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A Deep Learning Approach to Design
and Discover Sustainable
Cementitious Binders: Strategies to
Learn From Small Databases and
Develop Closed-form Analytical
Models
Taihao Han1, Sai Akshay Ponduru1, Rachel Cook1, Jie Huang2, Gaurav Sant3* and
Aditya Kumar1*

1Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO, United States, 2Electrical and
Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States, 3Civil and Environmental
Engineering, University of California, Los Angeles, Los Angeles, CA, United States

To reduce the energy-intensity and carbon footprint of Portland cement (PC), the prevailing
practice embraced by concrete technologists is to partially replace the PC in concrete with
supplementary cementitious materials [SCMs: geological materials (e.g., limestone);
industrial by-products (e.g., fly ash); and processed materials (e.g., calcined clay)].
Chemistry and content of the SCM profoundly affect PC hydration kinetics; which, in
turn, dictates the evolutions of microstructure and properties of the [PC + SCM] binder.
Owing to the substantial diversity in SCMs’ compositions–plus the massive combinatorial
spaces, and the highly nonlinear and mutually-interacting processes that arise from SCM-
PC interactions–state-of-the-art computational models are unable to produce a priori
predictions of hydration kinetics or properties of [PC + SCM] binders. In the past
2 decades, the combination of Big data and machine learning (ML)—commonly
referred to as the fourth paradigm of science–has emerged as a promising approach
to learn composition-property correlations in materials (e.g., concrete), and capitalize on
such learnings to produce a priori predictions of properties of materials with new
compositions. Notwithstanding these merits, widespread use of ML models is
hindered because they: 1) Require Big data to learn composition-property correlations,
and, in general, large databases for concrete are not publicly available; and 2) Function as
black-boxes, thus providing little-to-no insights into the materials laws like theory-based
analytical models do. This study presents a deep learning (DL) model capable of producing
a priori, high-fidelity predictions of composition- and time-dependent hydration kinetics
and phase assemblage development in [PC + SCM] pastes. The DL is coupled with: 1) A
fast Fourier transformation algorithm that reduces the dimensionality of training datasets
(e.g., kinetic datasets), thus allowing the model to learn intrinsic composition-property
correlations from a small database; and 2) A thermodynamic model that constrains the
model, thus ensuring that predictions do not violate fundamental materials laws. The
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training and outcomes of the DL are ultimately leveraged to develop a simple, easy-to-use,
closed-form analytical model capable of predicting hydration kinetics and phase
assemblage development in [PC + SCM] pastes, using their initial composition and
mixture design as inputs.

Keywords: deep learning, sustaianability, hydration kinetic, prediction, thermodynamics

INTRODUCTION

Concrete–a mixture of Portland cement (PC); water; sand; and
stone–is the principal material used in the construction of all
forms of physical infrastructure; and, more generally, the built
environment. At the current global level of production—∼4.5
gigatonnes (Gt) every year (Lange and Clare, 2013; Gartner and
Hirao, 2015; Biernacki et al., 2017; Scrivener et al., 2018)—PC
requires 11•1018J of thermal energy; (Gartner and Hirao, 2015;
Ludwig and Zhang, 2015; Schneider, 2015; Biernacki et al., 2017;
He et al., 2019); which is equivalent to the energy generated from
the combustion of ∼1.3 billion barrels of crude oil. (Schneider
et al., 2011; Schneider, 2015; Cadavid-Giraldo et al., 2020; Ighalo
and Adeniyi, 2020). When we account for emission of greenhouse
gases, especially CO2, the statistics exacerbate alarmingly:
(Gartner and Hirao, 2015; Ludwig and Zhang, 2015;
Schneider, 2015): PC’s production-and-use accounts for ∼9%
of all anthropogenic CO2 emissions. (Miller, 2013; Schorcht,
2013; Dowling et al., 2015). As the global population rises to
10 billion by 2050, (United Nations, 2019), the demand for PC
concrete infrastructure–and, thus, the concomitant energy
demand and CO2 emissions–are expected to continually
increase in the future.

To alleviate the energy-intensity and carbon footprint of PC’s
production-and-use, the construction community has
emphasized partial substitution of PC (up to 60%mass) with
supplementary cementitious materials (SCMs: limestone;
quartz; metakaolin; fly ash; slag; etc. (Mehta and Monteiro,
1976; Johari et al., 2011; Juenger et al., 2012; Juenger and
Siddique, 2015; Biernacki et al., 2017; Juenger et al., 2019)).
However, much research is still required to comprehensively
understand and describe the underlying composition-reaction-
microstructure-property correlations in low-PC or [PC + SCM]
binders (i.e., pastes; mortars; and concretes). Such
understanding–when distilled down to theories, and
subsequently, as closed-form mathematical equations–would
offer the ability to produce a priori predictions of binders’
properties, just using their compositions (plus a few other
easy-to-measure attributes, e.g., mixture proportion and
fineness of precursor materials) as inputs. This would be
greatly beneficial, as it would substantially reduce the time and
cost of conducting experiments to determine the binders’
properties; and would allow end-users to manipulate (e.g.,
enhance) the binders’ properties by simply finetuning their
composition.

While the needs and benefits of a priori predictions of
cementitious binders’ properties (from their compositions) are
clear, developing theory-based models that are actually capable of
producing accurate predictions is not straightforward. This is

largely because, in all PC-based binders (e.g., plain paste [PC +
SCM] paste; etc.), the development of properties (e.g., strength) is
dictated by the hydration of PC, a complex process involving the
reaction of PC with water. (Taylor, 1997). The aforesaid
complexity–which has, in effect, stymied the development of
accurate, predictive models–arises from the presence of
numerous anhydrous (i.e., unreacted) and hydrated phases
(i.e., hydration products) within the binder at any given age
(Mehta and Monteiro, 1976; Thomas et al., 2011; Cook et al.,
2021a). A typical, commercial PC comprises C3S, C2S, C3A, and
C4AF (plus C$H2)—where: C � CaO; S � SiO2; A � Al2O3; $ �
SO3; F � Fe2O3; and H � H2O–and all of these phases
concurrently undergo hydration at distinct rates upon contact
with water, and produce distinct sets of hydrates. (Bullard et al.,
2011; Cook et al., 2019a). Many past studies (Breval, 1976; Vovk,
2000; Chen and Juenger, 2011; Kumar et al., 2012; Quennoz and
Scrivener, 2012; Lapeyre et al., 2020; Cook et al., 2021a) have
attempted to describe PC hydration by investigating simpler
variants of PC pastes; for example, pure C3S and
C3S-C3A-gypsum pastes. While these studies have provided
foundational understanding of intrinsic composition-reaction-
microstructure-property correlations in simpler systems, this
understanding falls short of explaining hydration (and the
ensuing development of microstructure and properties) in
low-PC binders. For instance, in [PC + SCM] binders,
chemical interactions of the SCM with anhydrous cementitious
phases (e.g., C3S; and C3A) and hydrates–that occur alongside the
hydration of the anhydrous phases–can be difficult to explain or
predict based on our knowledge gained from simpler systems.
Complexities resulting from metakaolin–for example–are well-
documented in both binary (Lapeyre and Kumar, 2018; Lapeyre
et al., 2019) and ternary pastes; (Cook et al., 2021b); as it can act as
both a pozzolan and a filler, (Lapeyre and Kumar, 2018; Lapeyre
et al., 2019), as well as contribute to carboaluminate hydrate
formation. (De Weerdt et al., 2011; Antoni et al., 2012; Vance
et al., 2013a; Ramezanianpour and Hooton, 2014).

To predict the properties of a given (PC + SCM) binder (e.g.,
paste) at a specific age, it is critical to know the binder’s phase
assemblage [i.e., volume fractions of anhydrous PC; anhydrous
SCMs; hydrates; and capillary pores]; which, in turn, depends on
the rate and extent of hydration of PC in the binder. Isothermal
calorimetry has emerged as the dominant technique among
cement chemists to measure the rate and extent (degree) of
hydration of PC in cementitious binders. This technique
measures time-resolved exothermic heat release from the
hydration of PC (and other endothermic and exothermic
reactions, if any). This heat–generally speaking–is much larger
in magnitude compared to minor amounts of thermal energy
associated with interactions of SCMs with other components of
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the binder (Cook et al., 2021b). The heat evolution (or
calorimetry) profiles thus obtained can be processed to
determine the degree of reaction (or hydration) of PC in the
binder as a function of time. (Bullard et al., 2011; Cook et al.,
2021b). Figure 1 shows representative isothermal calorimetry
profiles (i.e., time-resolved heat flow rate; and cumulative heat
release) of a type I/II PC paste. These heat evolution profiles can
be coupled with thermodynamic simulations to describe the
evolution of a binder’s phase assemblage (i.e., volume fractions
of anhydrous PC and SCMs; hydrates; and capillary pores) with
respect to time or the degree of hydration of PC. Gibbs Energy
Minimization Software (GEMS)—designed for geochemical
modeling (Wagner et al., 2012; Kulik et al., 2013)—has
become a popular tool for such thermodynamic simulations.
(Lothenbach and Winnefeld, 2006; Lothenbach et al., 2008; De
Weerdt et al., 2011). More specifically: isothermal calorimetry
results and GEMS simulations–when combined–can describe,
with reasonable accuracy, the phase assemblage of a PC-based
binder with respect to time; which can be further analyzed to
qualitatively or quantitively predict the properties of the binder.
With that said, the combination of isothermal calorimetry and
GEMS still cannot produce a priori predictions of time-resolved
phase assemblage of a new binder. This is because experimental
measurement of the new binder’s heat evolution profiles, or PC’s

hydration kinetics, would still be required. And, to reiterate the
point made earlier, due to our lack of understanding of
underlying composition-reaction correlations, state-of-the-art
kinetic models (e.g., phase boundary nucleation and growth
models with constant, (Thomas, 2007), or variable growth rate
(Oey et al., 2016; Ley-Hernandez et al., 2018; Lapeyre et al., 2019))
are unable to produce reliable predictions of heat evolution
profiles of PC-based systems. Furthermore, although these
kinetic models can reproduce heat evolution profiles,
experiments are required to determine key parameters (e.g.,
constant or time-dependent growth rate of CSH) for the
models. Consequently, these models are unable to produce a
priori predictions of calorimetry profiles of cementitious systems.

Recent studies (Cook et al., 2021b; Lapeyre et al., 2021) have
shown that machine learning (ML) models–once trained from a
sufficiently large calorimetry database–can produce a priori
predictions of heat evolution profiles (i.e., time-dependent heat
flow rate and cumulative heat release) of PC-based binders,
including binary and ternary [PC + SCM] pastes. Despite the
successes of these studies, there are still few challenges that need
to be addressed. 1) In both studies, (Cook et al., 2021b; Lapeyre
et al., 2021), relatively homogenous databases were used to train
and test the prediction performance of the ML model. To better
explain the aforesaid homogeneous nature of the databases: in one
study, (Lapeyre et al., 2021), a database comprised of calorimetry
profiles of (synthetic PC + SCM) pastes was used; whereas, in the
other, (Cook et al., 2021c), a database comprised of calorimetry
profiles of (commercial PC + SCM) pastes was used. It is unclear
if the prediction performance of the ML models would decline if
the two databases were to be combined to produce a singular,
highly heterogeneous–yet a moderately low-volume–database.
The authors hypothesize that for such a highly heterogeneous
database, it is important to reduce the dimensionality
(complexity) of the database; to make it easier for the ML
models to learn the intrinsic input-output correlations during
their training. Fourier transformation–which has historically
been used for signal processing, and processing of 2D and 3D
images obtained from various techniques (e.g., spectroscopy;
(Fromherz and Guenther, 2005); microstructures generated
from micro- and nano-indentation apparatuses; (Passoja and
Psioda, 1981; Hao et al., 1993); electron microscopy; (Buseck
et al., 1988; Zeng et al., 2016) etc.;)—is a promising tool for
dimensionality-reduction of numerical databases. This is because
of Fourier transformation’s innate ability to maintain most of the
information–except for the redundant ones–contained within the
database of interest, but in a much simpler, near loss-less format
(Duhamel and Vetterli, 1990). Preservation of pertinent
information in the database–while reducing the
redundancies–not only simplifies the initial transformation,
but also the reverse transformation (i.e., from the reduced to
the original dimensional form) (Duhamel and Vetterli, 1990).
Although Fourier transformation has never been used to treat or
process calorimetry databases, the authors hypothesize that its
use could substantially enhance the prediction performance of
ML models, especially when working with complex, highly
heterogeneous database with a relatively small volume. This
hypothesis will be tested in this study. 2) The ML models used

FIGURE 1 | Heat flow rate profile (blue), depicting the kinetics of PC
hydration during four stages that manifest within the first 24 h after mixing (I)
initial period (II) induction period (III) acceleration period; and (IV) deceleration
period (Bullard et al., 2011; Cook, 2020; Cook et al., 2021b). The initial
period corresponds to wetting of PC particulates (upon contact with water)
and their rapid dissolution. The induction period corresponds to a period of
slow dissolution of PC particulates, and precipitation of small amounts of
hydrates (Bullard et al., 2011; Scrivener et al., 2015). The acceleration and
deceleration periods are associated with a short burst of nucleation and
subsequent growth of hydrates (Bullard, 2008; Bazzoni, 2014; Bazzoni et al.,
2014; Bullard et al., 2015; Scrivener et al., 2015). The heat flow rate profile can
be used to estimate the time-dependent extent/degree of reaction of PC (red).
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in the two studies (Cook et al., 2021b; Lapeyre et al., 2021) cited
above–while good at producing a priori predictions of heat
evolution profiles of [PC + SCM] pastes–were not constrained
in any way. The authors hypothesize that if these ML models are
constrained–e.g., using thermodynamic rules as constraints–their
prediction performance would improve. Importantly, it would be
less likely for the models’ predictions to violate basic
thermodynamic rules. Testing this hypothesis is another focus
of this study. 3) The studies (Cook et al., 2021b; Lapeyre et al.,
2021) cited above used ML models that function–more or less–as
black-boxes; providing little-to-no insights into the materials laws
like closed-form analytical models do. This is a problem, because
end-users–who do not have access to ML models–would not gain
any benefits from such ML models. It is, thus, important to
capitalize on the training of the ML models–and the cause-effect
correlations established by them–to develop simple, closed-form
analytical models that are accessible to all end-users, irrespective
of their knowledge of, or access to, ML models.

In this study, a deep learning (DL) model–trained from a
heterogenous, low-volume database of heat evolution profiles of
[PC + SCM] pastes–is implemented to produce a priori, high-
fidelity predictions of composition- and time-dependent
hydration kinetics, and phase assemblage development in

(PC + SCM) pastes. The SCMs used in this study include
permutations-and-combinations of limestone; quartz; silica
fume; and metakaolin. To enhance the prediction
performance, the DL model is coupled with: 1) A fast Fourier
transformation (FFT) algorithm that reduces the dimensionality
of database; and 2) A thermodynamic constraint (obtained from
thermodynamic simulations of phase assemblages) that ensures
that the predictions do not violate fundamental materials laws.
The DL model is used to quantify the influence of each input
variable (e.g., contents of SCMs and C3S in the binder) on the
resultant properties of the binder; thereby allowing the distinction
between consequential and inconsequential variables (in terms of
their influence on hydration kinetics). On the premise of this
understanding, an easy-to-use, closed-form analytical model is
developed; and it is shown that this model–despite its simplicity
and fewer input requirements–can produce reliable, a priori
predictions of hydration kinetics and phase assemblage
development in (PC + SCM) pastes.

MODELING METHODS

An original Fourier transform-deep learning (FT-DL) model was
developed in this study. The model was trained: first, using a
synthetic database for benchmarking and validation (described in
section 3.1); and second, using database of isothermal
calorimetry profiles of (PC + SCM) pastes (described in
section 3.2). The trained model was subsequently employed to
produce predictions of outputs in blank data-domains of the
synthetic database, and hydration kinetics of new (PC + SCM)
pastes. Prediction performance of the model was rigorously
appraised by comparing its predictions against actual values.
Figure 2 shows the architecture of the FT-DL model. As can
be seen, this model unites the fast Fourier transformation (FFT)
algorithm with the deep learning (DL) model. Details of the DL
model–which is premised on the random forests model that has
been in our previous studies (Cook et al., 2021b; Lapeyre et al.,
2021; Xu et al., 2021)—can be found in Supplementary Section
S1 of Supplementary Information S1

The calorimetry database used for training and validation
of FT-DL model is composed of: 1) Input variables:
physicochemical properties of (PC + SCM) pastes (e.g.,
mixture design; and physical attributes such as specific
surface areas (SSAs) of the PC and SCM measured using
static light scattering); and 2) Output: time-resolved heat
flow rate profiles, obtained from isothermal calorimetry.
First, the model is trained using a large fraction of the
database. Prior to the training, dimensionality of the heat
flow rate profiles (in the training database) is reduced using
the FFT algorithm. Next, during the training, the model finds
the underlying correlations between input variables and the
FFT-transformed heat flow rate profiles. The trained FT-DL
model is then validated against a testing database (the
remaining minor fraction of the database that is kept
hidden from the model during its training). The model
leverages its training to predict the FFT-transformed heat
flow rate profiles in relation to physicochemical properties of

FIGURE 2 | Schematic of the original FT-DL model, developed in this
study, to predict hydration kinetics (i.e., heat flow rate and cumulative heat
release) of (PC + SCM) pastes. For prediction of cumulative heat release,
thermodynamic constraint–obtained from simulations of phase
assemblages in the pastes–is used to provide guidance to the model, and
constrain its outputs.
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pastes in the testing database. Finally, the model’s predictions
are reverse-transformed, back to time-dependent heat flow
rate profiles–akin to those obtained from isothermal
calorimetry–using the inverse FFT algorithm. In select
cases (e.g., to predict the cumulative heat release of pastes
at 24 h; see section 3.3), thermodynamic simulations of phase
assemblages in the pastes are used to provide theoretical
guidance to the FT-DL model, and to constrain its outputs.
These predictions are then compared against experiments. To
evaluate the accuracy of predictions produced by the FT-DL
model, five statistical parameters–mean absolute error (MAE);
mean absolute percentage error (MAPE); root mean squared
error (RMSE); Person correlation coefficient (R); and
coefficient of determination (R2)—are used. Relevant
equations that describe these parameters–the measures of
errors in the model’s predictions–can be found in our
previous studies. (Cook et al., 2019b; Cai et al., 2020).

Fourier transform (FT) is a signal-processing technique that is
used to convert a complex waveform from its original domain
(e.g., time) to a representation in the frequency domain, and vice
versa. (Cochran et al., 1967; Bergland, 1969; Higgins, 1976).
Time-to-frequency domain conversion, when done for a
dataset comprising a finite number of data-records spanning a
finite range (as opposed to functions, e.g., sin (x), that are
continuous over an infinite domain) (Duhamel and Vetterli,
1990), is called discrete-time Fourier transform (DFT; shown
in )

Ar � ∑
N−1

k�0
Xke

−2πirk/N

r � 0,/, N − 1

(1)

where Ar is the r
th coefficient of the DFT; Xk represents the k

th

sample of the time series which consists of N samples; i � ���−1√
;

and N is the number of data points.

In this study, FFT algorithm–a simple and efficient
algorithm, designed to obtain discrete-time Fourier
transformations of complex datasets–is used to reduce the
dimensionality (or complexity) of heat flow rate profiles of
[PC + SCM] pastes. (Cooley and Tukey, 1965). Compared to
competing algorithms (e.g., conventional DFT), FFT is
computationally more efficient. This is because the number
of required operations is reduced from N2 to N log2N. In
general, the FFT algorithm splits the N-point transformation
into 2 N/2-point transformations in each step. Then, in an
iterative manner, each subset is bifurcated, until the final
subset only has a 1-point transformation. Overall, each
point requires log2N splits, resulting in Nlog2N operations
for generating N-point transformations. The FFT algorithm is
described in Eq. (2). Figure 3 shows representative examples
of FFT transformation of heat flow rate profiles of pastes. As
can be seen, the transformed profiles are much simpler than
their original counterparts. Information contained within the
transformed profiles (Figure 3B) can be expressed using far
fewer number of datapoints than the corresponding original
versions (Figure 3A). This is important because such
reduction in number of datapoints substantially reduces the
time and computational resources (e.g., memory) needed for
the FT-DL model’s training. Furthermore, as the number of
inflection (i.e., non-differentiable) points in the transformed
profiles are significantly lower than in the original ones, it is
much easier for the FT-DL model to establish input-output
correlations from the transformed profiles as compared to the
original ones.

Ar � ∑
N/2−1

k�0
X2ke

−4πirk/N +X2k−1e−2πir(2k+1)/N

k � 0,/,
N

2
− 1;

r � 0,/, N − 1

(2)

FIGURE 3 | (A) Original and (B) FFT-transformed heat flow rate profiles of representative plain and (PC + SCM) pastes. As can be seen, FFT transformation
significantly reduces the dimensionality (complexity) of the profile; thereby making is easier andmore (computationally) efficient for the FT-DLmodel to statistically analyze
the datasets–and learn input-output correlations–during its training.

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 7964765

Han et al. Deep ML to Predict Cement Hydration

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


RESULTS AND DISCUSSION

Validation of the FT-DL Model
The FT-DL model described in section 2.0 differs from the ML
models used in our previous studies (Cook et al., 2021b; Lapeyre
et al., 2021; Xu et al., 2021) (i.e., DL model based on random
forests) in one key respect: In the FT-DL model, the database is
FFT-transformed, prior to the model’s training, so as to reduce
the database’s dimensionality; whereas in the DL model, the
database is used in its pristine form. In section 2.0, it was
argued that the FFT-transformation of the database ensures
better training of FT-DL model; thereby, resulting in
improvement of its prediction performance. To justify this
argument, the prediction performance of the FT-DL model
was compared against that of the DL model; using a synthetic
database featuring a highly nonlinear, and non-monotonous
relationship between the input (X) and the output (Y). Within
the database, the complex input-output relationships are
represented by a composite mathematical function (Eq. (3)).
This function consists of three separate functions: exponential;
trigonometric; and hyperbolic. Here, X is the input; Y is the
output; and A, B, and C are coefficients ranging from 0-to-2. The
synthetic database was populated with ∼20,000 data-series (i.e., Y
as a function of X), created by randomly assigning an
independent set of coefficients (i.e., randomly chosen values of
A, B, and C within the pre-selected range of 0-to-2); while varying
X from 0.2 to 4.0 with a step-size of 0.2.75% of data-series were
randomly selected from the database, and used to train the FT-DL
and DL models. The remaining 25% were used to probe and
compare the prediction performances of the two models.

Y � exp( −1
X + A

) + sin[π(B + x)] + C

X
(3)

Figure 4 shows representative predictions (of data-series
included in the testing database) produced by the DL and FT-
DLmodels; the actual data-series, calculated directly from Eq. (3),
are also shown. As can be seen, the prediction performance of the
FT-DL model is clearly superior to that of the DL model. This

result is in agreement with our previous studies, (Cook et al.,
2019b; Han et al., 2020a; Han et al., 2020b), wherein we have
shown that standaloneMLmodels–including the random forests-
based DL model–generally exhibit moderate-to-poor prediction
performance over datasets that feature highly nonlinear and non-
monotonous input-output correlations. The FT-DL model–in
which the database is FFT-transformed prior to the model’s
training–produces accurate predictions; because the FFT
transformation substantially reduces the nonlinearity and non-
monotonicity of the database, by transforming it from the
original domain to the frequency domain (see Figure 3). Put
in another way: the FFT algorithm converts each data-series to a
simple, broadly monotonic Y-X relationship; thereby, making it
easier for the FT-DL model to establish the underlying
mathematical relationship between the output and input. The
DL model–on the other hand–must employ brute-force statistical
methods to establish Y-X relationship from the highly complex
data-series; and, consequently, is susceptible to missing key
inflection points (peaks and troughs) and other vicissitudes
(e.g., sharp changes in Y occurring over small ranges of X) in
the data-series.

Prediction of Heat Flow Rate Profiles of
Pastes
Results in section 3.1 demonstrate that the FT-DL model can
produce accurate predictions; even in data-domains featuring
complex input-output correlations. Since Y-X relationships
shown in Figure 4 are similar in nature to heat flow rate
profiles of (PC + SCM) pastes, it is reasonable to posit that
the FT-DLmodel would produce more accurate predictions of PC
hydration kinetics compared to those produced by the DL model.
To test this hypothesis, a calorimetry database–comprising heat
flow rate profiles of (PC + SCM) pastes–was consolidated from
our two prior studies. (Cook et al., 2021b; Lapeyre et al., 2021).
The combined database consists of eight types of PCs: one
commercial cement (CC; type I/II PC); and seven synthetic
cements (SCs). Phase compositions of the 8 PCs are shown in

FIGURE 4 | Representative predictions of Y of mathematical functions produced by the DL and FT-DL models plotted against calculated Y values. The input, X,
ranges from 0.2 to 2.0. The coefficients (A–C) used in the functions, and the models’ prediction accuracies (R2), are shown in the legends.
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Table 1. The SCMs comprise permutations-and-combinations of
quartz (QZ); limestone (LS); metakaolin (MK); and silica fume
(SF). Other details of this database are described in
Supplementary Section S2.0. The parent database was split
into training and testing databases. The training database
consisted of 13,416 data-records from 559 (PC + SCM) pastes;
and the testing database consisted of 960 data-records from 40
(PC + SCM) pastes. The training database was used for training
the FT-DL model (and the DL model for comparison), and
optimizing the models’ hyperparameters. The testing database
was used to evaluate the prediction performance of the trained
models against experimental measurements. Both databases
include physicochemical attributes of the pastes as inputs: C3S
content (%mass); C2S content (%mass); C3A content (%mass); C4AF

content (%mass); C$H2 content (%mass); types (integers) and
contents (%mass) of SCMs; specific surface area (SSA) of PC
and SCMs (cm (Biernacki et al., 2017). g−1); and time (hour).
The output is time-dependent heat flow rate (mW. gCem

−1) from
0-to-24 h, with a 1-h time-interval between successive steps.
Pertinent statistical variations in the inputs and outputs of the
training and testing databases are shown in Supplemetary Table
S1 and Supplemetary Table S2.

Figure 5 shows representative predictions of heat flow rate
profiles produced by the DL and FT-DLmodels compared against
experimental (isothermal calorimetry) measurements. Prediction
errors are summarized in Table 2; and depicted graphically in
Supplementary Figure S1. As shown in Figure 5 and Table 2,
both DL and FT-DL models produce accurate predictions of heat
flow rate profiles of (PC + SCM) pastes; with R2 ranging from 0.79
to 0.89, andMAE ranging from 0.32 to 0.58 mW gCem

−1. The FT-
DL model–across the board–produces more accurate predictions
compared to the DL model; validating the hypothesis made
earlier in this section. Importantly, the FT-DL model is able to
produce accurate a priori predictions of heat flow rates of new
(PC + SCM) pastes (i.e., new to the model); even during early ages
(i.e., between 1 h and ±2 h of the main hydration peak) when the
heat flow rates change rapidly from very high values (during stage
I) to very low values (during stage II), and then again to high
values (during stage III). Each SCM–depending on its content;

TABLE 1 | Compositions of commercial cement (CC) and synthetic cements (SCs) 1–7.

Cement type C3S (%mass) C2S (%mass) C3A (%mass) C4AF (%mass) C$H2 (%mass)

CC 62.37 19.35 6.24 9.35 2.69
SC 1 90 0 4 0 6
SC 2 92 0 4 0 4
SC 3 88 0 8 0 4
SC 4 80 0 8 0 12
SC 5 70 0 12 0 18
SC 6 82 0 12 0 6
SC 7 100 0 0 0 0

FIGURE 5 | The FT-DL and DLmodels’ predictions of heat flow rate profiles of: (A) (commercial cement (CC) + limestone (LS) + silica fume (SF)])paste; (B) [synthetic
cement 1 (SC 1) + limestone (LS) + metakaolin (MK)] paste; and (C) [synthetic cement 6 (SC 6) + limestone (LS)] paste compared against experimental measurements.
Coefficient of determination (R2) of each prediction is shown in the legends.

TABLE 2 | Statistical parameters describing the mean prediction errors
(i.e., averaged over a period of 24 h) of DL and FT-DL models. Errors were
estimated by comparing predicted heat flow rate profiles of (PC + SCM) pastes
against experimentally-measured ones. Time-solved prediction errors are
descried in Supplemetary Information.

ML model R R2 MAE MAPE RMSE

Unitless Unitless mW. gcem
−1 % mW. gcem

−1

DL 0.8935 0.7983 0.5852 41.07 0.8211
FT-DL 0.9454 0.8937 0.3188 18.36 0.5289
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physical properties (mainly fineness); and composition–casts
unique influence on the heat flow rate profile. For example,
fine limestone and fine quartz cause leftward shift of the heat
flow rate profile; (Cook et al., 2019a); resulting in steeper rise to,
and earlier occurrence of, the main hydration peak. In contrast,
fine metakaolin, when used to replace d20%mass of PC, causes
deceleration of PC’s hydration kinetics; (Lapeyre and Kumar,
2018; Cook et al., 2019a; Lapeyre et al., 2019); which manifests as
delayed occurrence of the main hydration peak (although the
peak’s intensity is comparable to, and sometimes greater than,
that of its plain paste counterpart). Coarse metakaolin also causes
deceleration of PC’s hydration rates; but–owing to metakaolin’s
slow dissolution kinetics–the deceleration is minor, sometimes
imperceptible (Lapeyre et al., 2019). Notwithstanding these
disparate influences of SCMs, Figure 5 and Table 2
demonstrate that the FT-DL model can capture the effects of
SCM type and physicochemical attributes during its training; and
capitalize on this knowledge to produce reliable predictions of
hydration behavior of new [PC + SCM] pastes. The DLmodel–on
the other hand–fails to capture the critical inflection points of the
heat flow rate profiles. As can be seen in Figure 5, for each of the
three (PC + SCM) pastes, DL model’s predictions of the time of
occurrence and intensity of the main hydration peak are not
accurate. The main hydration peak is a critical juncture of the
hydration process; as it is indicative of the period that generally
occurs a few hours after the paste sets, and begins to gain strength
at a rapid rate due to massive precipitation of hydrates. (Mehta
andMonteiro, 1976; Taylor, 1997; Bullard et al., 2011; Mehdipour
et al., 2017). Because of the significance of the main hydration
peak, in many prior studies, (Kumar et al., 2012; Scherer et al.,
2012; Oey et al., 2013; Masoero et al., 2014; Ley-Hernandez et al.,
2018), the accuracies of kinetic models (and the underlying
mechanisms that were implemented within the models) have
been adjudicated–almost exclusively–on the basis of whether or
not they were able to capture the experimentally-observed main
hydration peak. Since the DL model was unable to capture the
main hydration peak–whereas the FT-DL model was–it is
justified to say that the FT-DL model is the more reliable tool
to produce a priori predictions of heat evolution profiles of
cementitious binders.

As stated earlier in section 3.1, the disparity in the prediction
performance of the DL model vis-à-vis the FT-DL model arises,
mainly, from the FFT algorithm; which is integrated in the latter
model, but not in the former. In the FT-DL model, the FFT
algorithm–which is used to preprocess the training database prior
to the model’s training–substantially reduces the nonlinearity and
non-monotonicity of heat flow rate profiles; thereby, reducing
their complexity (see Figure 3). This reduction in complexity
becomes particularly important when the volume of the training
database is low (e.g., the database used in this study, which
comprises heat flow rate profiles of only ∼600 pastes). If a
large database were used, most ML models–including the DL
model–would be able to statistically (i.e., by brute-force) process
input-output maps–with both inputs and outputs spanning a
wide range of magnitudes–and establish a sufficiently-accurate
mathematical correlation between them. But, in a small but
complex database, establishing such correlation is not easy.

Furthermore, the FFT-transformed heat flow rate profiles
contain fewer data-records compared to the original ones; this
ensures that the computational resources (e.g., number of
processing threads; memory; etc.) required to train the FT-DL
model are substantially less than the DL model.

Prediction of Cumulative Heat Release
Results in section 3.2 show that the FT-DLmodel is a reliable tool
for a priori predictions of time-dependent heat flow rate
profiles–or hydration kinetics–of (PC + SCM) pastes. These
predicted heat flow rate profiles can simply be processed
(i.e., integrated with respect to time) to obtain time-dependent
cumulative heat release profiles. Cumulative heat release profiles
are important for a practical standpoint; as several past studies
have shown that the cumulative heat released from PC’s
hydration in a binder is directly correlated with the binder’s
rheological properties, (Mehdipour et al., 2017; Meng et al., 2019;
Ferraz et al., 2020), setting time, (Vance et al., 2013b; Lootens and
Bentz, 2016), and compressive strength. (Bentz et al., 2012;
Kumar et al., 2013a; Kumar et al., 2013b; Mehdipour et al.,
2017). Put in another way: cumulative heat release profiles can
be used to roughly estimate important compliance-relevant
properties of binders; thus, eliminating the need for costly,
cumbersome, and time-consuming experiments. For instance,
if the 24-h cumulative heat releases of [PC + SCM] pastes are
known, this information can be used to rank and order the pastes
on the basis of their 24-h compressive strengths. (Bentz et al.,
2012; Mehdipour et al., 2017).

In this study, the predicted heat flow rate profiles of all (PC +
SCM) pastes (in the testing database) were processed to obtain
cumulative heat release profiles; which were then compared
against experiments. It was found–expectedly, as discussed in
section 3.1—that the FT-DL model’s predictions were more
accurate than those produced by the DL model. However, the
prediction errors–as evaluated using the five statistical
parameters discussed in section 2.0—were, in general, greater
than those associated with predictions of heat flow rate profiles.
This is because the prediction errors of heat flow rate profiles
accrue as they are integrated to obtain the cumulative heat release
profiles. Therefore, to obtain reliable predictions of cumulative
heat release–especially at critical ages (e.g., at 24 h, at which the
paste’s strength is used as a qualification criterion for use in
construction of infrastructure (Taylor et al., 2015))—it is
important to further finetune the FT-DL model. Towards this
end, thermodynamic simulations of phase assemblages in the
pastes (summarized below; and in Supplementary Section S3.0
of Supplementary Information S1) were used to provide
theoretical guidance to the FT-DL model, and to constrain its
outputs.

GEMS (Lothenbach et al., 2019; Kulik et al., 2012) was used to
produce thermodynamic simulations of phase assemblage
evolution in (PC + SCM) pastes in relation to their mixture
design (i.e., composition and mixture proportions of precursors
used to formulate the binders). Phase assemblages obtained from
the simulations (see Figures 6A,B) reveal the volumes of all
reactants (i.e., PC; and SCMs) and products (i.e., hydration
products such as C-S-H and ettringite) at increasing degrees of
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reaction of the main reactant (PC or SCM). (Lothenbach and
Winnefeld, 2006; Lothenbach et al., 2008). To obtain accurate
phase assemblages, it is important to specify the degree of
reaction of PC and of the SCM (if it is reactive). PC’s degree
of reaction at any given age–for example, at 24 h–can be
estimated directly from the cumulative heat release at that age.
More specifically: PC’s degree of reaction in each paste at 24 h is
equivalent to the ratio of cumulative heat release at 24 h to the
enthalpy of hydration of PC. The enthalpy of hydration of each
PC (i.e., either the commercial PC, or one of the seven synthetic
ones) is calculated as the sum of enthalpies of hydration of each of
its constituent phases [C3S ≈ 500 J g−1; C2S ≈ 260 J g−1; C3A
(reacting with C$H2) ≈ 1160 J g−1; and C4AF ≈ 725 J g−1 (Taylor,
1997; Kurdowski, 2014).] multiplied to its respective mass
fraction. In this study, four different types of SCMs were used:
quartz; limestone; silica fume; and metakaolin. Quartz and
limestone dissolve at very slow rates; as, as such, in the
thermodynamic simulations, they were assumed to be inert
(i.e., degree of reaction at 24 h � 0.0) (Cook et al., 2019a; Oey
et al., 2013; Kumar et al., 2017; Berodier and Scrivener, 2014).
Silica fume and metakaolin–on the other hand–dissolve (albeit
slowly), and can partake in chemical interactions with anhydrous
cementitious phases (e.g., metakaolin can react with C3A and
C$H2) and hydrates (e.g., metakaolin and silica fume can undergo
pozzolanic reaction with portlandite, a hydrate present in the
paste). (Cook et al., 2019a; Lapeyre et al., 2019; Lapeyre and
Kumar, 2018; Meng et al., 2019). Therefore, to obtain accurate
phase assemblages of metakaolin- and silica fume-containing
pastes, it is important to determine their degrees of reaction.
In a series of prior studies, (Cook et al., 2019a; Lapeyre et al., 2019;
Lapeyre and Kumar, 2018; Meng et al., 2019), it has been shown
that the degrees of reaction of silica fume and metakaolin range
between 5-and-15% within the first 24 h. To determine the
precise degrees of reaction at 24 h, GEMS simulations of all
[PC + SCM] pastes were employed by varying silica fume’s
and metakaolin’s degree of reaction from 5-to15%; while using

PC’s degree of reaction at 24 h as calculated from cumulative heat
release profiles, and assuming that limestone and quartz are inert.
Based on the simulation results (Figure 6B), it was found that
across all (PC + silica fume) and (PC + metakaolin) pastes, a
degree of reaction of 12% for silica fume and degree of reaction of
6% for metakaolin resulted in a near linear relationship between
the cumulative heat release and the volume fraction of hydrates
(Figure 6C). We chose specifically to evaluate this relationship to
estimate the pozzolanic SCMs’ degrees of reaction, because
cumulative heat release of any (PC + SCM) paste is correlated
with the extents of reaction of the reactants (i.e., PC and SCM);
which, in turn, dictates the amounts (or volume fractions) of the
hydrates. In Figure 6C, it should be noted that results pertaining
to plain pastes [PC + quartz] pastes, and (PC + limestone) pastes
are also included; which justify our assumption that limestone
and quartz are inert in the first 24 h. An important aspect of
Figure 6C is the generic mathematical equation that describes the
relationship between cumulative heat release and volume fraction
of hydrates in ∼600 (PC + SCM) pastes. It should be noted that
both the cumulative heat and volume fraction of hydrates account
for not just the hydration of cement but also cement-SCM
interactions. This relationship–in and of itself–is an important
outcome; since, it allows researchers to promptly estimate the
volume fraction of hydrates in any given (PC + SCM) paste using
its 24 h cumulative heat release as the sole input. The volume
fraction of hydrates–which is a crude measure of the solid-to-
solid connectivity within the paste (Zalzale and McDonald, 2012;
Zalzale et al., 2013; Lootens and Bentz, 2016; Banala and Kumar,
2017)—can be used to roughly estimate the compressive strength
and porosity of the paste. The authors would like to clarify that
the volume fractions of hydrates in (PC + SCM) pastes–shown in
Figure 6C–can be predicted directly from the FT-DL model; as
opposed to deriving them from GEMS simulations. For this, the
FT-DL model needs to be trained using a new database;
comprising the same input variables as those described in
section 3.2, and the volume fraction of hydrates

FIGURE 6 | (A) Equilibrium phase assemblage, estimated using GEMS, of a representative (synthetic cement 1 + limestone (LS) paste at 24 h. The vertical dashed
line indicates the phase assemblage at 24 h based on the degree of hydration of PC as estimated from the cumulative heat release. (B) Equilibrium phase assemblage of
a representative [commercial cement + silica fume (SF)] paste at the age of 24 h. Here, the degree of hydration of PC at 24 h is estimated from isothermal calorimetry. The
vertical dashed line represents the degree of reaction of silica fume. (C) A linear correlation between volume fraction of hydrates and cumulative heat release at 24 h
of ∼600 [PC + SCM] pastes used in this study (PC + pozzolan) pastes are silica fume- andmetakaolin-containing pastes; and (PC + filler) pastes are either plain pastes, or
pastes that contain limestone or quartz.
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(estimated from GEMs simulations) as the output. Once trained,
the FT-DL model can predict the volume fraction of hydrates in a
new (PC + SCM) paste using its mixture proportion and
physiochemical attributes as inputs. Therefore, it can be said
that the FT-DL model can not only produce reliable, a priori
predictions of hydration kinetics but also of phase assemblages of
(PC + SCM) pastes.

Outcomes of thermodynamic simulations–shown in
Figure 6C–allow us to correlate the cumulative heat release (at
24 h) with the volume fraction of hydrates in (PC + SCM) pastes.
In this study, this correlation was used as a thermodynamic
constraint to guide and regulate the predictions of 24 h
cumulative heat release of (PC + SCM) pastes. More
specifically, for any given (PC + SCM) paste, the heat flow
rate profile–and then the cumulative heat release at 24 h–was
predicted using the FT-DL model described in sections 3.1 and
3.2. Next, the predicted value of the 24 h cumulative heat release
was compared with the cumulative heat release derived from
Figure 6C (using the paste’s phase assemblage (i.e., volume
fraction of hydrates at 24 h), calculated from thermodynamic
simulations (GEMS), as input]. If the deviation between the two
predictions was found to be smaller than 10 J. gcem

−1, the
prediction from the FT-DL model was selected as the final
output. Otherwise, the cumulative heat release from the
thermodynamic simulations was selected as final output.
Figure 7 compares the predictions of 24-h cumulative release
of (PC + SCM) pastes obtained using the unconstrained FT-DL
model and the thermodynamically-constrained FT-DL model.
The corresponding prediction errors are summarized in Table 3.
As can be seen, predictions of 24 h cumulative heat release from
the thermodynamically-constrained FT-DL model are

significantly more accurate than the unconstrained FT-DL
model. This result clarifies that guidance from thermodynamic
simulations significantly boosts the ability of the FT-DL model to
predict the hydration kinetics of (PC + SCM) pastes. It must be
noted that, in Figure 7, the 24 h cumulative heat release of the
pastes is used merely as a representative example. The
thermodynamically-constrained FT-DL model can be used–in
similar fashion–to produce a priori predictions of the cumulative
heat release at other ages (0 ≤ age ≤24 h) as well.

DISCUSSION

Development of a Closed-form Analytical
Model
Results in section 3.0 show that the FT-DL model–especially
when integrated with thermodynamic guidance and
constraints–can produce reliable, a priori predictions of
hydration kinetics and phase assemblages (e.g., volume
fraction of hydrates at a given age) of (PC + SCM) pastes. It
must, however, be acknowledged that the FT-DL model–while
powerful–is not accessible to end-users; especially those who have
limited background in computer programming. Hence, it is
important that the learnings of the FT-DL model be distilled
down to simple, closed-form analytical models that can be used
by end-users of all expertise and disciplines. Such distillation of
the FT-DL model into an analytical model also improves the
interpretability of the outcomes; as in an analytical model the
correlation between each input (e.g., physicochemical properties
of binders’ precursors) and the output (i.e., cumulative heat
release at 24 h) is clearly outlined in the form of a
mathematical equation.

To develop a reliable analytical model, it is crucial to select
input variables that cast significant influence on the output, while
disregarding those which are largely inconsequential. The “DL”
part of the FT-DL model is important in this context; because, it
can statistically evaluate–in the form of Gini scores (Xu et al.,
2021; Han et al., 2020a; Han et al., 2020b; Breiman, 2001; Menze
et al., 2009)—the influence of each variable on the output. Results
from this analysis are shown in Figure 8. Here, the contents of
C$H2, C3S, C3A, and SCM cast the strongest influence on the 24 h
cumulative release. C3S–being the major phase in PC (Taylor,
1997)—is expectedly an influential factor. C3A and C$H2 are also
influential because these two phases react with each other (and
water) vigorously within minutes of mixing; thereby releasing
heat at a rapid rate for few hours, followed by relatively slow,
near-constant rate of heat release. (Taylor, 1997; Bullard et al.,

FIGURE 7 | Predictions of cumulative heat at 24 h produced by the FT-
DL model–with and without thermodynamic constraint–compared against
experimental measurements. The coefficients of determination (R2) of the
predictions are shown in the legends. The dashed and solid lines
represent the line of ideality and ±10% error bounds, respectively.

TABLE 3 | Statistical parameters describing the errors in predictions of 24 h
cumulative heat release, as produced by the unconstrained and
thermodynamically-constrained FT-DL models.

ML model R R2 MAE MAPE RMSE

Unitless Unitless J. gcem
−1 % J. gcem

−1

Unconstrained FT-DL 0.6935 0.4809 21.63 8.087 27.64
Constrained FT-DL 0.9033 0.8161 13.24 4.887 16.79
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2011; Kurdowski, 2014). SCM content and specific surface area
(SSA) are also influential; as these variables dictate the ability of
the SCM to influence the overall hydration kinetics through the
filler effect, and/or pozzolanic effect, and/or chemical interactions
with other paste components. (Juenger and Siddique, 2015;
Lapeyre and Kumar, 2018; Cook et al., 2019a; Lapeyre et al.,
2019). C2S and C4AF react very slowly with water in the first 24 h;
thus, their effects on the overall hydration kinetics are not
significant. (Bullard et al., 2011; Cook et al., 2021a). SSA of
PC is known to profoundly affect its hydration kinetics
(Bullard et al., 2011). However, owing to limited variability in
SSA of PC in the database used in this study, it is evaluated as the
less influential. SCM type is appraised to be the least important
variable. This–once again–is because only two types of SCMs
(fillers and pozzolans) were used in this study.

Variable importance, shown in Figure 8, was used to guide the
mathematical form of the closed-form analytical model. SCM
type, C2S content, and C4AF content were excluded due to their
low variable importance; but the other influential input variables
were included. C$H2 content and C3S content were assigned
greater weight; by raising them to the second power. The general
form of the analytical model, thus developed, is shown in Eq. (3).
Here, CH is the cumulative heat release at 24 h (J.gcem

−1); Ci is the
coefficient for each input variable; Mi is mass percentage of
component i (%mass); and Aj is SSA of component j (cm
(Biernacki et al., 2017).g−1).

CH24 hours � C0 + C1 ×M2
C3S

+ C2 ×MC3A + C3

×M
CH2

2 + C4 ×MSCM + C5 × APC + C6 × ASCM

(4)

In the analytical model, six coefficients and one constant
need to be optimized. Those coefficients were optimized for
two scenarios: 1) (PC + pozzolan) pastes; and 2) (PC + filler)

pastes; wherein silica fume and metakaolin are treated as
pozzolans, and limestone and quartz are treated as fillers
(as discussed in section 3.3). A nonlinear, gradient-descent
scheme (Han et al., 2020a; Han et al., 2020b; Lapeyre et al.,
2021)—based on the Nelder-Mead multi-dimensional simplex
algorithm (Nelder and Mead, 1965; McKinnon, 1998)—was
used to optimize the coefficients of the analytical model. The
optimal coefficients for (PC + pozzolan) pastes and (PC +
filler) pastes are shown in Table 4. Final predictions of the
24 h cumulative heat release of both types of pastes are shown
in Figure 9.

As can be seen in Figure 9, the analytical model–despite being
much simpler and easier-to-use than its parent model (FT-DL
model)—produces accurate predictions (i.e., margin of error
within ±6.3%) of 24 h cumulative heat release of (PC +
pozzolan) and (PC + filler) pastes. The values of R are 0.81
and 0.90 for (PC + pozzolan) pastes and (PC + filler) pastes,
respectively; which are commensurable to that of the FT-DL
model (R ≈ 0.90). Importantly, the analytical model has a simple
polynomial form; which can be coded into any spreadsheet
software by end-users of all disciplines and expertise to
produce a priori predictions of heat evolution behavior of

FIGURE 8 | Ranking of input variables (descending order of variable importance), based on their abilities to influence the 24-h cumulative release of (PC + SCM)
pastes at 24 h.

TABLE 4 | Optimum values of coefficients and the constant for the analytical
model shown in Eq. 3. Themodel can be used to estimate the 24 h cumulative
heat release of (PC + pozzolan) pastes and (PC + filler) pastes.

(PC +
pozzolan) pastes

C0 166.2189 C1 −0.0027 C2 8.7031

C3 −0.5031 C4 1.4123 C5 0.0106
C6 −0.0001

[PC + Filler] pastes C0 135.243 C1 0.0044 C2 5.692
C3 −0.3137 C4 1.8383 C5 0.0053
C6 0.0014
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(PC + SCM) pastes; using just a few mixture design parameters as
inputs. It is worth pointing out that in Figure 9, the 24 h
cumulative heat release is used as a representative example.
Using the method described in this section, cumulative heat
release at other critical ages can also be predicted.
Furthermore, the cumulative heat release predictions produced
by the analytical model can be plugged into the equation shown in
Figure 6C to directly estimate the volume fraction of hydrates in
the (PC + SCM) pastes. Therefore, as a standalone prediction tool,
the analytical model–although not as sophisticated or accurate as
the FT-DL model–can be used for a priori predictions of
important aspects of both hydration kinetics and phase
assemblage development in PC-based binders.

Conclusion
Supplementary cementitious materials (SCMs: e.g., limestone;
calcined clays; etc.) are typically used to partially replace
Portland cement (PC) in concrete to reduce its energy-
intensity and carbon footprint. SCMs–depending on their
composition; physical properties (e.g., fineness); and
content–cast significant influence on PC’s hydration
behavior; thus, affecting nearly all fresh- and mature-state
properties of concrete. For decades, researchers have
attempted to develop analytical models–premised on
theories and mechanisms learned from classical materials
science approaches–that would be able to produce a priori
predictions of (PC + SCM) binders. While the pursuit of
theory-based models is essential for the advancement of our
understanding of underlying composition-reaction-
microstructure-property correlations in (PC + SCM)
binders, our current piecemeal understanding of these

correlations has thus far stymied the development of such
models.

In recent years, machine learning (ML)—coupled with a
large database (i.e., Big data); comprised of experimental
measurements, and/or experimentally-validated
simulations–has emerged as a promising approach to learn
the intrinsic cause-effect correlations in materials, including
(PC + SCM) binders (e.g., pastes); and, then, to capitalize on
such learnings to predict the properties of new materials by
simply using their easy-to-measure physicochemical
characteristics as inputs. While promising, widespread use
of ML models is hindered because they: 1) Require “Big” data
for their training (which is difficult to produce, or mine from
literature); and 2) Provide little-to-no insights into the origins
of the materials’ behavior/properties (and, thus, are perceived
as black boxes).

In this study, an original deep learning (DL) model was
developed, with the objective of predicting hydration kinetics
(i.e., time-dependent heat flow rate, and cumulative heat release),
and phase assemblage development (e.g., volume fraction of
hydrates at a specific age) in (PC + SCM) pastes. A fast
Fourier transformation (FFT) algorithm was integrated into
the model: to reduce the dimensionality of the database used
to train the DL model; and to make it easier, and computationally
efficient, for the model to learn the input-output correlations
from a relatively small database (comprised of reaction behavior
of only ∼600 distinct [PC + SCM] pastes). Results obtained from
extramural thermodynamic simulations (conducted using
GEMS: a free-to-use, and publicly accessible, thermodynamic
modeling software) were also integrated into the model: to
provide theoretical guidance to the model; and to constrain its
outputs, to ensure that they do not violate basic thermodynamic
rules. It was shown that the model–i.e., thermodynamically-
constrained FT-DL model–produced accurate a priori
predictions of hydration behavior and phase assemblage
development of (PC + SCM) pastes. The training and
outcomes of the FT-DL model were then used to develop a
closed-form analytical model. The analytical model–albeit not as
sophisticated or accurate as the FT-DL model–was shown to be a
simple, easy-to-use prediction tool to produce reliable a priori
predictions of important aspects of both hydration kinetics and
phase assemblage development in (PC + SCM) binders.

The FT-DL model–and its simpler derivative, the closed-form
analytical model–that are presented in this study demonstrate
that, even with small data (rather than Big data), reliable
predictions of reaction behavior and microstructural evolution
(phase assemblage) of cementitious systems are possible. As with
any ML model, it is expected that the FT-DL model’s accuracy
would improve if/when it is trained with a larger, more diverse
Big Data. Such a Big Data/FT-DL platform–if created and
disseminated–would give researchers and end-users
unprecedented access to data (information); and empower
them with reliable prediction (and optimization) tools to tune
locally-available–but often overlooked and/or
underutilized–materials (e.g., volcanic, and off-specification
ash; waste-to-energy residue produced from incineration of
municipal waste) to function as CO2-efficient SCMs.

FIGURE 9 | Predictions of 24-h cumulative heat of (PC + pozzolan)
pastes and (PC + filler) pastes compared against experimental
measurements. Mean absolute percentage errors (MAPE) of the predictions
are shown in the legends. The dashed and solid lines represent the line of
ideality and ±10% error bounds, respectively.
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