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ANALYSIS OF TUNABILITY FOR A 
THREE TERMINAL MICROWAVE NETWORK

M. J. Bahr,
Department of Electrical Engineering 

University of Missouri - Rolla, Rolla, MO 65401

ABSTRACT

Three-terminal microwave networks can be shown to exhibit qualities that would make them 
desirable to be used as multiple terminal devices. Using microwave theory, where instantaneous voltage 
is a function of position on the line, this situation will be examined. These devices use the interference 
principle of propagating waves as the basis of their characteristics. This investigation will probe a three- 
terminal microwave network with one input and two output. This configuration acts similar to a splitter 
where the outputs may be controlled. These three terminals, plus manipulation of the lengths of each 
side, actually makes this a four terminal device, much like a transistor with one source, one gate, and two 
drains. The three terminal network will be examined in a situation such that the lengths of two of the 
sides will be varied and the wavelength will be held constant. The power of the signal at each of the 
output terminals, along with reflected power will be recorded. By using a case where the total length of 
the ring is an integer number of wavelengths, two cases of behavior arise. One case exhibits qualities 
much like the Aharanov-Bohm effect. The other case has tendencies to reflect most of the incoming 
signal, except near equal length sides.

I. INTRODUCTION

The three terminal microwave network that will be discussed consists of three equal lengths of 
transmission line. First, the total length of the three sides combined will be held constant, and the 
wavelength adjusted, while measuring the reflected power. The reflected power of the network is then 
seen as a function of the ratio of total length to wavelength. The function of reflected power is periodic 
every 3N, N being an integer.

The tunability of this network can be examined by fixing the input wavelength. For instance, the 
wavelength is set so that the total length of the three sides contains an integer value of wavelengths. The 
input terminal of the network is adjusted so that the lengths of the two sides adjacent to the input 
terminal are varied. The total length of the sides remains the same, so one of the adjacent side's length 
increases by a small amount, and the other adjacent side's length decreases by the same small amount. 
The power at the output terminals, along with the reflected power, are then seen as a function of the 
amount of the change in length per side, or A. For the integer values of the ratio of total length, or L, to 
wavelength, or X, two cases were observed to exist. In one case, A can be set so that the power is seen 
only in one of the output terminals. In the other case, each individual side is an integer number of 
wavelengths, and the output terminals' powers are both even functions.

The importance of this, however, is that this is a microwave analogy of the three terminal 
networks proposed by Wu, Javurek, and Bookout^ [1991]. Thus, the qualities of this three terminal 
microwave network are similar to the Aharanov-Bohm effect, which may be used for a quantum 
circulator. The evaluation of the network will be discussed in Section III, including two cases for integer 
values of L / X, an d non-integer values. The derivation for the numerical analysis is shown in Section II.

II. THEORETICAL DERIVATION FOR A THREE-TERMINAL MICROWAVE NETWORK
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The three terminal ring, with equal length sides, and only one input, is shown in the figure 1.

On a simple transmission line, where y = ot + jfi, (lossy)2

V(x) = AeYx + Be"Yx = a cosh(yx + 8), (1)

V(l) = V(0) [cosh(y 1) + sinh(y 1) tanh(8)]. (2)

Now, in a node with three branches, using Kirchhoff's Current Law,

v t  v 1 * dV „ ^dV  D i = I — * —  = 0, or £ —  = 0. 
Z dX dX (3)

By substitution Eq. (2) into (3), then

tanh(8i) + tanh(82) + tanh(83) = 0. (4)

This gives a phase relation between 8i ,  82, and §3> the phases of the incoming waves.

If Eq. (2) is applied to the three lines at node 1, then

V(ll) = V(0) [cosh(YU)+sinh(yli) tanh(80/n)], (5)

V(13) = V(0) [cosh(Y b ) + sinh(y I3) ta n h ^ ft)] , and (6)

Vin = V(0) [cosh(Y lin) +  sinh(y lin) tanh(807iin)]. (7)

By dividing each Eqs. (5), (6), and (7) by the sinh term, and then summing the three, the node 
equation may be found:
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V(ll) V(13) V(lin)
V(0)[coth(yll) + coth(yl3) + coth(ylin)]------- — ---------- — ----------— — =0. (8)

sinh(yil) sinh("y!3) sinh(ylin)

This can be applied to each of the three nodes. The other two nodes give the following

V(0) V(13) V(lout,l)
V (11 )[coth (yl 1) +  coth( yl2) + coth( ylout, 1)]--------------------------------------------------=0 (9)

sinh(yll) sinh(y!2) sinh(ylout,l)

V(0) V(ll) V(lout,2)
and V(13)[coth(yl2) +  coth(yl3) + coth(yk)ut,2)]-------------------------------------------------- =0 (10)

sinh(y!3) sinh(y!2) sinh(ylout,2)

The Eqs. (8), (9), and (10) have three independent unknowns: V(0), V (li), and V(l3); and their 
three dependent variables V(lin), Vflou^i), and V(lout/2)- 

For the transmission line of figure 1,

(11)

is defined as the input reflection coefficient. Eq. (2) is applied to the input terminal, and the
0 A ~ B

tanh(o) is given as --------, so
A + B

A - B
V(lin) = V(0)[cosh(7lin) + --------sinh(7iin)], or

A +  B

1 -  Rin
V(lin) = V(0)[cosh(7lin) h-----------sinh(Ylin)].

1 + Rin

Likewise, by using the above equations, and using Rout = — for the reflection coefficient of any
B

output loads, the other two equations relating the dependent variable to the independent variables are

(14)
„ Rout, 1 -  1
V(lout,l) =  (Vll)[cosh(7lout,l) + ------------- sinh(Ylout,l)] and

Rout,l +1

Rout, 2 -1
V(lout,2) = (V13)[cosh(ylout,2) + --------------sinh(ylout,2)].

Rout, 2 +1
(15)

By inserting Eqs. (13), (14), and (15) into Eqs. (8), (9), and (10), they become three equations, three 
unknowns:

V(0)[coth(Yll) +  coth(vl3) -  — ***"] +  V(ll)[— —— } + V(13)[------ ----- ] = 0
1 +  Rin sinh(Yll) sinh(Yl3)

 ̂ -1 Rout,l -1  -1
V(0)[ —  ] +  V(ll)[coth(yll) + coth(y!2)--------------- ] + V(13)[— ----- - ]  = 0

sinh(^l) Rout,l +1 sinh(y!2)

(16)

(17)

- 7 7 -



-1 -1-1 -1 R o u t,2 -l
and V(0)[------------ ] + V(ll)[------------ ] +  V(13)[coth(yl2) + coth(^3) -   ------— ] = 0.

sinh(y!3) sinh(yl2) Rout,2 + l
(18)

Since only one input is assumed, then Rout,l Rout,2 are equal to zero. Rin can then be solved 
for by setting the matrix of the coefficients to zero. From this, Rin/ and by normalizing the input to one,

V(0) = 1 +  Rin- (19)

With V(0) known, V(li) and V(l3) are found by using the Eqs. (17) and (18) and solving them in 
matrix form.

m. NUMERICAL RESULTS AND DISCUSSION

The first situation that was examined involved the three terminal ring with equal lengths. The 
power in the reflected signal was examined as a function of the ratio of total length of the ring to the 
wavelength. This graph is shown in figure 2, which is plotted for L/X from 3 to 6, which is one period. 
Since the graph is periodic, the value of L/X^=10 corresponds to 4 on this graph, 11 corresponds to 5, and 
12 corresponds to 6.

Figure 2 - Reflected Power versus L / X for One Period

From this graph it is evident that at the integer values of 3N, the power is at a minimum of .111 
(lossless). The other integer values of 3N+1 and 3N+2 are also of interest, along with the minimums that 
occur at non-integer values. Of the integer values, two cases of results arise, with one case having two 
sub-cases.

Case I: 3N+1, 3N+2

The first case consists of the ratio of total length to wavelength being either 3N+1 or 3N+2. To

investigate these, an equivalent length ring was used with a fixed wavelength equal to or — +  2 .

The tunability of the ring was examined. The input terminal position was varied by A, thus changing 11 
by + A and 13 by - A. The power in the reflected signal, V(li), and V(l3) are shown for L/X. = 10 in figures 
3, 4, and 5 for both lossless and lossy cases. The period for A for all three functions was found to be X/2. 
The power of the reflected signal is also an even function. Some points of interest include A = 0 and A = ± 
X /6. At A = 0, the power in the reflected signal reaches a maximum of .179 (lossless), and the output 
powers are equal to .410 (lossless). However, at A = ±  X./6  is of particular interest. At the negative 
location, V(li) has no power, whereas V(l3) has all of the power, with no power reflected. At the positive 
location, V(l3) has all of the power, with V(l|) and the reflected power equal to zero. At A = ±  X/6, the 
lengths of the sides are such that the waves come into one of the output terminals exactly in phase. For
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example, if L A =10, and L is set to 3, then each individual side is equal to (10/3) * X. If A is equal to X/6, 
then li is increased to (21/ 6) * X and I3 is decreased to (19/6) * X. The path length to output terminal 1, 
through l i ,  is then (21/6) * X, and the path through I2 and I3 is (39/6) * X. The path difference is (1 8 /6 )4 
X, or 3X, meaning that the two waves arrive in phase. Thus, it is possible, through tuning of a three 
terminal ring, to produce a device where all of the input signal could go out one port of all of the signal 
go out another port. This type of tunability is easily done in microwaves by physically changing the 
lengths of each of the sides. However, another method to realize this is optically by adjusting the 
wavelengths of the light by changing the applied electric field. This method would not require any 
physical adjustments on the length of any part, and could be useful for an optical computer.

Figure 3 - Reflected Power versus A for L A =10. The top curve shows lossless case and the bottom curve 
shows a  = 0.05. The graph for Reflected Power versus A for L /X ^ ll  is identical to this graph.

Figure 4 - Power in Output Terminal 1 versus A for LA=10. The top curve shows lossless case and the 
bottom curve shows a  = 0.05. The Output Terminal 2 versus A for L/A ^ll is identical to this graph.
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Figure 5 - Power in Output Terminal 2 versus A for L/X=10. The top curve shows lossless case and the 
bottom curve shows a  = 0.05. The Output Terminal 1 versus A for L /X = ll is identical to this graph.

The lossy case of L/X is also shown in figures 3, 4, and 5. Notice that the minimum of the 
reflected power, and the extrema of the output power curves are at a slightly lower value of A. The peaks 
of the output powers are scaled down from the lossless values. This may be because the attenuation in 
the line affects the strength of the traveling wave. If the waves do not have the same amplitude, as they 
do in the lossless case, then other factors, such as losses, are as important as path difference when 
determining signal strength. Since the path lengths differ, the two waves arriving at an output terminal 
are no longer the same strength.

Likewise, when L/X  = 11 was examined, the results were similar to when the L/X = 10, but the 
results for when the L/X= 11 for a given A were identical to the results of L/X = 10 for the negative value 
of that A. The graphs corresponding to this situation are similar to what is shown in figures 3, 4, and 5. 
Thus, the periods of A are equal to X/2. and the points of total transmission to one output remain at ±  X/6. 
The only difference between the two results is the fact that they are flipped, i.e. V(li(A)) for L/X = 11 is 
equivalent to V(li(-A)) for L/X = 10. For this reason, this case is divided into two sub-cases, one for 3N+1 
and one for 3N+2. Generally, if both devices were placed in a box and the characteristics measured, it 
would be difficult to distinguish between the two, since they have identical periods, maximum, and 
minimum values. But since two different integers can give this result, a distinction between the two must 
be mentioned. A lossy version of L/X is also shown in figures 3,4, and 5.

Case II: 3N

The second case is the situation where the ratio of L/X = 3N. This situation is different mainly 
because, for A = 0, the three terminals are all on the same point of the wave of the signal. The ratio of each 
individual side to wavelength is N. By graphing the power in the reflected signal and each output, 
shown here in figures 6, and 7, it is evident that the output power reaches a maximum at A = 0, and is 
negligible for any value of A that is not very close to zero. Also, the reflected signal contains nearly all of 
the power at for A not close to zero. At A = 0, the power in the reflected signal minimizes at 0.111, and the 
output signal power for both output terminals is equal to 0.444. The period of these three functions is 
also X/2. All three of the signals are also even functions. With this situation, it is not possible to obtain a 
result where all or most of the signal is present at only one of the output terminals, since V(li) is equal to

By examining the path differences in this case, it is evident that since each side is an integer 
multiple of wavelength, they will arrive in phase at all three terminals. However, when the input
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terminal is adjusted by A, the difference in path at the output terminals is such that the waves tend to 
cancel each other. The reflected power is still in phase, though.

Figure 6 - Reflected Power versus A for L/X=12. The top curve shows lossless case, the middle curve 
shows for a  = 0.01, and the wide curve shows for a  =  0.05.

Figure 7 - Power in both Output Terminal 1 and Output Terminal 2 versus A for L/X=12. The top curve 
shows lossless case, the middle curve shows for a  = 0.01, and the wide curve shows for a  = 0.05.

If the attenuation in the ring is increased, then the output terminals begin to pass signals for 
greater values of delta. Graphs for two values of loss are found in figures 6 and 7. The loss in the system 
also appears to create a small hump around A=0 in the reflected power, which appears to have two 
minima about A=0. As the attenuation factor is increased, all three curves appear to widen. The peak 
value for the output value becomes lower because of the attenuation factor. With loss, both output 
terminals are equal to each other. Thus, even with a loss, the signal cannot be routed to a certain direction 
with this case, as both output terminal powers remain an even function.

Discussion of non-integer values of L/X

Another situation that is addressed is where the curve of reflected power versus the ratio of L/X 
becomes a minimum at non-integer values. These values are at 3N+2.093 and 3N+0.907. These functions 
are also periodic every X/2. They differ, however, from Case I and Case II in that the outputs peak at A = 
±.1575 X. Typical values of power at those points (lossless) are reflected = 0.0814, V(li) = 0.0927, and V(l3)
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= 0.8259. Even at the peak values, it is still not possible to route all of the signal to one terminal without 
any leakage to the other terminal. By examining the reflected signal at A = 0, the same value for the 
power is achieved as in Case II (0.111), which was expected, since the wavelength was chosen at the 
minimum of the L/X graph. This case, however, differs starkly from the Case II mentioned above, when 
A is varied.

Another point of interest on figure 2 is at the point where L/X=4.5. At this point, the network 
reflects the signal totally. Since L/X=4.5, then each individual side is one and one-half wavelength. The 
output terminals have no power due to path differences of X/2, so it is all reflected.

Similarity to the Aharanov-Bohm Network

The network described here has certain similarities to the three terminal quantum resistor 
networks proposed by Wu, Javurek, and Bookout [1991]. For example, figure 3, showing reflected power 
is similar to the reflected power in Wu’s network. The general shape of the curves are comparable, and 
the maximum values of the ordinate for zero are identical. The x-axis, however, is not identical. The 
reflected power of the quantum network displays double periodicity, and is shown versus normalized 
magnetic flux. The microwave network is plotted against A. This does not show double periodicity. It 
appears that the values correspond to each other, but the abscissas are not related linearly. The horizontal 
axis is stretched in some places and shrunk in other places. One possible reason for the non-linear 
relation is that the magnetic flux affects the traveling wave in the entire ring, while the changes in A only 
affect two of the three lengths of the network. The output power in figure 4 is also similar to the output 
power in the quantum resistor network. Like the reflected power, the output power takes the same 
maximum and minimum power for both of them. The horizontal axis corresponds in a manner like the 
previous example.

IV. CONCLUSIONS

Using numerical analysis of a three terminal microwave network, the tunability of the ring was 
examined. The interference of the propagating wave along the transmission line affected the behavior of 
the network at the terminals. A graph of reflected power versus the ratio of total length of the ring to 
wavelength was used to pick values of wavelength to investigate. It was showm that for the three 
terminal ring, using only integer values of L/X, there exist two cases of behavior by the power of the 
signal at the three terminals.

In one case, it is possible to adjust the lengths in such a way that the power in the signal is present 
only at one terminal. This case could be useful where one would want to use multiplexing. In the other 
case, it is not possible to have a situation where only one terminal has power present, due to the 
symmetry in the ring and wavelength being an integer value of each individual side. Another situation 
that was examined was when the L/X  curve was at a minimum at non-integer values. When the 
wavelength was fixed at that value, the ring could not be manipulated so that the signal passes onlv 
through one of the output terminals.
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