interferometer configuration operating in run-mode requires correcting for the

differences between the acquire-mode and run-mode actuation paths. Moreover, combining

electronic transfer functions measured for various configurations and components with

overall precision approaching 1 % proves to be a difficult task. This method is described in

detail in (Goetz et al. (2010)).

5.3.2. Frequency Modulation Method. The frequency modulation method is a

force-free technique to calibrate the ETM actuation. The interferometer is operated in a

single-arm configuration. A sinusoidal modulation of the laser frequency is sensed as a

length modulation by the arm cavity (Rakhmanov et al. (2002)). The length modulation is

induced using the test mass actuator at a frequency close to the laser frequency modulation.

By comparing the two modulations, the test mass actuator strength is calibrated. A more

detailed description of this method can be found in (Goetz et al. (2010)). In addition to

calibrating the ETM actuation, this method has been used to investigate systematic errors

associated with other calibration techniques (Goetz and Savage (2010)).

The advantage of this method over the FSM method is that it is not required to

precisely compensate for the differences in the run-mode and acquire-mode electronic paths.

Frequency modulation measurements involve long integration times at a single frequency

with actuation electronics in the run mode. However, it uses a single-arm configuration

rather than the full science-mode configuration in which searches for GWs are performed.

Another advantage is that, there are no localized forces on the test mass which can cause

elastic deformation of the mirror surface, a dominant source of systematic error for other

calibration methods, for example the photon calibrators described in the next subsection.

5.3.3. Photon Calibrator. The photon calibrator (Pcal) involves applying periodic

forces on the ETMs via radiation pressure using an auxiliary power-modulated laser. It

causes an ETM displacement proportional to the power of the laser beam reflected from the

suspendedmirror. The advantages of employing Pcal systems for generation of displacement

fiducials is that they can be operated while the interferometer is running in observationmode
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and they provide continuous, real time calibration for the interferometer. Pcal systems can

produce DARM displacements that are orders of magnitude above the Δ! 5 A44 noise floor

across the sensitive frequency band of the interferometer. Currently, calibration lines at

different frequencies are injected to monitor the various TDCFs using the Pcal systems

(Tuyenbayev et al. (2017)). During the observation runs the Pcal systems were employed

to generate fiducial displacements of the ETM in Advanced LIGO (D Bhattacharjee et al.

(2021); Karki et al. (2016)), Advanced Virgo (Acernese et al. (2018)) and KAGRA (Chu

(2018)). Pcals are also used to generate Δ!A4 5 mentioned in Subsection 5.2.3. This

technique is described in detail in the next section.

5.3.4. Newtonian Calibrator. Another method for generating displacement fidu-

cials that has been explored at both the Virgo (Estevez et al. (2021)) and KAGRA (Inoue

et al. (2018)) observatories is the method of gravitational calibration. It is also currently

being tested at LIGO (Ross et al. (2021)). A Newtonian calibrator (Ncal) or Gravity field

calibrator generates a dynamic gravitational field when a rotor with both quadrupole and

hexapole mass distribution is rotated at a given frequency 5 . A time-varying force is exerted

on the test mass of the interferometer via rotors that have been designed to simultaneously

inject forces at 2 5 and 3 5 , thus generating a fiducial displacement of the test mass at the

end station. The force produced by this rotor can be predicted to have less than 1 % relative

uncertainty and is well-resolved in the readout of the detector (Ross et al. (2021)). It may

provide an independent check of the existing reference length variation calibration system,

the Pcals.
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6. GENERATING FIDUCIAL DISPLACEMENTS USING PHOTON
CALIBRATORS

Photon Calibrators (Pcals) are the primary tools used in second-generation GW

detectors for absolute calibration of test mass displacement. They were first installed on

the 10-m prototype detector at Glasgow, Scotland (Clubley et al. (2001)) and subsequently

on the GEO600 detector in Hannover, Germany (Luck et al. (2010)). Pcal systems have

undergone many developments and improvements over the past years within LIGO. Virgo

installed a Pcal system during its first science run, but its main function was to check the sign

of strain signal, h(t) and to cross-check the mirror actuation standard calibration (Accadia

et al. (2016)). KAGRA has also installed Pcal systems based on the Advanced LIGO

Pcal design (Chu (2018)). Pcals can operate even when the interferometer is observing,

providing continuous calibration. This is a major advantage of using Pcal systems over

other calibration techniques.

The first two Subsections 6.1 and 6.2 are mostly based on Karki et al. (2016). The

rest of the section is based on the publication D Bhattacharjee et al. (2021).

6.1. WORKING PRINCIPLE OF PCALS

As mentioned in Subsection 5.3.3, Pcals rely on auxiliary power-modulated laser

beams reflecting from the suspended ETM to generate fiducial displacements proportional

to the modulated laser power. The periodic force exerted on the mirror is given by:

� (C) = 3?
3C

(6.1)

where p is the recoil momentum of the photons.
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A single photon carries a momentum of ? = ℎ/_ where h is the Planck’s constant

and _ is the wavelength of the laser light, 1047 nm for LIGO Pcals. For a photon incident

on the ETM at an angle \ and reflecting from the mirror surface, the momentum imparted

on the mirror is given by

? = 2 cos \
ℎ

_
. (6.2)

The factor 2 comes from the fact that the photon reflecting from the mirror imparts

a momentum that is twice the normal component of the photon momentum.

With n photons per second impinging on the ETM,

3?

3C
= 2= cos \

ℎ

_
= 2

cos \
2

= ℎ a. (6.3)

Equation ( 6.3) can be rewritten in terms of the power of the laser as

3?

3C
=

2 cos \
2

%. (6.4)

where % = =ℎ2/C. For a power-modulated laser beam, power %(C) can be written as

%(C) = %0 + %< sinlC (6.5)

where %0 is the average power of the auxiliary laser, %< is the modulated power amplitude

and l is the angular frequency of the modulation.

Thus, the Equation( 6.1) can be rewritten as

� (C) = 3?
3C
=

2 cos \
2
(%0 + %< sinlC). (6.6)

Conversion of the periodic Pcal-induced forces to displacements requires the force-to-length

transfer function of the suspended mirror, ((l), in units of m/N.
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In the frequency domain, the amplitude of the motion induced by the modulated

laser power is given by

G(l) = 2 cos \
2

((l)%< (l). (6.7)

where %< (l) is the modulated power reflected off the ETM and will henceforth be denoted

as %(l).

LIGO uses a two-beam configuration to minimize local elastic deformation of the

ETM surface in the region sensed by the interferometer beam (Goetz et al. (2009); Hild et al.

(2007)). Pcal forces also induce bulk elastic deformation of the mirrors and is a prominent

effect at high frequencies (1 kHz and above), which can result in large calibration errors. To

minimize the effects of bulk deformation of the test mass, the Pcal beams are located near

the nodal circle of "drumhead" vibrational mode. The two-beam configuration effectively

excites the "butterfly" vibrational mode of the test mass. To minimize the butterfly mode,

the interferometer beam is nominally positioned at the center of the optic (Karki (2019)).

If there is a power imbalance between the two Pcal beams, or if the Pcal’s centre of force

is offset from the nominal position, the test mass will rotate periodically. For modulation

frequencies well above 1 Hz, the equation of motion of the freely rotating test mass can be

written as,

¥Ω = 0
�
� (l). (6.8)

where I is the moment of inertia about the axis parallel to the surface of the test mass and

through the center of the test mass, ¥Ω is the angular acceleration, ®0 is the displacement

offset and � (l) is the Pcal force (Goetz (2010)). The amplitude is given by

Ω =
20 cos \

2
'(l)%(l). (6.9)

where '(l) is the torque-to-angle transfer function in units of 1/(#<). If the interferometer

beam is at it’s nominal position at the centre of the test mass, the rotation has no effect

since displacement on one side is cancelled by the negative displacement on the other side.
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However, if the interferometer beam is offset, denoted by ®1, the interferometer senses a

length change given by

G =
2 cos \
2

'(l)%(l) ( ®0 · ®1) (6.10)

Combining Equation( 6.7) and Equation (6.10) we can write the induced fiducial displace-

ment as

G(l) = 2%(l) cos \
2

[
((l) + '(l) ( ®0 · ®1)

]
≈ −2%(l) cos \

2

[
1

"l2 +
( ®0 · ®1)
�l2

]
(6.11)

where ((l) ≈ −1/"l2 and '(l) ≈ −1/�l2 for frequencies above 20Hz i.e. at frequencies

much higher than the ETM pendulum resonant frequency of 1 Hz, where the suspended

mass can be approximated as a free mass. The negative sign is due to the fact that the force

acts opposite to the direction of the displacement. " and � is the mass and the moment

of inertia of the suspended mirror. ((l) and '(l) for a LIGO 40 :6 ETM are plotted in

the upper-left and lower-left panels of Figure 6.1 along with the longitudinal and rotational

transfer functions for a free mass, respectively. As shown in the right panels of Figure 6.1,

at frequencies above 20Hz both ((l) and '(l) are well approximated by the response of

a free-mass within 0.1 % and 0.3 % respectively.

6.2. HARDWARE

Each Advanced LIGO detector has two Pcal systems, one installed at each end

station. Conventionally, the calibration of the detector is performed using one Pcal system

and the second system serves as a backup system and for injecting simulated GW signals

to test the performance of detection pipelines. In this dissertation we will discuss a new

formalism that uses both of the Pcal systems to estimate the fiducial displacement of the

suspended mirrors, which allows us to improve accuracy of the estimate. A schematic

diagram of a LIGO Pcal system is shown in Figure 6.2. It consists of a transmitter

module that houses the laser, an acousto-optic modulator (AOM), power sensors, BS, relay
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Figure 6.1. Upper-left panel: Modeled force-to-displacement transfer function for a sus-
pended LIGO end test mass and for a free mass, -1/("l2). Lower-left panel: Modeled
torque-to-rotation transfer functions for a suspended LIGO end test mass for both pitch and
yaw, and for a free mass, -1/(�l2). Upper-right panel and Lower-right panel: Discrepancy
between the modeled and free-mass transfer functions. Above 20 Hz, the ((l) discrepancy
is less than 0.1 %, and '(l) discrepancy is less than 0.3 %. credit:D Bhattacharjee et al.
(2021)

optics, etc and a receiver module that houses relay optics and a receiver power sensor. The

output of a 2 W laser operating at 1047 nm is directed to an AOM after passing through

a polarizing BS cube. The laser wavelength is close enough to the 1064 nm wavelength

of the interferometer beam to ensure high reflectivity from the test mass coatings. The

AOM diffracts a fraction of the laser power that varies in response to a control signal. The

maximum diffraction efficiency is 80%. The first-order diffracted beam is incident on an

uncoated wedge BS oriented near Brewster’s angle, which generates the sample beams for

the two photodetectors. The non diffracted beam is dumped. One of the sample beam

generated by the wedge BS is directed to a 2-inch-diameter integrating sphere with an

InGaAs photodetector that monitors the laser power directed into the vacuum chamber. The
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Figure 6.2. Schematic diagram showing the Pcal layout. The calibrated power sensors
enable on-line monitoring of the amplitudes of the fiducial periodic displacements induced
by the power modulated Pcal beams reflecting from the suspended mirror.

second sample beam is directed to a similar photodetector which serves as the sensor for

Optical Follower Servo (OFS) (Canete (2013)). The OFS ensures that the output of the OFS

photodetector matches the requested modulation waveform, compensating for non-linearity

in the acusto-optic modulation process. The beam transmitted through the wedge BS is

mode-matched so that it forms a 2 mm radius beam waist near the surface of the ETM. It is

then passed through a BS which divides the beam into two beams with equal power. The

two beams enter a separate section of the transmitter module housing that is used to place

a transfer power standard, called the Working Standard (WS) power sensor, for laser power

calibration as described in detail in the next section. A schematic diagram of the transmitter

module and receiver module layout is shown in Figure (6.3).
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Figure 6.3. Schematic diagram showing the optical layout inside the transmitter (left)
module and the receiver (right) module. The power-modulated laser being reflected off
the suspended mirror, is continually monitored by the receiver module power sensor, Rx.
credit:Karki et al. (2016)

The two beams from the transmitter module are directed to the vacuum chamber

through optical-quality windows with anti-reflection coatings. Each beam is relayed by

mirrors mounted on a periscope structure located inside the vacuum envelope to reduce

angles of incidence on the ETM and thus avoid occlusion by stray light baffles. The

nominal angle of incidence is 8.72 degrees.

The reflected beams are relayed by a second set of mirrors mounted on the periscope

structure on the receiver side and exit the vacuum chamber through similar windows. The

beams are directed to a power standard located inside the receiver module by a pair of

mirrors. Monitoring the laser power before being directed into the vacuum envelope and

after exiting it enables tracking changes in optical efficiency between the transmitter side

and the receiver side. The power reflectivity of the ETM is greater than 0.9999 but the

anti-reflection coated vacuum windows and the relay mirrors located inside the vacuum
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envelope reduce the optical efficiency, [, between the transmitter and receiver modules to

approximately 0.985 - 0.990, i.e. the overall optical loss is about 1.0 to 1.5 % (Karki et al.

(2016)).

6.3. PCAL DISPLACEMENT FIDUCIALS

The periodic force exerted on the ETM due to the power-modulated laser beam

reflecting from the mirror surface is given by Equation (6.11) in Subsection 6.1, which can

be rewritten as

G(l) ' −2 cos \
"2 l2%(l)

[
1 + "

�
( ®0 · ®1)

]
. (6.12)

Since neither the magnitude nor direction of the Pcal center of force offset is known, only

the maximum magnitude of ®0 can be estimated. Therefore, (2 cos \/"2l2)%(l) is the

nominal displacement induced by the Pcal system and the second term in the square brackets

is treated as the relative uncertainty in the displacement resulting from unintended rotation

of the ETM, denoted by nA>C . The calculation of the nominal displacements induced by

the Pcal systems requires estimates of three parameters: the angle of incidence of the Pcal

beams on the ETM surface, the mass of the ETM, and the laser power reflecting from the

highly-reflective ETM surface inside the vacuum envelope. Accurate estimates of the Pcal

displacements rely on the accurate measurement of these parameters.

6.3.1. Calibration of The Power Sensors. In order to measure the power being

reflected from the ETM accurately, accurate calibration of the Pcal laser power sensors

located outside the vacuum envelope, inside the transmitter and receiver module is required,

(the Tx and Rx sensors in Figure 6.2) accounting for the optical loss between the ETM and

the Rx sensor. The Tx sensor samples a fraction of the laser power when the beam is

directed into the vacuum chamber and is used for optical efficiency measurements. Howevr,

the Tx sensor is subject to variations in the BS that reflects the small sample of the input
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light. The Rx sensor, on the other hand, receives almost all of the laser power reflected

from the ETM and hence is the primary power sensor for continuous displacement fiducial

calibration.

Calibrating the Rx sensor in terms of power reflected from the ETM requires com-

pensating for optical losses between the ETM and the sensor. For that, the overall optical

efficiency, [, measured from outside the vacuum chamber, needs to be apportioned between

the input path (between the Tx sensor and the ETM), [
)
, and the output path (between the

ETM and the Rx sensor), [
'
.

[
'
=

√
[/V and [

)
=

√
[ V, (6.13)

where V = [
)
/[

'
is the optical efficiency ratio. The power reflecting from the ETM is thus

estimated in terms of the power measured by the Rx sensor, %
'
(l) corrected for the optical

efficiency on the receiver side. It can be written as

%(l) = %
'
(l)/[

'
. (6.14)

The power at the ETMcan also be calculated as %(l) = [
)
%
)
(l) where %

)
(l) is the power

measured by the Tx sensor. However, this sensor is less reliable because it is insensitive to

changes in the optical efficiency between the BS in the TX module and the Rx sensor, in

addition to changes in the BS ratio as mentioned earlier.

The on-line power sensors at each end station are calibrated via a three-step process

as shown schematically in Figure 6.4: 8) a transfer standard referred to as theGold Standard

(GS) is calibrated to SI units at the National Institute of Standards and Technology (NIST)

in Boulder, Colorado; 88) the calibration of the GS is propagated to another transfer standard

referred to as the Working Standards (WS) by making a set of responsivity ratio measure-

ments in a dedicated optical laboratory at LHO. Each observatory maintains its own WS,
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Figure 6.4. Left: Image of a Pcal power standard comprising an integrating sphere with
Spectralon® interior shell and custom-built photodetector. Right: Schematic diagram
showing the transfer of laser power calibration from SI units via calibration of a GS by
NIST. Then from the GS toWS, one for each observatory, and then to the power sensors (Tx
and Rx) located at the interferometer end stations. These calibrated power sensors enable
on-line monitoring of the amplitudes of the fiducial periodic displacements induced by the
power modulated Pcal beams reflecting from the suspended mirror.

and all of them are referenced to a single GS by making measurments at LHO, and finally

888) the calibration of aWS is transferred to the Tx and Rx power sensors at each observatory

by making responsivity ratio measurements at the end stations.

The Figure 6.4 also shows a typical Pcal transfer standard comprising an integrating

sphere with a Spectralon® interior shell (Labsphere model 3P-LPM-040-SL) and a custom-

built InGaAs photodetector.

The GS is sent to NIST annually for calibration. As mentioned earlier, to transfer the

GS calibration to the various working standards, a series of responsivity ratio measurements

are made in a laboratory at LHO (LIGO Pcal Group (2020b)). A spare Pcal transmitter

module is used (Karki et al. (2016)). It incorporates laser power stabilization and delivers

two output beams with powers balanced to within 1%. The GS and one WS are mounted
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Figure 6.5. Responsivity ratio measurement setup and results for two working standards.
Upper-left panel: schematic diagram of laboratory setup with pneumatic slides for al-
ternating positions of the two sensors between the BS transmitted and reflected beams;
Upper-right panel: time series of ratio in A-B configuration (red) and in B-A configura-
tion (blue); Lower-right panel: square root of the product of subsequent A-B, B-A ratios,
UW1W2 = dWS1/dWS2; Lower-left panel: normalized histogram of the relative variations in
the 2800 measurements, each a from a twenty second long sequential measurement suite.
credit:D Bhattacharjee et al. (2021)

on automated pneumatic slides that allow us to switch the detectors’ position between

the transmitted beam and the reflected beam as shown schematically in the upper-left

panel of Figure 6.5. Recording the output voltages of the two detectors simultaneously

in a given configuration minimizes variations induced by laser power changes; sequential

measurements with the detector positions swapped minimizes the impact of variations in

the BS that separates the two beams. The integrating spheres are largely insensitive to

the incident beam position, angle, polarization, and size. However, they exhibit laser

speckle due to the coherence of the laser light that temporally correlates the output time

series (Goodman (2009)). Thus laser speckle limits the precision of the responsivity ratio

measurement and is a potential source of systematic errors. During responsivity ratio
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measurements in the LHO laboratory, the temporal correlation of the output time series

is broken by recording shorter time series segments and swapping sensor positions more

frequently.

A typical reported responsivity ratio value, U
,�

, is given by the average of 100

measurements. The data for each measurement is comprised of four, five second long

time series sampled once per second. The first two are recorded simultaneously with the

detectors in the A-B configuration as shown in the upper-left panel in Figure 6.5, and the

last two with the detector positions swapped to the B-A configuration. Assuming that at

time C1 WS is in the transmitted beam path (A) and GS is in the reflected beam path (B) and

then swapped such that at C2 WS is in B position and GS is in A position, the output of each

detector can be written as

+, (C1) = )�(%(C1)d, , (6.15a)

+� (C1) = '�(%(C1)d� , (6.15b)

+, (C2) = '�(%(C2)d, , (6.15c)

+� (C2) = )�(%(C2)d� . (6.15d)

Here +, and+� are the output voltages from the two standards, )�( and '�( are the power

transmisson and reflection coefficients of the BS and P is the power of the laser source. d
,

is the responsivity of theWS and d
�
is that of the GS. Laser power variations are eliminated

by taking the ratio of the pair of time series recorded simultaneously:

'1 =
1
#1

#1∑
8=1

+,8 (C1)
+�8 (C1)

=
)�(d,

'�(d�
, (6.16a)

'2 =
1
#2

#2∑
8=1

+,8 (C2)
+�8 (C2)

=
'�(d,

)�(d�
. (6.16b)
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The index i denotes the 8Cℎ sample in the time series and typically #1 = #2 = 5. The square

root of the product of the two ratios (
√
'1'2) yields an estimate of the responsivity ratio

every twenty seconds (5 seconds to measure each time series and 5 seconds to re-position

the sensors). The responsivity ratio is thus given by

U
,�

=
√
('1'2) =

d,

d�
. (6.17)

To elucidate this method, individual ratios '1 and '2 for 2800 twenty-second long-

measurement suites are plotted in the upper-right panel in Figure 6.5. The two data sets

‘mirroring’ each other indicates variations in the BS ratio. The square root of the product of

the ratios from sequential measurements in Equation (6.17), assuming the BS transmission

and reflection coefficients haven’t changed between the sequential swapped measurements,

minimizes the effect of the changes in the BS ratio. The “mirroring” effect is clearly absent

in the lower-right panel of Figure 6.5, which shows the 2800 sequential measurements

of U
, 1, 2 . The standard deviation of the relative variation of the ratio measurements is

1.0 × 10−4 as shown in the normalized histogram in the lower-left panel in Figure 6.5.

Since the Pcal power sensor responsivities have non-negligible dependence on temperature

(discussed in more detail later), the data in the lower panels of Figure 6.5 were “de-trended”.

During this fifteen hour long measurement, variation of relative responsivity of the power

sensors due to the laboratory ambient temperature variation by (1.3 K), were corrected by

(1.1 × 10−4 /K).

To propagate theWS calibration to the on-line Pcal power sensors at the end stations,

a series of measurements are made with a working standard (LIGO Pcal Group (2020a)).

They involve placing the WS alternately in the path of one or the other Pcal beam in both

the transmitter and receiver modules and recording four minute long time series of the

WS, Rx, and Tx power sensors using the observatory digital data acquisition system (Bork

et al. (2020)). At the end station, there is no provision to swap detector position to break
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the temporal correlation of the output time series due to laser speckle as was done for the

responsivity ratio measurements in the LHO laboratory. Instead, longer time series are

recorded and averaged to minimize the impact of laser speckle.

The end station data acquisition system is used for the WS signal, rather than the

digital volt meter that is used for the responsivity ratio measurements in the laboratory setup.

This is both for convenience and to synchronize the WS data with the Rx and Tx sensor

data. Propagating the WS calibration to the end station thus involves the additional step

of measuring the conversion factor, Z
,
, between volts registered by the digital volt meter

and digital counts reported by the end station data system for the WS. This is accomplished

via a calibrated voltage source (Martel Model IVC-222HPII). Each time, before making

end station measurements, the factor Z
",

which is the ratio of the Martel output in volts

to the Keithley voltmeter output in volts in the LHO optics laboratory is measured. At

the end station, another factor Z
,"

which is the ratio of the WS readout recorded by the

end station data acquisition system in counts to the Martel calibrated voltage source in

volts is measured. These two factors together yield the volts-per-counts converter factor

Z, = Z,"Z," for the WS.

Synchronizing these time series reduces the impact of laser power variations. The

measurements yield the Rx/WS responsivity ratio, d
'
/d

,
= U

',
. They also yield estimates

of the overall optical efficiency, [. Combining the measurements described above, the

responsivity calibration factor for the Rx end station power sensors is given by

d
'
= d

�
U
,�

U
',

Z
,
, (6.18)

in units of ct/W.

The laboratories where Pcal calibration measurements are made i.e., at the NIST,

at LHO and the end stations are all maintained at different temperatures. Thus, to realize

high-accuracy calibration, the temperature coefficients of the transfer standards must be
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taken into account when transferring laser power calibration from NIST to the sensors at

the interferometer end stations. For a given power sensor, the temperature dependence of

the responsivity can be expressed as

d())
d0

= 1 + ^() − )0), (6.19)

where d0 is the responsivity of the sensor measured at a reference temperature, )0, and ^

is the temperature coefficient of the relative responsivity for the given power standard. By

including the temperatures at which each measurement in the calibration transfer process is

made, Equation (6.18) can be rewritten as
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Z
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, (6.20)

where )
#

is the NIST laboratory temperature, )
!
is the LHO laboratory temperature,

and )
�
is the end station temperature. The factor b

!#
corrects for differences in the GS

responsivity measured at the NIST and LHO laboratory temperatures and the factor b
�!

corrects for differences in the WS responsivity measured at the LHO laboratory and end

station temperatures. These temperature-related correction factors can be written as

b
!#
=
d
�
|
)
!

d
�
|
)
#
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�
Δ)

!#
) ,
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=
d
,
|
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�

d
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|
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!

= (1 + ^
,
Δ)

�!
).

(6.21)

Here ^
�
and ^

,
are the temperature coefficients for the GS and WS sensors normalized to

their respective responsivities at their reference temperatures, )
#
and )

!
. Δ)

!#
= )

!
− )

#

and Δ)
�!
= )

�
− )

!
.
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Correcting for the temperature difference between various laboratories and for the

optical loss suffered by the laser beam, the power calibration factor of the Rx power sensor

d' from Equation (6.18) can be rewritten as

%(l) |)� =
3
'
(l)

[
'
d
'

=
3
'
(l)

[
'
d
�
b
!#
U
,�

b
�!
U
',
Z
,

. (6.22)

where 3
'
is the digital output of the Rx sensor in counts.

6.3.2. Calculation of Displacement Factors. Once the power reflecting from the

suspended mirror inside the vacuum chamber is accurately estimated, the fiducial displace-

ment of the ETM induced by the Pcal forces can be calculated by combining Equation

(6.12), and Equation (6.22) in units of m/ct as

G(l) ' − 2 cos \
" 2 l2%(l) = −

2 cos \
" 2 l2

3
'
(l)

[
'
d
�
b
!#
U
,�

b
�!
U
',
Z
,

= − -
l2 3' (l) . (6.23)

Here the displacement factor, - , is defined as

- =
2 cos \
" 2

1
[
'
d
�
b
!#
U
,�

b
�!
U
',
Z
,

. (6.24)

Equation (6.23) gives the calibrated digitized output of the Rx sensor. Like LIGO,

most GW observatories have implemented, or plan to implement, Pcals at both end stations.

The Pcal systems at each end station are typically calibrated using the same procedures.

Laser interferometers are designed to sense DARM length variations induced by ETM

motion and respond equally to ETM movement in either arm (except for the sign of the

relative displacement) to the level of 1 × 10−4%citeprivate communications with G. Vajente

and H. Yamamoto. Thus, comparing Pcal fiducials produced at both end stations in the

interferometer output signal directly measures the ratio of the Pcal calibrations at each end.

This comparison can be used to reduce the uncertainty in the induced displacements due to

factors that are not common to both ends. The X/Y calibration comparison is realized by
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modulating the two Pcal systems at frequencies very close to each other within the sensitive

band of the interferometer. Comparison of the amplitudes of the peaks in fast Fourier

transforms (FFTs) of the calibrated Pcal end station sensor outputs, each normalized to the

amplitudes of the peaks in the interferometer output signal, yields the X/Y Pcal calibration

comparison factor, j
-.
. Using the Equation (6.23), j

-.
can be written as

j
-.
=
--3'- /l2

-

Δ!- |l-

/
-.3'. /l2

.

Δ!. |l.
, (6.25)

where subscript X and Y denote the X- and Y-end station respectively. Δ! is the amplitude

of the peak in the interferometer output signal.

If there were no uncertainties in the displacement calibration factors for both end

stations, j
-.

would be 1. However, errors induced by uncertainties in non-common factors

between the two end stations (cos \, M, [R , bEL , URW , ZW , and nA>C) cause it to deviate

from 1.

Using j
-.

and these uncertainty estimates, correction factors for each end station

can be calculated. The combined displacement factors are defined by

-2
-
≡ -

-
/�

-
and -2

.
≡ -

.
�
.

(6.26)

where �
-
and �

.
are the X-arm and Y-arm correction factors such that

-2
-

-2
.

j
-.
≡ 1 . (6.27)

The superscript c denotes that these displacement factors are calculated from the combina-

tion of the X-end and Y-end calibration results. From Equation (6.27), it can be derived

that

�
-
�
.
≡ j

-.
. (6.28)
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For the special case where the uncertainties are the same at both end stations, the factors

are given by �
-
= �

.
=
√
j
-.
.

In general, the correction factors are calculated using the weighted geometric mean,

`6, of 1 and j-. . The weighting factors are given by the inverse of the estimated variances

in the end station displacement factors, -
-
and -

.
, due to uncertainty contributions that are

not common to both end stations. With the -
-
weighting factor, F

-
, applied to 1 and the

-
.
weighting factor, F

.
, applied to j

-.
, the weighted geometric mean is given by
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/(F
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(6.29)

Note, if F
-
� F

.
, `6 ≈ 1 and the Pcal displacement factor at the X end is corrected

by a negligible amount, i.e. �
-
≈ 1 and the displacement factor at the Y end is corrected

by an amount almost equal to j
-.
. On the other hand, if F

.
� F

-
, then `6 ≈ j-. and the

Pcal displacement factor at the X end is corrected by an amount almost equal to j
-.

and

the displacement factor at the Y end is corrected by a negligible amount, i.e. �
-
≈ 1. Thus,

a solution for the correction factors is given by

�
-
= `6 and �. = j-. /`6 . (6.30)

The uncertainties in these factors are given by the weighted relative standard error on the

geometric mean. The uncertainties in the parameters�
-
or �

.
along with uncertainties

in d
�
, U

,�
and b

!#
added in quadrature gives the overall uncertainty estimate in the

displacement fiducials generated by the Pcal systems.

In the next section we will apply the formalism detailed in this section to calculate

the Pcal-induced displacement factors and estimate the uncertainty associated with them

for the O3 run.
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7. MEASUREMENTS AND UNCERTAINTY ESTIMATES

In this section the results of Pcal measurements made during Advanced LIGO’s O3

run are presented. The methods described in Subsections 6.3.1 and 6.3.2 were applied for

Pcal calibration. Measurements were made for both the LHO and LLO interferometers, but

for simplicity only the LHO results are presented. The content of this section is based on

(D Bhattacharjee et al. (2021)), in which I was the lead author.

7.1. MEASUREMENT RESULTS AND UNCERTAINTY ESTIMATES

The measured and estimated values of the parameters that contribute to the dis-

placement factors described in Section 6.3.2, and their associated relative uncertainties, are

summarized in the tables below. We follow the convention used by NIST and detailed in

(Taylor and Kuyatt (1994)), employing Type A, Type B, or TypeC evaluations for estimates

of relative standard uncertainties for each parameter.

According to (Taylor andKuyatt (1994)) evaluation of uncertainty by statistical anal-

ysis of a series of measurements is referred to as TypeA. The individual measurements are

assumed to be independent and normally distributed. Thus the relative standard uncertainty

DA4; is determined by

DA4;,� =
f

G
√
#
=

1
G
√
#

√√√
1

# − 1

#∑
8=1
(G8 − G)2 (7.1)

where G8 are the individual measurements, G is the average of the measured values, N is the

number of measurements and f is the standard deviation of the N measurements.

Evaluation of uncertainty using means other than statistical analysis of measure-

ments, based on scientific judgement using all relevant information available, is referred to

as TypeB. We estimate a lower and upper limit for the value, 0− and 0+ respectively. The

probability that the value of the quantity lies within the estimated window is close to 100%.
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If we model the value of the quantity by a uniform or rectangular probability distribution,

then the relative standard uncertainty is given by

DA4;,� =
0+ − 0−

2
√

2
. (7.2)

In the case, where we model the value by a sine wave or a U-shaped probability

density function, then the relative standard uncertainty is given by DA4; = (0+ − 0−)/2
√

3.

Uncertainty estimates resulting from combinations of TypeA andTypeB evaluations

of uncertainty are referred to as a TypeC. The overall uncertainty is estimated by adding

the relative uncertainties of all component types in quadrature

DA4; =

√∑
D2
A4;,�
+

∑
D2
A4;,�
+

∑
D2
A4;,�

. (7.3)

In the following subsections we describe howwemeasure the different parameters discussed

in Subsection 6.3 to calculate the fiducial displacement generated using the Pcals and to

estimate the uncertainties associated with the measured values. Type A uncertainties have

been corrected for small sample size using Student’s T corrections.

7.1.1. End Station Power Sensor Calibration. Calibration of the Pcal power sen-

sors at the end stations is achieved by measurement of the individual parameters on the

right-hand side of Equation (6.20). The transfer standards, GS and WS, were upgraded in

2018 (Lecoeuche et al. (2019)), before the start of the O3 observing run. The modifications

included changes in the mounting of the photodetector housing to the integrating sphere

port to improve robustness and reduce the impact of laser speckle. The transimpedance

amplifier was also changed to reduce complexity and minimize dark offsets.

The upgraded GS was calibrated by NIST in December 2018. The reported GS

responsivity, d
�
, is −8.0985V/W with a relative uncertainty of 0.315% (1f) (LIGO Pcal

Group (2018)). The responsivity ratio measurements between one or more of the working
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Figure 7.1. WSH to GS responsivity ratio, U
,�

, measured between November 2018 and
February 2020. Upper panel: The data plotted in red were measured after June 2019 when
the Pcal responsivity measurement setup was moved to another building. The colored bands
indicate ± 1 standard deviation for each measurement group. The error bars, ± 1 standard
error on the mean for each data point have been magnified by a factor of twenty to increase
visibility. Note that they are not used for weighting, as explained in the text. Lower panel:
Same data as upper panel, but with the red data points shifted by the ratio of the means of
the blue and red data sets (multiplied by 1.00359). The step in the data is attributed to a
change in the GS responsivity that occurred during the move.

standards and the GS, both before shipping the GS to NIST and immediately after its

return from calibration at NIST, were used to determine whether changes occurred during

shipping. No statistically significant changes were observed.

However, it can be seen in the upper panel of Figure 7.1 that there was a significant

drop in U
,�

values by almost a factor of 0.36 % between May and July 2019. This drop

coincided with the responsivity ratio measurement setup being moved to a different building

at the LHO. The fact that measurements of the responsivity ratio between WS for Hanford

(WSH) and the Rx sensors at the LHO end stations (see Figure 7.2) show no corresponding

change in the value seem to indicate that the change in U
,�

was caused by a change in the
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Figure 7.2. Relative variation of the responsivity ratio, U
',

, of the Rx and WSH power
sensors, measured at the LHO X-end (left panel) and Y-end (right panel) stations. The
shaded regions are ± 1 standard deviation about the weighted mean values listed in the
legends. The errors bars are estimated using the formalism detailed in Appendix A of Karki
(2019).

GS responsivity, d
�
, alone. This increase in responsivity was due to a shift in the interior

Spectralon shell of the GS. The lower panel in Figure 7.1 shows the same data as in the

upper panel, but with the data plotted with the red points, for measurements taken after the

move to the new building at LHO, shifted up (multiplied by 1.0036).

The error bars in the upper panel have been magnified by a factor of twenty for

better visibility, but have not been used for weighting. Since each data point is the mean

of a set of between 25 and 1200 measured values, the variations in the data are dominated

by systematic variations, not the statistical variations of the measurements within each

set. Thus, weighting the data points would bias the estimate of the overall mean towards

the suites with larger numbers of measurements. The mean and the relative uncertainty

(estimated using the Equation (7.1)) of U
,�

for WSH, from the lower panel of Figure 7.1,

in which the error bars have been omitted, are listed in the Table 7.1.
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Table 7.1. Measured responsivities of the Pcal end station power sensors, d
'
, together

with contributing factors (indented) and uncertainties, for the LHO interferometer during
the O3 observing run. For Type A uncertainties, the number of measurements is noted in
parentheses.

Param
LHO X-end LHO Y-end

Units Type
Values urel (%) Values urel (%)

d
'

1.068e4 0.328 1.061e4 0.326 ct/W C
d
�

-8.0985 0.315 Common with X-end V/W C
U
,�

1.1172 0.010
(38)

Common with X-end - A

U
',

-0.7209 0.042 (8) -0.7157 0.014
(12)

- A

Z
,

1636.9 0.002 (8) 1637.6 0.002 (9) ct/V A
b
!#

1.0020 0.070 Common with X-end - C
b
�!

0.9986 0.028 0.9986 0.028 - C

To calibrate the on-line Pcal Rx and Tx power sensors at the end stations, a series of

responsivity ratio measurements using a WS are performed (LIGO Pcal Group (2020a)).

The Rx to WSH responsivity ratios, U
',

, for the LHO X-end and Y-end sensors measured

between December 2018 and March 2020, are shown in Figure 7.2.

The error bars are estimated from the 240 second long time series recorded for each

element of the measurement suite, using the formalism described in Appendix A of (Karki

(2019)). This method uses the standard deviations of the data sets rather than estimating

standard errors on the mean values, because the data are correlated due to laser speckle.

The reported values of U
',

are the weighted means of the data points, w, calculated using

F =

∑#
8=1 F8G8∑#
8=1 F8

. (7.4)

The weighting factor F8 is the inverse of the variance of each data point. The U
',

value

and its relative uncertainty for both end stations are listed in the Table 7.1. The U
',

measurements are shown in Figure 7.2.
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For measurements of U,� , a digital voltmeter (Keithley Model 2100) is used to

record the output of the WS photodetector. An ADC converter that is part of the LIGO

DAQ system is used for measurements of U
',

at the end stations. As mentioned before, the

factor that converts the volts measured in the laboratory to the digital counts measured at

the end station, Z
,
in Equation (6.18), is measured using a Martel calibrated voltage source.

Z
,
is close to, but vary slightly from, the ideal value of 1638.4 ct/V. The measured values

of Z
,
and their relative uncertainties are listed in Table 7.1.

7.1.2. Temperature Dependence of the Power Standards. The two temperature

correction factors on the right-hand side of the Equation (6.20), b
!#

and b
�!
, compensate for

variations in the responsivity of the GS and WS power sensors due to differences between

the NIST laboratory, the LHO laboratory, and the end station ambient temperatures. To

measure the temperature dependence of the WS responsivity, a temperature sensor (Analog

Devices, AD590) was bonded to the photodetector circuit board. The WS was then heated

in an oven to about ∼ 7 above the ambient laboratory temperature. It was then installed

in the responsivity ratio measurement setup and measurements of the WS/GS responsivity

ratio were made as the WS cooled to room temperature.

The upper-left panel of Figure 7.3 shows U
,�

, normalized to the mean value of

1.1172 (see Figure 7.1), and the difference between the WS and GS temperatures plotted

versus time as theWS cooled. The lower-left panel shows a linear, least-squares fit to the data

indicating a relative responsivity temperature coefficient for WS, ^
,
, of 4.38 × 10−4 / .

The uncertainty in the fit is 0.06 × 10−4 / . To investigate the temperature coefficient of

the GS, data was taken with both the WS and the GS at the laboratory ambient temperature.

During this period the ambient temperature varied by about 1.3K. In the upper-right panel

of Figure 7.3, the normalized responsivity ratio and the ambient laboratory temperature

are plotted versus time. As shown in the lower-right panel, a linear, least-squares fit to
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Figure 7.3. Upper-left panel: Responsivity ratio normalized to 1.1172 (see 7.1) and
temperature difference between the WS and GS versus time as the WS cools after being
heated in an oven. Lower-left panel: Linear least-squares fit to the data in the upper-left
panel. The slope and uncertainty are listed in the legend. Upper-right panel: Normalized
responsivity ratio and the ambient laboratory temperature plotted versus time when both
sensors were at the ambient temperature that varied more than 1K over almost ten hours.
Lower-right panel: Linear least-squares fit to the data in the upper-right panel with slope
and uncertainty listed in the legend.

the data, yields a slope of −2.35 × 10−4 /K with uncertainty of 0.07 × 10−4 /K. Using ^
,
,

from the data in the left panels of Figure 7.3, the inferred coefficient for the GS, ^
�
, is

6.73 × 10−4 /K.

Temperature differences between the NIST, the LHO, and end station measurement

environments were quantified using a set of digital thermometers that were huddled to

assess relative offsets, then deployed to each location. The NIST measurement laboratory

temperature was set to 20 °C, the mean temperature of the LHO responsivity ratio mea-
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Table 7.2. Measured temperature correction factors, b
!#

and b
�!
, for the Pcal end station

power sensor calibrations, together with contributing factors (indented) and uncertainties,
for the LHO interferometer during the O3 observing run.

Param
LHO X-end LHO Y-end

Units Type
Values urel (%) Values urel (%)

b
!#

1.0020 0.070 Common with X-end - C
^
�

6.73e-4 1.4 Common with X-end 1/K A
Δ)

!#
3.0 34 Common with X-end K C

b
�!

0.9986 0.040 0.9986 0.040 - C
^
,

4.38e-4 1.4 Common with X-end 1/K A
Δ)

�!
-3.2 28 -3.3 28 K C

surement laboratory was 23 °C, and the mean X-end and Y-end temperatures were 19.8 °C

and 19.7 °C respectively. The end station temperatures varied by about ± 0.5 °C over six

months. The calculated values for Δ)
!#

and Δ)
�!
, together with the measured GS and

WS temperature coefficients, ^
�
and ^

,
, used to calculate temperature correction factors

according to Equation (6.21) are listed in Table 7.2. The relative uncertainties associated

with the measured and calculated values are also listed in Table 7.2.

7.1.3. Optical Efficiency. The end station measurements made with the WS also

yield measurements of the overall optical efficiency, [, for propagation of the laser beams

between the Tx and Rx modules. Assuming that V, which is the optical efficiency ratio of

the transmitter or input side efficiency to the receiver or output side efficiency, is constant,

using Equation (6.13) we can estimate [
'
from the end station measurements. Measured

values of [ for the LHO X-end and Y-end stations from November 2018 to February 2020

are plotted in Figure 7.4. The error bars, used for calculating weighted values, are generated

using the formalism detailed in Appendix B of Karki (2019). The mean values of [
'
, V,

and [, together with their relative uncertainties, are listed in Table 7.3.
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Figure 7.4. Relative variation of the optical efficiency between the transmitter and receiver
modules at the end stations, [, measured at the LHO X-end (left panel) and Y-end (right
panel) stations. The shaded regions are ± 1 standard deviation about the weighted mean
values listed in the legends. The errors bars are estimated using the formalism detailed in
Appendix B of citeP1900127.

7.1.4. Mass of the ETM and Angle of Incidence. At frequencies above the ETM

resonance frequency the suspension displacement and rotation transfer functions on the

right hand side of Equation (6.12) can be approximated by the responses of a free mass

(within 0.1% and 0.3% level respectively, see Figure 6.1). In that case, only the mass of

the ETM, M, is required to convert the force to the displacement factor, - , in Equation

(6.23). The ETMmasses are measured by the vendor that polishes the mirrors and at the end

stations before they are suspended. The calibration of the electronic balances used before

suspending have been verified using two 20 kg calibrated reference masses. The maximum

estimated Type B uncertainty in the ∼ 40 kg suspended mass is 10 g.

The angle of incidence, \, is determined by the last relay mirrors on the periscope

structure located inside the vacuum envelope (Karki et al. (2016)). These mirrors direct

the Pcal beams such that they impinge on the ETM above and below center, on the vertical

center line of the face of the ETM. As mentioned in Subsection 6.2, the nominal angle of

incidence is 8.72 degrees. The maximum deviations of this angle are bounded by the size

of the periscope optics (2 inch diameter) that relay the beams to the end test mass.



89

Table 7.3. Measured optical efficiency correction factors, [
'
, for the receiver-side end

station power sensors, together with contributing factors (indented) and uncertainties, for
the LHO interferometer during the O3 observing run. For TypeA uncertainties, the number
of measurements is noted in parentheses.

Param
LHO X-end LHO Y-end

Type
Values urel (%) Values urel (%)

[
'

0.9942 0.04 0.9948 0.04 C
[ 0.9874 0.03 (8) 0.9886 0.03

(12)
A

V 0.9989 0.08 (3) 0.9988 0.08 (3) A

7.1.5. Uncertainty Due to Unintended Rotation of the ETM. During O3 obser-

vation run, the interferometer beams were purposely positioned away from their nominal

positions at the center of the suspended ETMs to reduce the impact of point absorbers in

the mirror coatings (Brooks et al. (2020)). Thus potential uncertainties due to Pcal-induced

rotations increased. Angle-to-length coupling investigations using the ETM orientation

actuators were used to infer the interferometer beam offsets, denoted by ®1 in Figure 7.5,

but for Pcal beam position offsets, denoted by ®0 in the Figure 7.5, we currently only have

estimates of their maximum magnitudes.

The Pcal beams are carefully positioned on the ETM surface when the vacuum

envelope is vented, using targets bolted to the suspension structure surrounding the ETM

(see left image in Figure 7.5). Monitoring the locations of the beams within the aperture

indicates that the maximum Pcal beam position offset is ± 2 mm.

The nominal locations of the two Pcal beams are ±111.6 << above and below the

center of the ETM surface. The two beam powers are well balanced to within 1%. Assuming

a maximum power imbalance of 1% between the two Pcal beams, adds an additional Pcal

beam position offset of ∼ 0.5 << to ®0. The magnitude of ®0 is estimated by adding the

Pcal beam position offset and power imbalance contributions in quadrature. During the

O3 run the maximum interferometer beam position offsets from center were 29mm for
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Figure 7.5. Left image: Alignment of Pcal beams using a target mounted to the suspension
frame of the ETM. Right image: Schematic diagram showing the Pcal beam spot positions
and the interferometer beam spot position on the surface of the ETM.

the X-end ETM and 22mm for the Y-end ETM. The uncertainty introduced by unintended

rotation of the ETM, nA>C , is proportional to | ®0 | | ®1 | cos q, where q the angle between ®0 and

®1 , see Figure (7.5). Since q has equal probability of being any value between -c and c, we

use a sine wave, or U-shaped, probability density function (Bendat and Piersol (2010)) to

estimate the variance in cos q. We treat it as a TypeB uncertainty and it is estimated using

Eqs. (6.12) and (7.2), nA>C = "01/(
√

2�). The values of the relative uncertainty estimates

for both the X-end and Y-end stations at LHO are listed in Table 7.4. Because of these

large interferometer beam position offsets, nA>C was currently one of the largest sources of

uncertainty for the LIGO Pcal systems.

Combining the factors discussed above, the displacement factors for each end station

are calculated usingEquation (6.24). They are listed togetherwith their relative uncertainties

in Table 7.5. The overall uncertainties are dominated by the uncertainties due to unintended

rotation of the ETM, nA>C , and uncertainty in the calibration of the end station power sensors,

d
'
. Still, the relative uncertainties of 0.53 % for the X-end and 0.45 % for the Y-end are

smaller than the lowest values previously reported, 0.75 % (Karki et al. (2016)).
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Table 7.4. Estimated uncertainties due to unintended rotation of the ETM induced by Pcal
forces, nA>C , together with contributing factors (indented), for the LHO interferometer during
the O3 observing run.

Param LHO-X LHO-Y Units
nA>C 0.41% 0.31% -
| ®0 | 2e-3 2e-3 m
| ®1 | 22e-3 29e-3 m
�? 0.419 0.419 kg m2

�H 0.410 0.410 kg m2

"/�? 94.65 94.47 1/m2

"/�H 96.68 96.50 1/m2

Table 7.5. Measured Pcal displacement factors, togetherwith contributing factors (indented)
and uncertainties, for the LHO interferometer during the O3 observing run.

Param
LHO X-end LHO Y-end

Units Type
Values urel (%) Values urel (%)

-
-
, -

.
1.565e-14 0.53 1.578e-14 0.45 m/ct C

cos \ 0.9884 0.03 0.9884 0.03 - B
" 39.657 0.01 39.584 0.01 kg B
nA>C - 0.41 - 0.31 - B
d
'

1.068e4 0.33 1.061e4 0.33 ct/W C
[
'

0.9942 0.04 0.9948 0.04 - C

7.1.6. Combining X- and Y-end Pcal Calibration. The interferometer responds

equally to variations in the length of either arm enabling us to compare the the Pcal

calibrations at X- and Y-end stations. To compare the Pcal calibrations at the two end

stations, periodic displacements with high SNR were induced at frequencies separated by

0.1Hz by theX- andY-armPcals as shown in the right panel in Figure 7.6. The Spectral Line

Monitoring tool (Anders et al. (2013)) was used to perform 100 s long FFTmeasurements of

the line amplitudes in the interferometer and Rx sensor output time series. The left panel of

Figure 7.6 showsmeasured values of j
-.
, the Pcal end station calibration comparison factor.
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Figure 7.6. Left panel: j
-.
, the ratio of the amplitudes of the displacements reported by the

calibrated X-end andY-end Pcal Rx sensor signals, divided by the ratios of the amplitudes of
the peaks in the interferometer output signal. The red points, for data recorded on February
3, 2020, are with the X-end excitation at 530.1Hz and the Y-end at 530.2Hz; the blue points,
for data recorded on March 2, 2020, are with the X-end and Y-end excitation frequencies
swapped and with the higher excitation amplitudes. The shaded regions are ± 1 standard
deviation about the mean values. Right panel: Amplitude spectral density of the calibrated
Pcal X-end (orange) and Y-end (green) Rx sensor outputs and of the interferometer output
signal (black). The measurement bandwidth is 0.01Hz.

It is the -/. ratio of the amplitudes of the calibrated Pcal Rx sensor output signals, each

normalized to the amplitude of the respective peak in the interferometer output signal. To

ensure that the variation in the response of the interferometer did not impact the comparison

over the 0.1 Hz frequency separation between the two excitations, the analysis was repeated

with the frequencies of the X-end and Y-end excitations swapped. Increasing the excitation

amplitudes for this second comparison reduced the variations in the measurement results.

The measured value of j
-.

in both cases was 1.0046.

The contributions to the relative uncertainties in - from factors that are not common

to both end stations (see Section 6.3.2) are 0.42 % for the X-end and 0.32 % for the Y-end.

Thus the calculated relative standard uncertainty for the ratio of the displacement factors,
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Table 7.6. Calculated X-end and Y-end combined displacement correction factors, �
-
and

�
.
, together with j

-.
, `6, and the non-common factors contributing to end station dis-

placement factor uncertainty (indented), and their uncertainties, for the LHO interferometer
during the O3 observing run. For TypeA uncertainties, the number of measurements is
noted in parentheses.

Param
LHO X-end LHO Y-end

Unit Type
Values urel (%) Values urel (%)

�
-
, �

.
1.0029 0.25 1.0017 0.25 - C

j
-.

1.0046 0.01
(148)

1.0046 0.01
(142)

- A

`6 1.003 0.25 Common with X-end - C
cos \ 0.9884 0.03 0.9884 0.03 - B
" 39.657 0.01 39.584 0.01 kg B
nA>C - 0.41 - 0.31 - B
U
',

-0.7209 0.042 (8) -0.7157 0.014
(12)

- A

Z
,

1636.9 0.002 (8) 1637.6 0.002 (9) ct/V A
[
'

0.9942 0.04 0.9948 0.04 - C
b
�!

0.9986 0.040 0.9986 0.040 - C

-
-
/-

.
, is 0.52 %, which is the quadrature sum of 0.42 % and 0.32 %. The measured value

of 1.0046 for j
-.

is thus a ∼ 0.9f result i.e. the probability of getting a value of 1.0046 or

less is 63.2%.

The formalism for calculating the combined end station displacement factors is

detailed in Section 6.3.2. The weighted geometric mean of 1 and 1.0046 is calculated, and

its relative uncertainty, using the inverse of the squares of relative standard uncertainty of

0.42 % and 0.32 % as weights for -
-
and -

.
. The values of the combined displacement

correction factors, �
-
and �

.
calculated using Equation (6.30), together with j

-.
, `6 and

the non-common factors contributing to end station displacement factors, are listed in Table

7.6 with their relative uncertainty estimates.
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Table 7.7. Measured combined displacement factors, -2, together with contributing factors
(indented) and uncertainties, for the LHO interferometer during the O3 observing run. For
TypeA uncertainties, the number of measurements is noted in parentheses.

Param
LHO X-end LHO Y-end

Unit Type
Values urel (%) Values urel (%)

-2
-
, -2

.
1.561e-14 0.41 1.581e-14 0.41 m/ct C

d
�

-8.0985 0.315 Common with X-end V/W C
U
,�

1.1172 0.01 (38) Common with X-end - A
b
!#

1.0020 0.070 Common with X-end - C
�
-
, �

.
1.0029 0.25 1.0017 0.25 - C

The combined displacement factors, -2
-
and -2

.
, calculated using Equation ( 6.26)

and their relative uncertainties are listed in Table 7.7. The uncertainties for these combined

displacement factors have been estimated by summing the correction factor uncertainties,

0.25%, in quadrature with the uncertainty of 0.32% resulting from factors that are common

to both end stations, d
�
, U

,�
and b

!#
. The overall uncertainties of 0.41% for the combined

displacement factors are smaller than those for the displacement factors for each end station,

0.53% for -
-
and 0.45% for -

.
. This reduction results from combining the calibrations

from both end stations using the measured X/Y comparison factor, j
-.
. This lowers the

uncertainty contributions from sources that are not common to both end stations from

0.42% for X-end and 0.32% for Y-end to 0.25% for both �
-
and �

.
.

7.2. PCALS IN O4

Since the completion of the Advanced LIGO’s O3 run, efforts have been ongoing to

get ready for the next observing run, O4, which is slated to begin in August 2022. One of

the major interferometer upgrades planned at LHO for O4 is to replace the interferometer

mirrors to minimize the impact of point defect in the mirror coatings (Brooks et al. (2020)).

This upgrade may allow interferometer beam to be nominally positioned much closer to the
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center of the optics than it was during O3. This implies the 0.41% and 0.31% uncertainty

due to unintended rotation for the X-end and the Y-end respectively bemight also be reduced

significantly. If this is the case, the dominant factor limiting the precision with which the

Pcal-induce displacements can be estimatedwill be the power sensor responsivity calibration

factor, d'. The uncertainty associated with d' is 0.32% which was mostly dominated by

the 0.315% uncertainty on the GS calibration reported by NIST.

7.2.1. BilateralComparison. In 2009, several nationalmetrology institutes (NMIs)

undertook a key comparison of their respective optical power calibration capabilities and

have prepared a comprehensive study reported in (Kück (2010)). Relevant for LIGO are

measurements made at 1064 nm (close to Pcal laser wavelength of 1047 nm) which seem to

indicate that there are large discrepancies between the results from the different laboratories

due to systematic differences in the absolute calibrations. The observed variations in the

calibrated responsivity of two thermopile-based power meters are as large as 3.5% between

the NIST and other NMIs.

The results of this study using thermal power sensors motivated a bilateral com-

parison study of the responsivity of a Pcal transfer standard. A spare WS (WSS) was sent

alternately to NIST and Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig,

Germany for this study. Results of the NIST versus PTB study can be found in (M Spidell

et al. (2021)). The WSS was first sent to NIST in February, 2020 for calibration measure-

ments, then to PTB, Germany in June, 2020 where again it was calibrated and eventually

sent back to NIST in October, 2020 in compliance with the guidelines laid out in (WG-KC

(2019)).

Both laboratories used a 1047 nm laser provided by LIGO and performed calibration

measurements at 100 mW and 300 mW. NIST and PTB measurement laboratories were

maintained at different temperatures 20.6° and 21.5°, respectively. The measured respon-

sivities were adjusted to the PTB temperature result. Thus the PTB measurement gives the

reference responsivity. Measurements at NIST are treated as trials. Once the laboratory
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weights were established according to the procedure described in (WG-KC (2019)), a key

comparison reference value (KCRV) was calculated. It is given by

Δ �'+ =

#∑
8=0

F8Δ8 (7.5)

where Δ �'+ is the weighted relative difference between the reference value reported by

the pilot laboratory (PTB) and a consensus value (CV). Δ8 is the relative difference from the

reference value reported by the 8-th NMI. F8 is the laboratory weight, which includes the

uncertainty reported by the NMI along with an additional uncertainty arising from those

components such as changes in the power sensor due to transportation (if identified) and

different measurement conditions between the PTB and NIST laboratories that affected

comparison results (if applicable). The notations used in this section are same as the

notation used in Appendix B of (WG-KC (2019)). The CV is given by

�+ = (1 + Δ �'+ )((pilot) (7.6)

where ((pilot) is the reference responsivity reported by PTB. Finally, the bilateral degree

of equivalence (DoE) which is the relative variation of the reponsivity reported by PTB

and NIST is calulated from the CV. The bilateral DoE between PTB and NIST and the

uncertainty on the DoE are given by

�%)�,#�() = Δ%)� − Δ#�()

*%)�,#�() = :
√
D2(Δ%)�) + D2(Δ#�() ); : = 2

(7.7)

where D(Δ8) is the average of the uncertainty reported for the 100 mW and the 300 mW

measurements for the 8-th NMI, 8 = PTB,NIST.
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Table 7.8. Bilateral DoE between NIST and PTB and the uncertainty on the DoE.

Power
(mW)

DoE (%) U (k=2)

100 -0.07 0.95
300 -0.23 0.95

composite -0.15 0.95

The DoE calculations using Equation (7.7), show the bilateral DoE to be much

lower than the comparison uncertainty, indicating that uncorrelated systematic error falls

well below the uncertainty level.

The optical power scale realization by NIST and PTB is adequate, which enabled

achieving an overall uncertainty of 0.41% for LIGO Pcals.

7.2.2. Implications for O4. Realizing the important role laser power sensor cal-

ibration plays in the scientific impact of gravitational wave detections, there is increased

interest and activity within the NMI community to improve power sensor calibration ac-

curacy and precision. Scientists at NIST are developing a new generation of primary

calibration standards that uses bolometers and carbon nanotube absorbers (Vaskuri et al.

(2020)) that are expected to have significantly lower uncertainties than 0.315% for the

standards currently being used. Eventually similar sensors may prove suitable for locating

inside the vacuum envelope where several sources of uncertainty would be mitigated, pro-

viding laser power calibration directly traceable to SI units in-situ (Lehman (2020)). These

developments at NIST should enable reducing the Rx sensor power calibration factor to

∼ 0.1% from 0.32%.

Assuming that during O4 the Rx sensor power calibration factor will indeed be ∼

0.1%, and also assuming that after the upgrade of the interferometer mirrors, the maximum

interferometer beam position offset reduces to 10 mm from 29 mm for the X-end and 22 mm

for the Y-end station, the uncertainty in combined Pcal displacement factors could reduce to
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∼ 0.16% from the O3 level of 0.41%, provided the optical efficiencies and the uncertanties

remain similar. Thus, reducing the NIST calibration uncertainty is expected to significantly

improve the accuracy with which we can estimate the Pcal-induced displacement fiducials.
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8. MULTI-MESSENGER ASTRONOMY AND SKY LOCALIZATION

On August 17, 2017, LIGO and Virgo observed a BNS inspiral signal (Abbott et al.

(2017c)). Two space-based instruments, the Gamma-ray Burst Monitor (GBM) on board

Fermi (Goldstein et al. (2017)), and the spectrometer anti-coincidence shield (SPI-ACS) on

board INTEGRAL (Savchenko et al. (2017)) detected the short gamma-ray burst (sGRB)

GRB 170817A 1.7 seconds later. This was the first time an event was observed jointly in

GW radiation as well as EM radiation.

Besides compact binary mergers, other transient GW sources that may generate

neutrino and EM radiation include the core-collapse of massive stars, GRBs, SN explosions,

magnetars. GRBs and SN explosions are expected to produce relativistic outflows of high-

energy neutrinos (Bustamante et al. (2015); Janka (2017)). Another class of transient GW

sources which may be observed with other cosmic messengers are magnetars, i.e., rotating

NSs with very high magnetic fields (∼ 10−3 G) that may emit GWs when undergoing

starquakes (Corsi and Owen (2011)).

8.1. MULTI-MESSENGER ASTRONOMY

Multi-messenger Astronomy (MMA) enables astronomers to probe the sources

that emit GWs by extracting information on their different properties and their environ-

ments. Various cosmic messengers include EM radiation, GWs, neutrinos and cosmic rays

(Szczepanczyk (2018)). GW signals provide information about the physical properties of

their sources such as masses, inclinations, orientations and spins. The EM and neutrino

counterparts provide information about the progenitor environment, the formation of rel-

ativistic and non-relativistic outflows, and the equation of state of matter. Moreover, the

detection of an EM counterpart to a GW detection may also enable identification of the
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Figure 8.1. Two examples of multi-messenger sources. Left: A composite photo of
CCSN taken from Chandra X-ray observatory Right: An artist’s depiction of a BNS merger
generating GWs accompanied by an EM counterpart.

progenitor host of the GW source. For CBC sources, the distance estimated from the GW

data, together with the measured redshift of the host galaxy, may allow for an independent

measurement of the Hubble constant (Abbott et al. (2019d)).

As for SN sources, detection of neutrinos along with GW radiation may provide

insights on the explosion mechanism and its physics, enable better constraints on the timing

of the collapse, and better sky localization (Szczepanczyk (2018)). MMA with CCSN

would be the subject of the remainder of this dissertation.

8.2. MULTI-MESSENGERASTRONOMYWITHCORECOLLAPSESUPERNOVAE

Core collapse supernovae (CCSNe) are the violent explosions ofmassive stars (above

8"�) and are believed to form most of the BHs detected by Advanced LIGO and Advanced

Virgo. Although multiple mechanisms for CCSNe have been proposed, the model based on

neutrino driven explosion mechanism are the most widely considered. In the remainder of

this section we will briefly discuss this mechanism. We will follow Couch (2017).
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Towards the end of their lives, massive stars go through multiple epochs of core

and shell burning of heavier elements to finally form iron cores. The core is supported

by electron degeneracy pressure, strongly cooled via neutrinos, and surrounded by burning

shells of Si, O, C and other elements. In this phase, the Si shell burning continues to add

to the star iron core until the latter reaches the Chandrasekhar mass limit (1.4"�). Once

the mass of the iron core exceeds this limit, the core begins to collapse. The collapse

accelerates rapidly driven mainly by two processes, photodissociation of iron-peak nuclei

and electron capture, which reduce the electron degeneracy pressure support. The collapse

of the core results in higher core densities and temperatures which increase the rate at which

the electron capture process occurs. This reduces the electron degeneracy pressure support,

thus creating a runaway process.

The inner part of the core, about 0.4− 0.6"�, proceeds to collapse until the central

density exceeds that of nuclear matter density, at which point the repulsive strong nuclear

force causes the equation of state to stiffen. The collapse of the inner core stops suddenly,

initiating a strong shock wave into the still collapsing outer core, referred to as core bounce.

The shock initially propagates outwards rapidly through the outer core, but strong neutrino

cooling and photodissociation of iron-peak nuclei use up most of the energy liberated by

the collapse of the inner core, stalling the shock to a radius of ∼ 150 km. At this stage,

the inner core is made mostly of neutrons and regains quasi-hydrostatic equilibrium. This

whole process from iron core collapse to bounce takes a fraction of a second to complete.

The collapse liberates an enormous amount of energy, most of which is radiated in the form

of neutrinos.

If a small yet sufficient fraction of this radiated energy is reabsorbed by the post-shock

plasma, the shock is reinvigorated, resulting in an explosion (Colgate and White (1966)).

This prompt neutrino-driven mechanism works for only the lowest-mass progenitors, often
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associated with the electron capture CCSN explosion. Bethe and Wilson (1985) showed

that neutrino-driven explosions could also result at relatively ‘late’ times, a few hundred

milliseconds following the bounce.

More recently, several studies have sought to explore the observable properties of

the neutrino mechanism. For example, O’Connor and Ott (2011) explored the dependence

of the BH formation time on the structure of the progenitor; they showed that more compact

cores collapse to BHs sooner than the less compact ones in failed explosions. Another

study by Ugliano et al. (2012) found that the neutrino mechanism, when appropriately

parametrized, can roughly reproduce key observable features of CCSN populations, such

as remnant mass distributions, including the mass gap between NSs and BHs.

8.3. SKY LOCALIZATION IN MULTI-MESSENGER ASTRONOMY

This section provides a brief discussion on sky localization from timing and coherent

network analysis.

Issuing rapid GW early warnings with accurate localizations is considered to be the

key for MMA. Once the GW event candidates have been validated, they are communicated

to the astronomical community via Gamma-ray Bursts Coordinates Network (GCN) notices

in a time frame of tens of minutes. Each GCN notice include a preliminary sky localization

of the GW source candidate. Improved sky localization estimates are provided at a later

time for follow-up studies.

At sky locations other than the correct location, the requirement of signal consis-

tency reduces the reconstructed network SNR. Moreover, GW sources are assumed to be

distributed almost uniformly in volume and the orientation of merging binaries are also as-

sumed to be uniformly distributed. Hence, most of the sources are expected to be observed

close to face-on, with high SNR, and at large distances (Fairhurst (2018)). This could be

used to discard some of the degeneracies in sky location. For example, at positions away

from the true location, the observed SNRs will not be entirely consistent with the signal and
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the reconstructed orientation of the source will be increasingly edge-on (Fairhurst (2018)).

Incorporating amplitude and phase consistency between sites because GWs comprise of

two polarizations and imposing reasonable astrophysical priors on the source distribution

allows us to localize the vast majority of sources to a single patch in the sky.

As mentioned before, using the time delay between two detectors a circle of possible

source positions on the sky can be reconstructed, centered on the ideal line joining the

two detectors sites. Adding another detector, three circles, one for each couple can be

reconstructed. In this case, the intersection points of these circles correspond to the

source locations, one above and the other below the plane defined by the locations of the

detectors, thus improving the sky localization as shown in Figure 8.2. For example, despite

Virgo’s lower sensitivity during O2 observing run compared to the two LIGO detectors, the

inclusion of data from Virgo improved sky localization significantly. This is exemplified

by the LIGO–Virgo detections GW170814 and GW170817. GW170814 the first three-

detector observation of GWs from a compact binary merger, was localized to 1160 deg2 at

the 90% credible level with only the two LIGO detectors. The inclusion of Virgo reduced

this area to only 60 deg2 (Abbott et al. (2017d)). For the BNS merger GW170817 the

addition of data from Virgo reduced a 100 deg2 sky localization reported with only two

LIGO detectors to roughly 30 deg2 (Abbott et al. (2017e)), enabling the swift identification

of the EM transients and host galaxy (Soares-Santos et al. (2017)).

However, from timing information alone, it is not possible to distinguish between the

two sky locations. If coherent localization is considered along with the timing information,

it is, in principle, possible to distinguish between these positions. In the "mirror" sky

location, the observed amplitudes and phases of the signal will generally not be consistent

with a GW signal comprising of two polarizations, thereby reducing the network SNR and

allowing us to reject that particular position. To obtain a single sky patch at 90% confidence

for a signal of SNR 12, there must be a difference in SNR of 0.25 or greater between the

true and mirror position (Fairhurst (2018)).
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Figure 8.2. Sky localization with three detectors. The three rings denote the sky localization
achieved by a network of two ground-based GWdetectors, Hanford-Livingston (HL, in red),
Livingston-Virgo (LV in blue), and Hanford-Virgo (HV, in green). Using all three detectors
resolves the ring to two locations S and (′ above and below the plane defined by the HLV
network.

Although the areas enclosing 90% probability span several square degrees, with

KAGRA and LIGO India joining the LIGO-Virgo network, timing information alone will

be sufficient to localize the source to a single sky region. In the next section we look at the

sky localization reported by a coherent network analysis algorithm cWB for LIGO-Virgo

network. In Subsection 8.4, we focus on specifically on the tools, plots and parameters

generated by cWB used in this study.
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8.4. SKY LOCALIZATIONWITH CWB

cWB’s likelihood function depends on the antenna pattern, i.e., its value varies

according to the direction of the source in the sky. To determine the most likely location for

the GW source, cWB calculates the likelihood for all the sky positions, ranks the results,

and assigns the source to the direction with the highest likelihood. For each reconstructed

event, each sky position is ranked on the basis of sky statistic: the larger the sky statistic

over a given sky region, the higher the probability that the source is localized within the

considered region. Examples of two skymaps showing the sky statistic are shown in Figure

8.3. The color scale denotes the probability of finding the source in a given sky location.

The information about the reconstructed event is saved in a human friendly format

called Coherent Event Display (CED) report (Klimenko et al. (2021)). A complete descrip-

tion of all the reconstructed parameters that are included in the CED report can be found

in the CED Technical Documentation (Mercer and Klimenko (2008)). In the following

subsections, we describe only those parameters and plots used in this study.

8.4.1. Sensitivity Skymap. The sensitivity of a network of : detectors is fully

characterized by its noise-scaled antenna pattern vectors |f+ | and |f× |

f+(×) =
(
�1+(×)√
(1

,
�2+(×)√
(2

, ...,
�:+(×)√
(:

)
, (8.1)

where (8 and �8+(×) are the power spectral density of the noise and the antenna patterns

of the 8-th detector, respectively. The power spectral density (=4C of the network noise is

defined as

(=4C =

(
:∑
8=1

(−1
8

)−1

. (8.2)

In the dominant polarization frame, the overall network sensitivity depends on sky coor-

dinates and is characterized by the effective power spectral density of the network noise

(Klimenko et al. (2001))

#=4C = ( |f+ |2 + |f× |2)−1 . (8.3)
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Figure 8.3. Two examples of skymaps showing the sky statistic as a function of Earth-
fixed sky coordinates. The white star denotes the true sky location of the GW source.
The black star denotes the most likely reconstructed sky location. In the upper panel the
reconstructed sky position is close to the true sky location. In the lower panel the “mirror"
position is mistakenly ranked as the most likely sky location of the source. The sky statistic
is represented by the color scale, with red denoting the highest probability of finding the
source while blue denoting the lowest probability.

The effective power spectral density of the network noise can be factorized into a sky-

dependent factor, F , and a sky-independent factor, (=4C :

#=4C = F −2(=4C , (8.4)

where F is the network antenna factor normalized to 1. An example of the cWB sensitivity

plot included in the CED report is shown in Figure 8.4.



107

Figure 8.4. Network antenna pattern in Earth-fixed coordinates as generated by cWB. The
color denotes the network sensitivity, red being the highest sensitive region and blue being
the lowest sensitive. As before, the white star denotes the injected sky location whereas the
black star denotes the reconstructed sky location.

8.4.2. Probability Skymap. Figure 8.5 shows an example of the probability dis-

tribution of sky localization. To create a sky map, cWB uses the Hierarchical Equal Area

isoLatitude Pixelization of a sphere, HEALPix (Górski et al. (2019)). The sky is segmented

into 196608 pixels each corrsponding to an area of 0.65 deg2. Each pixel is assigned a

source location probability, represented in a color scale. The data used to generate the

probability skymap is stored in a probability.FITS file.

8.4.3. SNR. The CED report also provides information on the network SNR of the

reconstructed event. Under the assumption that f+ and f× do not vary much in the signal

frequency band, the network SNR in the dominant polarization frame (Klimenko et al.

(2005)) is

d=4C =
√
|f+ |2(ℎ+ |ℎ+) + |f× |2(ℎ× |ℎ×) , (8.5)
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Figure 8.5. Example of a probability skymap for a CCSN event generated by cWB. Here
\ = −90° is the South Pole, \ = 90° is the North Pole and \ = 0° is the Equator. Angle q
goes from −180° to 180° with 0° signifying the Greenwich meridian and increases in the
East direction.

where (ℎ+(×) |ℎ+(×)) denote the inner product of the plus (cross) polarization amplitudes

with themselves.

In coherent network analysis, a likelihood ratio is defined by

Λ(x,Ω) = ?(x|h(Ω))/?(x|0) , (8.6)

where x is the network data, ?(x|0) is the joint probability that the data only contains

instrument noise and ?(x|h(Ω)) is the joint probability that a GW signal ℎ with source

parameters Ω is present in the data. In the cWB searches for unmodeled burst signals, the

best matching waveform to the data is found by varying the likelihood ratio over a set of

unknown GWwaveforms h (Klimenko et al. (2001)). The network SNR is calculated using

Equation (8.5) from the reconstructed waveform.
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In order to quantify the impact of overall calibration errors on the reconstructed

cWB sky localizations, we either directly use the quantities discussed in this section or

define new parameters derived from them. The next section describes those parameters

along with the methodology and the results of our quantitative study.
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9. EFFECTS OF CALIBRATION ERRORS ON BURST-LIKE OBJECTS.

This section describes a study to quantify the impact of overall calibration errors

(CE) on sky localizations of GW signals fromCCSN sources using one of the LVK detection

pipelines, cWB (Drago et al. (2020)).

In the following sections, we will discuss the motivations for this study and the

CCSN waveform models used. We have already discussed sky localizations of the GW

sources with cWB in the last section.

9.1. MOTIVATION

As mentioned in Section 7, Pcals are used to calibrate the LIGO detectors. Unac-

counted or unknown systematic errors in the Pcal calibrations lead to inaccurate physical

information being extracted from the signals. In this analysis, we study the impact of

±10% and ±5% errors on the sky localizations of simulated GW signals from CCSN. Since

the Pcals enable the determination of the DARM displacement, the CEs are simulated by

multiplying the strain data (including the signal and the noise) of one of the detectors by a

constant factor. Without loss of generality in the following we apply the CE factors to the

LIGO Hanford data.

9.2. CCSN WAVEFORMS

In Section 8.2 we briefly discussed the CCSN explosion mechanism and the asso-

ciated GW signals. The GW waveforms depend on the theoretical model. For each of

these models, there are multiple CCSN waveforms based on the GW emission mechanisms,

progenitor mass and other parameters (Szczepanczyk et al. (2021)). Here we briefly discuss

the two of these waveforms used for this study.
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9.2.1. Mueller 2012 Waveform. This waveform is based on a theoretical model

of post-bounce evolution in a neutrino-driven explosion (Mueller et al. (2012)). The GW

signatures are dominated by low-frequency (∼ 100 − 500 Hz) convective matter motion.

The waveform model is a three-dimensional simulation for a non-rotating 15M� progenitor

star. The approach used to calculate the waveform is outlined in Janka and Mueller (1996).

Both the plus and cross polarizations are available for this waveform.

Figure 9.1. Upper panels: Time-frequency plot for a Mueller 2012 waveform which was
used in this study (left) and for comparison the GW150914 BBH coalescence waveform
(right). Most of the signal lies in the frequency band 100 − 200 Hz for the Mueller 2012
waveform, which is in the most sensitive region of the interferometer. As for the BBH, the
frequency ranges from 20 Hz to ∼ 300 Hz and demonstrates the typical chirp signature.
Since in this analysis we are considering frequency independent CEs, reconstruction of sky
localization of GW signals from BBH coalescences and burst signals are expected to get
affected in the same way.

9.2.2. Kuroda 2017 Waveform. This waveform is based on a model of GW emis-

sion in the pre-explosion phase in CCSN. The GW signatures strongly depend on whether

the post-shock flow is dominated by the standing accretion shock instability (SASI) or con-

vection, and the g-modes (Kuroda et al. (2017)). Kuroda et. al. provided waveforms for two

progenitor masses, 11.2"� and 40"�. In the following study, we use the waveform model

with the 11.2"� progenitor mass. Only one polarization is available for this waveform.
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9.3. METHODOLOGY

In this section, we first describe the parameters that we use to quantify the impact

of CEs on the sky localization accuracy. Then we discuss in detail the methods used in

our analysis. The data used by cWB to create a skymap is contained in a probability.fits

file. This file provides a list of pixel indices and their associated probability that the source

is located within the pixel. Assuming that the sky is searched from regions of highest

probability to lowest probability, we first rank the pixels from highest to lowest probability.

We calculate the cumulative probability as a function of the number of pixels searched for

the skymap when no CE was introduced, referred to as the reference probability function.

Similarly for skymaps with CEs introduced into a detector data stream we calculate the

observed probability function. We also calculate the cumulative probability by summing

the reference probability when the pixels are ordered according to the skymap with CE,

referred to as the real probability function. We define the difference between the observed

cumulative probability and the real cumulative probability as the searched probability deficit

(SPD).

The upper panel of Figure 9.2 shows the cumulative probability as a function of the

number of pixels for the reference, observed and the real map for a Mueller 2012 waveform

injected at GPS time 1240812613 (06:09:55 UTC onMay 02, 2019). A CE factor of 0.9was

applied to the Hanford data. It was injected at Earth-fixed coordinates (q = 0°, \ = 15.47°)

and at a distance of 1 kpc. From the plot, we see that if there is a −10 % CE in the Hanford

data, a survey of the first = pixels starting from the pixel with highest probability will

account for a little less than the sky localization probability in the case of no CEs. Thus the

reconstructed source localization worsened due to CE. The lower panel of Figure 9.2 shows

the SPD as a function of the observed probability for the same case discussed above. From

the figure, we can conclude that for example, the first ∼ 4000 pixels only accounts for 80 %
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of the sky localization probability instead of ∼ 83.75 % for no CEs, which again indicates

the source localization worsened in presence of the CE. This is an example where the sky

localization is not significantly changed due to CE.

Similarly, Figure 9.3 shows an example where Mueller 2012 waveform was injected

at Earth-fixed coordinates (q = 279°, \ = 41.81°) and at a distance of 1 kpc. As before,

a CE factor of 0.9 was applied to the Hanford data. This is an example where the source

localization is inaccurately reconstructed by cWB.

Figure 9.2. Upper panel: Cumulative probability versus the number of pixels for the
skymap without CE (Reference) and with CE-map (Observed). When the probability from
the Reference map is summed according to the pixel ordering from Observed map, we
obtain the Real map. CE factor of 0.9 is applied to Hanford data. Lower panel: SPD as a
function of observed cumulative probability.
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Figure 9.3. Upper panel: Cumulative probability versus the number of pixels for the
skymap without CE (Reference) and with CE-map (Observed). When the probability from
the Reference map is summed according to the pixel ordering from Observed map, we
obtain the Real map. CE factor of 0.9 is applied to Hanford data. Lower panel: SPD as a
function of observed cumulative probability.

The relative change in the searched sky area at a fixed confidence level is defined

as (� − �̃)/� where � and �̃ are sky areas at the given confidence interval with no CE

and with CE, respectively. It indicates the extra (or the deficit in) source localization area

searched to find the source at a given confidence interval when there is a CE compared to

the no CE. A positive error denotes that the source localization has improved in the presence
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of a CE i.e., we can reach a fixed cumulative probability by searching a smaller sky area,

whereas a negative error denotes that the skymap with CE gets delocalized i.e., we need to

search a larger area to reach a fixed cumulative probability.

We injected Mueller 2012 SN waveform with a source orientation of q = 120°, \ =

51° into O3 data from all the LHV detectors at three hundred different sky locations. All

injections are at a distance of 1 kpc with a polarization angle of k = 30°, and at GPS time

1240812613. This ensured that any change in the sky localization was purely due to CE

and not due to changes in the detector noise floor or any other parameter.

We created dataframe file lists for each detector at the specific GPS time interval.

We then multiplied the clean calibrated strain data of the LIGO Hanford detector by a

CE factor and created new dataframes that could be used by the cWB algorithm. For the

Livingston and Virgo detectors, the default dataframe files containing the clean calibrated

strain data were directly used by cWB. In order to multiply the waveform in the Hanford

data by the same scale factor we used the cWB plugin, CWB_Plugin_AmplitudeMisCal.C

(Drago et al. (2020)). We also used data quality veto file lists containing the time periods to

be excluded for each detector data as the interferometers were either not running in proper

configuration or hardware injections were performed (Abbott et al. (2020a)).

The Mueller 2012 waveforms were injected at a distance of 1 kpc since for some

sky locations the detection efficiency of cWB drops to less than ∼ 50 % beyond 1 kpc, as

shown in the right panel of Figure 9.4. Detection efficiency as a function of the distance for

two sky locations are shown as examples.

Figure 9.5 shows the three hundred sky locations at which the Mueller waveforms

were injected. Since the cWB detection efficiency is not 100 % at a distance of 1 kpc, there

were a few sky locations for which cWB was unable to recover the injections, marked in

black cross in the Figure 9.5. There are 32 injections that cWB did not detect, i.e. at 1 kpc

the detection efficiency of cWB for the Mueller 2012 waveform is ∼ 90 %.
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Figure 9.4. Detection efficiency of cWB algorithm as a function of the injected source
distance for two different sky locations denoted by (q, \) in degrees for a Mueller 2012
waveform. The distance at 50 % detection efficiency is noted in the legend.

Usually injections reconstructed with high SNR (mostly ≥ 80) are analysed differ-

ently by cWB. This is because cWB sets a threshold of 100 for the total number number of

TF pixels to be analysed. To save computation time for the events that exceed the threshold,

the number of sky locations to compute the maximum likelihood ratio is reduced. Figure

9.6 shows two examples of network antenna pattern generated by cWB as a part of the CED

report for high a high SNR event (upper panel) and a typical injection (lower panel). We

removed any injection that demonstrated this dotted antenna pattern feature shown in the

upper panel of the Figure 9.6.

9.4. RESULTS

For the recovered injections that pass our selection criteria in Figure 9.5, we calcu-

lated the SPD at 90 % cumulative probability and the relative change in the 90 % source

localization area due to CE.
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Figure 9.5. Mueller 2012 waveform injected at three hundred sky locations made at 1
kpc with polarization angle, k = 30°, at the same GPS time 1240812613. No CE have
been introduced. The injections not detected by cWB are marked in black cross. The
sky positions not detected by cWB when injected at a distance of 2 kpc, keeping all other
parameters same, are marked in red dots. It includes the sky locations marked in black
cross as well.

Figure 9.7 shows the histogram of the absolute value of the SPD at 90 %. The Y-axis

indicates the fraction of the total number of source locations for which SPD yields positive

(the distribution in blue) or negative (the distribution in orange) due to the presence of the

CEs. From the inset of each panel in Figure 9.7, one can see that for some sky positions

the SPD is significantly impacted when CEs are present in the data resulting in the spike

above |SPD| = 0.75. For the CE factor of 0.9 these sky locations constitute ∼ 8 % of the

total detected sky locations whereas for 0.95 it constitutes ∼ 4 %. In this case, when there

is a CE of −10 % in the Hanford data, the reconstructed source location is such that the

probability of finding a source in the 90 % confidence region is less than 15 %.
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Figure 9.6. Network antenna pattern generated by cWB for a high SNR case and a typical
case. Upper: Dotted network antenna pattern plot generated by cWB as a part of its CED
report. These high SNR injections are analyzed in a different method than the usual to save
computation time. They are treated as outliers and have been removed from the histogram
plots in this section. Lower: Typical network antenna pattern plot by cWB.

Figure 9.8 shows the histogram of the absolute value of the relative change on the

90 % source localization area. The Y-axis indicates the fraction of the total number of

source localizations that are improving (in blue) or worsening (in orange). From the Figure

9.8, one can see that for some sky positions the source localization worsens by a large factor,

for example when CE of −10 % are present in the data the source localization worsens as

high as ∼ 60 % resulting in the spike near | (� − �̃)/�| = 0.6. Thus from Figure 9.7 and
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Figure 9.7. Histogram of the absolute value of the SPD at 90 % cumulative probability for
all the detected injections with positive values (blue) and negative values (orange) due to
CE. A Lognormal curve is fitted to the distributions: positive SPD (black solid curve) and
negative SPD(red dashed curve). The vertical lines indicate the mean value of the fit. The
four panels are for the four CE factors. Inset: Zoomed out version of the histogram shows
that for some injected sky locations the SPD are as high as over 75 % indicating a significant
impact.

Figure 9.8 together we can conclude that for some sky locations the probability of finding

the source might be less than 15 % even though the searched sky area increases by as much

as 60 %.

For example, at source location (q = 279°, \ = 41.81°), the number of pixels

required to reach 90 % source localization area increases from 1412 to 6750 for the CE

factor of 0.9. Thus the 90 % source localization area increased by 3538.5 sq. deg. with
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Figure 9.8. Histogram of the absolute value of the relative change in searched 90 % sky
localization area due to CE only for the source locations that get more localized (blue)
and delocalized (orange). A Lognormal curve is fitted to the distributions: injections
reconstructed with improved localization (black solid curve) and those reconstructed with
worse localization(red dashed curve). The vertical lines indicate the mean value of the fit.
The four panels are for the four CE factors. For some injected sky locations, the relative
change is as high as over 60 %, indicating a significant impact.

| (� − �̃)/�| = 3.7. However, the SPD at 90 % probability in this case is ∼ 85 %. This

indicates only an additional 10 % chance of finding the source after searching an extra

3538.5 sq. deg. of the sky area for a given −10 % CE in the LIGO Hanford data.

At the sky location (q = 270.0°, \ = 0.0°), the number of pixels required to reach

90 % source localization area increases from 18 pixels without CE to 351 pixels with

�� = 0.95, resulting in |� − �̃|/� = 18.5. This implies that the 90 % source localization

area increases by 219.5 sq. deg. in this case. The SPD at 90 % probability is again ∼ 80 %,
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indicating only an additional 10 % chance of finding the source after searching an extra

219.5 sq. deg. of the sky area. We removed both of these data points from the figure as

they were an outliers with high SPD.

Figure 9.9 shows how the the median of the absolute value of the relative change

for the 90 % source localization area varies as a function of the binned network SNR. In

this plot, the outliers have not been removed and hence we calculate the median value. The

error bars are the standard deviation on the median. From Figure 9.9, there seems to be no

strong correlation between the error |� − �̃/�| and the network SNR. Figure 9.10 shows

a similar plot of the median of the absolute value of the SPD as a function of the binned

SNR.

Figure 9.9. Median of the absolute value of the relative change in 90 % sky area versus
binned network SNR as reported by cWB. The error bars are the positive part of the standard
deviation on the median. The four panels are for the four CEs each.
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Figure 9.10. Median of the absolute value of the SPD at 90 % cumulative probability versus
binned network SNR as reported by cWB. The error bars are the standard deviation on the
median. The four panels are for the four CEs each.

This study was repeated for a few other cases with different polarization angle, GPS

time, distance and waveform. For the comparison study we will only look at the histograms

of the SPD and the relative change in the 90 % source localization area to check if the results

are compatible or not.

9.4.1. At a Different Distance. To study the effect of distance, we injected the

same Mueller 2012 waveform with k = 30° at a distance of 2 kpc at three hundred different

sky locations shown in Figure 9.5, all at the same GPS time 1240812613. In the figure, the

sky locations marked in red are those injections that cWB could not detect. This includes

the sky locations that were missed when the waveforms were injected at 1 kpc.

The plots for SPD and the relative change in the area are shown in Figures 9.11 -

9.14. These plots compare the new set of injection to the previous ones injected at GPS

time 1240812613 with k = 30° and at a distance of 1 kpc.
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Figure 9.11. Comparison of histograms of the SPD up to 90 % cumulative probability in
presence CE for the detected injections with positive SPD between those injected at 1 kpc
(orange) and 2 kpc (blue). A Lognormal curve is fitted to the distributions: injections at
GPS = 1240812613 (black solid curve) and those at GPS = 1240812455 (red dashed curve).
The vertical lines indicate the mean value of the fit. The four panels are for the four CE
factors.

9.4.2. At a Different GPS Time. The Virgo data had a glitch about 2 seconds after

the GPS time at which we were injecting the Mueller waveform at three hundred different

sky location into the LIGO-Virgo data stream. So another set of Mueller 2012 waveform

injections were made at the same sky locations shown in Figure 9.5 at 1 kpc and with

k = 30°. But the injection time was chosen to be GPS time 1240812455 ensuring that

there was no glitch in any of the detector data stream till 30 seconds before and after the

injection time. Figures 9.15 - 9.18 compares the plots for SPD, the relative change in the
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Figure 9.12. Comparison of histograms of the absolute value of the SPD up to 90 %
cumulative probability in presenceCE for the detected injectionswith negative SPDbetween
those injected at 1 kpc (orange) and 2 kpc (blue). A Lognormal curve is fitted to the
distributions: injections at GPS = 1240812613 (black solid curve) and those at GPS
= 1240812455 (red dashed curve). The vertical lines indicate the mean value of the fit. The
four panels are for the four CE factors.

area for the new set of injections with the previous one injected at GPS time 1240812613 at

a distance of 1 kpc. The results seem similar to each each other. However, the SNR of the

reconstructed events injected at GPS time 1240812613 were almost twice the ones injected

at GPS time 1240812455.

9.4.3. With aDifferent PolarizationAngle. Another set of the sameMueller 2012

waveform was injected at the same sky locations shown in Figure 9.5 at a distance of 1 kpc

and GPS time 1240812455. However, the polarization angle was specified to be k = 60°.
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Figure 9.13. Comparison of histograms of relative change in 90 % sky area due to CE only
for the detected sky locations that get localized between two sets of injections at 1 kpc
(orange) and 2 kpc (blue). A Lognormal curve is fitted to the distributions: injections at 2
kpc (black solid curve) and those at 1 kpc (orange) (red dashed curve). The vertical lines
indicate the mean value of the fit. The four panels are for the four CE factors.

Figures 9.19 - 9.22 compares the plots for SPD, the relative change in the area for

the new set of injections with k = 60° to the previous case.

9.4.4. With Different Waveforms. We also compared the impact of CEs for dif-

ferent CCSN waveforms. We injected Kuroda 2017 waveform at the three hundred sky

locations in Figure 9.5 at 1 kpc with k = 30° and at �%( = 1240812455.

Figures 9.23 - 9.26 compares the plots for SPD, the relative change in the area for the

new set of injections to the ones with Mueller 2012 waveforms keeping all other parameters

the same.
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Figure 9.14. Comparison of histograms of the absolute value of the relative change in 90 %
sky area due to CE only for the detected sky locations that get more delocalized between
two sets of injections at at 1 kpc (orange) and 2 kpc (blue). A Lognormal curve is fitted
to the distributions: injections at 2 kpc (black solid curve) and those at 1 kpc (orange) (red
dashed curve). The vertical lines indicate the mean value of the fit. The four panels are for
the four CE factors.

9.5. SUMMARY

This section describes a study to quantify the impact of overall calibration error on

sky localization of CCSN sources for the LIGO-Virgo network. We used a LIGO detection

pipeline, cWB to the study the sky localization of simulated SN sources usingMueller 2012

model. We defined two parameters the relative change in the 90 % sky localization area
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Figure 9.15. Comparison of histograms of the absolute value of the SPD up to 90 %
cumulative probability in presence CE for the detected injections with only the positive SPD
between those injected at �%( = 1240812613 (blue) and �%( = 1240812455 (orange). A
Lognormal curve is fitted to the distributions: injections at GPS = 1240812613 (black solid
curve) and those at GPS = 1240812455 (red dashed curve). The vertical lines indicate the
mean value of the fit. The four panels are for the four CE factors.

and a SPD at 90 % cumulative probability to quantify the impact of CE. A positive relative

change in the 90 % sky localization area indicates that the source localization improved due

to the overall CE, whereas a negative value indicated that the source localization worsened.

We injected a Mueller 2012 with same source orientation at three hundred different

sky locations and at a particular distance, with a specified polarization angle and at the

same GPS time. We introduced overall CE of ±10 % and ±5 % into the Hanford data

by multiplying the noise floor of the interferometer as well as the signal by factors of

1.1, 0.9, 1.05, 0.95 respectively. Since the detection efficiency of the cWB algorithm
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Figure 9.16. Comparison of histograms of the absolute value of the SPD up to 90 % cumula-
tive probability in presence CE for the detected injections with negative SPD between those
injected at �%( = 1240812613 (blue) and �%( = 1240812455 (orange). A Lognormal
curve is fitted to the distributions: injections at GPS = 1240812613 (black solid curve) and
those at GPS = 1240812455 (red dashed curve). The vertical lines indicate the mean value
of the fit. The four panels are for the four CE factors.

is ∼ 90 % at a distance of 1 kpc, we recovered 268 of the total injected events. We

then calculated the SPD and the relative change in the 90 % sky localization area for the

injections that were recovered by cWB. We studied different cases, comparing the impact

of CE for different polarization angles, at different GPS times, at different distances and

also compared between two different waveforms, Mueller 2012 and Kuroda 2017.

Preliminary results indicate that the average relative changes in the 90 % sky lo-

calization confidence regions are from ∼ 10 % to as large as 18 % in presence of the CEs.

Associated average errors in estimated probabilities for these regions are from ∼ 1 % to as

large as 5 % due to overall CEs. Furthermore, for a few sky locations, SPD are as large
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Figure 9.17. Comparison of histograms of relative change in 90 % sky area due to CE only
for the detected sky locations that seems to get localized between two sets of injections at
GPS = 1240812613 (blue) and GPS = 1240812455 (orange). A Lognormal curve is fitted
to the distributions: injections at GPS = 1240812613 (black solid curve) and those at GPS
= 1240812455 (red dashed curve). The vertical lines indicate the mean value of the fit. The
four panels are for the four CE factors.

as ∼ 85 % for a CE factor of 1.1. This implies that in case LVK network detects GW

from a CCSN event in future, there are a few sky locations where there is a low to almost

negligible chance of finding counterparts to GW signals within the 90 % confidence regions

in follow-up observations by EM observatories if the Hanford data has a CE of ±10 %. A

more in-depth study is required to understand why these particular regions in the sky are

more affected due to an overall CEs in a single detector.
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Figure 9.18. Comparison of histograms of the absolute value of the relative change in 90 %
sky area due to CE only for the detected sky locations that get more delocalized between
two sets of injections at �%( = 1240812613 (blue) and �%( = 1240812455 (orange). A
Lognormal curve is fitted to the distributions: injections at GPS = 1240812613 (black solid
curve) and those at GPS = 1240812455 (red dashed curve). The vertical lines indicate the
mean value of the fit. The four panels are for the four CE factors.
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Figure 9.19. Comparison of histograms of the SPD up to 90 % cumulative probability
in presence CE for the detected injections with positive SPD between those injected with
k = 30° (blue) and k = 60° (orange). A Lognormal curve is fitted to the distributions:
injections with k = 30° (black solid curve) and those with k = 60° (red dashed curve). The
vertical lines indicate the mean value of the fit. The four panels are for the four CE factors.
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Figure 9.20. Comparison of histograms of the absolute value of the SPD up to 90 %
cumulative probability in presenceCE for the detected injectionswith negative SPDbetween
those injected at k = 30° (blue) and k = 60° (orange). A Lognormal curve is fitted to
the distributions: injections with k = 30° (black solid curve) and those with k = 60° (red
dashed curve). The vertical lines indicate the mean value of the fit. The four panels are for
the four CE factors.
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Figure 9.21. Comparison of histograms of relative change in 90 % sky area due to CE only
for the detected sky locations that get localized between two sets of injections at k = 30°
(blue) and k = 60° (orange). A Lognormal curve is fitted to the distributions: injections at
k = 30° (black solid curve) and those at k = 60° (orange) (red dashed curve). The vertical
lines indicate the mean value of the fit. The four panels are for the four CE factors.
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Figure 9.22. Comparison of histograms of the absolute value of the relative change in 90 %
sky area due to CE only for the detected sky locations that get more delocalized between
two sets of injections at k = 30° (blue) and k = 60° (orange). A Lognormal curve is fitted
to the distributions: injections at k = 30° (black solid curve) and those at k = 60° (orange)
(red dashed curve). The vertical lines indicate the mean value of the fit. The four panels
are for the four CE factors.
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Figure 9.23. Comparison of histograms of the SPD up to 90 % cumulative probability in
presence CE for the detected injections with positive SPD between the two sets of injections
with different waveforms, Mueller 2012 (orange) and Kuroda 2017 (blue). A Lognormal
curve is fitted to the distributions: injections with Kuroda 2017 waveform (black solid
curve) and with Mueller 2012 waveform (red dashed curve). The vertical lines indicate the
mean value of the fit. The four panels are for the four CE factors.
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Figure 9.24. Comparison of histograms of the absolute value of the SPD up to 90 %
cumulative probability in presenceCE for the detected injectionswith negative SPDbetween
the two sets of injections with different waveforms, Mueller 2012 (orange) and Kuroda
2017 (blue). A Lognormal curve is fitted to the distributions: injections with Kuroda 2017
waveform (black solid curve) and with Mueller 2012 waveform (red dashed curve). The
vertical lines indicate the mean value of the fit. The four panels are for the four CE factors.
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Figure 9.25. Comparison of histograms of relative change in 90 % sky area due to CE only
for the detected sky locations that get localized between two sets of injections with different
waveforms, Kuroda 2017 (blue) and Mueller 2012 (orange). A Lognormal curve is fitted
to the distributions: injections using Kuroda 2017 waveform (black solid curve) and those
using Mueller 2012 (red dashed curve). The vertical lines indicate the mean value of the
fit. The four panels are for the four CE factors.
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Figure 9.26. Comparison of histograms of the absolute value of the relative change in 90 %
sky area due to CE only for the detected sky locations that get more delocalized between two
sets of injections with different waveforms, Kuroda 2017 (blue) and Mueller 2012 (orange).
A Lognormal curve is fitted to the distributions: injections using Kuroda 2017 waveform
(black solid curve) and those using Mueller 2012 (red dashed curve). The vertical lines
indicate the mean value of the fit. The four panels are for the four CE factors.
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10. CONCLUSIONS

This dissertation describes how the state of the art in generating displacement

fiducials using Pcals for ground-based interfermoteric GW detectors was pushed below the

0.5% accuracy level for the O3 run during which 79 GW detections were made by the

LVK network (Abbott et al. (2021a)). Pcals, relying on power-modulated auxiliary laser

beams reflecting from suspended interferometer optics, enable continuous calibration of the

detectors by generating displacement fiducials proportional to the modulated laser power.

Developments in the propagation of laser power calibration via transfer standards to on-line

power sensors monitoring the modulated laser power have enabled generation of length

fiducials with sub-0.5 % accuracy for the LIGO detectors (D Bhattacharjee et al. (2021)) .

These estimated uncertainties are almost a factor of two smaller than the values reported

for the previous observing run (Karki et al. (2016)). This reduction was due to efforts

by NIST to realize improved laser power sensor calibration accuracy and improvements in

methodology that have decreased uncertainties.

The two major improvements in the methodology for estimating the Pcal uncertain-

ties involved taking into account the effects of temperature dependence of the responsivity

of the Pcal power sensors and combining the calibrations of the Pcal systems installed at

the end station of each interferometer arm to reduce uncertainties due to factors that are

not common to both Pcal systems. Both methods were implemented during the O3 run for

the first time. To calculate the end station power sensor calibration factors, measurements

were made in three different laboratories, each maintained at a different temperature. These

temperature differences were taken into account using a new formalism that was developed

and implemented to include temperature corrections.

Pcal-induced periodic displacements are used to measure the frequency dependent

interferometer response from swept sine transfer functions of the DARM control loop on a

weekly basis (Sun et al. (2020)). They are also used to continually monitor time-varying
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interferometer parameters (Tuyenbayev et al. (2017)). Thus, generating continuous, on-

line displacement fiducials with sub-percent accuracy is a key element of interferometer

calibration. Reducing the overall uncertainty and improving the accuracy of these Pcal

dispalcements enable more accurate and precise interferometer calibration.

Realizing the important role laser power sensor calibration plays in the scientific

impact of GW detections, there is increased effort within the national metrology institute

community to improve power sensor calibration accuracy and precision. Scientists at NIST

are developing a new generation of primary calibration standards that use bolometers and

carbon nanotube absorbers and are expected to significantly lower uncertainties compared

with the primary standards currently being used (Vaskuri et al. (2020)). These sensors may

someday prove suitable for installation inside the vacuum envelope where several sources

of uncertainty would be mitigated, providing laser power calibration directly traceable to

SI units in-situ (Lehman (2020)). These developments at NIST are expected to reduce the

Pcal power sensor calibration uncertainty provided by NIST from 0.32% to ∼ 0.1%.

Unknown or unaccounted for systematic errors in calibration of the Pcal systems

would affect the overall calibration of the detectors and lead to inaccurate strain data. If

that is the case, the source parameter estimates that are extracted from the GW signals,

such as distance, masses and spins would be inaccurate. Systematic errors in the relative

calibration of detectors in the GW network would affect the sky localization of GW sources,

limiting opportunities for multi-messenger astronomy. This dissertation includes a study of

the impact of overall calibration errors on sky localization of burst-like GW sources. To

quantify the impact of overall CEs on sky localization for sources located all across the

sky, a simulated supernova waveform (Mueller 2012) was injected with fixed polarization

angle and distance at various sky locations. Artificial CEs of ±10 % and ±5 % were applied

to data from one of the LIGO detectors, LIGO Hanford. We defined two parameters, the

relative change in the 90 % sky localization area and the searched probability deficit at 90 %

cumulative probability, to quantify the impact of the overall CEs on sky localization. We
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found that on an average the searched probability deficit was at most 5 % indicating that

the 2 % calibration accuracy level achieved during the O3 run was sufficient for accurate

source localization. However, there were some source locations at which the 90 % source

localization area reduced by over 60 % but the SPD was above 85 %. These large values

indicate that even for cases where the localization area decreased, the cWB algorithm might

reconstruct the source location displaced from the injected location. There were also cases

where highly localized sources in the absence of a CE became highly delocalized in the

presence of a CE. This also resulted in a high SPD.

The study was repeated for a different polarization angle, different distance, and

different injection time (different interferometer noise floor), as well as a different modeled

supernova waveform ( Kuroda 2017). Sky localization area and searched probability deficit

results were similar to the initial case, described above.

In these analyses, CEs were introduced into the data for a single detector. Similar

studies could be carried out with CEs (positve or negative) introduced into more than one

detector in the network. This work can also be extended to study how systematic calibration

errors affect the sky localization of GW signals from CCSN events when detectors in the

LVKnetwork are operating at their design sensitivities. It could also be extended for different

network configurations, for example subsets of the LVK network, the LVKI network that

includes the LIGO India detector and for future third-generation detector networks.

Developing the methods employed in this research could result in the ability to

quantify acceptable overall calibration errors in terms of tolerable searched probability

deficits.As more detectors join the network of GW observatories, accurate source localiza-

tion could be achieved using the timing information alone. These methods could also be

used to study the impact of timing errors, i.e., errors in the apparent arrival times of GW

signals at the detectors.
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Accurate source localization is crucial for prompt follow-up searches for electro-

magnetic and neutrino counterparts, enabling multi-messenger astronomy. Observing an

event with multiple cosmic messengers provides information about properties of the source,

its emission processes, its environment, etc. Since accurate source localization relies on ac-

curately calibrated strain data, pushing the overall calibration uncertainty to the sub-percent

level will be required. In 2009, Lindblom estimated that calibration accuracy of 0.5 %

or better would be required to optimally extract information from GW signals (Lindblom

(2009)). This implies that calibration of Pcal displacement fiducials with uncertainties

well below 0.5 % will also be required. With the improvements in the calibration of Pcal

power transfer standards expected for O4, the Pcal calibration uncertainties are expected to

be even lower than they were for O3. This should ensure that multi-messenger astronomy

opportunities enabled by accurate sky localization of CCSN events detected by the cWB

pipeline will not be limited by overall Pcal fiducial displacement uncertainties.
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