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Behavior of composites for the nasp project*

Robert B. Stone
Department of Mechanical and Aerospace Engineering 

University of Missouri-Rolla 
Rolla, MO 65401-0249

A b s t r a c t

It is well known that ceramics are strong, highly heat resistant, refractory materials. 
Unfortunately, they are brittle and fail catastrophically. However, the strength as well as 
fracture toughness of ceramics can be greatly improved with the addition of continuous fibers, 
thus obtaining ceramic matrix composites (CMC). Normally the addition of aligned continuous 
fibers to a matrix degrades the transverse (the direction 90° to the fiber axes) properties while 
greatly improving the longitudinal properties. It has been shown that the addition of 
whiskers to a continuous fiber CMC will improve moduli and strength properties in both the 
transverse and longitudinal directions. Any improvement in the transverse direction is a 
tremendous advantage as loads may not always act along the longitudinal fiber direction, thus 
avoiding the necessity for lamination and angle plies.

Strengthening ceramics by the addition of fibers and whiskers can hopefully produce a 
reliable refractory material that will offer service on the National Aerospace Plane (NASP) 
and other related space/hypersonic vehicles. If CMC can be shown to have high strength and 
toughness, they could fill a spot on the nosecap, leading edge surfaces as well as primary 
structures of the NASP.

* This work w as supported by O U R E  (U M R  Opportunity for the Undergraduate Research  
Experience Program), NASA Missouri Space Grant Consortium, and L. R. Dharani, faculty 
advisor.
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I n t r o d u c t i o n

Ceramic matrix composites (CMC) are well known to withstand high temperatures (1000°C and 
higher). 1,2 This characteristic immediately made CMC a contender when the materials search 
was begun for the National Aerospace Plane (NASP).3 CMC were considered for nose cap and 
leading edge structures of the NASP, areas that must withstand extremely high temperatures. 
But before this potential use is achieved, CMC must overcome their poor transverse properties.4 

Reinforcing the brittle CMC with continuous fibers increases its strength and fracture 
toughness in the direction of the fibers while degrading the transverse direction strength.5 The 
addition of randomly oriented fibers is theorized to improve the transverse properties of 
unidirectional fiber reinforced composites. This paper details the research undertaken to test 
this theory as part of an undergraduate research opportunity.

MATERIALS

Any material that can be considered for use on a hypersonic or NASP application must meet 
more demanding requirements than ordinary materials. The inherent properties of ceramic 
matrices meet these requirements: a high oxidation resistance, a high melting point, low 
coefficient of thermal expansion and chemical compatibility of fiber and matrix. The matrix 
used was a 8-10 micron cordierite powder from Ferro. Its properties are given in Table I. 
Continuous silicon carbide fibers were obtained from UBE Industries. Silicon carbide whiskers 
from the American Matrix Company were used to form the hybrid matrix. Fiber and whisker 
properties are given in Table II.

Table I. Properties of the Cordierite Matrix 

Melting Point (°C) Density (g/cm3 ) E (GPa)

14 1 0 2 .6 5 1 1 0

Table II. Properties of the Silicon Carbide Fibers and Whiskers

E (GPa) Density (g/cm3) Diameter (pm)

2 0 0 3 .2 1 6
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CMC F a b r i c a t i o n  P r o c e s s

The fabrication process of CMC is at best time consuming. Four specimens were prepared: matrix 
(M), matrix-whisker (MW), matrix reinforced with unidirectional fiber (MF) and matrix- 
whisker reinforced with unidirectional fiber (MWF). Reviewing the fabrication techniques of
Carroll et al^, essentially the same method was followed. The matrix was cordierite powder 
and the reinforcing fibers and whiskers were silicon carbide.

Pre-Preg Fabricator)
The cordierite specimen was easily fabricated. Powder was measured to produce a 

76mm diameter disk approximately 3mm thick. The powder was then hot pressed. To 
adequately mix the cordierite and silicon carbide whiskers for the matrix and whiskers 
specimen, the components were ball milled in an isopropyl alcohol mixture for 6 hours. The 
alcohol was then dried off, the powder finely ground and hot pressed.

One of the major concerns of producing fiber reinforced composites is obtaining a even 
mixture of matrix and fibers.6 Continuous fibers are contained in a tow of approximately 10,000 
close packed fibers and complete wetting of the fibers by the matrix is difficult. Considerable 
care was taken to insure that maximum fiber wetting was achieved during the fabrication of 
the continuous fiber reinforced composites. A slurry of cordierite powder, water and organic 
binders was ball milled overnight. The mass of cordierite used was 165g, enough to produce one 
disk. The following day the unidirectional prepregs were wound. As shown in Figure 1., the 
silicon carbide fibers were passed across a flame to release the fiber bundle and then passed 
through the continuously agitated slurry via a set of rollers. From there, the slurry coated fiber 
was passed in front of a compressed air nozzle to remove excess slurry and then wound onto the 
octagonal drum. Three layers of fiber were wound onto the drum, completely exhausting the 
slurry supply. It was decided to use three layers so that a specimen could be made from one 
winding. The prepreg was allowed to dry overnight and then it was cut into 76mm diameter 
disks. Care was taken to assure that the laminae were unidirectionally aligned. The organic 
binders were burned off of the prepregs in a small oven and then hot pressed. The organic bum- 
off schedule is presented in Table III.

Figure 1. Pre-Preg Winding Process for CMC

Table III. ORGANIC BURN-OFF SCHEDULE

Temperature (°C)
---------—

120
250
450

B u m D u ra t io n ^
1

1.5
4
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The same procedure was followed for the hybrid matrix, whisker and fiber specimen. 
The slurry contained a 30% V of whiskers. It was prepared as the matrix only slurry with the 
total mass of cordierite and silicon carbide whiskers totalling 165g. The winding and hot 
pressing procedures were the same as those of the matrix and fiber specimen.

Hot Pressing
All specimens were hot pressed in a glassy state in a 76.2mm (three inch) graphite 

mold at 13.8 MPa (2000 psi) and 900°C. The specimens were gradually heated to 900°C and 
pressure was applied at 500°C. When the specimens reached 900°C, they were held at that 
temperature and pressure for one hour. All hot pressing was done at McDonnell Douglas 
Research Laboratory in St. Louis, MO.

Following the hot pressing, a final heat treatment was required to recrystallize the 
matrix. Table IV. presents the firing schedule that was used.

Table IV. Recrystallization Heat Treatment

Ramp Time (min) Temp. (°C) Soak Time (min)

30 275 6 0
360 81 5 18 0
480 95 0 No Soak
120 1150 120

POROSITY

A good test of the fabrication process is the final density of the composites. Experimental 
density was calculated by:

f t = _ m _  (1)
it(<#4)t

where m is the mass of the disk, d is the average diameter and t is the average thickness of the 
disk. The actual densities were compared with the theoretical densities which were 
calculated by the following rule of mixture:

Pt=PfVt + PmVm (2)

where pf is the known density of the silicon carbide whiskers and fibers, Vf is the volume 
fraction of SiC fibers and whiskers, pm is the known density of the cordierite powder and Vm is 
the volume fraction of matrix. The comparison and subsequent porosity levels are presented in 
Table V.

Table V. Porosities of Specimens

Composite Density (g/cm3) %  Void
System Theoretical Actual

Matrix 2 .65 2 .59 2 .3
M a tr ix  & whiskers 2.82 2 .1 6 3 3 .3
Matrix & fiber 2 .87-2 .98 1.88 3 5 .0
M atrix .w hisker & f ib e r 2 .87-2 .98 2 .1 5 2 6 .0
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The matrix densified the most, yielding a calculated density of 97.7% of the theoretical 
density of the cordierite matrix. The continuous fiber reinforced disks were much worse with 
porosity values of 30-35% of the total disk volume. Possible explanations for these porosity 
levels have been explored. The most likely problem in the fabrication process is the hot 
pressing procedure. It is hypothesized that residual organic gases may become entrapped 
within the pressing die. The three specimens that exhibit the lowest densities all have 
organic mixers involved in their pre-pressing fabrication. Other work on CMC has produced 
densities of 99.7% of the theoretical value**.

T e s t in g

To test the transverse properties, the four disks were cut into rectangular blocks at least 57.15cm 
long. Cross section dimensions of the specimens varied: matrix - 5.9mm by 4.3 mm; matrix and 
whisker - 6.7mm by 4.6mm; matrix and fiber - 5.9mm by 4.2mm; and matrix, whisker and fiber - 
5.9mm by 3.2mm. The specimens were cut at a 90° angle to the continuous fiber direction so that 
the fibers were perpendicular to the length of the specimen as shown in Figure 2.

Figure 2. Fiber Orientation of Transverse CM C Specimen

Fiber Direction

It is well known that in brittle materials the normal tensile test cannot easily be 
performed due to presence of flaws at the surface.7 Even though this is a well established fact, 
a tensile test was attempted. It was proposed that the addition of the fibers might toughen the 
CMC enough to allow a tensile test. The specimens failed at very low stresses of the order of 
600kPa (approximately lOOpsi). The tensile tests were conducted on a MTS loading frame with 
hydraulic grips specially designed for composite materials. It was determined that there was 
a slight misalignment of the grips, thus inducing bending stress as well as axial stress and
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possibly explaining the failure at low stresses. This problem will be corrected before future 
tensile tests are performed.

The standard test for brittle materials is the three-point bend test where the modulus 
of rupture is measured. A schematic of the three-point bend test is given in Figure 3. The load P 
is applied at midspan of the specimen which is supported by the two rollers beneath it. At the 
location of the applied load, the top of the specimen is in compression while the bottom 
experiences a tensile stress. Failure always initiates from surface that is in tension and thus at 
failure, the measured stress is the ultimate tensile strength.

Figure 3. Three-Point Bend Test Setup

P

P/2 P/2

The three-point bend tests were conducted on a MTS loading frame at room temperature. 
All four types of CMC were tested at a span of 38.1mm (1.5 in) and had a span-to-depth ratio 
>8.0. The matrix and matrix and whiskers were loaded at a cross-head speed of 0.127mm/sec 
and the matrix and whisker and matrix, whisker and fiber were loaded at a speed of 0.254 
mm/sec. Previous attempts at using an extensometer to measure deflection had not produced 
significant improvements in deflection reading so the cross head displacement was used for the 
deflection reading. Testing data (load and displacement) was stored on a PC via a data 
acquisition program and connection to the MTS Microconsole.

RESULTS

Results of the three-point bend test are given in Table 6. The modulus of rupture or the ultimate 
tensile strength is given by:

3 P L
°*u ” 2 b h 2 (3)

where P is the applied load, L is the span and b and h are the width and height of the 
specimen, respectively.
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Table VI. Results of the Three-point Bend Test 
on 90° Fiber CMC

CMC Type <*u (MPa) L/h

Matrix 112 8 .8 8
Matrix .whisker 145 8 .2 4
Matrix, fiber 2 5 9 .0 4
Matrix, whisker,fiber 4 7 11.78

Three specimens of each group of CMC were tested. The values of the ultimate tensile strength 
given in Table VI represent the average of the three specimens' measured ultimate tensile 
strength. The test results show that the transverse strength of the CMC can be improved by the 
addition of whiskers to the matrix. An improvement in ultimate strength of 88% is indicated 
above. While the failure is still brittle, failure of the matrix, whisker and fiber CMC was less 
catastrophic as an initial crack was observed momentarily before failure. Failure of the matrix 
and fiber CMC was quick and catastrophic.

Figure 4. shows the toughening effect of the whiskers on the transverse properties of 
the matrix, whisker and fiber. The initial change in slope represents the point of matrix 
cracking and the whiskers provide additional load carrying capability past that point.

Figure 4. Toughening Effect of Whiskers on Transverse Direction

Matrix and Fiber

These test results are encouraging. It has been shown that the addition of whiskers to 
the matrix increase the longitudinal properties of CMC, and it appears that whiskers offer 
considerable improvement of transverse properties as well.2'6 Any improvement in the 
transverse properties is welcome as there are few cases of purely axial loads. Unexpected loads 
acting in directions other than the fiber direction can now be more confidently carried.

Conducted at room temperature, the conclusion stated above must be qualified. If CMC 
are to be considered for the NASP and other future hypersonic vehicles, high temperature 
testing must be performed to complete these findings for the transverse properties. Porosity

results presented here do serve as a validdoes affect the strength of the CMC, but t 
comparison of strengths of four classes of CMC.
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