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ABSTRACT 

Medieval guilds and assembly plants are unlikely metaphors 
in an information-based economy. My experience with 
advanced analytics suggests that such descriptions are 
nevertheless apt. This paper explores two distinct situations 
within a single firm. In one department, predictive models 
were generated through adopting a craft style approach. In 
another department, a production type of approach was 
deployed. The reasons for their adoption are explored, 
followed by their consequences for job satisfaction, 
performance, staffing, change-management, and more. Craft 
and production approaches have implications not just for 
modeling analysts and their managers but also for senior 
leaders, business partners, and human resources staff. 
Finally, I describe the pressure to adopt a production 
approach, and attempt to unravel the extent to which this 
reflects broader cultural and technological influences or firm-
specific traits. This reflection ends with a call for 
professionals to share their encounters with advanced 
analytics.

 
 

INTRODUCTION 

In today’s information-based economy, analysts mine data, information technology professionals 
predict that “big data” will transform business, and dot coms are touted as corporations of the future.  
In this context, medieval guilds and assembly plants are unlikely business metaphors. Such 
descriptions, however, are nevertheless apt based on our recent experiences, and were doubly 
striking because they occurred within a single firm. This paper explores them in the context of 
advanced analytics, defined as the use of predictive statistical models, forecasting, and complex 
analyses to solve customer targeting, segmentation, and trending problems. Advanced analytics are 
vital for marketing as well as business functions that range from logistics to pricing, risk, 
underwriting, and human resources. These are areas where managers make decisions about which 
customers to target and when, how much product to stock and how much to sell it for, to whom to 
extend credit and for how much, and how many employees are needed with which types of skills.
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This paper shares and interprets two distinct experiences. In one, a “craft” style approach was used 
to generate advanced analytics. This brings to mind classic artisans who carved wheels as members 
of guilds during the medieval or renaissance periods. In contrast, another department within the 
same firm relied upon a “production” style method that typified the assembly of widgets in a 19th 
century manufacturing line. This paper explores the reasons for the adoption of craft and production 
approaches. These appeared to be related to department differences in terms of the nature of 
customer contacts, management’s perceptions with regard to predictive models, staffing levels, and 
more. Lastly, the unique solutions had implications for analysts, managers, senior leaders, business 
partners and human resources staff. There were consequences for job satisfaction, performance, 
staffing, change-management, project timelines, and costs. 

In the remainder of this paper, I describe the setting in which these observations took place. Next, is 
an outline of craft and production solutions, with insight into why they were adopted, and the 
implications for those affected. This is followed by a discussion of pressures to adopt one of the 
approaches over the other and the larger questions it raised. Finally, this paper closes with an 
invitation for other professionals to share their experiences. 

SETTING 

This experience was situated across two departments within the same firm. One department 
supported analytics for brick-and-mortar stores, in which management used predictive analytics to 
increase customer shopping at retail stores. The second department supported advanced analytics 
for the direct channel. Here, statistical modeling was used to increase customer shopping from a 
website and call center, with catalogues and email as the marketing vehicles. Both departments had 
similar overarching business goals: To optimize marketing spend and revenue. 

Industry 

The corporation was ranked within the top 25 specialty retailers in terms of market capitalization, 
and was an established enterprise with more than 40 years in business across multiple brands. It 
sold a range of products that has included women’s and men’s clothing, intimate apparel, swimwear, 
shoes, accessories, beauty care, fragrances, and other home-based items. The retailer sold its 
products through various channels: brick and mortar stores, the internet, and telephone call centers. 
The firm targeted its customers through direct mail, catalogues, and email. 

These insights and reflections represent more than four years of our experience working in both the 
direct and store-supported departments of the firm where marketing analytics were used. Each 
department deployed and tested statistical models and other advanced analytic tools. The need for 
advanced analytics was especially important because costs for direct marketing were increasing (e.g., 
paper, printing, postage) when customer response was declining. Customers receive a deluge of 
postal mail and email which has resulted in decreased response rates, along with a deep economic 
recession that has affected consumers’ wallets. Thus, senior managers used customer targeting 
models as a key tool to select the best customers for the most relevant products matched to their 
shopping behavior. 

Occupation 

Occupations have distinct job duties as well as unique, shared attitudes and views of the workplace 
(Goodrick and Reay, 2009; Kwantes and Boglarsky, 2004; Trice, 1993). Fortunately, our observations 
allowed us to compare a similar occupation across departments (i.e., statistical modelers and their 
functional managers) to control for any differences that would otherwise affect the experiences 
reported here. Core job duties included building statistical models, evaluating model performance, 
and scoring models for deployment in marketing campaigns. Managers supervised their work, and in 
most cases performed similar duties themselves.  In the store-focused department, managers met 
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with brand leaders to plan modeling needs. Managers in both the store- and direct-focused 
departments met with operational staff to plan timelines for model deployment when campaigns 
were created. Senior managers sought to achieve targeted financial goals, forecast sales through the 
quarter and sought to fill shortfalls with additional campaigns and other sales-building 
opportunities. 

Firm culture 

This firm had a pragmatic corporate culture that emphasized personal accountability and hard work. 
From the perspective of an analyst, there was much work to be done in a limited amount of time.  
For management, there was constant pressure to exceed sales targets despite reduced budgets, low 
staff levels, and increased costs. As a result of a flattened organizational hierarchy, many marketing 
roles supported the operational aspects of direct mail, catalogue, and email execution. Thus, overall 
there was an emphasis on a “task-focused” rather than a “people-focused” orientation (see Kwantes 
and Boglarsky, 2004), particularly within the marketing department that supported the direct 
business. Although no official metrics were published, employee attrition was relatively high, which 
increased pressure for managers, leaders, and human resources staff alike. 

CRAFT AND PRODUCTION ANALYTIC SOLUTIONS: CONCEPTS DEFINED 

In this firm, the two departments had similar overarching goals. Both built, scored, and monitored 
predictive statistical models to rank customers based on their probability to respond to marketing 
communications or to purchase category-specific products. Each, however, developed distinct ways to 
meet their advanced analytics needs. The store-based department adopted a “craft” approach, and 
the direct-based department developed a “production” solution. The primary source of this craft-
production paradigm was derived inductively from our experiences at this firm. A secondary source 
is supported by organizational theory, particularly the idea that knowledge is acquired through 
either “exploration” or “exploitation” (March, 1991). Applying this concept to the context of advanced 
analytics, for example, a marketing department that exploits data via a production approach may 
use internal transactional data to predict future behavior and mail the identical customer base 
repeatedly. In contrast, businesses that rely on data exploration often use external data and 
alternative analytic approaches in search of novel customer insight. Each approach can shape the 
nature and pace of change within the business (e.g., maintenance on data warehouses, changes to 
the customer selection process), challenges that have not gone unnoticed in business research 
(Sutherland and Smith, 2011).    

Carving a Wheel: A “Craft” Solution 

The craft solution was customized, flexible, creative, iterative, time-intensive, thoroughly 
documented, and more complex to deploy. The craft approach involved predictive models that were 
highly tailored to business needs. Indeed, each model met distinct objectives. For example, some 
statistical models targeted consumers to grow the prospect base, to expand product purchases among 
existing customers (cross-sell) or to stem attrition by identifying customers at risk of no longer 
shopping with the retailer. Within these broad categories, the analytic models were often developed 
with a specific product or customer segment in mind. Among other components, each model within 
the craft approach required analysts to define the concepts of customer universe, response, and the 
types of predictor variables to be considered. 

Iteration and engagement characterized the craft approach from beginning to end, meaning from 
model planning to deployment and subsequent monitoring. Initially, the statistical staff met weekly 
with the business sponsors because the statistical model was built especially to meet detailed 
business needs and objectives. Discussions involved model objectives, timelines, definitions of 
independent and dependent variables, and more. These meetings sought to ensure understanding of 
the scope of the model. Changes to these elements resulted in a substantial delay of model delivery 
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for a particular campaign, or its lack of delivery altogether. Such mid-course model corrections were 
at best expensive and at worst impossible to make. 

In the craft environment, the model development process offered an opportunity for statisticians to 
be creative. Analysts had flexibility. They were expected to test competing modeling algorithms, to 
consider separate customer scorecards when building models, and to decide what types of candidate 
variables should be constructed when predicting behavior. In the craft approach, analysts decided 
which model predictors to generate and offer to the model based on the nature of the behaviour being 
predicted. Analysts also solved advanced statistical problems using several statistical techniques, 
including regression models, artificial neural networks, decision trees, machine learning tools, and 
other techniques. 

Once the analyst selected several qualifying models, the advanced analytics team debated the merits 
of the competing models. It recommended a best model, but ultimate approval rested with their 
business partners. The algorithm would then be deployed. In a craft approach, the uniqueness of 
each model translated into a complex process for model implementation. Not only did one model vary 
from another in terms of objectives and customer definitions, but the model builder and list 
personnel had to synchronize their work in model deployment. Building models for those who 
shopped in the last 12 months, but inadvertently scoring the model on a list of shoppers from the last 
24-36 months was certain to introduce an “apples and oranges” problem in applying the model. 
These needs required multiple quality controls and accuracy checks, which further increased model 
timelines in a craft environment. 

In a craft environment, models were often reused. That is, the values of the independent variables 
were refreshed and the model parameter coefficients were unchanged so that a new prediction was 
obtained. In contrast to complete redevelopment, which often occurred within the production 
environment, re-scoring insured that the store-supported business maximized the substantial time 
and effort invested in initial model development allowing model shelf-life to span from one year to 
several years. Although this reduced the investment required for new model planning, re-scoring 
still required analysts to regularly track changes in model inputs, to decide when deterioration 
occurred and when new model development was necessary. 

Craft based models required extensive documentation covering all decisions in the life cycle of the 
algorithm, including initial model objective, planning, development, scoring, deployment, testing, 
and suggestions for model retirement or future enhancements. Within the craft approach, for 
example, analysts documented which segments of customers were selected to build the model, the 
sampling rates and methodology, the definition of customer response and its associated response 
period, the product and time frame used to define response, due dates for model implementation, and 
more. When the store-business was ready to deploy a craft model, the process of preparing scores for 
later use in a campaign took a week or more. Analysts had to write efficient programming code to 
score the model, and to load scores into the data mart for operational use. In sum, a craft solution to 
advanced analytics involved a four to six week timeframe for each analyst to build a model, with 
more time for particularly complex projects. This translated into annual productivity in the craft 
environment of three to twelve new models and about six to twelve rescored models.  

Assembling a Widget: A “Production” Solution 

In contrast to the craft solution, there was a production solution in place for the modeling team that 
supported the direct channel. The production approach was standardized, rigid, self-contained, 
rapidly built, linear in development, constrained to a reduced set of predictors and statistical 
algorithms, minimally documented, quickly deployed, and developed in relative isolation of business 
partners. Each model met a business objective that did not change from one communication to 
another. Rather than a customized purpose, each model supported the same business goal. In a 
production solution, most models typically targeted responsive customers for each marketing contact.  
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As a consequence, a production environment simplified and standardized issues related to the 
definition of the customer universe, sampling methodology, and the types of competing predictive 
algorithms fit to the data.  Analysts in a production environment had little to no choice in these 
matters. 

In a production solution, the development and deployment of advanced analytics involved limited 
interaction with business partners. After analysts learned how to build their first model, future 
models were built in the same fashion because the general business objectives did not change. There 
were a constrained set of predictors and one statistical methodology. The need for business partners 
to understand the inner-workings of a model was less important in the production solution, and after 
modelers educated their business partners about one model, business partners could easily 
generalize their knowledge across models. 

From a production approach, model stability (i.e., its ability to effectively predict behavior over a 
long period of time) was less important because new models were constructed for each customer 
marketing communication. The analytic modeling product had a short shelf-life. Because models 
were so similar in a production environment, written model documentation was not required; 
instead, the programming code, which was used to score the model, served as documentation. 

When each model was ready to use, operational teams in the direct-department had access to model 
scores through a point and click interface that provided near read-time availability of model scores. 
Unlike the craft solution, the similarity of each model reduced the risk of a disconnection between 
the methodology used to build versus deploy a model. In summary, because models were similar in 
this factory-like environment, delivering advanced analytics simply involved computational 
calculations to score and load models, which stands in sharp contrast to the six month or longer 
timeframe often required in non-production environments (Taylor, 2010). This standardization led to 
high productivity. In one to two weeks, each analyst could build a single model; annually, each 
production analyst could build and score 50 models.  

So far the focus has been on how two departments solved advanced analytic challenges. One 
developed a craft approach, and another evolved a production solution. Although unique, the 
description of two radically different approaches to solving advanced analytic problems within the 
firm should not overshadow their similarities. Both departments shared business objectives. They 
sought to optimize marketing contacts and target the best customers. Both management teams 
relied upon analysts to build predictive, multivariate statistical models as a means to solve their 
customer targeting problems, and they shared the high pressure corporate culture of a retail 
enterprise in which senior leaders expected models to be available rapidly, yielding nothing in 
quality or effectiveness. Thus, despite the effort to craft a model over four to six weeks, this was still 
a relatively short timeline for model development relative to other industries and firms (Taylor, 
2010). In comparison, analysts in insurance or banking industries may toil for a year or more to 
develop a single predictive model.  Figure 1 summarizes these approaches to solving advanced 
analytics problems by listing the characteristics of each.  
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FIGURE 1.  Terms that describe Craft and Production solutions to advanced analytics. 

 

WHY DID MANAGEMENT ADOPT A CRAFT OR A PRODUCTION SOLUTION?  

Why did management develop such distinct ways of addressing their advanced analytic challenges?  
Causation is difficult to establish even under the most stringent experimental conditions. These 
reflections are certainly no exception. However, our experiences at this firm over a four year time 
frame suggest several factors that are likely to have contributed to differences in the adoption of a 
craft versus a production environment. They include the history of the two departments, the nature 
of the customer contacts, differences in business objectives, staffing and other resources, and 
management philosophy. Each is discussed in turn. 

First, the direct and store businesses had unique histories within the corporation. The direct 
department was the first to have an internally staffed analytics team. The brick-and-mortar 
business, in contrast, was initially supported by an out-sourced analytics vendor. This vendor had a 
consultative, hands-on relationship with the management team and its projects. A decade later, the 
store leaders eliminated the vendor arrangement, forming an internal analytics team to support the 
store-based department. The store and direct departments therefore evolved in relative isolation, 
which included their business and staffing models. With such relationships previously, leaders in the 
store business continued to expect the analytics staff to provide consultative and communication-rich 
interactions just as the third-party vendor did. 

Second, the nature of the business objectives fluctuated in subtle ways across the two departments. 
The store-supported department was a changing environment. In any particular quarter, leaders 
sought to increase store visits among holiday or single-visit customers. Such changing objectives 
required analytics to be crafted to meet business needs. In contrast, the objectives of the direct 
channel did not change: Drive customers with the highest potential sales to buy from the firm.  
When business objectives rarely change, a routine or production analytic solution was possible. This 
described the factory approach used by the direct department. 

Third, the direct business evolved from a simple to a more complex marketing plan. It initially sent 
its customers a handful of marketing communications within any year. However, it evolved to send 
customers a multitude of communications. For example, a typical direct customer might receive 12-
18 catalogues a year and three to six emails per week. Store customers received about one-third as 
much direct mail and one to two emails per week. With such frequent customer communications, 
each of which used distinct models, and a consistent definition of the customer universe, a 
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production solution best met the business needs in a direct business. This was a high-volume, 
steady-state marketing environment.  It translated into a routine approach to advanced analytics for 
the direct department. 

Fourth, staffing resources had a role in determining whether a craft or production approach to 
advanced analytics was adopted. The previous vendor support of the store department prided itself 
on intensive communication and unique marketing solutions. This required more modeling personnel 
than the production environment to solve advanced analytic business problems. Communication 
alone was a large part of the craft based modeling role. The direct department, in contrast, was 
launched with few staff and resources in an effort to test the impact of modeling. Years later the 
direct department still relied upon a small staff. In a cost-competitive industry, the adoption of a 
production based analytic approach to modeling was attractive on the basis of staffing efficiency 
alone. 

Fifth, the store and direct departments of the firm were led by different management teams. Each 
had its own philosophical approach to advanced analytic work, consistent with the comments of 
Blattenberg and Hoch (1990) who discussed different management opinions pertaining to modeling. 
During the period under observation, leadership in the store department sought to build the best 
possible statistical models, often defined as one in which the top five or ten percent of customers had 
the highest response rate. To do so, analysts used a craft approach to fit multiple models using 
different algorithms until they could identify the best performing model. Confidence in the model, 
prior to its deployment in a campaign, was also necessary because a model was used repeatedly. 
Thus, model performance was compared across several prior samples or previous campaigns, an 
effort that could substantially increase the model timeline depending on the number and nature of 
these model validations. Under such conditions, a craft approach was more consistent with these 
business needs. In contrast, leaders in the direct department supported the use of the same modeling 
technique for nearly every analytic problem. It was used to target all customer communications in 
the belief that statistical approaches had similar expected modeling benefits. 

IMPLICATIONS AND APPLICATIONS FOR MARKETING PRACTITIONERS 

Adopting a craft or production approach to solve advanced analytic problems was more than a novel 
observation. The decision to use a craft or production approach shaped the day-to-day work of 
analysts and managers, with far reaching consequences for topics such as employee sourcing, 
satisfaction, business flexibility, and timelines. Because implications were dependent upon one’s role 
in the organization, the following section provides separate reflections for analysts, managers, and 
senior leaders / business partners, each of whom serve key functions in analytics departments (SAS, 
2003; 2005).   

Modeling Analysts 

When building advanced analytics, analysts faced different job conditions based on whether they 
worked in a craft or production environment. In the craft approach, analysts had significant 
interaction with business and modeling peers throughout the life cycle of the model. In contrast, 
analysts who worked in the production environment spent most of their time working independently. 
The job was highly structured and routine. There was little need to discuss modeling details, even 
among statistical peers. Moreover, a production environment offered analysts a limited exposure to 
modeling algorithms and methodologies because one technique was used to build all predictive 
models. For those analysts with a breadth of experience using modeling techniques, or a career goal 
of obtaining broader exposure to various modeling algorithms, the narrowly focused production 
solution limited professional growth. This was a sharp contrast to the craft solution where analysts 
regularly used multiple statistical techniques. 
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For analysts, both craft and production roles posed a distinct possibility of a disconnection between 
day-to-day job duties and future career goals. This can be seen as part of a larger issue of how an 
individual fits within departmental culture. When the fit is suboptimal, it has the potential to result 
in employee dissatisfaction and staff attrition (for a review, see Adkins and Caldwell, 2004; for 
research on satisfaction and attrition more generally, see Haines et al., 2010). In the experiences 
described here, certain staff members in the production environment were unable to utilize their 
breadth of statistical training, business knowledge, or communication skills. For example, the 
production solution deemphasized consultative skills. In contrast, working effectively with business 
partners was a key component of the craft approach given the distinct business needs, demands, and 
brand idiosyncrasies of internal business partners. As a result of their dissatisfaction, production 
analysts occasionally sought new roles in a craft approach and the reverse was also true – craft 
analysts who struggled with meeting the communication and business needs of a varied and 
demanding clientele occasionally sought refuge in production approaches. Such job movement had 
implications for human resources staff as well. For example, in such situations, human resource 
partners can act as strategic resources to optimize the alignment of staff according to their aptitudes 
and career aspirations rather than serve exclusively in a traditional capacity where they assist 
managers in simply filling open positions (Buller, 1988; Ulrich, 1987). 

Initially, one modeler who worked in a production solution was satisfied with completing a large 
number of models in a short timeframe. However, after she mastered the production process, the 
rigid methodological approach did not offer as much intellectual stimulation as a craft environment. 
Neither did the production environment offer her enough interaction with business partners as she 
would have preferred.  In contrast, an analyst who worked in both areas reported that the craft role 
provided him with an opportunity to develop and enhance communications skills by explaining 
technical issues in a non-technical language to business partners. Preparing documentation and 
explaining the unique features of craft-based models provided a sense of accomplishment because it 
was an opportunity to hone his communication skills. In the end, he found that delivering a craft 
product was most satisfying.  

Nonetheless analysts found a craft environment to be challenging. Chief among the challenges was 
interaction with business partners, who planned and approved the model. Often, this seemed to take 
as long as actual model development itself. Furthermore, when planning or building a model, 
analysis were often frustrated that their strategic and technical recommendations were not held in 
equal regard to those of their business partners. Finally, some analysts preferred to focus their effort 
on the statistical aspects of the role, finding it burdensome to invest time in intensive 
communication with business partners and assemble detailed model documentation. 

Clearly, craft and production approaches to advanced analytics required distinct job skills, which 
had the potential to be misaligned with the analyst’s preferences. Because the approaches met 
established business needs, neither approach seemed likely to change in the long-term. As a result, 
with inaction on their part, unhappy analysts and their managers could look forward to some 
combination of dissatisfaction, performance issues, or attrition, which have been a major concern of 
research on job satisfaction (Anderson, 2009; Dijk and Brown, 2006; Jordan, et al., 2006; Morrison, 
2008; but see Judge, et al., 2001 who found a weak correlation between job satisfaction and employee 
productivity for less complex jobs).   

Managers  

Organizing advanced analytics around a craft or production approach had implications for managers 
as well. Although the managerial role has many purposes (Hales, 1986), two key duties are employee 
performance and staffing. Regarding staff performance, managers were affected by the way this firm 
solved its advanced analytics objectives because craft and production approaches required unique 
skills. Each approach had a different flavor when it came to the day to day modeling role.  Managers 
therefore had an interest to ensure that their staff was working within the environment that was 
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optimal for them. When this was not the case, there was the possibility that dissatisfaction and 
performance problems could follow, which characterized one modeler in particular. Vacated positions 
also raised issues that required staffing managers and human resource personnel to consider the 
work environment within a craft or production solution. Candidates had to be evaluated for more 
than just their traditional skills and technical abilities. For example, candidates who sought to rely 
on strong oral and written communication skills were best suited for a craft rather than a production 
approach because this skill was an integral requirement for the role. Analysts who craved variety 
were also good candidates for the craft approach because each model was built to meet unique 
business needs. 

Craft and production approaches to advanced analytics also had distinct sources for prospective 
candidates, a responsibility of both managers and human resources partners to fill. For example, 
junior candidates were more easily recruited from graduate school or from the ranks of those with 
only a year or two of professional experience. With less experience in regard to business knowledge 
and advanced analytics communication skills, junior modelers were ideal for more structured 
production roles. Furthermore, junior modelers with less experience often had lower starting salaries 
relative to senior modelers, which was an attractive consideration for managers in the low-cost 
production environment. For all these reasons, traditional job advertisements could often suffice to 
identify a pool of candidates. The craft approach was much different. Few junior analysts had the 
depth of experience needed to be successful in these roles. They needed strong communication skills. 
A craft environment also required experience with a wider variety of statistical algorithms than 
offered by many graduate programs, and it often helped to have broader experience than simply the 
retail industry, both of which came at a higher cost. To identify such candidates, it was often 
necessary to use the services of recruiters or recommendations from existing craft modelers to 
identify potential candidates. Ultimately, the need for managers and human resource staff to solve 
these distinct challenges may be just one such way to offer strategic resources to the organization 
and positively shape staff investment (Turpin, et al., 2005; Walker, 1988; for a competing view, see 
Labedz and Lee, 2011). 

Senior Leaders and Business Partners 

The decision to use either craft or production analytics had consequences for senior leaders and 
business partners (e.g., brand managers and managers of functional areas). This was because one 
solution was typically better suited to meet business goals. For example, a production environment 
could run smoothly when business objectives were clear and stable over time such as seeking to 
target core customers who had the highest response to a mail campaign. Using the same set of 
analytic and business requirements, the automated infrastructure of the factory solution produced 
many models within a short time. However, when business objectives changed, the production 
approach offered little flexibility to meet that need. It did not allow leaders opportunities to quickly 
adjust parameters surrounding the modeling universe, to shorten or lengthen the campaign response 
window, to change the preferred sampling method or adjust its rates, or test optimal statistical 
techniques when fitting models. To achieve a high-volume modeling factory, the production approach 
relied upon complex programming code. All of these elements left business leaders with less ability 
to adjust their modeling approach when business needs changed. Such was the case during a 
recession.  Response rates among customers declined, so existing response models were not wholly 
adequate to meet business needs. Profitable customers were the new targeting objective, but the 
highly-structured automated programming code required a year or more to fully modify. 

As was the case for a production approach, a decision to use a craft approach was not without its own 
challenges for senior leaders and business partners. Management sought to reduce model delivery 
timelines for craft-based models to two weeks, similar to the timelines for production-based 
analytics, but with the same demands for customization, communication, and model documentation. 
The pressure to decrease the delivery timeline in a craft environment was particularly acute during 
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an economic downturn. Budget limitations did not allow for additional staff within the store-based 
department, which could have otherwise increased model output.  

Finally, the ways in which advanced analytics was organized also had consequences for business 
partners such as project managers and operational personnel. Project managers responsible for 
direct mail execution were especially sensitive to model timelines because delays in model delivery 
could impact list selection, campaign launch date, and ultimately the very success of the campaign 
itself. Because customized craft models required a six week lead time prior to a direct mail 
campaign, it was not easy to recover from changes in mid-stride. Moreover, details relevant to model 
building process were often nebulous in the planning phase months before the campaign launch (e.g., 
target customer definition, product focus), but analysts nevertheless needed to understand these to 
begin model development. This too led business partners to be frustrated with the longer timeline 
involved in building a craft model, although they were unwilling to sacrifice their demands for model 
objectives, specifications, documentation, transparency, and comparison of various models when 
selecting the best model. 

In sum, both methods of solving advanced analytic needs – craft and production – had implications 
for positions across the organization. I hope that by sharing these experiences, marketing 
practitioners will gain insight into the issues to be considered when they decide to adopt a craft or 
production solution. In cases where a particular solution is already in use, I wish to raise awareness 
of the challenges that are faced. Ultimately, if the concerns and challenges can be addressed, 
organizations can more efficiently solve their marketing goals.   

IMPLICATIONS FOR THE FUTURE OF MARKETING AND ADVANCED ANALYTICS: 
TOWARD A “WORLD OF WIDGETS?”  

Although each department addressed its analytic needs uniquely, senior leaders did not value the 
craft and production solutions equally. In particular, there was pressure exerted upon analysts and 
their managers in the store-supported department to adopt a production approach. With such strains 
at one firm, it is reasonable to ask if managers and analysts in other organizations are similarly 
pressured to solve analytic challenges through a production approach. Will the future of marketing 
analytics be a world of widgets?   

In reflecting on this question, both firm specific and more general trends seemed to be at play. First 
was the business environment particular to this company and its industry – an ever evolving, fast-
paced retail marketing business. In this light, a production approach was appealing for its potential 
for rapid model delivery. Specifically, senior leaders suggested that craft-based analysts could 
increase the efficiency of their modeling process by borrowing the coding, algorithms, and other 
aspects of the production approach. To develop a final model more quickly, senior leaders 
recommended analysts reduce the number of competing models, among other suggestions. In return, 
analysts and their managers reiterated the business benefits of a craft approach, stressed the 
effectiveness of the craft approach, and emphasized the challenges of adopting a production 
methodology. Nevertheless, leaders and partners continued to value a production solution. 

More generally, the tendency to value a production over a craft approach likely reflects the 
technological and cultural changes taking place in society. For over a century, Western culture has 
valued the ability of technology to solve problems (Gendron, 1977). Even in times of economic 
downturn, such as the latest global recession, businesses around the globe continue to invest heavily 
in information technology infrastructure (European Commission, 2011). There is also the 
astronomical pace of technological change. Computing power has increased at an annual growth rate 
of 50 percent (Nordhaus, 2002). It is faster, more powerful, less expensive, and more widely available 
than ever before. And there are massive amounts of data.  A recent estimate was more than 295 
exabytes of telecommunication, broadcasting, and digital information in the world (Hilbert and 
Lopez, 2011). Data mining and statistical software packages have also attempted to keep pace with 
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growth in data and computing power. Over the past several years, software developers have made 
statistical packages easier to use particularly for general business analysts (see Azvine, et al., 2003). 
With the deployment of point-and-click graphical user interfaces, analysts need little to no 
programming experience and fewer keystrokes to build predictive models rapidly.  Among many that 
are commercially available are IBM’s SPSS Model Builder™, SAS’ Enterprise Miner™ and Tibco’s S-
Plus®.  

On the surface, increased access and sophistication of such software for the average business user 
would appear to encourage the adoption of a production approach. However, other interpretations 
should be considered before declaring the demise of craft analytics. For example, although data 
mining software is often marketed as a way to reduce model development costs through more rapid 
delivery, data mining tools can also support goals consistent with a craft approach. By simplifying 
the need for what was previously complex programming syntax, data mining packages now easily 
and quickly compare the performance of statistical algorithms in a search for the optimal 
mathematical solution. Analysts can spend less time writing, testing, and debugging programming 
code and more time on other important aspects of algorithm development such as the model planning 
and evaluation processes. Likewise, more time spent on understanding the underlying data and the 
business objectives are invaluable investments in the process of developing better advanced 
analytics, both of which are key elements of the craft approach. For these reasons, the craft approach 
will likely continue to exist, if not thrive, because a production approach does not meet every 
business objective across all organizations. When it comes to solving the advanced analytic needs of 
businesses, “one size does not fit all.” Despite the pressures within this firm, our experiences with 
advanced analytics suggest that there is tension in adopting a production-oriented advanced 
analytics future that is “all about widgets.” 

FUTURE QUESTIONS AND OTHER EXPERIENCES 

These experiences as a modeling analyst and manager conjured up images of craft guilds and 
assembly plants. Such stark metaphors described unique ways to solve the advanced predictive 
analytics needs of a particular firm. This paper sought to describe these approaches in greater detail, 
outline their possible origins, and show how each had far-reaching implications for a marketing 
department. With such experiences described, it would be beneficial to learn how and to what extent 
these reflections resonate with professionals in other situations. For example, do management teams 
in smaller firms adopt one solution compared to their larger counterparts? Do new teams and 
younger firms have a different approach relative to mature ones? What about other macro-level 
factors such as industrial sector and country of operation?  Shifting to the micro-level, how might 
management resources, personalities, team dynamics, and skills play a role in shaping the kinds of 
analytic solutions that were developed? And how might the experiences of senior leaders differ from 
the experience of modelers and manager described here? These are more than questions of isolated 
interest for any specific function or business unit. They are relevant wherever analytics are required 
to operate an efficient business: marketing, logistics, inventory, pricing, risk, fraud, and human 
resources. Analysts, managers, senior leaders, business partners, and human resources staff alike 
need predictive analytics to run their businesses in the 21st century, particularly as firms face 
pressures to mine ”big data” and take action on it faster than ever before.   
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