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SOLUTION OF DIVERTOR MA6NET0HYDR0DYNAMIC 
EQUILIBRIA FOR THE STUDY OF ALPHA PARTICLE 

EDGE TRANSPORT IN FUSION PLASMAS
by J. W. Schumer 

Nuclear Engineering

ABSTRACT
Removal of thermalized alpha particles from deuterium- 

tritium (D-T) fusion plasmas can be accomplished through the use 
of divertor magnetic fields if the magnetohydrodynamic (MHD) 
equilibria is well understood [1]. Modifying a MHD variational 
energy principle for poloidal flux surfaces described by 
X = x(P/0) results in an inverse Fourier representation of the 
three-dimensional (3-D) equilibria solution. Application of the 
X(PfO) flux profile allows transformation of the magnetic field 
into a non-singular coordinate system along the divertor 
separatrix [2] and therefore, analysis of different divertor 
schemes. Derivation of the coupled, non-linear differential 
equations follows [5] except in the contravariant representation 
of the magnetic field. Theoretical background, formulation of 
the variational principle, benchmark results, and preliminary 
computations are presented.

INTRODUCTION
Transport, accumulation, and thermalization of alpha parti

cles in a deuterium-tritium (D-T) plasma are critical phenomena 
which may preclude sustained ignition in a fusion reactor. Alpha 
particles are produced by the D-T reaction [1],

\d + \t  - jjjnCl.4.1 MeV *tfe(3.52 (1)

releasing 2.818E-12 J/reaction for continued ignition of the 
plasma. Unfortunately, non-classical transport or containment of 
thermalized helium ash (low energy population of alphas) could 
quench the fusion reaction [1,4]. Removal of helium ash may be 
accomplished using a poloidal divertor (see Figure 1) to scrape 
the plasma edge if ash distributions are fairly flat and if the 
resulting perturbation of magnetohydrodynamic (MHD) equilibrium 
is well understood.
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This research involved 
the enhancement of VMEC 
(Variational Moments Equi
librium Code [5,6,7,83), 
allowing it to solve the high- 
/3 MHD equilibria equations 
associated with a divertor 
magnetic separatrix. The 
separatrix is the bounding 
surface between open and 
closed field lines [2] (see 
Figure 2) and equilibrium 
calculations are simplest when 
using magnetic coordinates 

in which the
contravariant form of the 
magnetic field is defined,

B - V<|>xV8 - Vx (<|>) xVC (2)

where <p is the toroidal flux, 
f is the toroidal angle, x is 
the poloidal flux, and 0 is 
the poloidal angle. However, 
this form is mathematically 
singular along the separatrix 
because the helical flux x*(^) 
is a function of toroidal flux 
alone and the toroidal flux goes to infinity along the 
separatrix. Recent progress [3] has revealed a transformation to 
nonmagnetic coordinates which preserves some of the attractive 
features of magnetic coordinates while removing their 
discontinuous nature. By retaining the helical flux in the 
contravariant form of the magnetic field, defined as

B = V<J)xV0 - Vx(p,0)xVf (3)
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allows for the modification of the variational moments MHD energy 
principle in VMEC and the production of an efficient, finite- 
series representation for the three-dimensional (3-D) plasma 
boundary with a separatrix.

ANALYTICAL DERIVATIONS
M a g n e t ic  f i e l d

Generally, Equation (3) is the form of the magnetic field
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used for solution of force- 
balance equation
F = -JxB + Vp = 0 , where F is 
the residual force vanishing 
at equilibrium and p is the 
pressure on the radial flux 
surface labeled by p .
However, to aid in the 
convergence of the inverse 
Fourier series representation 
used in VMEC, the 
renormalization parameter X is 
introduced, allowing for 
distinction between geometric 
afcd magnetic angles [6]. The 
renormalization parameter is a 
function of the three magnetic 
coordinates a(p,0,C) and is 
used in linear combination 
with one of the cylindrical 
coordinates normally 
visualized with fusion 
toroidal devices (see Figure 3). Unfortunately, implementation 
of this parameter with the poloidal angle does not allow for 
conservation of the magnetic field along flux surfaces. However, 
using X with the toroidal angle satisfies

= 0 when {*= C ± X and results in the following 
contravariant magnetic representation:

B = V<t>xV0 - VxxVC ± VxxVX . (4)

illustrating separatrix and X- 
line (Boozer, 2398).

Taking the dot product of (4) with its covariant basis vectors 
Vai where a = (p,0,C) [10], the contravariant components of B are

-2±(i - 1 > (5a)

■■ -%(i - V (5b)

(<t»p + XP*8 + X e V (5c)

where Jg - (Vp-VQxVf)'1 is the Jacobian. These results will be 
used in the derivation of energy principle.
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Variational Principle
The variational principle 

used for the solution of the 
equilibrium is based on the 
plasma energy

W , ((ISiiV  2  | i 0 (Y-l)
d3x (6)

TOROIDAL
SURFACE POLOIDAL

SURFACE
MAGNETIC
AXIS

where d3x - x(R,<t>,Z) is the 
Cartesian coordinate system 
and 7 > 0 is the adiabatic 
index. By taking the inverse 
representation, for which 
a =a (x) = oi{p ,0, i) , the mass 
and flux are conserved in the 
contravariant representation 
of B. Differentiating (6) and 
integrating by parts, the 
spatial differentials are
separated into a steepest-descent formulation for the F=0 
solution of MHD force equation that preserves finite positive 
energy, such that

Figure 3. Illustration of 
toroidal and poloidal surfaces 
and directions (Dolan, 338).

dW
dt = - j  F tx  d3a (7)

where
d ^ JB

2H,
+ P

y-l
1J (8)

and xi = (R,\,Z) by use of <p = f in the geometric system. Since 
(8) is a 2nd order differential in flux coordinates, a 
conservative finite-difference representation is found by 
integrating (8) over a radial mesh. Spectral analysis of (0,f) 
is then used so that no higher-order derivatives are computed in 
the solution of the coupled equations. Equating the magnetic and 
geometric toroidal angles sets 30/3f=0 and the conservative 
force equations become

Fr = [-A(<.B',)2i?p + (b 'B8)^ + (9a)
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+ -gg( (B PB9) Rf* (B e) * (B9B+)j?+)

* J L ( (B 'B * )  Rp * (B9B * )R , * (B * )2**)]

+ i  {pz>
-  a (pZj - + o<^)j

ap p i? ua

n l a<t>̂ 0jBp *pB0) ~ ap(Xê ) + 5e(xPB4»)J (9b)

with the Fz equation being symmetric to (9a) except in lacking 
the last two energy terms and having the R and Z derivatives 
switched. Note that subscripts on each coordinate denote the
first derivative, G = yfg/R, and P = F(p+B2/2\i0) .

Poloidal Flux Profile
For accurate prescription of the poloidal flux, n-degree 

polynomials in p were used as coefficients in a cosine series, 
represented mathematically as

x(p.0> = Xo(p) + x2(p)cos(^0) (10)

where Xi(p)=£
J = 0

The number of separatrix X-points is defined by m in (10) and 
the coefficients are chosen so that the following condition is 
satisfied:

iidp ( I D
Noting that when 6 = 0,tt/2 ,tt, 3tt/2 then dx/dQ = 0. Therefore,
the only flux condition defining the polynomial coefficients of 
the poloidal flux cosine series is

dxo a%2
dp dp = 0 . (12)

NUMERICAL METHOD
Computational analysis required discretization of the energy 

principle for numerical integration. Fourier transforms of the
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coordinates allow exact interpolation on the half-mesh for more 
accurate numerical differentiation [9]. Hence, the coordinates 
are decomposed into even-odd harmonics as

x{R, X, Z) - xeven + p7 (13)

and averaged onto each nodal point. Following [1] by using 
central sum and difference formulas on the full-mesh (angular 
coordinates) and half-mesh (radial coordinate) requires an 
averaging scheme such that

jxy) = j (14)

to facilitate higher convergence. However, faster computations 
could be achieved by averaging the terms separately as 
By varying individual nodal amplitudes of the Fourier-transformed 
force representation, the complete formulation of the steepest- 
descent algorithm is

dx™“ a t = F< (15)

Applying (8) as the kernel of the energy integral over all 
mesh points, averaging onto the full-mesh before differentiation 
of the energy integral, and decomposing each spatial variable 
into even and odd components, the Fourier amplitudes may be 
realized and used to calculate the equilibria solution of minimum 
plasma energy.

j?(p,e,4>) = E R™ (p ) cos (/n0-nd>) (16a)
m, n

z(p,e,4>) = E Zan(p) sin(/n0-n<b) (16b)
m,n

A. (p,6,4>) = E  m,n
A.®" (p) sin (/n0-n<)>) (16c)

NUMERICAL RESULTS
Replication of a standard 3-D MHD equilibria without 

divertor was easily acquired. Figure 4 illustrates a case in 
which the modified code successfully solved the MHD equations 
when the angular dependence was not activated in the poloidal 
flux (i.e. x(P/0)=X(P) )• Shown are the toroidal flux surfaces
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RESIDUAL FORCECONTOURS OF V *

Figure 4. Non-divertor equilibrium toroidal flux contour and 
residual force decay.

and the residual force going to zero in about 100 iterations. In 
Figure 5, the angular dependence was "switched” on but the 
separatrix was not formed within the plasma boundary. The 
convergence in this case was again adequate.

Two examples of angular-dependent flux profiles in which the 
X-point is within the plasma boundary are shown in Figures 6 and 
7. However, these runs did not converge, even for finer spatial 
meshes, as is visualized in Figures 8 and 9. The iterative force 
residual did not smooth out and the magnetic axis (center of 
ellipsoids) was not resolved.

DISCUSSION
The standard case without divertor was reproducible, as was 

the case including angular poloidal flux dependence. However, 
when the separatrix was within the plasma boundary, the residual 
forces did not decay. This may be due to improper discretization 
of the energy principle. A finer mesh may improve the 
convergence properties, but this fact was not seen in any of the 
cases run here. Analytical derivations are not straightforward 
and may have led to anomalous errors.
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Figure 6(a,b) . Poloidal flux surfaces characteristic of (a) top- 
bottom double-nulled divertor and (b) left (outboard) single- 
nulled divertor.
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r e s id u a l  f o r c eCONTOURS OF V *

Figure 7. Non-convergent equilibria with separatrix within plasma 
boundary (number of iterations>1000).
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