O Theory and Applications of Graphs
Volume 9 | Issue 1 Article 6
March 2022

Prime labelings on planar grid graphs

Stephen James Curran
University of Pittsburgh - Johnstown, sjcurran@pitt.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag

O‘ Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Curran, Stephen James (2022) "Prime labelings on planar grid graphs," Theory and Applications of
Graphs: Vol. 9: Iss. 1, Article 6.

DOI: 10.20429/tag.2022.090106

Available at: https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It
has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital
Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.


https://digitalcommons.georgiasouthern.edu/tag
https://digitalcommons.georgiasouthern.edu/tag/vol9
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol9%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

Prime labelings on planar grid graphs

Cover Page Footnote
Acknowledgement: The author was supported by a College Research Council Grant provided by the
University of Pittsburgh at Johnstown.

This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol9/
iss1/6


https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6
https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6

Curran: Prime labelings on planar grid graphs

Abstract

It is known that for any prime p and any integer n such that 1 < n < p, there exists
a prime labeling on the p x n planar grid graph P, x P,. We show that P, x P, has a
prime labeling for any odd prime p and any integer n such that p < n < p?.

1 Introduction

Graph labelings were formally introduced in the 1970s by Kotzig and Rosa [6]. Graph
labelings have been applied to graph decomposition problems, radar pulse code designs, X-ray
crystallography and communication network models. The interested reader should consult J.
A. Gallian’s comprehensive dynamic survey on graph labelings [3] for further investigation.
We refer the reader to Chartrand, Lesniak, and Zhang [1] for concepts and notation not
explicitly defined in this paper. All graphs in this paper are simple and connected.

Definition 1.1. Let G be a graph on n vertices. We say that G is a prime graph if there
exists a bijective function f : V(G) — {1,2,...,n} such that f(u) and f(v) are relatively
prime whenever u is adjacent to v.

Dean [2], and Ghorbani and Kamali [4] have independently shown that the ladder P, x P,
has a prime labeling. Kanetkar [5] found prime labelings for the grid graph P, 1 X P, 11 when
n and (n+1)?+1 are primes, and either n =5 or n = 3 or 9 (mod 10), and a prime labeling
on the grid graph P, X P, when n # 2 (mod 7) is prime. Sundaram et al. [7| have shown
that the grid graph P, x P, has a prime labeling when p > 5 is a prime and n < p. They
conjecture that the planar grid graph P,, x P, is prime for all positive integers m and n.
In this paper we show that, for any odd prime p and any positive integer p < n < p?, the
p X n planar grid graph P, x P, has a prime labeling. Combining this result with that of
Sundaram et al. [7], for any odd prime p and any positive integer 1 < n < p?, the p x n
planar grid graph P, x P, has a prime labeling.

2 Preliminaries
Vilfred et al. [8] have shown the following result.

Theorem 2.1. [8] Let p be a prime, and let n be an integer such that n < 3. Then there
exists a prime labeling on P, x P,.

Sundaram et al. [7] have extended their result to the following theorem.

Theorem 2.2. [7, Theorem 2.1] Let p > 5 be a prime, and let n be an integer such that
3 <n < p. Then there exists a prime labeling on P, x P,.

Combining Theorems 2.1 and 2.2 yields the following result.

Theorem 2.3. Let p be an odd prime, and let n be an integer such that 1 < n < p. Then
there exists a prime labeling on P, x P,.
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Figure 1: Grid graph P, x Ps.

Remark 2.1. We make use of the fact that ged(a,b) = ged(a, b+ ha) = ged(a, ha — b) for
any nteger h.

Example 2.1. We illustrate the grid graph P, x Ps in Figure 1. Due to the orientation of
the vertices, we refer to the set of vertices {u;; : 1 < j < n} as the ith row of P,, x P, and
{w;; : 1 <i<m} as the jth column of P, x DP,.

3 Prime labeling on P, x P,

Remark 3.1. In order to show that the p X n grid has a prime labeling, we begin with the
labeling f(u; ;) = (j —1)p+i for allu; j € V(P, x P,). We first show that the only labels that
prevent this labeling from being prime are the labels on the vertices in the p'" row. We have
ged((J—Dp+i,(j—Dp+itl)=1. For1<i<p, wehave (j—)p+i=i#0 (mod p).
By Remark 2.1, we have ged((j — D)p+4,(j — Dp+i£p) =ged((j — Vp+1i,p) = 1.

We establish the main result of this paper.

Theorem 3.1. Let p > 5 be a prime, and let n be an integer such that p < n < p*>. Then
there exists a prime labeling on P, x P,.

Proof. The idea of the proof is to start with the labeling f(u;;) = (j — 1)p + i for all
u;; € V(P, x P,). By Remark 3.1, the labels in the p™ row prevent this labeling from being
prime. So we swap the labels on some of the vertices in the p** row with the labels on some
of the vertices in the other rows to transform this labeling into a prime labeling. So in order
to verify that the resulting labeling is prime, we need only check for primeness at the vertices
u;; € V(P, x P,) where 1 <i < pand f(u;;) # (j — 1)p + i, and at the vertices in the p™
row.

We define the integers jo, ji, jo, €1, i3, J3, and k; and ¢; for all 1 < j < j; as follows. Let

o= g L2

e1 = [logy(p?)], let 1 < i3 < pand 1 < j3 < p be the unique integers such that (jz3—1)p—+iz =
n, and for all 1 < j < jy, let k; and ¢; be the unique integers such that j 241! = (¢; —1)p+k;
and 1 < k; < p. Since j < ji < p, we have 1 < k; <p.
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Figure 2: Prime labeling on P5 X P4.

We need to consider the following four cases separately. These cases are p < n < p? —p

and jo is even, p < n < p? — p and jj is odd, p* —p < n < p?, and n = p?.

Case 1. Suppose p < n < p> —p and jo, = 2j; is even. We define the labeling f :
V(P, x P,) = {1,2,....pn} as follows.

1. For all 1 < < jp such that 7 is odd, let f(u;;) = ip*.

2. For all 7 and 7 such that 7 + j is even, and either

e j=1and j, <1 <p,
e l<j<gjzand 1 <1 <p,or
.]ZJSandl 1 < 13,

let f(uw) ((] —1)p+ Z)p
3. For all jo < j < n such that j is odd and j # 0 (mod p), let f(u,;) = j.
4. For all 1 < j < jo and j is odd, let f(u,;,) = J.

5. For all 1 < j < ji, let f(upo;) = 7297 Then, for all 1 < j < jo and j is even,
flupg) = j2¢.

6. For all 1 < j < ji, let f(ug, ;) = (25)p.
7. For all other vertices u;;, let f(u;;) = (j — 1)p + 4.

See Figure 2 for an example of this labeling on P5 x P4. By Remark 3.1, in order to check
that this labeling is prime, we need only check for primeness at all vertices u; ; € V(P, x P,)
such that 1 < i < p and f(u;;) # (j — 1)p + 4, and at all vertices in the p” row.

Subcase (). Suppose j =1 and 1 <i < jo < pis odd. Then f(u;1) = ip?, f(uiz11) =
i+1, and f(u;2) = p+i. Since ged(i,i+1) = ged(i£1,p) = 1 and ged(i, p+1i) = ged(d, p) =
ged(p,p +1i) = 1, we have ged(ip?,i + 1) = 1 and ged(ip?,p +1) = 1.

Subcase (2). Suppose i+ is even, and either j = 1 and jop < i < p—1,0r1 < j < j3and
1<i<p—1,orj=j3and 1 <i<min(is,p—2). Then f(u;;) = ((j—Dp+i)p, fluir,) =
(j—1)p+itl, and f(u; 1) = (j—1)p+itp. Wehave ged(((j—1)p+i)p, (j—1)p+i£tl) =1
since ged((j — 1)p+1i,(j —1)p+i+1) =1 and ged(p, (j — 1)p+i+ 1) = 1. Also, we have
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ged(((G—Dp+i)p, (j —V)p+i£p) =1since ged((j — 1)p+4,(j — 1)p+i+p) =1 and
ged(p, (j —1)p+i+p) =1. When i =p — 1 and j is even, we have f(u,;) = j2°. We will
check that ged(f(up—14), f(up;)) =1 in Subcase (iii).

Subcase (#i2). Suppose i = p— 1, 1 < j < j3, and j is even. If i3 = p — 1, then
Jjs = jo+1isodd. Thus, 1 < j < js, and j is even. (We will consider the situation iz = p—1
and js = jo+ 1 is even in Case 2.) Since jo = j3 or jo = js — 1, we have 1 < j < jo < p, and
7 is even.

Thus, f(up-15) = (Gp—1)ps f(up;) = 52, f(up-1541) = jp—1=Ep, and f(up—o;) = jp—2.
We observe that gcd((jp—l)p,j): 1 since ged(jp—1,7) = 1 and ged(p, j) = 1. Because jp—1
and p are odd, we have gcd((jp —1)p,j 261): gcd((jp— 1)p,j): 1. Since f(up—2;) = jp—2
and f(up—1j+1) = jp — 1 £ p, an argument similar to that in Subcase (it) shows that
ged((jp — V)p,jp —2) = ged((jp — L)p,jp — 1 £p) = L.

Subcase (iv). Suppose i = p, 1 < j < jo, and j is even. Then f(u,;) = j2°,
f(up—1;) = (jp—1)p, and f(u, 1) = (j£1)p. Since j£1 is odd, we have ged(j 2, j+1) =
ged(g,j£1) = 1. Since 1 < j < p and pis odd, we have ged(j 2, (j£1)p) = ged(j 24, j£1) =
1. It was shown in Subcase (7i) that gcd((]p —1)p,j 261)— 1.

Subcase (v). Suppose ¢ = p and j = jo. Since jo is even, f(upj,) = jo 2%, f(up-14) =
(Jop — Dp, f(upjo—1) = (Jo — 1)p, and f(upjo+1) = jo + 1. Since jo + 1 is odd, we have
ged(Jo 29, Jo + 1) = ged(jo, jo + 1) = 1. It was shown in Subcase (4ii) that gcd(jo 2 (jop —
1)p) = 1. It was shown in Subcase (iv) that ged(jo 27, (jo — 1)p) = 1.

Subcase (vi). Suppose i =p, 1 < j < jo, and j is odd. Then f(u,;) = jp, f(up-1;) =
Jgp—1, and f(upjr1) = (j £1)2°. By an argument similar to that in Subcase (iv), we have
ged(jp, (7 £1)2°) = 1. Also, ged(jp,jp — 1) = 1.

Subcase (vit). Consider the vertex u, ;,, where 1 < j < jo and j is odd. We have
f(upjp) =7, f(upipe1) = (jp £ D)p, and f(u,_1,) = jp* — 1. Since j is relatively prime to
p, jp £ 1 and jp* — 1, we have ged(j, (jp = 1)p) = ged(j, jp? — 1) = 1.

Subcase (viit). Suppose i =p, jo < j < n, jis odd, and j # 0 (mod p). If j > jo + 1,
then f(up;) = Jj, f(up+1) = ( £ 1)p, and f(up—1,) = jp — 1. We have ng(], (1) p) =
ged(7,jp — 1) = 1 since j is relatively prime to p, j + 1, and jp — 1.

If j =jo+1, then f(u,j,) = jo2° and f(upjo+1) = jo + 1. Since ged(jo + 1, jo) = 1 and
Jo + 1 is odd, we have ged(jo + 1, jo2%) = 1.

Subcase (iz). Consider the vertex uy, ¢, for some 1 < j < ji. We have f(ug; ¢;) = (27)p.
Recall that k; and ¢; are the unique mtegers such that 7 2€1Jrl = (E —1)p+k; and 1 k; <p.
Since e; = Llogz( 2], we have p* < 2971 < 2p%. Since 1 < j < j; <
n+p<p?<j2ett < np.

Since 1 < k; < p, we have f(ug;¢+1) = ((Ej - 1)+ 1)p + k; = g2t £+ p. Since
joatl4p = (ﬁ Dp+k;j£p=k; Z0 (mod p), we have ged(p, j2° ' £ p) = 1. By Remark
2.1, we have ged(j, j2¢T! £p) = ng(] p) = 1. Thus, ged(2jp, 720 4 p) = 1.

If 1 < k; < p, we have f(ug,—14,) = j2°7 — 1. Also, if 1 < k; < p — 1, we have
Fluks1e) = 529+ 1. Since 297 +1 = (4 — Up+k;+1 =k +1 # 0 (mod p),
ged(p, 27 £1) = 1. By Remark 2.1, we have ged(j, 72" 4+ 1) = ged(j,1) = 1. Thus,
ged(2jp, j29 £ 1) = 1.

Finally, we suppose k; = p—1. Since £;p = j2 "' +1is odd, ¢; is odd. Thus, f(u,41,,) =
flupe,) = £; if £; # 0 (mod p) or f(uk;410,) = flupe) = % if /; = 0 (mod p). Since

35, we have
P
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Uip — 724t = 1, we have ged(j211 ¢;p) = 1. Thus, ged(24,¢;) = 1. If ¢; # 0 (mod p),
I <p—1 So,if{; =0

p

~

then ged(24p, ¢;) = ged(p, ¢;) = 1. Since ¢; < p* — p, we have
o by Gy
(mod p), then ged(2jp, 72) = ged(p, ) = 1.

Case 2. Suppose p < n < p? —p and jo = 2j; + 1 is odd. We observe that when
we apply the labeling given in Case 1 to the present case, the labels f(u,j,) = jop and
f(upjor1) = (Jo+1)p (and also f(up_1jo+1) = np if n = jop +p — 1) are the only labels that
prevent the labeling from being prime. We must find a vertex w ¢ in which to swap the
value of f(u, j,+1) with that of f(uy ) so that the resulting labeling is prime.

Since jp+1 is even, we write jo+1 in the form of jo+1 = 2%, where o and [ are the unique
integers such that o > 1 and 3 is odd. Let ey = |logy(p) ] and e; = [log,(p?)]. Since 298 < p
and %p < 2% < p, we have a < ¢p. We define the labeling f : V(P, x P,) — {1,2,...,pn}
by the labeling defined in Case 1 with the additional condition that we swap the labels on
f(upjo+1) and f(ug ) for some wy o € V(P, x P,) as follows.

1. If 8 > 3, we let £/ and ¢ be the unique integers such that 25 = (¢’ — 1)p + k£’ and
1 <K < p. Then we let f(uy o+1) =26 and f(up ) = (jo + 1)p = 2*Op.

2. If f=1and a < eg — 1, we let k' and ¢ be the unique integers such that 2 =
(('—1)p+k"and 1 < k" < p. Then welet f(uy o41) = 2° and f(up ¢) = (Jo+1)p = 2%p.

3. U B =1 a=e —1, eg = 2¢ is even, and p is not a Fermat prime, we let &' and ¢
be the unique integers such that 2¢t¢1~1 = (¢/ — 1)p+ k" and 1 < k' < p. Then we let
ftpjor1) = 207" and fuw ) = (jo + 1)p = 2% 'p.

4. If B =1, a = ey — 1, e; = 2¢p is even, and p is a Fermat prime, we let &' and ¢
be the unique integers such that 2t = (¢’ — 1)p+ k' and 1 < k' < p. Then we let
f(tpjor1) =20 and fuw ) = (jo + 1)p = 2°7'p.

5. f =1, a=e— 1, and e; = 2¢5 + 1 is odd, we let £’ and ¢ be the unique integers
such that 2 = (¢’ — 1)p+ k" and 1 < k' < p. Then we let f(u,j,+1) = 2° and
flup ) = (jo+ 1)p = 2°""p.

6. If B =1, a = ey, and e; = 2¢q is even, we let £’ and ¢ be the unique integers such
that 2t = (¢/ — )p+ k and 1 < k' < p. Then we let f(upjo+1) = 297 and
flug o) = (Jo + 1)p = 2°p.

7. 5=1, a=e e =2+ 1is odd, and p is not a Mersenne prime, we let k' and
¢" be the unique integers such that 2°* = (¢/ — 1)p + k" and 1 < &’ < p. Then we let
f(umoﬂ) = 2° and f(uk’,f’) = (j() + 1)]) = 260]?.

8. If 8 =1, a =eg, e1 = 2e9+ 11is odd, and p is a Mersenne prime, we let k' and ¢
be the unique integers such that 207 = (¢ — 1)p+ k" and 1 < k' < p. Then we let
f(umoﬂ) = 260+61 and f(uk%/) = (]0 -+ 1)p = 2eop‘

We first observe that the values 2¢13, 261, 2¢0Fe1=1 and 2%t gre relatively prime to p.
Thus, in all eight selections of the vertex wuy ¢, we have 1 < k' < p.
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25 6 55 16 21 26 31 36 41 46

Figure 3: Prime labeling on P5 x Pjg.

See Figure 3 for an example of this labeling on Ps; x Pjg. We verify that each choice of
f(up;) and f(ug ) results in a prime labeling. In order to check for primeness at vertex
up ¢, we need to determine the labels at each of its neighboring vertices. In particular, we
want to show that f(uppe) =0 —Dp+E £p, flup_1e) =0 -1)p+k —-1if 1 <k <p,
and either

L f(uk/_i_l,g/) = (6/ - 1)p-|— E+1if1 < kK < P — 1,
o flugp1p) =0 itk'=p—1and ¢ #0 (mod p), or
o flupsrp)= % if ¥ =p—1and ¢ =0 (mod p).

In addition, we need to choose a vertex wuy ¢ whose label has not been previously swapped
with another value. Thus, we need to choose a vertex uy » whose label is f(up ¢) = (¢' —
1)p + k. Hence, we need to show (¢' — 1)p+k & {j29T : 1 < j < jiandn+p <
(¢ —1)p+ K < np. When j, > 1, we have f(up2) = 2™ and f(ug,¢,) = 2p. In Case
1, we verified that n +p < 27 < np. So if (¢ — 1)p+ k' < 297 we will only need to
verify that n +p < (¢’ — 1)p + k. Otherwise, if 24T < (¢’ — 1)p + K/, we will only need to
verify that (¢ — 1)p + k' < np. However, in the case when j, = 1, we will need to verify
n+p< (' —1)p+k <np.

Subcase (%). Assume § > 3. Then k' and ¢’ are the unique integers such that 245 =
(' —1)p+ £k and 1 <k < p. We have f(up o41) =26 and f(up ¢) = (jo + 1)p = 2°Bp.

We first show that n +p < 298 < np and 298 & {5297 : 1 < j < j1}. We know that
n+p < p? < 2971 Since B > 3, we have n+p < 3-2¢ < 293, Since 25, +2 = jo+1 =298 >
6, we have 2 < j; < 211)’ Thus, n > 4p. We observe that § = ”2—Jg = 2j21j2 <j1+1< % + 1.
Since 2°t < p? and n > 2p, we have 243 < p2(2ﬂp + 1) < np. Also, since every value
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in {72971 : 1 < 5 < 71} is divisible by 2! and 23 is not divisible by 2% we have
2908 & {52 1< j <}

We consider vertex u, j,+1. We have f(u, jo4+1) = 298, f(upj,) = jop, f(Upjo+2) = Jo+2,
and either

o flup—1jo+1)=(Jo+1)p—1=2%Bp—1ifizg#p—1lor
o flup1jor1) = (Go+p—1)p= (2°Bp—1)pifiz=p— 1.

Since p is odd and 1 < 8 < p, we have ged(24, p) = 1. Since jy and jo+2 are relatively prime
to jo + 1 = 23, we have ged(jop, 2°1 3) = 1 and ged(jo + 2,246) = 1. Since (jo+ 1)p—1 =
2%B — 1 is relatively prime to 2 and 3, we have ged((jo + 1)p — 1,2°8) = 1. Also, since
ged(p, 26) = 1, we have ged(((jo + 1)p — 1)p,273) = 1.

Next consider vertex ug p. If 1 < k" < p, then f(up_1¢) =2F—1. Since 2°f—-1=k"—
1 #0 (mod p) and ged(253,2° 5 —1) = 1, we have ged(2°6p, 295 —1) =1. If 1 <K <p—1,
then f(ugi10) =295+ 1. Since 228+ 1=k +1#0 (mod p) and ged(25,25 + 1) =1,
we have ged(296p,2°8 4+ 1) = 1. Suppose k' = p — 1. Since {'p = 294 4+ 1 is odd, ¢ is
odd. Thus, f(upi1e) = flupe) = ¢ if £/ # 0 (mod p) and f(urt10) = flupe) = % if
¢’ =0 (mod p) . Since ¢'p — 25 =1, we have ged(2°3,¢'p) = 1. Thus, ged(2*6p,¢') =1
if ¢/ # 0 (mod p). We observe that % < 3 < p-—1 Thus, gcd(2aﬂp,%) =1if¢ =0
(mod p) . Since 1 < k' < p, we have f(uppy1) = 2° £ p. By Remark 2.1, we have
ged(2915 + p,2%5) = ged(p,2*5) = 1. We observe that 213 £ p = k' Z 0 (mod p). Thus,
ged(2°1 3 % p, 2%8p) = 1.

Subcase (#). Assume f =1, a < ¢ — 1, and jo > 1. Then k' and ¢ are the
unique integers such that 20 = (¢ — )p + k" and 1 < K < p, f(upjo+1) = 2, and
f(ug o) = (jo + 1)p = 2%p. Since p > 4, we have

n+p<(o+p+p=2"p+p <22 p+p < ip’+p<ip? <29

Also, 2¢1 < 2% L pp. Since 20 < 2971 and 297! is the minimum value in {j2¢7! : 1 <
J < ji}, we have 2°1 & {5291 : 1 < j < 51}

We first consider vertex w, j,+1. We have f(upjo+1) = 2%, f(upio) = Jop, f(Upjor2) =
Jo + 2, and either

o f(Up—l,j0+1) =(o+lp—1=2*p—1ifiz#p—1or
o flup—1jo+1) = (Go+Dp—1)p=(2°p—)pifis=p—1.

Since p, jo, jo + 2, and (jo + 1)p — 1 are odd, we have ged(jop,2°') = ged(jo + 2,2°) =
ged((jo + 1)p — 1,27) = ged (((jo + 1)p — 1)p, 2°) = 1.

Next consider vertex wp . If 1 < k' < p, then f(up_10) = 2 — 1. Since 2 — 1 =
K —1# 0 (mod p) and 2° — 1 is odd, we have ged(2°p,2° — 1) = 1. If 1 < K <p—1,
then f(ugi10) =2 4+ 1. Since 2 + 1=k 4+ 1 # 0 (mod p) and 2°* 4 1 is odd, we have
ged(2%p,2°t + 1) = 1. Suppose k' = p — 1. Since ¢'p = 2% + 1 is odd, ¢ is odd. Thus,
fug 1) = flupe) =0 it 0/ #0 (mod p) and f(upt10) = fupe) = % if ¢ =0 (mod p).
Since ¢’ is odd, we have ged(2%p,¢') = 1 if ¢/ # 0 (mod p). We observe that % <s<p-L
Thus, ged (2, %) =1if ¢ =0 (mod p) . We next consider f(uy ¢11) =2 £p. By Remark
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2.1, we have ged(2° £ p,2%) = ged(p,2*) = 1. We observe that 2 £ p = k' # 0 (mod p).
Thus, ged(2° £ p, 2%p) = 1.

Subcase (4ii). Assume =1, a = eg—1, jo > 1, e; = 2ep, and p is not a Fermat prime.
Then &’ and ¢ are the unique integers such that 270 ~1 = (¢ — 1)p + k' and 1 < k' < p,
fup jon) = 29107 and f(uw ) = (Jo + 1)p = 27 'p.

We need to show that n + p < 26170~ <np. Let r = p — 2. Since 7, is odd and p is
not a Fermat prime, we have r; > 3. Thus, p > 2° 4+ 3. Since 2° > 4, we have

gerteoml — 30Tl < 1(29)3 4 2(20)? — 3(2) — 9 = (227" — 1)(2 + 3)* < jop” < np.

Also, n +p < 261 L 2¢0tei—1,

Since jo + 1 = 2%~! the largest power of 2 in {j : 1 < j < j1} is 273, Thus, the largest
power of 2 in {72971 : 1 < j < ji} is 2074172, Hence, 20T~ & {24+ 1 1 < j < 41} An
argument similar to the one given in Subcase (i7) demonstrates that this is a prime labeling.

Subcase (#v). Assume 8 =1, a = ey — 1, e; = 2¢q, jo > 1, and p is a Fermat prime.
Then k' and ¢’ are the unique integers such that 20 = (¢/ — 1)p+ & and 1 < K < p,
f(upjor1) =2, and f(up ) = (jo + 1)p = 2% 'p.

We need to show that n+p < 2¢ < np. We have jy+2 = 20~ + 1. Since p is a Fermat
prime and %p < 2% < p, we have p = 2% + 1. Since 2°° > 4, we have

np < (ot 2p= (207 + D +1) = 320 + 3(27) +1 < (29) = 2.

Also, 21 < 2971 < np. The argument given in Subcase (i) shows that 20 ¢ {52171 : 1 <
J < j1}. An argument similar to the one given in Subcase (7i) demonstrates that this is a
prime labeling.

Subcase (v). Assume f =1, a = ey — 1, jo > 1, and e; = 2¢¢ + 1 is odd. Then k' and
¢" are the unique integers such that 2 = (¢’ = 1)p+ &k and 1 <K < p, f(upj,+1) = 2%, and
flug ) = (jo +1)p = 2°""p.

We have jo + 2 =271 + 1. Because ip < 2% < p, we have p < 2. Since 2% > 4,

n+p< (]0 + 2)]) — (260—1 + 1)(2604-1) _ (260)2 + 2(2eo) < 2(2eo)2 — €1

Also, 2¢ < 2971 < pp. The argument given in Subcase (i) shows that 2¢1 & {52971 : 1 <
J < j1}. An argument similar to the one given in Subcase (i) demonstrates that this is a
prime labeling.

Subcase (vi). Assume j, = 1. Since jo + 1 = 2 = 2% we have aw = 1. For the primes 5
and 7, we have a = ey — 1 since eqg = 2. For all other primes p > 11, we have ey > 3 which
implies that a < ey — 1.

We first consider p = 5. Since p = 5 is a Fermat prime, Subcase (iv) applies and thus
20 = (0’ = 1)p+ K. Then f(up2) =2 =16 and f(up ) = 2p = 10. A calculation shows
that n +p < (jo +2)p = 15 < 16 = 2 and 2% = 16 < 25 = jop* < np.

We next consider p = 7. Since e; = 2¢y + 1 for p = 7, Subcase (v) applies and thus
20 = (' = 1)p+ K. Then f(up2) =2 =32 and f(up ) = 2p = 14. A calculation shows
that n +p < (jo + 2)p = 21 < 32 = 2% and 2% = 32 < 49 = jop? < np.

Finally, we consider primes p > 11. Since a < ey — 1, Subcase (i) applies and thus
20 = (' = 1)p+ k. Then f(up2) =2 and f(up ¢) = 2p. The argument given in Subcase
(7i) shows that n 4+ p < 2°* < np.
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Also, the argument given in Subcase (77) shows that 2¢ ¢ {j2%! : 1 < j < j;}. An
argument similar to the one given in Subcase (i) demonstrates that each of these labelings
is prime.

Subcase (vii). Assume = 1, @ = ey, and e; = 2¢y. Then k' and ¢ are the unique
integers such that 29170 = (¢’ — 1)p+ Kk and 1 <K < p, f(upjo+1) =297 and f(up ¢) =
(Jo + 1)p = 2%p.

We need to show that n + p < 2417 < np. We have j, = 2°~ — 1. Since p is odd and
%p < 2% < p, we have p > 2° + 1. Since 2°° > 4, we have

eten = 930 < (20)3 4 (20)2 — (20) — 1 = (20 — (2 +1)° < jop? < np.

Also, n +p < 20+l < geteo,

Since jo + 1 = 2%, the largest power of 2 in {j : 1 < j < 71} is 2°72. Thus, the largest
power of 2 in {72471 : 1 < 5 < j;} is 2974~ Hence, 20T & {52471 : 1 < j < j;}. An
argument similar to the one given in Subcase (i7) demonstrates that this is a prime labeling.

Subcase (wviit). Assume 5 = 1, a = ey, e; = 2¢y + 1, and p is not a Mersenne prime.
Then k' and ¢ are the unique integers such that 20 = (¢ — I)p+ k" and 1 < k' < p,
fupjor1) =29, and f(up ) = (jo + 1)p = 2%p.

We need to show that n +p < 2°t < np. We have jy +2 = 2% + 1. Let ry = 2%+ — p,
Since 75 is odd and p is not a Mersenne prime, we have 7, > 3. Thus, p < 2°°71 — 3. Hence,

np < (o +2p < (29 4+ 1)(20+ = 8) = 2201 _ (29) ~3 < 2,

Also, 2¢1 < 2171 < np. The argument given in Subcase (i) shows that 2¢ ¢ {24+ : 1 <
J < ji}. An argument similar to the one given in Subcase (7i) demonstrates that this is a
prime labeling.

Subcase (ix). Assume [ = 1, @ = ey, e; = 2¢p + 1, and p is a Mersenne prime.
Then k& and ¢ are the unique integers such that 207 = (¢ — )p+ k' and 1 < k' < p,
fupjor1) = 29070 and f(uw ) = (o + 1)p = 2%p.

We need to show that n + p < 24+ < np. We have jo = 2% — 1. Since p < 2%F1 < 2p
and p is a Mersenne prime, we have p = 2°%1 — 1. Since 2% > 4, we have

ge1teo _ 93eo+l < 4(260)3 _ 8(260)2 + 5(260) —1= (260 _ 1)(260+1 _ 1)2 — jop2 < np.

Also, n + p < 29%1 < 2¢%¢_ The argument given in Subcase (vii) shows that 2% ¢&
{52471 : 1 < j < j1}. An argument similar to the one given in Subcase (ii) demonstrates
that this is a prime labeling.

Case 3. Suppose p> —p < n < p?. Then jo = p — 1 is even and j; = ’%1. We let
r=n—(p*—p). Then 0 <r <pandn+p=p*>+r. Lett = |logy,(p?+7)|. Then
n+p <2ttt <2(n+p). Let 1 < j < L Then n+p < 524 < (p—1)(n+p) < np. For
all 1 < j < B4 let k,; and £,; be the unique integers such that j 2+ = ((,; — 1)p + k&,
and 1 < k,; < p. We define the labeling f : V(P, x B,) — {1,2,...,pn} as follows.

1. For all 1 < i < p such that 7 is odd, let f(u;1) = ip*.

2. For all 7 and j such that ¢ + j is even, and either
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Figure 4: Prime labeling on P5 X Pay.

e l<j<pandl1<i<p,or
<

e j=pand 1 <<,

let f(uiz) = (( = Vp +i)p.
3. For all p < j < n such that j is odd and j # 0 (mod p), let f(u, ;) = j.
4. Forall 1 <j<p-—1andjisodd, let f(up;,) =7.

5. For all 1 < j < 22, let f(up 9;) = j 2"+t Then, for all 1 < j < p—1 and j is even,

3
we have f(u, ;) = j2"

N

6. For all 1 < j < 24, let f(ug,,0,,) = (24)p.

7. For all other vertices u; ;, let f(u;;) = (j — 1)p + 1.

See Figure 4 for an example of this labeling on P5 X P54. An argument similar to the one
given in Case 1 demonstrates that this is a prime labeling.

Case 4. Suppose n = p?. Then jo = p, j1 = 7%1 and n+p=p?+p. Let e5 = UogQ(p2 +
p)]. Then n+p < 2%+ < 2(n+p). Let 1 < j < 1. Then n+p < j2%+ < (p—1)(n+p) <
np. Forall 1 < j < p%l, let k; and ¢; be the unique integers such that j 2%+ = (¢, —1)p+k;
and 1 < k; < p. Let k" and ¢ be the unique integers such that (p? — 1)2°~!' = (¢ = 1)p+ ¥
and 1 < k&' < p. We define the labeling f : V(P, x P,) = {1,2,...,pn} as follows.

1. For all 1 < < p such that 7 is odd, let f(u;1) = ip*.
2. For all ¢ and j such that ¢ + j is even, 1 < j < p, and 1 < @ < p, let f(u;;) =
(G = Dp +1i)p.
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Figure 5: Prime labeling on P5 X Pss.

3. For all p < j < p® such that j is odd and j # 0 (mod p), let f(u,;) = j.
4. For all 1 < j <pand jis odd, let f(u,j,) = J.

5. Forall1 < ng
we have f(u,;

,let f(upoy) = j2%%. Then, for all 1 < j < p— 1 and j is even,
) 263

NG
I
<.

6. For all 1 < j < 21, let fug, ;) = (29)p.
7. Tet flupgp 1) = (5 — 1207 and flupp) = (5 — Dp.
8. For all other vertices u; ;, let f(u;;) = (j —1)p +1.

See Figure 5 for an example of this labeling on P5 X Pss.

This labeling is similar to the labeling in Case 1 except for the labels given by f(u, 2—1) =
(p? — 1)2°~! and f(up ) = (p? — 1)p. Thus, we only need to check for primeness at these
vertices.

We first show that p? + p < (p? — 1)2%~1 < p3. Suppose p > 5. Since 1p < 271 < Ip,
we have p? +p < Ip(p? — 1) <2071 (p? —1) < ip(p® — 1) < p3. When p = 5, we have ey = 2.
Thus, p? +p =30 < 48 =2%"1(p? — 1) and 21 (p? — 1) =48 < 125 =

We next show that (p* — 1)2%0~1 ¢ {291 : 1 < j < &1} Every element of {y2er+1 .
1 < j < B} is divisible by 2¢+!. We show that 20~ (p? — 1) is not divisible by 2¢171.

Suppose p = 1 (mod 4). Since p+1 =2 (mod 4), p+ 1 is divisible by 2 but not 4. Since
p—1=0 (mod 4) and %p < 2% < p, p—1is divisible by 2% for some 2 < o < €. Thus,
(p? — 1)2%0~ 1 is divisible by 2¢%*" for some 2 < o’ < ¢y. Hence, (p?> —1)2°~! is not divisible
by 22¢0*1 Since 2ey < ey, 2°71(p? — 1) is not divisible by 241+,
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Suppose p = 3 (mod 4). Since p—1 =2 (mod 4), p— 1 is divisible by 2 but not 4. Since
p+1=0 (mod4) and p < 29! < 2p, p + 1 is divisible by 2% for some 2 < o/ < e + 1.
Thus, (p? — 1)2°~! is divisible by 2 for some 2 < o < eg + 1. We consider the cases
o < e+ 1and o = ey + 1 separately. Suppose o’ < ey + 1. Thus, (p? — 1)2%~! is divisible
by 207" for some 2 < o < . Then (p? — 1)2°~! is not divisible by 22°0*!. Since 2¢y < ey,
2¢0~1(p? — 1) is not divisible by 2¢1 1. Suppose o’ = ey + 1. Because 2! divides p + 1 and
p < 290FL < 2p p = 2%+ 1 is a Mersenne prime. We observe that %p < 2°0 < \%p. Thus,
e1 = 2e9+ 1. Hence, 2°71(p? — 1) is divisible by 22¢*1 = 2¢1_but it is not divisible by 2¢1+1,

We consider vertex wu,,2_1. We have f(u,,21) = 2971 p? — 1), fup,e2) = p* — 2,
fupp2) = p?, and f(up_1,2-1) = (p* — 1)p — 1. We observe that p? — 1 is relatively prime
to p, p> — 2, and (p? — 1)p — 1. Since p, p* — 2, and (p? — 1)p — 1 are odd, we have
ged(2071(p? — 1),p%) = ged (27 (p* — 1), p? —2) = ged (227 (p* — 1), (* —1)p—1) = L.

We next consider vertex ug . Since p is odd and p is relatively prime to p* — 1,
ged (2071 (p? — 1),p) = 1. Thus, ¥ = 27 '(p?> — 1) # 0 (mod p). Hence, 1 < ¥ < p.
Since ¢'p = 271 (p? — 1) + 1 is odd, ¢ is odd. We have f(up ) = p(p* — 1), flupps1) =
2007 (p? — 1)+ p, flup_10) =2%°"1(p? = 1) —1if 1 <k’ < p, and either

[ ] f(ukurl,g/) = 260_1(])2 - 1) +1 if 1 < kK < P — 1,
o flugrp) =0 itk =p—1and ¢ #0 (mod p), or
o flupire) =5ifK =p—Tand £ =0 (mod p),

By Remark 2.1, we have ged(2%7(p? — 1) & p,p*> — 1) = ged(p,p? — 1) = 1. Since
20071 (p?—1)£p =k # 0 (mod p), we have ged(2°7! (p*—1)£p, p) = 1. Thus, ged (2%~ (p*—
1) £p,(p* = 1)p) = 1.

For 1 < k' < p, we have f(up_10) = 2°7'(p? = 1) — 1, and for 1 < k' < p— 1,
we have f(ups10) = 2971 (p? — 1) + 1. By Remark 2.1, we have ged(227(p? — 1) +
1,p* —1) = ged(1,p* — 1) = 1. Since 297! (p? = 1) £ 1 =k £ 1 # 0 (mod p), we have
ged(2071(p* — 1) £1,p) = 1. Thus, ged(2°7 ' (p> — 1) £ 1, (p* — 1)p) = 1.

Suppose k' = p — 1. Thus, f(upit1e) = f(upe) =0 if ' #0 (mod p) and f(upi1¢) =
flupe) = % if ¢ =0 (mod p). Since ¢'p—2°~'(p*—1) = 1, we have ged (¢'p, 207 (p? — 1))
1. Thus, ged(¢,p*—1) = 1. Hence, ged (¢, (p?—1)p) = 1if €' # 0 (mod p). Since 207! < Lp,
we have (¢ = 1)p < (¢’ = D)p+ K =27 (p> — 1) < $p(p* — 1). Thus, ¢’ < $p* + 3, which,

in turn, implies that % <ip+ 2ip < p. Hence, gcd(%, (p*—1)p) =1if ¢ =0 (mod p). O

Remark 3.2. Suppose p < n < p>. We see from the proof of Theorem 3.1 that we can swap

the labels f(ugi—11) = (20 — 1)p? and f(up2i_1) = (2i — 1)p, for all integers 1 < i < LnQ_?J’

so that the resulting labeling is prime. Thus, a lower bound on the number of distinct prime
nt+p

labelings on the p x n grid is 9l 72p ] if p<mn<p’

Suppose n = p*. Then we can swap the labels f(ugi—11) = (2i — 1)p* and f(upasi—1) =
(2i — 1)p, for all integers 1 <1 < ’%1, so that the resulting labeling is prime. Thus, a lower

bound on the number of distinct prime labelings on the p x p* grid is 2°—1/2.
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Figure 7: Prime labeling on P53 X F,.

4 Prime labeling on P; x P,
We consider prime labelings on the 3 x n grid.
Theorem 4.1. Let n be a positive integer such that n < 9, then P3 x P, has a prime labeling.

Proof. Case 1. Suppose 1 < n < 4. Consider the labeling on P; x P, given by f(u;;) =
3(j —1)+4if jis odd, and f(u;;) =3(j —1) +4 — ¢ if j is even. The reader can observe
that this is a prime labeling on P3 x P,. See Figure 6.

Case 2. Suppose 5 < n < 9. Consider the labeling on Py x P, given by f(u;;) =
3(j — 1)+ if jis odd and (4,7) ¢ {(3,1),(3,5)}, f(u;;) =3(j —1)+4 —iif j is even,
f(usy) = 15, and f(uss) = 3. The reader can observe that this is a prime labeling on
P3; x P,. See Figure 7.

O

Combining Theorems 2.3, 3.1, and 4.1 yields the following result.

Theorem 4.2. Let p be an odd prime, and let n be an integer such that 1 < n < p?>. Then
there exists a prime labeling on P, X P,.

5 Further problems for investigation

Sundaram et al. [7] conjecture that P,, x P, has a prime labeling for all positive integer m
and n. We propose two more modest versions of this conjecture.

Conjecture 5.1. Let p be a prime, and let n be a positive integer. Then there exists a prime
labeling on P, x P,.

Conjecture 5.2. Let p and q be primes, and let n be a positive integer. Then there exists a
prime labeling on Py, X P,.
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