
EMITTER International Journal of Engineering Technology 
Vol. 10, No. 1, June 2022, pp. 195~216  

DOI : 10.24003/emitter.v10i1.694             
 

Copyright © 2022 EMITTER International Journal of Engineering Technology ‐ Published by EEPIS 

195 

Classification of Ischemic Stroke  
with Convolutional Neural Network (CNN) approach  

on b-1000 Diffusion-Weighted (DW) MRI   
 

Andi Kurniawan Nugroho1,5, Dinar Mutiara Kusumo Nugraheni2,  
Terawan Agus Putranto3, I Ketut Eddy Purnama1,4,  

Mauridhi Hery Purnomo1,4,6 
 

1 Electrical Engineering Department, Institut Teknologi Sepuluh Nopember, 
Surabaya, Indonesia 

2Department of Computer Science, Universitas Diponegoro , Semarang, Indonesia 
3RSPAD Gatot Subroto Presidential Hospital, Jakarta, Indonesia 

4 Department of Computer Engineering, Institut Teknologi Sepuluh Nopember, 
Surabaya, Indonesia 

5 Electrical Engineering Department, Universitas Semarang, Semarang, Indonesia 
6University Center of Excellence on Artificial Intelligence for Healthcare and Society 

(UCE AIHeS), Indonesia 
*Corresponding Author: hery@ee.its.ac.id 

 
Received March 2, 2022; Revised April 3, 2022; Accepted May 5, 2022 

 

Abstract  
 
When the blood flow to the arteries in brain is blocked, its known as 
Ischemic stroke or blockage stroke. Ischemic stroke can occur due to 
the formation of blood clots in other parts of the body. Plaque 
buildup in arteries, on the other hand, can cause blockages because if 
it ruptures, it can form blood clots. The b-1000 Diffusion Weighted 
(DW) Magnetic Resonance Imaging (MRI) image was used in a 
general examination to obtain an image of the part of the brain that 
had a stroke. In this study, classifications used several variations of 
layer convolution to obtain high accuracy and high computational 
consumption using b-1000 Diffusion Weighted (DW) MR in ischemic 
stroke types: acute, sub-acute and chronic. Ischemic stroke was 
classified using five variants of the Convolutional Neural Network 
(CNN) architectural design, i.e., CNN1–CNN5. The test results show 
that the CNN5 architectural design provides the best ischemic stroke 
classification compared to other architectural designs tested, with an 
accuracy of 99.861%, precision 99.862%, recall 99.861, and F1-score 
99.861%. 
  
Keywords: Ischemic Stroke, Classification, CNN, b-1000 Diffusion-
Weighted (DW) MRI, Accuracy. 

 
 

1. INTRODUCTION  
A stroke is a medical emergency because brain cells can die within 

minutes. Prompt treatment can minimize brain damage and possible 
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complications. In 2013, there are more than 2 million stroke patients in 
Indonesia, or 12 out of every 1000 people. About 80% of strokes are ischemic 
stroke [1]. Several factors are believed to cause ischemic injury, such as 
energy depletion and cell death. Brain imaging is one of the most significant 
techniques for the assessment of patients with ischemic stroke through 
Computerized Tomography (CT) scan and Magnetic Resonance Imaging 
(MRI). CT scan is more common because it is faster and cheaper, whereas MR 
has a much higher sensitivity of ischemic lesions [2]. Expert identification is 
still a common approach for studying stroke lesions on MRI images, as it is 
used to measure the size, shape, and volume of stroke lesions.  

The computational analysis in image often assist doctor for diagnosis 
and help reduces the subjectivity of diagnosis, and also provide higher 
accuracy for aggressive treatments [3].  

For stroke detection, machine learning approaches have been widely 
used. [4] research which detected lesions on MRI images with a hybrid 
approach. Unsupervised learning algorithms are used to segment brain 
images to produce probabilistic maps. Probabilistic map as input for Support 
Vector Machine (SVM) classification. Moreover, [5] research which analyzing 
stroke analysis using the SVM kernel and [6] research that set up logical rules 
for stroke with used data mining. 

Research for Stroke detection with employing Deep learning 
techniques are rarely used. [7] research that compared several machine 
learning techniques to detects stroke (including Random Forests and 
Convolutional Neural Networks (CNN)). [8] research for detects pathology in 
brain images employs CNN and [9] research for stroke in 
electroencephalogram recordings with Deep Belief Network (DBN). 

This research paper contributions are: first, we provide a public 
dataset consisting of b-1000 DW-MRI images of human brains from people 
with ischemic stroke, as well as healthy people. Another contribution of this 
work is to model the CNN model selection problem which results in high 
accuracy values in classifying ischemic stroke images. 

Detection using Diffusion-Weighted Imaging (DWI) b-1000 required a 
radiologist to determine the period of obstruction (ischemic). DWI allows 
volume estimation for acute or severe conditions such as chronic (phase 
greater than 4 hours). The assessment of lesion volume is critical in the 
treatment of both acute and chronic patients, as it determines the ratio of 
hypoperfusion to core infarction [10]. Furthermore, acute and chronic lesions 
can be detected anatomically by combining the Region of Interest (ROI) 
function for each slice to form a volume function [11].  However, identifying 
ischemic stroke requires more experience on the part of a radiologist.  

Identification of lesions has historically been viewed as an 
abnormality detection problem when an image of a healthy brain is observed, 
and harmful effects are detected in terms of tissue appearance [12]. However, 
the shape of the brain varies from one patient to another, and lesions can also 
damage brain structures. Furthermore, the MRI consist with a certain noise 
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and deformation, which leads to inadequate detection and classification. 
Hence, machine learning method are proposed to investigate the features of 
the training data and achieve high segmentation accuracy. Detection and 
classification are required, in the early stages of identifying an ischemic 
stroke.  

This study describes another alternative for classifying using the 
Convolutional Neural Network (CNN) method on b-1000 Diffusion Weighted 
(DW) MRI images. In summary, the following are the main contributions of 
this paper.  
• Obtaining the b-1000 Diffusion Weighted (DW) MRI image dataset as a 

basis for input in the classification of ischemic stroke image levels in 
three classes, acute ischemic stroke, sub-acute ischemic stroke, and 
chronic ischemic stroke. 

• Analyzing various CNN architectural designs to get the most appropriate 
CNN architecture in classifying ischemic stroke  

 
2. RELATED WORKS 

Several automatic and semi-automated detection studies were carried 
out to determine acute and chronic ischemic stroke lesions. Several methods 
are used to help solve clinical problems [13]. In general, researchers used 
data for ischemic stroke with a large area of blockage and only in the 
ventricles of the brain. The Random Forest method, for example, has been 
used in the literature to demonstrate good performance in brain tumor 
segmentation using handcrafted features [14][15][16][17]. The random 
forest method's quality is highly dependent on the characteristics extracted 
from an expert's prints. An algorithm is needed to determine the 
characteristics of the image to achieve excellent performance. For some tests, 
a semi-automated method of contouring at each stage can be used for manual 
analysis of each lesion. The procedure can be completed quickly if a large 
dataset is available. Quantitative volume determination is thus critical for 
ischemic lesions in order to save money or time [18][19]. Automatic and 
semi-automatic methods for completing visual assessments are introduced, 
and the dependence of experts on these evaluations is reduced. When the 
instruction is self-contained, this method is referred to as supervision. 

To generate the trained model, most of the primitive feature 
recognition methods relevant to the context and their use are utilized. By 
utilizing the Convolutional Neural Network can eliminate this requirement. 
With the criteria, that because there is no feature extraction prerequisite. The 
learning network is used to complete automatic feature extraction and 
classification. From the above reasons, CNN is a method that is widely used 
for computer vision experiments. The success rate of using CNN is used for 
the graphics processing platform is very effective; optimized activation 
functions such as ReLU, and effective data augmentation techniques [20]. 
Biomedicine uses CNN a lot because of its end-to-end training and automated 
learning features. Chin et al. utilize CNN for ischemic stroke detection 
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approach [21]. Another research employed Principal Component Analysis 
(PCA) combined with CNN for detecting brain tumors [22]. Diniz et al. 
introduced an approach to detect white matter lesions by combining CNN 
with SLIC0 clustering [23]. CNN was optimized using Particle Swarm 
Optimization to detect stroke lesions [24]. From prior research have trialed 
many methods for noticing brain lesions. However, it is rarely research which 
conduct an investigation for classifying the stroke using b-1000 Diffusion 
weighted imaging (b-1000 dwi). Therefore, this study conducts an 
experiment using multiple layer convolution classification method to 
determine the greatest accuracy in ischemic stroke types: acute, sub-acute 
and chronic using data b-1000 Diffusion weighted imaging (b-1000 DWI) 
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Figure 1. Example of a b-1000 DWI mode image for acute, ischemic, 
sub-acute, and chronic ischemia. Red circles represent acute, sub-acute and 
chronic ischemic lesions (a,c,e) and yellow circles represent artifacts for each 
class (b,d,f). For comparison, Figure 1(g) shows a normal b-1000 DW-MRI 
image. 

Figure 1 shows the differences in b-1000 DW-MR images for acute, 
sub-acute, chronic and normal ischemic stroke classes. The red circle 
indicates the suspected ischemic stroke and the red circle indicates the image 
artifact. 
 
3. ORIGINALITY 

The problem of classification of acute, sub-acute and chronic ischemic 
lesions is very important in determining the early detection of stroke. The 
images are only distinguished by hypointense and hyperintense for each slice 
of the b-1000 MRI mode image, which is often required to detect this. Several 
researchers have used hyperintense notation in data sets while ignoring the 
distinctions between lesioned and normal tissue (Figures 1a, 1c, 1e) whereas 
artifact images are very difficult to distinguish from suspected lesions 
(Figure. 1b, 1d, 1f) [25]. 

This study describes another alternative for classifying using the 
Convolutional Neural Network (CNN) method on b-1000 Diffusion Weighted 
(DW) MRI images. In summary, the following are the main contributions of 
this paper.  
• Obtaining the b-1000 Diffusion Weighted (DW) MRI image dataset as a 

basis for input in the classification of ischemic stroke image levels in 
three classes, acute ischemic stroke, sub-acute ischemic stroke, and 
chronic ischemic stroke. 

• Analyzing various CNN architectural designs to get the most appropriate 
CNN architecture in classifying ischemic stroke  

 
4. SYSTEM DESIGN 
4.1 CNN design 

The detection and recognition process often uses classifier methods 
such as the Hidden Markov Model [26], Support Vector Machine (SVM) [27], 
Artificial Neural Network [28], or the combined Adaptive Boost method [29]. 
Deep Learning (DL) methods have evolved in tandem with the development 
of hardware that supports big data processing and high-level computing. DL 
is a new scientific field within Machine Learning that focuses on the 
composition of nonlinear data transformations. Deep Neural Network (DNN) 
is one type of DL that has the advantage of having more than two layers. CNN 
is included in the type of DNN because it has a deep and multi-layered 
network. CNN is a supervised-feed forward DL that is a development of the 
Multilayer Perceptron (MLP) and is designed to process large-dimensional 
data, which is why it is widely used to process image/visual data [30]–[32].  
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CNN architectures such as VGG16 and VGG19 were introduced which 
have thirteen and sixteen convolution layers [33], ResNet50 and ResNet101 
have 50 and 101 convolution layers [34], DenseNet 121, DenseNet 201, and 
DenseNet 169 have 121, 201, and 169 convolution layers [35], MobileNetV2 
consists of 2 blocks where each block consists of 2 convolution layers [36], 
and MobileNetV3 in its original form consisting of 5 convolution layers has 
been developed to become simpler to become 2 convolutional layers [37]. 
The CNN architecture is divided into three layers based on their function, i.e., 
Convolutional Layer (CONV), Subsampling Layer (SUBS), and Fully Connected 
Layer (FC). The CNN architecture typically consists of multiple pairs of CONV 
and SUBS layers, followed by an FC layer.  

The CONV layer is utilized to detect certain local features at all input 
image locations. The CONV layer also acts as a connecting layer, and converts 
the input data into a feature map that has been inflated with filters. The SUBS 
layer reduces the dimensions of the feature map by selecting the pixel values 
to output based on certain rules. The output of the CONV layer will be the 
input of the next CONV layer.  

The ischemic stroke classification methodology was carried out using 
the CNN algorithm. The CNN used has the following main architecture: the 
CONV layer is equipped with a Rectified Linear Unit (ReLU) activation layer, 
SUBS layer using max pooling, and FC layer with Softmax activation function. 
The CNN method consists with first stage which is the backpropagation 
training stage, and the second stage is the feedforward image classification 
stage.  
 
Table 1. Tuning Hyperparameter 

Cost Function 
Learning 
Rate (LR) 

Optimizer 
No. 

Epoch 
Batch 
Size 

Decay 

categorical-
cross-entropy 

1x10-4 Adam 30 32 LR/EPOCHS 

 
The Table 1 shown in addition, part of the image pre-processing, 
hyperparameters represent an important part of the training. The best model 
for the classification of the ischemic stroke dataset was obtained after several 
configurations.  

The system's initial input is a DWMRI b1000 mode image, which is a 
high-dimensional vector. A preprocessing step is usually required to 
condition the image and focus on the object to be classified. The 
preprocessing involves reimaging from 512x512 to 224x224, so that the .jpg 
data to be processed is focused on the ischemic stroke DWMRI infarct image.  

In this CNN design, the activation function is designed using ReLU. The 
ReLU activation function is able to accelerate the convergence of the training 
process by increasing the sparsity of the network. 

In the CONV layer, a convolution process is carried out on the input 
image using certain filters or kernels to produce a number of output features. 
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The CNN training process optimizes the filter matrix so that it can produce 
the most relevant features in the desired image classification process. The 
dimensions of these output features are large enough to make computation 
difficult. In this study, we use the MaxPooling algorithm on the SUBS layer, 
which is placed after the CONV layer, to reduce computational complexity 
and obtain a hierarchical set of image features. Max-pooling serves to 
improve translational invariance because it can reduce the size of the feature 
map by selecting the largest feature response. Then, normalization is carried 
out to simplify calculations, improve system robustness, and avoid errors in 
weighting initialization. 

The final layer in the CNN is FC, which functions to classify based on 
the features obtained in the previous layer's calculation. If in the CONV layer 
ReLU is used as an activation function, then in the FC layer the Softmax 
function is used as an activation function. The Softmax function was chosen 
because it can reduce the possible error values generated by the cross-
entropy objective function. In this study, the cross-entropy objective function 
is used because the problem to be solved is classification. 

Table 2. Tested CNN Architecture Configuration 

1st CNN 2nd CNN 3thCNN 4thCNN 5thCNN 

CONV 
CONV 

CONV 
CONV 

CONV 
CONV CONV 

ReLU ReLU ReLU ReLU ReLU 

Max 
Pooling 

Max 
Pooling 

Max 
Pooling 

Max 
Pooling 

Max 
Pooling 

CONV 

CONV 
CONV 

CONV 
ReLU ReLU ReLU 
Max 
Pooling 

Max 
Pooling 

Max 
POOL 

    CONV 
ReLU 
Max 
POOL 

FC FC FC FC FC 
Softmax Softmax SoftMax SoftMax SoftMax 

 
The architectural design is presented in Table 2. CNN1 is the basic 

architecture of the CNN method. This study was conducted using five 
variations of the CNN architecture to obtain the most appropriate 
architecture in detecting the presence of ischemic stroke for acute, sub-acute, 
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and chronic stroke. Computing was carried out using a GPU GTX 1650 RAM 2 
x 8 GB 2400 MHz DDR4.  
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Figure 2. CNN1 model visualization 

 

Figure 2 shows a visualization of the CNN1 architecture. This basic 
design can be developed into a CNN2 or CNN3 architecture. CNN2 can be 
expanded to CNN4, while CNN3 can be expanded to CNN5. 

The CNN architecture is designed in this manner with the goal of 
determining the effect of the CONV layer and its activation function on 
classification accuracy. Comparisons can be made between these designs 
individually (CNN1, CNN2, CNN3, CNN4, CNN5) or between design groups to 
get the most appropriate type of design in classifying MR DWI image data for 
ischemic stroke. 
 
4.2 Dataset 

The dataset used is primary data taken from various hospitals. The 
image generated from the MRI machine is in the dicom file format measuring 
512x512 for each slice in each patient. Conversion to png format is needed 
for the pre-processing process and converts to a size of 224x224 so that the 
computation of the program is not too heavy. The dataset for the trial process 
in this study used a collection of ischemic stroke images (acute, sub-acute, 
and chronic stroke) obtained from various hospitals in Indonesia. The dataset 
consisted of 21 patients for each class. Each patient consists of 16 slices for 
the axial plane. Addition of data is done by performing augmentations for 
each class such as rotation range, horizontal flip and width shift range. 

 
Table 3.  Specifications of the b-1000 MRI DWI Image Dataset 

Process Acute Image Sub-Acute Image Chronic Image 

Training 768 768 768 

Validation 192 192 192 

Testing 240 240 240 

Total 1200 1200 1200 
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The specifications for the number of datasets used in this study are 
shown in Table 3. Determination of the amount and specification of this data 
refers to the provisions of 80% training data/validation data and 20% test 
data. 
 

 

Machine Learning
- Support Vector Machine (SVM)
- k-Neural Network (k-NN)
- Random Forest

Classification

Acute Stroke

Sub-Acute Stroke

Chronic Stroke

Preprocessing 
and 

Augmentation

Pretrainned Model
- VGG-16
- VGG-18
- ResNet50
- ResNet101
- DenseNet121
- DenseNet201
- DenseNet169
- MobileNetV2
- MobileNetV3 Small

 
Figure 3. Diagram of research methodology 

 
Figure 3 shows the research methodology for this study. First, the 

image processed in several stages pre-processing, data augmentation, and 
then training using a pre-trained algorithm: VGG-16, VGG-19, ResNet50, 
ResNet101, DenseNet121, DenseNet201, DenseNet169, MobileNetV2, 
MobileNetV3Small and Support Vector Machine (SVM), k–Neural Network (k-
NN) and Random Forest classifications, and all algorithms tested on the data 
set test. 
 
4.3 Pre-processing 

One of the important steps in data pre-processing is resizing the 
b1000-DW MRI mode image as an input image for different algorithms. The 
b-1000 DWI MRI image is converted from dicom format to png format, with 
the original pixel size of 512x512 resized to and 224x224 pixels. All images 
were normalized according to the pre-trained model standard. 
 
4.4 Data Augmentation 

Actually, CNN performs better with large data sets. However, not all the 
data that in experiment can achieved a large data set. To address problem 
with large data set with the usage of CNN method, the data augmentation is 
the best solution. In addition, using data augmentation (rotation_range, 
horizontal_flip and width_shift_range) can improve the classification 
accuracy of deep learning algorithms. By adding existing data in deep 
learning models can improve the performance deep learning. Furthermore, 
few deep learning frameworks have data augmentation facilities embedded 
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into the algorithm. Therefore, for this paper, the experiment was used three 
augmentation strategies to generate new training sets (rotation, scaling, and 
translation). 

 
4.5 Performance Matrix for Classification 

Five CNN models, machine learning algorithms, and pre-trained model 
algorithms were trained and evaluated by comparing four performance 
metrics such as: accuracy, precision, recall, and F1-score [38]: 

 
Accuracy = (TP+TN)/(TP+FN+FP+TN)        (1) 
 
Recall = (TP) / (TP+FN)       (2) 
 
Precision = (TP) / (TP+FP)          (3) 
 
F_score = 2x (Precision x Recall) / (Precision+ Recall)      (4) 

 
5. EXPERIMENT AND ANALYSIS 
5.1 CNN Performance Analysis 
 
Table 4. System Performance Analysis on Ischemic Stroke Classification 

Method Precision Recall 
F1-
score 

ACC 
(%) 

Total 
Parameter 

Computing 
Time 

(seconds) 

CNN1 99.32 99.306 99.306 99.306 9.472.451 257.7 
CNN2 99.725 99.722 99.722 99.722 18.947.043 266.1 
CNN3 99.588 99.583 99.583 99.583 9.491.395 265.2 
CNN4 99.055 99.028 99.028 99.028 20.547.619 265.8 
CNN5 99.862 99.861 99.861 99.861 6.658.147 200.4 

 
Table 4 shows the accuracy, precision, recall, and F1-score of each 

CNN1 - CNN5 architectural design in classifying b1000-DW MRI images from 
the 760 tested datasets using (1) - (5). 

Based on the results in Table 4, it can be concluded that the CNN5 
configuration showed the best results in classifying the b-1000 DWMRI 
image. The CNN5 model shows that in images with many features, a larger 
filtering process is needed. It is also seen that what is being tested is a 
complex dataset and the resulting increase in the percentage of accuracy 
compared to the simple CNN model. 

 
5.2 Comparison with Other Classification Methods 

The following trials were conducted to compare the performance of 
the CNN5 design (as the best proven CNN design) with other classification 
methods, i.e., k–Neural Network (k–NN), SVM and random forest. For k–NN, 
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the D-MRI image dataset was tested using the k parameter of 3, while in the 
SVM method, the dataset was tested using a linear kernel. The use of random 
forest classifier with DW-MR data uses n_estimators=500. The test was 
conducted to classify the DW-MRI image dataset into acute, sub-acute, and 
chronic classes. The input data for the k–NN and SVM classifiers is the 
grayscale intensity value of each image pixel in the dataset.  

 
Table 5. Comparison of Performance of CNN – SVM – KNN – and Random 
Forest Methods on Ischemic Stroke Classification 

 
The test results are presented in Table 5. It was found that the four 

methods had good performance, with all of their accuracy, sensitivity, and 
specificity levels above 90%. The CNN5 method produces the highest 
performance compared to other classifier models. This shows that the CNN5 
method can be implemented to classify DW-MRI images for ischemic stroke 
classification with good performance. 

 
 
 
 
 
 
 
 

 
(a) Random Forest                (b) Nearest Neighbors (k=3)            (c) SVM 

 
 

 
 
 
 
 

                                                  
                                          

   (d) CNN5  
 

Figure 4. Comparison of the confusion matrix for the CNN 5 model with other 
classifications (Random Forest, Nearest Neighbors (k=3), and SVM 

Method 
Precision 

(%) 
Recall 
 (%) 

F-measure  
(%) 

ACC  
(%) 

Random Forest 92 93 92 92 
SVM 93 93 93 93 
Nearest Neighbors 96 96 96 96 

CNN5 99.862 99.861 99.861 99.861 
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Figure 4 shown that based on the results of the tests, a confusion 
matrix for the classification of ischemic stroke can be created . The test 
results show that 233 typical acute image values were correctly predicted by 
the Random Forest confusion matrix classification, while 2 images were 
incorrectly predicted. Similarly, 189 sub-acute images and 240 chronic 
images were correctly predicted. Three sub-acute MRI images were not 
correctly predicted. Fifty-three chronic MRI images were not predicted 
correctly. The classification of the Nearest Neighbors (k=3) confusion matrix 
shows that 217 typical acute image values were predicted correctly, while 1 
image was not correctly predicted.  

Similarly, 235 sub-acute images and 239 chronic images were 
correctly predicted. Six sub-acute MRI images were not correctly predicted. 
Twenty-two chronic MRI images were not correctly predicted. The 
classification of confusion matrix Support Vector Machine shows that 218 
typical values of acute images were correctly predicted, while 9 images were 
not correctly predicted. Similarly, 209 sub-acute images and 240 chronic 
images were correctly predicted. Three sub-acute MRI images were not 
correctly predicted. Twenty-two chronic MRI images were not correctly 
predicted. The confusion matrix classifier of the proposed CNN5 model 
shows that 240 typical acute image values were correctly predicted. 
Similarly, 239 sub-acute images and 240 chronic images were correctly 
predicted. One sub-acute MRI image was not correctly predicted. The CNN5 
model is the best in testing with testing data as many as 240 DWI images are 
able to predict almost all classes, only 1 image is actually sub-acute but 
predicted acute ischemic stroke 

 
5.3 Multi Grade Classification Performance  
 
Table 6. Comparison of The CNN Method's Performance with the Transfer 
Learning Algorithm on Ischemic Stroke Classification 
 

Method Precision 
(%) 

Recall 
(%) 

F1_Score 
(%) 

ACC 
(%) 

Total 
Parameter 

Computing 
Time 

(seconds) 
VGG-16 99.588 99.583 99.583 99.583 17,602,883 333.72 
VGG-19 99.444 99.444 99.444 99.444 24,747,587 1122.24 
ResNet50 99.725 99.722 99.722 99.722 50,331,011 273 
ResNet101 98.365 98.333 98.329 98.333 69,401,475 1395.15 
DenseNet121 99.311 99.306 99.306 99.306 15,955,011 299.4 
DenseNet201 99.723 99.722 99.722 99.722 34,579,523 303.3 
DenseNet169 98.899 98.899 98.899 98.899 26,803,267 303.24 
MobileNetV2 99.584 99.583 99.583 99.583 19,170,883 267.6 
MobileNetV3 
Small 

99.584 99.583 99.583 99.583 19,170,883 
267.3 

CNN5 99.862 99.861 99.861 99.861 6,658,147 200.4 
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Table 6 shows a comparison of the performance of the nine pre-
trained model. We trained nine pre-trained models on untrained data and 
validated them using a categorical classification, with grade 0 representing 
acute, grade 1 sub-acute, and grade 2 chronic. The results of the VGG-16 
model were: precision 99.558%, recall 99.583%, F1-score 99.583%, accuracy 
99.583%, and total parameters 17,602,883. VGG-19 showed promising 
results with 99.444% precision, 99.444% recall, 99.444% F1-score, 99.444% 
accuracy, and total parameters of 24,747,587. The results of the ResNet50 
model were: precision 99.725%, recall 99.722%, F1-score 99.722%, accuracy 
99.722%, and total parameters 50.331.011. The results of the ResNet101 
model are: 98.365% precision, 98.333% recall, 98.329% F1-score, 98.333% 
accuracy, and 69.401.475 total parameters. The ResNet101 model has more 
parameters than the transfer learning model in this experiment. The results 
of the DenseNet121 model were: precision 99.311%, recall 99.306%, F1-
score 99.306%, accuracy 99.306%, and total parameters 15.955.011. The 
results of the DenseNet201 model are: precision 99.723%, recall 99.722%, 
F1-score 99.722%, accuracy 99.722%, and total parameters 34,579,523. The 
results of the DenseNet169 model are 98.899% precision, 98.899% recall, 
98.899% F1-score, 98.899% accuracy, and total parameters 26,803,267. The 
results of the MobileNetV2 and MobileNetV3Small models were: precision 
99.584%, recall 99.583%, F1-score 99.583%, accuracy 99.583%, and total 
parameters 19.170.883. Finally, the CNN5 model produced 99.862% 
precision, 99.861% recall, 99.861% F1-score, 99.861% accuracy, and total 
parameters of 6,658,147.  

 
(a) VGG16                                   (b) VGG19                                           (c)ResNet50 

     (d)  ResNet101                            (e) DenseNet121                      (f) DenseNet201 
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        (g) DenseNet169           (h) MobileNetV2                       (i) MobileNetV3Small 
 
Figure 5. Confusion matrix for the classification of acute, sub-acute, and 
chronic ischemic stroke using nine pre-trained models 
 

 Figure 5 shows the confusion matrix that is used to determine the 
value of the TP, TN, FP, and FN labels. Then for the accuracy, precision, recall, 
and score of the F1 model, obtained by calculating the formula (1)–(4). Table 
6 shows the performance metrics. From table 6 it is known that the CNN5 
model has the best overall performance with a precision score of 99.862%, a 
recall score of 99.861%, an accuracy score of 99.861%, and an F1 score of 
99.861%. 

(a) VGG16 
 

 
(b) VGG19 
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(c) ResNet50 
 

(d) ResNet101 
 

(e) DenseNet121 
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(f) DenseNet201 

(g) DenseNet169 

(h) MobileNetV2 

(i) MobileNetV3Small 
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Figure 6. Accuracy and loss functions of all pre-trained models in training 
and validation data sets for multi-class classification 

 
Figure 6 shows the results and model accurately predicting all random 

sample numbers as acute, sub-acute, or chronic. The VGG16 model shows the 
accuracy and plot loss function on the training data and validates the number 
of epochs. The instability in the VGG16 model arises from the significant 
difference between the training and validation data outputs. The results of 
the accuracy of the training data resulted in a value of 99.79%, and a loss of 
0.0123 at epoch 26. The best validation data accuracy was 99.86%, and a loss 
of 0.0049 at epoch 28. These results indicate that the model has succeeded in 
classifying the data. validation. from learning information from training data 
and no overfitting. For the VGG19 model, the training accuracy is 99.69%, 
and the loss is 0.0100 at epoch 27. The validation accuracy is 99.58%, and the 
loss is 0.0169 at epoch 27. 

These results indicate that the model was successful in classifying 
validation data from studying information from training data and there was 
no overfitting. For ResNet50 model, training accuracy was 100%, and loss 
was 0.0037 at epoch 30. Validation accuracy was 99.72%, and loss was 
0.0084 at epoch 30. These results indicate that the model was successful in 
classifying validation data from studying information from training data and 
experiencing a little overfitting. For ResNet101 model, training accuracy was 
96.18%, and loss was 0.1106 at epoch 29. validation accuracy was 99.44%, 
and loss was 0.0415 at epoch 27. These results indicate that the model was 
successful in classifying the validation data from studying information from 
the training data and experiencing a slight overfitting. For DenseNet121 
model, training accuracy was 100%, and loss was 6.8103e-04 at epoch 26. 
The validation accuracy was 100%, and the loss was 0.0020 at epoch 27. 
These results indicate that the model had succeeded in classifying validation 
data from the information learned from the training data and there was no 
overfitting. For DenseNet201 model, training accuracy was 100%, and loss 
was 9.3803e-04 at epoch 16. Validation accuracy was 100%, and loss was 
0.0022 at epoch 11. These results indicate that the model could successfully 
classify validation data from information learned from training data and 
slightly overfitting. For DenseNet169 model, training accuracy was 100%, 
and loss was 6.4445e-04 at epoch 18. Validation accuracy was 99.58%, and 
loss was 0.0205 at epoch 20. These results indicate that the model was 
successful in classifying validation data from information learned from 
training data and experiencing overfitting. For MobileNetV2_model model, 
training accuracy was 99.93%, and loss was 0.0012 at epoch 21. Validation 
accuracy was 99.86%, and loss was 0.0164 at epoch 24. These results 
indicate that the model was successful in classifying validation data from 
studying information from the training data and experiencing overfitting. For 
MobileNetV3Small model, training accuracy was 100%, and loss was 
3.2804e-04 at epoch 29. Validation accuracy was 99.86%, and loss was 
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0.0072 at epoch 26. These results indicate that the model could successfully 
classify validation data from information learned from training data and 
experiencing overfitting. 

Furthermore, the CNN 5 model has a layer structure that can classify 
the features of hyperintense and hypotensive ischemic stroke against the 
CNN 1-4 model. When compared to machine learning, it requires feature 
extraction and feature selection to produce high accuracy values. Meanwhile, 
with the pre-trained model, many features are produced due to the large 
number of convolution layers so that the system is Overfitting. 

 
 

7. CONCLUSION 
The study is contributed to Ischemic stroke classifications, using five 

variants of the Convolutional Neural Network (CNN) architectural design, i.e., 

CNN1–CNN5. The methodology research employed in this study is 
experimental ischemic stroke classification using five variations of the 
Convolutional Neural Network (CNN) architectural design, CNN1–CNN5. The 
experimental results show that the CNN5 architectural design provides the 
best ischemic stroke classification results, compared to other architectural 
designs tested. With the CNN5 architecture, the accuracy is 99.861%, 
precision is 99.862%, recall is 99.861, and F1-score is 99.861%. In addition, 
this study found that the results of comparisons with transfer learning 
algorithm methods such as VGG-16, VGG-19, ResNet50, ResNet101, 
DenseNet121, DenseNet201, DenseNet169, MobileNetV2, MobileNetV3Small 
and the classification of Support Vector Machine (SVM), k–Neural Network (k 
-NN) and Random Forest show that CNN5 has superior performance in terms 
of accuracy, precision, recall, and F-score. This study has not used hyperacute 
stroke data, so for further research, it suggested to conduct an experiment 
using hyperacute stroke data trialed with CNN5. 
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