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Abstract

There are three types of affine regular polygons in AG(2, q): ellipse, hyperbola and
parabola. The first two cases have been investigated in previous papers. In this note, a
particular class of geometric one-factorizations of the complete graph Kn arising from
parabolas is constructed and described in full detail. With the support of computer
aided investigation, it is also conjectured that up to isomorphisms this is the only
one-factorization where each one-factor is either represented by a line or a parabola.

1 Introduction

For a positive even integer n, a one-factorization of the complete graph Kn is a partition of
the edge set into n− 1 one-factors—each consisting of n

2
edges partitioning the vertex set.

One-factorizations of complete graphs play a crucial role in many practical applications,
like for instance scheduling tournaments, where a round robin tournament is to be played
in the minimum number of sessions. Besides applications, one-factorizations have strong
connections to Design Theory; see for instance [13].

Our approach to the problem of constructing one-factorizations of complete graphs is
essentially geometric, as in [3, 6, 9, 10], and is based on techniques that have previously been
used to find one-factorizations of multigraphs; see for instance [2, 4, 7, 11].

Basically, there are three types of affine regular polygons in the finite affine plane AG(2, q).
One-factorizations arising from ellipses and hyperbolas have already been addressed in [6, 9].
In this paper the remaining case, the parabola, is investigated.

Our main result is the construction of a parabolic one-factorization—that is, a one-
factorization where all one-factors except one are represented by parabolas, and the remain-
ing one is represented by a line—for every complete graph Kp+1 with p an odd prime. We
may also provide a classification of parabolic one-factorizations.

Our notation is standard. For general information about one-factorizations of complete
graphs see for instance [8, 12, 13].

2 Preliminaries

Henceforth we assume that p ≥ 3 is a prime number. We fix a projective frame in PG(2, p)
with homogeneous coordinates (X0:X1:X2), and consider PG(2, p) as AG(2, p) ∪ ℓ∞ where
ℓ∞ has equation X0 = 0. As usual, the points of AG(2, p) are written as (X, Y ) with X = X1

X0

and Y = X2

X0
.

In AG(2, p), let Pa be the parabola with affine equation Y = X2 + a, where a varies in
Zp, and V∞ = (0:0:1) the point at infinity of the line X1 = 0. Note that, in the projective
closure of AG(2, p), any two parabolas Pa and Pb, with a ̸= b, meet at the point V∞ only.

Let Vi = (i, i2) denote the points on P0 for i = 0, 1, . . . , p − 1. For k = 1, 2, . . . , p−1
2
, let

P k
i denote the pole of the line ViVi+k with respect to P0. The equation of the tangent line ti

to P0 at Vi is

ti : Y = 2iX − i2,
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hence the coordinates of the point P k
i = ti ∩ ti+k are

P k
i =

(
i+

k

2
, i2 + ik

)
;

see Figure 1. Further, let P∞
i denote the point at infinity of the line ti, that is, P

∞
i = (0:1:2i).

Lemma 2.1. For a fixed k, the points P k
0 , P

k
1 , . . . , P

k
p−1 are on the parabola P− k2

4

.

Proof. The claim follows from the equality

i2 + ik =

(
i+

k

2

)2

− k2

4
.

The vertices of the complete graph Kp+1 correspond to the points of P0 ∪ {V∞}, while
the edges of Kp+1 correspond to the points of type P k

i , with k = 1, 2, . . . , p−1
2
,∞. Thus the

set of edges of Kp+1 corresponds to the set of points

E =

 p−1
2⋃

k=1

P− k2

4

 ∪
(
ℓ∞ \ {V∞}

)
.

These points are called external points with respect to P0.
In this setting, a one-factor of Kp+1 is a set consisting of p+1

2
points of type P k

i , for

i ∈ {0, 1, . . . , p− 1} and k ∈
{
1, 2, . . . , p−1

2

}
∪ {∞}, satisfying the tangent property, that is,

no tangent to P0 meets the set in more than one point; see [6]. Then, a one-factorization of
Kp+1 is just a partition of all the points of type P k

i into p one-factors.

3 Results

Remark that a parabola of type Pa cannot contain any point of type P∞
j , therefore a subset

of its points satisfying the tangent property consists of at most p−1
2

points. If the line ℓ is
not a tangent to P0, then ℓ is called a secant if |ℓ ∩ P0| = 2 and ℓ is called an external line
if |ℓ ∩ P0| = 0. It is well known (see e.g. [5, Lemma 6.14]) that a secant contains p−1

2
points

of E and an external line contains p+1
2

points of E . These motivate the following definitions.

Definition 3.1. A one-factor represented by a parabola Pa is a set of p−1
2

points of type P k
j

on Pa, together with a suitable point at infinity. A one-factor so defined is referred to as a
parabolic one-factor.

Definition 3.2. A one-factor represented by a secant line ℓ of P0 is a set consisting of p−1
2

points of E on ℓ, plus the pole of ℓ with respect to P0.
A one-factor represented by an external line ℓ of P0 is a set consisting of p+1

2
points of

E on ℓ.

2
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Figure 1: Representation of the edge ViVi+k of Kp+1 on the parabola P0

Definition 3.3. A one-factorization of Kp+1 is called a parabolic one-factorization if p− 1
of its one-factors are represented by parabolas and one of its one-factors is represented by a
line.

Theorem 3.4. Let p be an odd prime. Then the complete graph Kp+1 has a parabolic one-
factorization.

Proof. The proof is constructive. Let

F0 =

{
P k
− k

2

: k = 1, 2, . . . ,
p− 1

2

}
∪ {P∞

0 } .

The set F0 is a one-factor represented by the secant line of P0 of equation X = 0, and P∞
0

is its pole with respect to P0.
For k = 1, 2, . . . , p−1

2
, define the following sets of points:

Gk =

{
P k

k
2
+2jk

: j = 0, 1, . . . ,
p− 3

2

}
∪
{
P∞
− k

2

}
,

Hk =

{
P k

k
2
+(2j+1)k

: j = 0, 1, . . . ,
p− 3

2

}
∪
{
P∞

k
2

}
.

By Lemma 2.1, Gk \
{
P∞
− k

2

}
and Hk \

{
P∞

k
2

}
are disjoint subsets of the parabola P− k2

4

.

Both Gk and Hk are one-factors represented by the parabola P− k2

4

because every tangent to

P0 intersects P− k2

4

in two points, P k
i and P k

i+k. One of these points falls in Gk, the other one

in Hk, and the claim follows.

3

Kiss et al.: One-factorizations of the complete graph from parabolas

Published by Digital Commons@Georgia Southern, 2022



Parabolic one-factorisations are completely characterised in the projective closure of
AG(2, p).

Theorem 3.5. Let p > 5 be an odd prime and F be a parabolic one-factorization of the
complete graph Kp+1. Then F is isomorphic to the one-factorization constructed in Theorem
3.4.

Proof. Let ℓ be the line representing the unique linear one-factor of F and L denote the
pole of ℓ with respect to P0. First, we show that ℓ contains the point V∞. By definition,
ℓ ∪ {L} must contain one affine point from each parabola of type Pa. Hence ℓ must be a
tangent to at least p−1

2
− 1 > 1 parabolas of type Pa. Suppose that the affine equation of ℓ

is Y = mX + b. Then ℓ contains exactly one point of Pa if and only if the discriminant of
the quadratic equation X2 −mX + a− b = 0 is zero, that is,

a =
m2 + 4b

4
. (1)

From (1), the line ℓ would be a tangent to at most one parabola of type Pa, hence it must
be assumed that the affine equation of ℓ is of type X = c.

Now consider the linear transformation φ ∈ PGL(3, p) associated to the matrix1 −c c2

0 1 −2c
0 0 1

 .

Then (1 : c : c2)φ = (1 : 0 : 0) and (0 : 0 : 1)φ = (0 : 0 : 1). Hence, the unique linear
one-factor of Fφ corresponds, by projectivity, to the line X = 0, that is, the set of points{

P k
− k

2

: k = 1, 2, . . . ,
p− 1

2

}
∪ {P∞

0 } .

Further, the linear transformation φ fixes every parabola Pa setwise since (1 : t : t2 + a)φ =
(1 : t− c : (t− c)2 + a).

For a fixed k ∈ {1, 2, . . . , p−1
2
} let Gk and Hk denote the two one-factors of Fφ which are

represented by the parabola P− k2

4

. Consider the point P k
k
2

. We may assume without loss of

generality that it belongs to Gk. Then, by the tangent property, P k
k
2
+k

must belong to Hk.

For j = 1, . . . , p−3
2
, the points P k

k
2
+2jk

must belong to Gk, while the points P k
k
2
+(2j+1)k

must

belong to Hk. Furthermore, P∞
− k

2

is in Gk and P∞
k
2

is in Hk. Thus, Fφ is the one-factorization

constructed in Theorem 3.4 and hence F is isomorphic to Fφ.

We conclude with a conjecture that is supported by our computer aided investigations.

Conjecture 3.6. Let p > 7 be an odd prime, F be a one-factorization of the complete graph
Kp+1 such that each one-factor of F is either represented by a line or a parabola. Then F
is either a parabolic one-factorization or each one-factor of F is represented by a line.

4
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Conjecture 3.6 can easily verified for the values p = 11, 13, 17 using the software Magma
[1]. One can start with an exhaustive search for all (p + 1)/2-factors that are represented
either by a line or by a parabola. According to the definition in Section 2, each one of these
(p + 1)/2-factors corresponds to a set of points with the tangent property. At this point,
one can construct a graph G where the vertices correspond to these (p + 1)/2-factors and
two vertices are incident if and only if the corresponding sets are disjoint. A p-clique of the
graph G corresponds to a 1-factorization where all (p + 1)/2-factors are represented either
by a line or a parabola. Finding all p-cliques of G is the computationally longest part of this
verification, however, it can be performed in Magma using the function AllCliques. This
computation takes only few seconds for the cases p = 11, 13 while it takes roughly fifteen
minutes on a standard laptop with a 2.70GHz Intel Core i7 processor for the case p = 17.
Finally, the conjecture can be directly verified for all p-cliques, that is, 1-factorizations
obtained in such a way.

4 Examples for small p

The examples described in this section serve to illustrate the results from the previous
sections.

4.1 p = 7

Let us consider the parabola P0 of projective equation X0X2 = X2
1 in PG(2, 7). The con-

struction in Theorem 3.4 provides the following partition of the points of type P k
i :

F0 = {P 1
3 (1:0:5), P

2
6 (1:0:6), P

3
2 (1:0:3), P

∞
0 (0:1:0)},

F1 = {P 1
4 (1:1:6), P

1
6 (1:3:0), P

1
1 (1:5:2), P

∞
3 (0:1:6)},

F ′
1 = {P 1

5 (1:2:2), P
1
0 (1:4:0), P

1
2 (1:6:6), P

∞
4 (0:1:1)},

F2 = {P 2
1 (1:2:3), P

2
5 (1:6:0), P

2
2 (1:3:1), P

∞
6 (0:1:5)},

F ′
2 = {P 2

3 (1:4:1), P
2
0 (1:1:0), P

2
4 (1:5:3), P

∞
1 (0:1:2)},

F3 = {P 3
5 (1:3:5), P

3
4 (1:2:0), P

3
3 (1:1:4), P

∞
2 (0:1:4)},

F ′
3 = {P 3

1 (1:6:4), P
3
0 (1:5:0), P

3
6 (1:4:5), P

∞
5 (0:1:3)}.

This partition is a parabolic one-factorization, where the one-factors are as follows:

� F0 is represented by the secant line X1 = 0,

� F1, F
′
1 are represented by the parabola P5 : X0X2 = X2

1 + 5X2
0 ,

� F2, F
′
2 are represented by the parabola P6 : X0X2 = X2

1 + 6X2
0 ,

� F3, F
′
3 are represented by the parabola P3 : X0X2 = X2

1 + 3X2
0 .

5
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4.2 p = 11

Let us consider the parabola P0 of projective equation X0X2 = X2
1 in PG(2, 11). The

construction in Theorem 3.4 provides the following partition of the points of type P k
i :

F0 = {P 2
10(1:0:10), P

1
5 (1:0:8), P

5
3 (1:0:2), P

4
9 (1:0:7), P

3
4 (1:0:6), P

∞
0 (0:1:0)},

F1 = {P 1
6 (1:1:9), P

1
8 (1:3:6), P

1
10(1:5:0), P

1
1 (1:7:2), P

1
3 (1:9:1), P

∞
5 (0:1:10)},

F ′
1 = {P 1

7 (1:2:1), P
1
9 (1:4:2), P

1
0 (1:6:0), P

1
2 (1:8:6), P

1
4 (1:10:9), P

∞
6 (0:1:1)},

F2 = {P 2
1 (1:2:3), P

2
5 (1:6:2), P

2
9 (1:10:0), P

2
2 (1:3:8), P

2
6 (1:7:4), P

∞
10 (0:1:9)},

F ′
2 = {P 2

3 (1:4:4), P
2
7 (1:8:8), P

2
0 (1:1:0), P

2
4 (1:5:2), P

2
8 (1:9:3), P

∞
1 (0:1:2)},

F3 = {P 3
7 (1:3:4), P

3
2 (1:9:10), P

3
8 (1:4:0), P

3
3 (1:10:7), P

3
9 (1:5:9), P

∞
4 (0:1:8)},

F ′
3 = {P 3

10(1:6:9), P
3
5 (1:1:7), P

3
0 (1:7:0), P

3
6 (1:2:10), P

3
1 (1:8:4), P

∞
7 (0:1:3)},

F4 = {P 4
2 (1:4:1), P

4
10(1:1:8), P

4
7 (1:9:0), P

4
4 (1:6:10), P

4
1 (1:3:5), P

∞
9 (0:1:7)},

F ′
4 = {P 4

6 (1:8:5), P
4
3 (1:5:10), P

4
0 (1:2:0), P

4
8 (1:10:8), P

4
5 (1:7:1), P

∞
2 (0:1:4)},

F5 = {P 5
8 (1:5:5), P

5
7 (1:4:7), P

5
6 (1:3:0), P

5
5 (1:2:6), P

5
4 (1:1:3), P

∞
3 (0:1:6)},

F ′
5 = {P 5

2 (1:10:3), P
5
1 (1:9:6), P

5
0 (1:8:0), P

5
10(1:7:7), P

5
9 (1:6:5), P

∞
8 (0:1:5)}.

This partition is a parabolic one-factorization, where the one-factors are as follows:

� F0 is represented by the secant line X1 = 0,

� F1, F
′
1 are represented by the parabola P8 : X0X2 = X2

1 + 8X2
0 ,

� F2, F
′
2 are represented by the parabola P10 : X0X2 = X2

1 + 10X2
0 ,

� F3, F
′
3 are represented by the parabola P6 : X0X2 = X2

1 + 6X2
0 ,

� F4, F
′
4 are represented by the parabola P7 : X0X2 = X2

1 + 7X2
0 ,

� F5, F
′
5 are represented by the parabola P2 : X0X2 = X2

1 + 2X2
0 .
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