
Theory and Applications of Graphs Theory and Applications of Graphs 

Volume 9 Issue 1 Article 6 

March 2022 

Prime labelings on planar grid graphs Prime labelings on planar grid graphs 

Stephen James Curran 
University of Pittsburgh - Johnstown, sjcurran@pitt.edu 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag 

 Part of the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Curran, Stephen James (2022) "Prime labelings on planar grid graphs," Theory and Applications of 
Graphs: Vol. 9: Iss. 1, Article 6. 
DOI: 10.20429/tag.2022.090106 
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6 

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It 
has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital 
Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu. 

https://digitalcommons.georgiasouthern.edu/tag
https://digitalcommons.georgiasouthern.edu/tag/vol9
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


Prime labelings on planar grid graphs Prime labelings on planar grid graphs 

Cover Page Footnote Cover Page Footnote 
Acknowledgement: The author was supported by a College Research Council Grant provided by the 
University of Pittsburgh at Johnstown. 

This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol9/
iss1/6 

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6


Abstract

It is known that for any prime p and any integer n such that 1 6 n 6 p, there exists
a prime labeling on the p× n planar grid graph Pp × Pn. We show that Pp × Pn has a
prime labeling for any odd prime p and any integer n such that p < n 6 p2.

1 Introduction

Graph labelings were formally introduced in the 1970s by Kotzig and Rosa [6]. Graph
labelings have been applied to graph decomposition problems, radar pulse code designs, X-ray
crystallography and communication network models. The interested reader should consult J.
A. Gallian’s comprehensive dynamic survey on graph labelings [3] for further investigation.
We refer the reader to Chartrand, Lesniak, and Zhang [1] for concepts and notation not
explicitly defined in this paper. All graphs in this paper are simple and connected.

Definition 1.1. Let G be a graph on n vertices. We say that G is a prime graph if there
exists a bijective function f : V (G) → {1, 2, . . . , n} such that f(u) and f(v) are relatively
prime whenever u is adjacent to v.

Dean [2], and Ghorbani and Kamali [4] have independently shown that the ladder P2×Pn
has a prime labeling. Kanetkar [5] found prime labelings for the grid graph Pn+1×Pn+1 when
n and (n+1)2 +1 are primes, and either n = 5 or n ≡ 3 or 9 (mod 10), and a prime labeling
on the grid graph Pn × Pn+2 when n 6≡ 2 (mod 7) is prime. Sundaram et al. [7] have shown
that the grid graph Pp × Pn has a prime labeling when p > 5 is a prime and n 6 p. They
conjecture that the planar grid graph Pm × Pn is prime for all positive integers m and n.
In this paper we show that, for any odd prime p and any positive integer p < n 6 p2, the
p × n planar grid graph Pp × Pn has a prime labeling. Combining this result with that of
Sundaram et al. [7], for any odd prime p and any positive integer 1 6 n 6 p2, the p × n
planar grid graph Pp × Pn has a prime labeling.

2 Preliminaries

Vilfred et al. [8] have shown the following result.

Theorem 2.1. [8] Let p be a prime, and let n be an integer such that n 6 3. Then there
exists a prime labeling on Pp × Pn.

Sundaram et al. [7] have extended their result to the following theorem.

Theorem 2.2. [7, Theorem 2.1] Let p > 5 be a prime, and let n be an integer such that
3 < n 6 p. Then there exists a prime labeling on Pp × Pn.

Combining Theorems 2.1 and 2.2 yields the following result.

Theorem 2.3. Let p be an odd prime, and let n be an integer such that 1 6 n 6 p. Then
there exists a prime labeling on Pp × Pn.
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u4,1 u4,2 u4,3 u4,4 u4,5

u3,1 u3,2 u3,3 u3,4 u3,5

u2,1 u2,2 u2,3 u2,4 u2,5

u1,1 u1,2 u1,3 u1,4 u1,5

Figure 1: Grid graph P4 × P5.

Remark 2.1. We make use of the fact that gcd(a, b) = gcd(a, b + ha) = gcd(a, ha − b) for
any integer h.

Example 2.1. We illustrate the grid graph P4 × P5 in Figure 1. Due to the orientation of
the vertices, we refer to the set of vertices {ui,j : 1 6 j 6 n} as the ith row of Pm × Pn and
{ui,j : 1 6 i 6 m} as the jth column of Pm × Pn.

3 Prime labeling on Pp × Pn
Remark 3.1. In order to show that the p × n grid has a prime labeling, we begin with the
labeling f(ui,j) = (j−1)p+ i for all ui,j ∈ V (Pp×Pn). We first show that the only labels that
prevent this labeling from being prime are the labels on the vertices in the pth row. We have
gcd((j − 1)p+ i, (j − 1)p+ i± 1) = 1. For 1 6 i < p, we have (j − 1)p+ i ≡ i 6≡ 0 (mod p).
By Remark 2.1, we have gcd((j − 1)p+ i, (j − 1)p+ i± p) = gcd((j − 1)p+ i, p) = 1.

We establish the main result of this paper.

Theorem 3.1. Let p > 5 be a prime, and let n be an integer such that p < n 6 p2. Then
there exists a prime labeling on Pp × Pn.

Proof. The idea of the proof is to start with the labeling f(ui,j) = (j − 1)p + i for all
ui,j ∈ V (Pp×Pn). By Remark 3.1, the labels in the pth row prevent this labeling from being
prime. So we swap the labels on some of the vertices in the pth row with the labels on some
of the vertices in the other rows to transform this labeling into a prime labeling. So in order
to verify that the resulting labeling is prime, we need only check for primeness at the vertices
ui,j ∈ V (Pp × Pn) where 1 6 i < p and f(ui,j) 6= (j − 1)p + i, and at the vertices in the pth

row.
We define the integers j0, j1, j2, e1, i3, j3, and kj and `j for all 1 6 j 6 j1 as follows. Let

j0 =

⌊
n

p

⌋
j1 =

⌊
n

2p

⌋
, j2 =

⌊
n

2

⌋
,

e1 = blog2(p
2)c, let 1 6 i3 6 p and 1 6 j3 < p be the unique integers such that (j3−1)p+i3 =

n, and for all 1 6 j 6 j1, let kj and `j be the unique integers such that j 2e1+1 = (`j−1)p+kj
and 1 6 kj 6 p. Since j 6 j1 < p, we have 1 6 kj < p.
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5 32 3 20 1 30 7 40 9 50 11 60 13 70

4 45 14 19 24 29 34 39 44 49 54 59 64 69

15 8 65 18 23 28 33 38 43 48 53 58 63 68

2 35 12 17 22 27 10 37 42 47 52 57 62 67

25 6 55 16 21 26 31 36 41 46 51 56 61 66

Figure 2: Prime labeling on P5 × P14.

We need to consider the following four cases separately. These cases are p < n 6 p2 − p
and j0 is even, p < n 6 p2 − p and j0 is odd, p2 − p < n < p2, and n = p2.

Case 1. Suppose p < n 6 p2 − p and j0 = 2j1 is even. We define the labeling f :
V (Pp × Pn)→ {1, 2, . . . , pn} as follows.

1. For all 1 6 i 6 j0 such that i is odd, let f(ui,1) = ip2.

2. For all i and j such that i+ j is even, and either

• j = 1 and j0 < i < p,

• 1 < j < j3 and 1 6 i < p , or

• j = j3 and 1 6 i 6 i3,

let f(ui,j) =
(
(j − 1)p+ i

)
p.

3. For all j0 < j 6 n such that j is odd and j 6≡ 0 (mod p), let f(up,j) = j.

4. For all 1 6 j 6 j0 and j is odd, let f(up,jp) = j.

5. For all 1 6 j 6 j1, let f(up,2j) = j 2e1+1. Then, for all 1 6 j 6 j0 and j is even,
f(up,j) = j 2e1 .

6. For all 1 6 j 6 j1, let f(ukj ,`j) = (2j)p.

7. For all other vertices ui,j, let f(ui,j) = (j − 1)p+ i.

See Figure 2 for an example of this labeling on P5×P14. By Remark 3.1, in order to check
that this labeling is prime, we need only check for primeness at all vertices ui,j ∈ V (Pp×Pn)
such that 1 6 i < p and f(ui,j) 6= (j − 1)p+ i, and at all vertices in the pth row.

Subcase (i). Suppose j = 1 and 1 6 i 6 j0 < p is odd. Then f(ui,1) = ip2, f(ui±1,1) =
i±1, and f(ui,2) = p+ i. Since gcd(i, i±1) = gcd(i±1, p) = 1 and gcd(i, p+ i) = gcd(i, p) =
gcd(p, p+ i) = 1, we have gcd(ip2, i± 1) = 1 and gcd(ip2, p+ i) = 1.

Subcase (ii). Suppose i+j is even, and either j = 1 and j0 < i < p−1, or 1 < j < j3 and
1 6 i < p−1, or j = j3 and 1 6 i 6 min(i3, p−2). Then f(ui,j) =

(
(j−1)p+ i

)
p, f(ui±1,j) =

(j−1)p+i±1, and f(ui,j±1) = (j−1)p+i±p. We have gcd
((

(j−1)p+i
)
p, (j−1)p+i±1

)
= 1

since gcd
(
(j − 1)p+ i, (j − 1)p+ i± 1

)
= 1 and gcd

(
p, (j − 1)p+ i± 1

)
= 1. Also, we have
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gcd
((

(j − 1)p + i
)
p, (j − 1)p + i ± p

)
= 1 since gcd

(
(j − 1)p + i, (j − 1)p + i ± p

)
= 1 and

gcd
(
p, (j − 1)p+ i± p

)
= 1. When i = p− 1 and j is even, we have f(up,j) = j2e1 . We will

check that gcd(f(up−1,j), f(up,j)) = 1 in Subcase (iii).

Subcase (iii). Suppose i = p − 1, 1 6 j 6 j3, and j is even. If i3 = p − 1, then
j3 = j0 +1 is odd. Thus, 1 6 j < j3, and j is even. (We will consider the situation i3 = p−1
and j3 = j0 + 1 is even in Case 2.) Since j0 = j3 or j0 = j3 − 1, we have 1 6 j 6 j0 < p, and
j is even.

Thus, f(up−1,j) = (jp−1)p, f(up,j) = j 2e1 , f(up−1,j±1) = jp−1±p, and f(up−2,j) = jp−2.
We observe that gcd

(
(jp−1)p, j

)
= 1 since gcd(jp−1, j) = 1 and gcd(p, j) = 1. Because jp−1

and p are odd, we have gcd
(
(jp− 1)p, j 2e1

)
= gcd

(
(jp− 1)p, j

)
= 1. Since f(up−2,j) = jp− 2

and f(up−1,j±1) = jp − 1 ± p, an argument similar to that in Subcase (ii) shows that
gcd

(
(jp− 1)p, jp− 2

)
= gcd

(
(jp− 1)p, jp− 1± p

)
= 1.

Subcase (iv). Suppose i = p, 1 6 j < j0, and j is even. Then f(up,j) = j 2e1 ,
f(up−1,j) = (jp−1)p, and f(up,j±1) = (j±1)p. Since j±1 is odd, we have gcd(j 2e1 , j±1) =
gcd(j, j±1) = 1. Since 1 6 j < p and p is odd, we have gcd(j 2e1 , (j±1)p) = gcd(j 2e1 , j±1) =
1. It was shown in Subcase (iii) that gcd

(
(jp− 1)p, j 2e1

)
= 1.

Subcase (v). Suppose i = p and j = j0. Since j0 is even, f(up,j0) = j0 2e1 , f(up−1,j0) =
(j0p − 1)p, f(up,j0−1) = (j0 − 1)p, and f(up,j0+1) = j0 + 1. Since j0 + 1 is odd, we have
gcd(j0 2e1 , j0 + 1) = gcd(j0, j0 + 1) = 1. It was shown in Subcase (iii) that gcd

(
j0 2e1 , (j0p−

1)p
)

= 1. It was shown in Subcase (iv) that gcd
(
j0 2e1 , (j0 − 1)p

)
= 1.

Subcase (vi). Suppose i = p, 1 6 j < j0, and j is odd. Then f(up,j) = jp, f(up−1,j) =
jp− 1, and f(up,j±1) = (j ± 1)2e1 . By an argument similar to that in Subcase (iv), we have
gcd

(
jp, (j ± 1)2e1

)
= 1. Also, gcd(jp, jp− 1) = 1.

Subcase (vii). Consider the vertex up,jp, where 1 6 j 6 j0 and j is odd. We have
f(up,jp) = j, f(up,jp±1) = (jp± 1)p, and f(up−1,jp) = jp2 − 1. Since j is relatively prime to
p, jp± 1 and jp2 − 1, we have gcd

(
j, (jp± 1)p

)
= gcd(j, jp2 − 1) = 1.

Subcase (viii). Suppose i = p, j0 < j 6 n, j is odd, and j 6≡ 0 (mod p). If j > j0 + 1,
then f(up,j) = j, f(up,j±1) = (j ± 1)p, and f(up−1,j) = jp − 1. We have gcd

(
j, (j ± 1)p

)
=

gcd(j, jp− 1) = 1 since j is relatively prime to p, j ± 1, and jp− 1.

If j = j0 + 1, then f(up,j0) = j0 2e1 and f(up,j0+1) = j0 + 1. Since gcd(j0 + 1, j0) = 1 and
j0 + 1 is odd, we have gcd(j0 + 1, j02

e1) = 1.

Subcase (ix). Consider the vertex ukj ,`j for some 1 6 j 6 j1. We have f(ukj ,`j) = (2j)p.
Recall that kj and `j are the unique integers such that j 2e1+1 = (`j−1)p+kj and 1 6 kj < p.
Since e1 = blog2(p

2)c, we have p2 < 2e1+1 < 2p2. Since 1 6 j 6 j1 6 n
2p

, we have

n+ p 6 p2 < j 2e1+1 < np.

Since 1 6 kj < p, we have f(ukj ,`j±1) =
(
(`j − 1) ± 1

)
p + kj = j 2e1+1 ± p. Since

j 2e1+1±p = (`j−1)p+kj±p ≡ kj 6≡ 0 (mod p), we have gcd(p, j2e1+1±p) = 1. By Remark
2.1, we have gcd(j, j2e1+1 ± p) = gcd(j, p) = 1. Thus, gcd(2jp, j2e1+1 ± p) = 1.

If 1 < kj < p, we have f(ukj−1,`j) = j 2e1+1 − 1. Also, if 1 6 kj < p − 1, we have
f(ukj+1,`j) = j 2e1+1 + 1. Since j 2e1+1 ± 1 = (`j − 1)p + kj ± 1 ≡ kj ± 1 6≡ 0 (mod p),
gcd(p, j2e1+1 ± 1) = 1. By Remark 2.1, we have gcd(j, j2e1+1 ± 1) = gcd(j, 1) = 1. Thus,
gcd(2jp, j2e1+1 ± 1) = 1.

Finally, we suppose kj = p−1. Since `jp = j2e1+1+1 is odd, `j is odd. Thus, f(ukj+1,`j) =

f(up,`j) = `j if `j 6≡ 0 (mod p) or f(ukj+1,`j) = f(up,`j) =
`j
p

if `j ≡ 0 (mod p). Since
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`jp − j2e1+1 = 1, we have gcd(j2e1+1, `jp) = 1. Thus, gcd(2j, `j) = 1. If `j 6≡ 0 (mod p),

then gcd(2jp, `j) = gcd(p, `j) = 1. Since `j 6 p2 − p, we have
`j
p
6 p − 1. So, if `j ≡ 0

(mod p), then gcd(2jp,
`j
p

) = gcd(p,
`j
p

) = 1.

Case 2. Suppose p < n 6 p2 − p and j0 = 2j1 + 1 is odd. We observe that when
we apply the labeling given in Case 1 to the present case, the labels f(up,j0) = j0p and
f(up,j0+1) = (j0 + 1)p (and also f(up−1,j0+1) = np if n = j0p+ p− 1) are the only labels that
prevent the labeling from being prime. We must find a vertex uk′,`′ in which to swap the
value of f(up,j0+1) with that of f(uk′,`′) so that the resulting labeling is prime.

Since j0+1 is even, we write j0+1 in the form of j0+1 = 2αβ, where α and β are the unique
integers such that α > 1 and β is odd. Let e0 = blog2(p)c and e1 = blog2(p

2)c. Since 2αβ < p
and 1

2
p < 2e0 < p, we have α 6 e0. We define the labeling f : V (Pp × Pn) → {1, 2, . . . , pn}

by the labeling defined in Case 1 with the additional condition that we swap the labels on
f(up,j0+1) and f(uk′,`′) for some uk′,`′ ∈ V (Pp × Pn) as follows.

1. If β > 3, we let k′ and `′ be the unique integers such that 2e1β = (`′ − 1)p + k′ and
1 6 k′ 6 p. Then we let f(up,j0+1) = 2e1β and f(uk′,`′) = (j0 + 1)p = 2αβp.

2. If β = 1 and α < e0 − 1, we let k′ and `′ be the unique integers such that 2e1 =
(`′−1)p+k′ and 1 6 k′ 6 p. Then we let f(up,j0+1) = 2e1 and f(uk′,`′) = (j0+1)p = 2αp.

3. If β = 1, α = e0 − 1, e1 = 2e0 is even, and p is not a Fermat prime, we let k′ and `′

be the unique integers such that 2e0+e1−1 = (`′ − 1)p+ k′ and 1 6 k′ 6 p. Then we let
f(up,j0+1) = 2e0+e1−1 and f(uk′,`′) = (j0 + 1)p = 2e0−1p.

4. If β = 1, α = e0 − 1, e1 = 2e0 is even, and p is a Fermat prime, we let k′ and `′

be the unique integers such that 2e1 = (`′ − 1)p + k′ and 1 6 k′ 6 p. Then we let
f(up,j0+1) = 2e1 and f(uk′,`′) = (j0 + 1)p = 2e0−1p.

5. If β = 1, α = e0 − 1, and e1 = 2e0 + 1 is odd, we let k′ and `′ be the unique integers
such that 2e1 = (`′ − 1)p + k′ and 1 6 k′ 6 p. Then we let f(up,j0+1) = 2e1 and
f(uk′,`′) = (j0 + 1)p = 2e0−1p.

6. If β = 1, α = e0, and e1 = 2e0 is even, we let k′ and `′ be the unique integers such
that 2e0+e1 = (`′ − 1)p + k′ and 1 6 k′ 6 p. Then we let f(up,j0+1) = 2e0+e1 and
f(uk′,`′) = (j0 + 1)p = 2e0p.

7. If β = 1, α = e0, e1 = 2e0 + 1 is odd, and p is not a Mersenne prime, we let k′ and
`′ be the unique integers such that 2e1 = (`′ − 1)p + k′ and 1 6 k′ 6 p. Then we let
f(up,j0+1) = 2e1 and f(uk′,`′) = (j0 + 1)p = 2e0p.

8. If β = 1, α = e0, e1 = 2e0 + 1 is odd, and p is a Mersenne prime, we let k′ and `′

be the unique integers such that 2e0+e1 = (`′ − 1)p + k′ and 1 6 k′ 6 p. Then we let
f(up,j0+1) = 2e0+e1 and f(uk′,`′) = (j0 + 1)p = 2e0p.

We first observe that the values 2e1β, 2e1 , 2e0+e1−1, and 2e0+e1 are relatively prime to p.
Thus, in all eight selections of the vertex uk′,`′ , we have 1 6 k′ < p.
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t t t t t t t t t t
t t t t t t t t t t
t t t t t t t t t t
t t t t t t t t t t
t t t t t t t t t t e1

e2

e3

e4

e5
5 32 15 64 1 30 7 40 9 50

4 45 14 95 24 29 34 39 44 49

75 8 65 18 23 28 33 38 43 48

2 35 12 85 22 27 10 37 42 47

25 6 55 16 21 26 31 36 41 46

t t t t t t t t t
t t t t t t t t t
t t t t t t t t t
t t t t t t t t t
t t t t t t t t t

e1

e2

e3

e4

e5
11 60 13 70 3 80 17 90 19

54 59 20 69 74 79 84 89 94

53 58 63 68 73 78 83 88 93

52 57 62 67 72 77 82 87 92

51 56 61 66 71 76 81 86 91

Figure 3: Prime labeling on P5 × P19.

See Figure 3 for an example of this labeling on P5 × P19. We verify that each choice of
f(up,j0) and f(uk′,`′) results in a prime labeling. In order to check for primeness at vertex
uk′,`′ , we need to determine the labels at each of its neighboring vertices. In particular, we
want to show that f(uk′,`′±1) = (`′− 1)p+k′± p, f(uk′−1,`′) = (`′− 1)p+k′− 1 if 1 < k′ < p,
and either

• f(uk′+1,`′) = (`′ − 1)p+ k′ + 1 if 1 6 k′ < p− 1,

• f(uk′+1,`′) = `′ if k′ = p− 1 and `′ 6≡ 0 (mod p), or

• f(uk′+1,`′) = `′

p
if k′ = p− 1 and `′ ≡ 0 (mod p).

In addition, we need to choose a vertex uk′,`′ whose label has not been previously swapped
with another value. Thus, we need to choose a vertex uk′,`′ whose label is f(uk′,`′) = (`′ −
1)p + k′. Hence, we need to show (`′ − 1)p + k′ 6∈ {j2e1+1 : 1 6 j 6 j1} and n + p <
(`′ − 1)p + k′ 6 np. When j0 > 1, we have f(up,2) = 2e1+1 and f(uk1,`1) = 2p. In Case
1, we verified that n + p < 2e1+1 6 np. So if (`′ − 1)p + k′ < 2e1+1, we will only need to
verify that n + p < (`′ − 1)p + k′. Otherwise, if 2e1+1 < (`′ − 1)p + k′, we will only need to
verify that (`′ − 1)p + k′ 6 np. However, in the case when j0 = 1, we will need to verify
n+ p < (`′ − 1)p+ k′ 6 np.

Subcase (i). Assume β > 3. Then k′ and `′ are the unique integers such that 2e1β =
(`′ − 1)p+ k′ and 1 6 k′ < p. We have f(up,j0+1) = 2e1β and f(uk′,`′) = (j0 + 1)p = 2αβp.

We first show that n + p < 2e1β 6 np and 2e1β 6∈ {j2e1+1 : 1 6 j 6 j1}. We know that
n+p 6 p2 < 2e1+1. Since β > 3, we have n+p < 3·2e1 6 2e1β. Since 2j1+2 = j0+1 = 2αβ >
6, we have 2 6 j1 6 n

2p
. Thus, n > 4p. We observe that β = j0+1

2α
= 2j1+2

2α
6 j1 + 1 6 n

2p
+ 1.

Since 2e1 < p2 and n > 2p, we have 2e1β < p2( n
2p

+ 1) < np. Also, since every value
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in {j2e1+1 : 1 6 j 6 j1} is divisible by 2e1+1 and 2e1β is not divisible by 2e1+1, we have
2e1β 6∈ {j2e1+1 : 1 6 j 6 j1}.

We consider vertex up,j0+1. We have f(up,j0+1) = 2e1β, f(up,j0) = j0p, f(up,j0+2) = j0 + 2,
and either

• f(up−1,j0+1) = (j0 + 1)p− 1 = 2αβp− 1 if i3 6= p− 1 or

• f(up−1,j0+1) =
(
(j0 + 1)p− 1

)
p =

(
2αβp− 1

)
p if i3 = p− 1.

Since p is odd and 1 6 β < p, we have gcd(2β, p) = 1. Since j0 and j0+2 are relatively prime
to j0 + 1 = 2αβ, we have gcd(j0p, 2

e1β) = 1 and gcd(j0 + 2, 2e1β) = 1. Since (j0 + 1)p− 1 =
2αβ − 1 is relatively prime to 2 and β, we have gcd((j0 + 1)p − 1, 2e1β) = 1. Also, since
gcd(p, 2β) = 1, we have gcd

((
(j0 + 1)p− 1

)
p, 2e1β

)
= 1.

Next consider vertex uk′,`′ . If 1 < k′ < p, then f(uk′−1,`′) = 2e1β−1. Since 2e1β−1 ≡ k′−
1 6≡ 0 (mod p) and gcd(2β, 2e1β−1) = 1, we have gcd(2αβp, 2e1β−1) = 1. If 1 6 k′ < p−1,
then f(uk′+1,`′) = 2e1β + 1. Since 2e1β + 1 ≡ k′ + 1 6≡ 0 (mod p) and gcd(2β, 2e1β + 1) = 1,
we have gcd(2αβp, 2e1β + 1) = 1. Suppose k′ = p − 1. Since `′p = 2e1β + 1 is odd, `′ is
odd. Thus, f(uk′+1,`′) = f(up,`′) = `′ if `′ 6≡ 0 (mod p) and f(uk′+1,`′) = f(up,`′) = `′

p
if

`′ ≡ 0 (mod p) . Since `′p − 2e1β = 1, we have gcd(2e1β, `′p) = 1. Thus, gcd(2αβp, `′) = 1
if `′ 6≡ 0 (mod p). We observe that `′

p
6 n

p
6 p − 1. Thus, gcd(2αβp, `

′

p
) = 1 if `′ ≡ 0

(mod p) . Since 1 6 k′ < p, we have f(uk′,`′±1) = 2e1β ± p. By Remark 2.1, we have
gcd(2e1β ± p, 2αβ) = gcd(p, 2αβ) = 1. We observe that 2e1β ± p ≡ k′ 6≡ 0 (mod p). Thus,
gcd(2e1β ± p, 2αβp) = 1.

Subcase (ii). Assume β = 1, α < e0 − 1, and j0 > 1. Then k′ and `′ are the
unique integers such that 2e1 = (`′ − 1)p + k′ and 1 6 k′ < p, f(up,j0+1) = 2e1 , and
f(uk′,`′) = (j0 + 1)p = 2αp. Since p > 4, we have

n+ p < (j0 + 1)p+ p = 2αp+ p 6 2e0−2p+ p < 1
4
p2 + p < 1

2
p2 < 2e1 .

Also, 2e1 < 2e1+1 6 np. Since 2e1 < 2e1+1 and 2e1+1 is the minimum value in {j2e1+1 : 1 6
j 6 j1}, we have 2e1 6∈ {j2e1+1 : 1 6 j 6 j1}.

We first consider vertex up,j0+1. We have f(up,j0+1) = 2e1 , f(up,j0) = j0p, f(up,j0+2) =
j0 + 2, and either

• f(up−1,j0+1) = (j0 + 1)p− 1 = 2αp− 1 if i3 6= p− 1 or

• f(up−1,j0+1) =
(
(j0 + 1)p− 1

)
p =

(
2αp− 1

)
p if i3 = p− 1.

Since p, j0, j0 + 2, and (j0 + 1)p − 1 are odd, we have gcd(j0p, 2
e1) = gcd(j0 + 2, 2e1) =

gcd((j0 + 1)p− 1, 2e1) = gcd
((

(j0 + 1)p− 1
)
p, 2e1

)
= 1.

Next consider vertex uk′,`′ . If 1 < k′ < p, then f(uk′−1,`′) = 2e1 − 1. Since 2e1 − 1 ≡
k′ − 1 6≡ 0 (mod p) and 2e1 − 1 is odd, we have gcd(2αp, 2e1 − 1) = 1. If 1 6 k′ < p − 1,
then f(uk′+1,`′) = 2e1 + 1. Since 2e1 + 1 ≡ k′ + 1 6≡ 0 (mod p) and 2e1 + 1 is odd, we have
gcd(2αp, 2e1 + 1) = 1. Suppose k′ = p − 1. Since `′p = 2e0 + 1 is odd, `′ is odd. Thus,
f(uk′+1,`′) = f(up,`′) = `′ if `′ 6≡ 0 (mod p) and f(uk′+1,`′) = f(up,`′) = `′

p
if `′ ≡ 0 (mod p).

Since `′ is odd, we have gcd(2αp, `′) = 1 if `′ 6≡ 0 (mod p). We observe that `′

p
6 n

p
6 p− 1.

Thus, gcd(2αp, `
′

p
) = 1 if `′ ≡ 0 (mod p) . We next consider f(uk′,`′±1) = 2e1±p. By Remark
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2.1, we have gcd(2e1 ± p, 2α) = gcd(p, 2α) = 1. We observe that 2e1 ± p ≡ k′ 6≡ 0 (mod p).
Thus, gcd(2e1 ± p, 2αp) = 1.

Subcase (iii). Assume β = 1, α = e0−1, j0 > 1, e1 = 2e0, and p is not a Fermat prime.
Then k′ and `′ are the unique integers such that 2e1+e0−1 = (`′ − 1)p + k′ and 1 6 k′ < p,
f(up,j0+1) = 2e1+e0−1, and f(uk′,`′) = (j0 + 1)p = 2e0−1p.

We need to show that n + p < 2e1+e0−1 6 np. Let r1 = p− 2e0 . Since r1 is odd and p is
not a Fermat prime, we have r1 > 3. Thus, p > 2e0 + 3. Since 2e0 > 4, we have

2e1+e0−1 = 23e0−1 < 1
2
(2e0)3 + 2(2e0)2 − 3

2
(2e0)− 9 = (2e0−1 − 1)(2e0 + 3)2 6 j0p

2 6 np.

Also, n+ p < 2e1+1 6 2e0+e1−1.
Since j0 + 1 = 2e0−1, the largest power of 2 in {j : 1 6 j 6 j1} is 2e0−3. Thus, the largest

power of 2 in {j2e1+1 : 1 6 j 6 j1} is 2e0+e1−2. Hence, 2e0+e1−1 6∈ {j2e1+1 : 1 6 j 6 j1}. An
argument similar to the one given in Subcase (ii) demonstrates that this is a prime labeling.

Subcase (iv). Assume β = 1, α = e0 − 1, e1 = 2e0, j0 > 1, and p is a Fermat prime.
Then k′ and `′ are the unique integers such that 2e1 = (`′ − 1)p + k′ and 1 6 k′ < p,
f(up,j0+1) = 2e1 , and f(uk′,`′) = (j0 + 1)p = 2e0−1p.

We need to show that n+ p < 2e1 6 np. We have j0 + 2 = 2e0−1 + 1. Since p is a Fermat
prime and 1

2
p < 2e0 < p, we have p = 2e0 + 1. Since 2e0 > 4, we have

n+ p < (j0 + 2)p = (2e0−1 + 1)(2e0 + 1) = 1
2
(2e0)2 + 3

2
(2e0) + 1 < (2e0)2 = 2e1 .

Also, 2e1 < 2e1+1 6 np. The argument given in Subcase (ii) shows that 2e1 6∈ {j2e1+1 : 1 6
j 6 j1}. An argument similar to the one given in Subcase (ii) demonstrates that this is a
prime labeling.

Subcase (v). Assume β = 1, α = e0 − 1, j0 > 1, and e1 = 2e0 + 1 is odd. Then k′ and
`′ are the unique integers such that 2e1 = (`′− 1)p+ k′ and 1 6 k′ < p, f(up,j0+1) = 2e1 , and
f(uk′,`′) = (j0 + 1)p = 2e0−1p.

We have j0 + 2 = 2e0−1 + 1. Because 1
2
p < 2e0 < p, we have p < 2e0+1. Since 2e0 > 4,

n+ p < (j0 + 2)p = (2e0−1 + 1)(2e0+1) = (2e0)2 + 2(2e0) < 2(2e0)2 = 2e1 .

Also, 2e1 < 2e1+1 6 np. The argument given in Subcase (ii) shows that 2e1 6∈ {j2e1+1 : 1 6
j 6 j1}. An argument similar to the one given in Subcase (ii) demonstrates that this is a
prime labeling.

Subcase (vi). Assume j0 = 1. Since j0 + 1 = 2 = 2α, we have α = 1. For the primes 5
and 7, we have α = e0 − 1 since e0 = 2. For all other primes p > 11, we have e0 > 3 which
implies that α < e0 − 1.

We first consider p = 5. Since p = 5 is a Fermat prime, Subcase (iv) applies and thus
2e1 = (`′ − 1)p + k′. Then f(up,2) = 2e1 = 16 and f(uk′,`′) = 2p = 10. A calculation shows
that n+ p < (j0 + 2)p = 15 < 16 = 2e1 and 2e1 = 16 < 25 = j0p

2 6 np.
We next consider p = 7. Since e1 = 2e0 + 1 for p = 7, Subcase (v) applies and thus

2e1 = (`′ − 1)p + k′. Then f(up,2) = 2e1 = 32 and f(uk′,`′) = 2p = 14. A calculation shows
that n+ p < (j0 + 2)p = 21 < 32 = 2e1 and 2e1 = 32 < 49 = j0p

2 6 np.
Finally, we consider primes p > 11. Since α < e0 − 1, Subcase (ii) applies and thus

2e1 = (`′ − 1)p + k′. Then f(up,2) = 2e1 and f(uk′,`′) = 2p. The argument given in Subcase
(ii) shows that n+ p < 2e1 < np.
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Also, the argument given in Subcase (ii) shows that 2e1 6∈ {j2e1+1 : 1 6 j 6 j1}. An
argument similar to the one given in Subcase (ii) demonstrates that each of these labelings
is prime.

Subcase (vii). Assume β = 1, α = e0, and e1 = 2e0. Then k′ and `′ are the unique
integers such that 2e1+e0 = (`′ − 1)p+ k′ and 1 6 k′ < p, f(up,j0+1) = 2e1+e0 , and f(uk′,`′) =
(j0 + 1)p = 2e0p.

We need to show that n + p < 2e1+e0 6 np. We have j0 = 2e0−1 − 1. Since p is odd and
1
2
p < 2e0 < p, we have p > 2e0 + 1. Since 2e0 > 4, we have

2e1+e0 = 23e0 < (2e0)3 + (2e0)2 − (2e0)− 1 = (2e0 − 1)(2e0 + 1)2 6 j0p
2 6 np.

Also, n+ p < 2e1+1 < 2e1+e0 .
Since j0 + 1 = 2e0 , the largest power of 2 in {j : 1 6 j 6 j1} is 2e0−2. Thus, the largest

power of 2 in {j2e1+1 : 1 6 j 6 j1} is 2e0+e1−1. Hence, 2e0+e1 6∈ {j2e1+1 : 1 6 j 6 j1}. An
argument similar to the one given in Subcase (ii) demonstrates that this is a prime labeling.

Subcase (viii). Assume β = 1, α = e0, e1 = 2e0 + 1, and p is not a Mersenne prime.
Then k′ and `′ are the unique integers such that 2e1 = (`′ − 1)p + k′ and 1 6 k′ < p,
f(up,j0+1) = 2e1 , and f(uk′,`′) = (j0 + 1)p = 2e0p.

We need to show that n + p < 2e1 6 np. We have j0 + 2 = 2e0 + 1. Let r2 = 2e0+1 − p.
Since r2 is odd and p is not a Mersenne prime, we have r2 > 3. Thus, p 6 2e0+1 − 3. Hence,

n+ p < (j0 + 2)p 6 (2e0 + 1)(2e0+1 − 3) = 22e0+1 − (2e0)− 3 < 2e1 .

Also, 2e1 < 2e1+1 6 np. The argument given in Subcase (ii) shows that 2e1 6∈ {j2e1+1 : 1 6
j 6 j1}. An argument similar to the one given in Subcase (ii) demonstrates that this is a
prime labeling.

Subcase (ix). Assume β = 1, α = e0, e1 = 2e0 + 1, and p is a Mersenne prime.
Then k′ and `′ are the unique integers such that 2e1+e0 = (`′ − 1)p + k′ and 1 6 k′ < p,
f(up,j0+1) = 2e1+e0 , and f(uk′,`′) = (j0 + 1)p = 2e0p.

We need to show that n + p < 2e1+e0 6 np. We have j0 = 2e0 − 1. Since p < 2e0+1 < 2p
and p is a Mersenne prime, we have p = 2e0+1 − 1. Since 2e0 > 4, we have

2e1+e0 = 23e0+1 < 4(2e0)3 − 8(2e0)2 + 5(2e0)− 1 = (2e0 − 1)(2e0+1 − 1)2 = j0p
2 6 np.

Also, n + p < 2e1+1 < 2e1+e0 . The argument given in Subcase (vii) shows that 2e0+e1 6∈
{j2e1+1 : 1 6 j 6 j1}. An argument similar to the one given in Subcase (ii) demonstrates
that this is a prime labeling.

Case 3. Suppose p2 − p < n < p2. Then j0 = p − 1 is even and j1 = p−1
2

. We let
r = n − (p2 − p). Then 0 < r < p and n + p = p2 + r. Let tr =

⌊
log2(p

2 + r)
⌋
. Then

n+ p < 2tr+1 < 2(n+ p). Let 1 6 j 6 p−1
2

. Then n+ p < j2tr+1 < (p− 1)(n+ p) < np. For

all 1 6 j 6 p−1
2

, let kr,j and `r,j be the unique integers such that j 2tr+1 = (`r,j − 1)p + kr,j
and 1 6 kr,j < p. We define the labeling f : V (Pp × Pn)→ {1, 2, . . . , pn} as follows.

1. For all 1 6 i < p such that i is odd, let f(ui,1) = ip2.

2. For all i and j such that i+ j is even, and either
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t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t e1

e2

e3

e4

e5
5 32 15 64 1 30 7 40 9 50 11 60

4 45 14 95 24 29 34 39 44 49 54 59

75 8 65 18 115 28 33 38 43 48 53 58

2 35 12 85 22 27 10 37 42 47 52 57

25 6 55 16 105 26 31 36 41 46 51 56

t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t

e1

e2

e3

e4

e5
13 70 3 80 17 90 19 100 21 110 23 120

20 69 74 79 84 89 94 99 104 109 114 119

63 68 73 78 83 88 93 98 103 108 113 118

62 67 72 77 82 87 92 97 102 107 112 117

61 66 71 76 81 86 91 96 101 106 111 116

Figure 4: Prime labeling on P5 × P24.

• 1 < j < p and 1 6 i < p , or

• j = p and 1 6 i 6 r,

let f(ui,j) =
(
(j − 1)p+ i

)
p.

3. For all p < j 6 n such that j is odd and j 6≡ 0 (mod p), let f(up,j) = j.

4. For all 1 6 j 6 p− 1 and j is odd, let f(up,jp) = j.

5. For all 1 6 j 6 p−1
2

, let f(up,2j) = j 2tr+1. Then, for all 1 6 j 6 p − 1 and j is even,
we have f(up,j) = j 2tr .

6. For all 1 6 j 6 p−1
2

, let f(ukr,j ,`r,j) = (2j)p.

7. For all other vertices ui,j, let f(ui,j) = (j − 1)p+ i.

See Figure 4 for an example of this labeling on P5 × P24. An argument similar to the one
given in Case 1 demonstrates that this is a prime labeling.

Case 4. Suppose n = p2. Then j0 = p, j1 = p−1
2

and n+ p = p2 + p. Let e3 =
⌊
log2(p

2 +

p)
⌋
. Then n+p < 2e3+1 < 2(n+p). Let 1 6 j 6 p−1

2
. Then n+p < j2e3+1 < (p−1)(n+p) <

np. For all 1 6 j 6 p−1
2

, let kj and `j be the unique integers such that j 2e3+1 = (`j−1)p+kj
and 1 6 kj < p. Let k′ and `′ be the unique integers such that (p2 − 1)2e0−1 = (`′ − 1)p+ k′

and 1 6 k′ 6 p. We define the labeling f : V (Pp × Pn)→ {1, 2, . . . , pn} as follows.

1. For all 1 6 i < p such that i is odd, let f(ui,1) = ip2.

2. For all i and j such that i + j is even, 1 < j 6 p, and 1 6 i < p, let f(ui,j) =(
(j − 1)p+ i

)
p.

10

Theory and Applications of Graphs, Vol. 9 [2022], Iss. 1, Art. 6

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6
DOI: 10.20429/tag.2022.090106



t t t t t t t t t t t t t
t t t t t t t t t t t t t
t t t t t t t t t t t t t
t t t t t t t t t t t t t
t t t t t t t t t t t t t e1

e2

e3

e4

e5
5 32 15 64 1 30 7 40 9 50 11 60 13

4 45 14 95 24 29 34 39 44 49 54 59 20

75 8 65 18 115 28 33 38 43 120 53 58 63

2 35 12 85 22 27 10 37 42 47 52 57 62

25 6 55 16 105 26 31 36 41 46 51 56 61

t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t t t t t t

e1

e2

e3

e4

e5
70 3 80 17 90 19 100 21 110 23 48 125

69 74 79 84 89 94 99 104 109 114 119 124

68 73 78 83 88 93 98 103 108 113 118 123

67 72 77 82 87 92 97 102 107 112 117 122

66 71 76 81 86 91 96 101 106 111 116 121

Figure 5: Prime labeling on P5 × P25.

3. For all p < j < p2 such that j is odd and j 6≡ 0 (mod p), let f(up,j) = j.

4. For all 1 6 j < p and j is odd, let f(up,jp) = j.

5. For all 1 6 j 6 p−1
2

, let f(up,2j) = j 2e3+1. Then, for all 1 6 j 6 p − 1 and j is even,
we have f(up,j) = j 2e3 .

6. For all 1 6 j 6 p−1
2

, let f(ukj ,`j) = (2j)p.

7. Let f(up,p2−1) = (p2 − 1)2e0−1 and f(uk′,`′) = (p2 − 1)p.

8. For all other vertices ui,j, let f(ui,j) = (j − 1)p+ i.

See Figure 5 for an example of this labeling on P5 × P25.
This labeling is similar to the labeling in Case 1 except for the labels given by f(up,p2−1) =

(p2 − 1)2e0−1 and f(uk′,`′) = (p2 − 1)p. Thus, we only need to check for primeness at these
vertices.

We first show that p2 + p < (p2 − 1)2e0−1 < p3. Suppose p > 5. Since 1
4
p < 2e0−1 < 1

2
p,

we have p2 + p < 1
4
p(p2− 1) < 2e0−1(p2− 1) < 1

2
p(p2− 1) < p3. When p = 5, we have e0 = 2.

Thus, p2 + p = 30 < 48 = 2e0−1(p2 − 1) and 2e0−1(p2 − 1) = 48 < 125 = p3.
We next show that (p2 − 1)2e0−1 6∈ {j2e1+1 : 1 6 j 6 p−1

2
}. Every element of {j2e1+1 :

1 6 j 6 p−1
2
} is divisible by 2e1+1. We show that 2e0−1(p2 − 1) is not divisible by 2e1+1.

Suppose p ≡ 1 (mod 4). Since p+ 1 ≡ 2 (mod 4), p+ 1 is divisible by 2 but not 4. Since
p − 1 ≡ 0 (mod 4) and 1

2
p < 2e0 < p, p − 1 is divisible by 2α

′
for some 2 6 α′ 6 e0. Thus,

(p2− 1)2e0−1 is divisible by 2e0+α
′

for some 2 6 α′ 6 e0. Hence, (p2− 1)2e0−1 is not divisible
by 22e0+1. Since 2e0 6 e1, 2e0−1(p2 − 1) is not divisible by 2e1+1.
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Suppose p ≡ 3 (mod 4). Since p− 1 ≡ 2 (mod 4), p− 1 is divisible by 2 but not 4. Since
p + 1 ≡ 0 (mod 4) and p < 2e0+1 < 2p, p + 1 is divisible by 2α

′
for some 2 6 α′ 6 e0 + 1.

Thus, (p2 − 1)2e0−1 is divisible by 2e0+α
′

for some 2 6 α′ 6 e0 + 1. We consider the cases
α′ < e0 + 1 and α′ = e0 + 1 separately. Suppose α′ < e0 + 1. Thus, (p2 − 1)2e0−1 is divisible
by 2e0+α

′
for some 2 6 α′ 6 e0. Then (p2− 1)2e0−1 is not divisible by 22e0+1. Since 2e0 6 e1,

2e0−1(p2 − 1) is not divisible by 2e1+1. Suppose α′ = e0 + 1. Because 2e0+1 divides p+ 1 and
p < 2e0+1 < 2p, p = 2e0+1 − 1 is a Mersenne prime. We observe that 1

2
p < 2e0 < 1√

2
p. Thus,

e1 = 2e0 + 1. Hence, 2e0−1(p2− 1) is divisible by 22e0+1 = 2e1 , but it is not divisible by 2e1+1.

We consider vertex up,p2−1. We have f(up,p2−1) = 2e0−1(p2 − 1), f(up,p2−2) = p2 − 2,
f(up,p2) = p3, and f(up−1,p2−1) = (p2 − 1)p − 1. We observe that p2 − 1 is relatively prime
to p, p2 − 2, and (p2 − 1)p − 1. Since p, p2 − 2, and (p2 − 1)p − 1 are odd, we have
gcd

(
2e0−1(p2 − 1), p3

)
= gcd

(
2e0−1(p2 − 1), p2 − 2

)
= gcd

(
2e0−1(p2 − 1), (p2 − 1)p− 1

)
= 1.

We next consider vertex uk′,`′ . Since p is odd and p is relatively prime to p2 − 1,
gcd

(
2e0−1(p2 − 1), p

)
= 1. Thus, k′ ≡ 2e0−1(p2 − 1) 6≡ 0 (mod p). Hence, 1 6 k′ < p.

Since `′p = 2e0−1(p2 − 1) + 1 is odd, `′ is odd. We have f(uk′,`′) = p(p2 − 1), f(uk′,`′±1) =
2e0−1(p2 − 1)± p, f(uk′−1,`′) = 2e0−1(p2 − 1)− 1 if 1 < k′ < p, and either

• f(uk′+1,`′) = 2e0−1(p2 − 1) + 1 if 1 6 k′ < p− 1,

• f(uk′+1,`′) = `′ if k′ = p− 1 and `′ 6≡ 0 (mod p), or

• f(uk′+1,`′) = `′

p
if k′ = p− 1 and `′ ≡ 0 (mod p).

By Remark 2.1, we have gcd(2e0−1(p2 − 1) ± p, p2 − 1) = gcd(p, p2 − 1) = 1. Since
2e0−1(p2−1)±p ≡ k′ 6≡ 0 (mod p), we have gcd(2e0−1(p2−1)±p, p) = 1. Thus, gcd

(
2e0−1(p2−

1)± p, (p2 − 1)p
)

= 1.

For 1 < k′ < p, we have f(uk′−1,`′) = 2e0−1(p2 − 1) − 1, and for 1 6 k′ < p − 1,
we have f(uk′+1,`′) = 2e0−1(p2 − 1) + 1. By Remark 2.1, we have gcd

(
2e0−1(p2 − 1) ±

1, p2 − 1
)

= gcd(1, p2 − 1) = 1. Since 2e0−1(p2 − 1) ± 1 ≡ k′ ± 1 6≡ 0 (mod p), we have
gcd(2e0−1(p2 − 1)± 1, p) = 1. Thus, gcd

(
2e0−1(p2 − 1)± 1, (p2 − 1)p

)
= 1.

Suppose k′ = p − 1. Thus, f(uk′+1,`′) = f(up,`′) = `′ if `′ 6≡ 0 (mod p) and f(uk′+1,`′) =
f(up,`′) = `′

p
if `′ ≡ 0 (mod p). Since `′p−2e0−1(p2−1) = 1, we have gcd

(
`′p, 2e0−1(p2−1)

)
=

1. Thus, gcd(`′, p2−1) = 1. Hence, gcd
(
`′, (p2−1)p

)
= 1 if `′ 6≡ 0 (mod p). Since 2e0−1 < 1

2
p,

we have (`′ − 1)p < (`′ − 1)p + k′ = 2e0−1(p2 − 1) < 1
2
p(p2 − 1). Thus, `′ < 1

2
p2 + 1

2
, which,

in turn, implies that `′

p
< 1

2
p+ 1

2p
< p. Hence, gcd

(
`′

p
, (p2 − 1)p

)
= 1 if `′ ≡ 0 (mod p).

Remark 3.2. Suppose p < n < p2. We see from the proof of Theorem 3.1 that we can swap
the labels f(u2i−1,1) = (2i − 1)p2 and f(up,2i−1) = (2i − 1)p, for all integers 1 6 i 6 bn+p

2p
c,

so that the resulting labeling is prime. Thus, a lower bound on the number of distinct prime

labelings on the p× n grid is 2
bn+p

2p
c

if p < n < p2.

Suppose n = p2. Then we can swap the labels f(u2i−1,1) = (2i − 1)p2 and f(up,2i−1) =
(2i− 1)p, for all integers 1 6 i 6 p−1

2
, so that the resulting labeling is prime. Thus, a lower

bound on the number of distinct prime labelings on the p× p2 grid is 2(p−1)/2.
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1 6 7 12

Figure 6: Prime labeling on P3 × P4.

t t t t t t t t t
t t t t t t t t t
t t t t t t t t t
15 4 9 10 3 16 21 22 27

2 5 8 11 14 17 20 23 26

1 6 7 12 13 18 19 24 25

Figure 7: Prime labeling on P3 × P9.

4 Prime labeling on P3 × Pn
We consider prime labelings on the 3× n grid.

Theorem 4.1. Let n be a positive integer such that n 6 9, then P3×Pn has a prime labeling.

Proof. Case 1. Suppose 1 6 n 6 4. Consider the labeling on P3 × Pn given by f(ui,j) =
3(j − 1) + i if j is odd, and f(ui,j) = 3(j − 1) + 4 − i if j is even. The reader can observe
that this is a prime labeling on P3 × Pn. See Figure 6.

Case 2. Suppose 5 6 n 6 9. Consider the labeling on P3 × Pn given by f(ui,j) =
3(j − 1) + i if j is odd and (i, j) /∈ {(3, 1), (3, 5)}, f(ui,j) = 3(j − 1) + 4 − i if j is even,
f(u3,1) = 15, and f(u3,5) = 3. The reader can observe that this is a prime labeling on
P3 × Pn. See Figure 7.

Combining Theorems 2.3, 3.1, and 4.1 yields the following result.

Theorem 4.2. Let p be an odd prime, and let n be an integer such that 1 6 n 6 p2. Then
there exists a prime labeling on Pp × Pn.

5 Further problems for investigation

Sundaram et al. [7] conjecture that Pm × Pn has a prime labeling for all positive integer m
and n. We propose two more modest versions of this conjecture.

Conjecture 5.1. Let p be a prime, and let n be a positive integer. Then there exists a prime
labeling on Pp × Pn.

Conjecture 5.2. Let p and q be primes, and let n be a positive integer. Then there exists a
prime labeling on Ppq × Pn.
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