

Theory and Applications of Graphs

Volume 9 | Issue 1

Article 6

March 2022

Prime labelings on planar grid graphs

Stephen James Curran University of Pittsburgh - Johnstown, sjcurran@pitt.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag

Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Curran, Stephen James (2022) "Prime labelings on planar grid graphs," *Theory and Applications of Graphs*: Vol. 9: Iss. 1, Article 6. DOI: 10.20429/tag.2022.090106 Available at: https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/6

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

Prime labelings on planar grid graphs

Cover Page Footnote

Acknowledgement: The author was supported by a College Research Council Grant provided by the University of Pittsburgh at Johnstown.

This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol9/ iss1/6

Abstract

It is known that for any prime p and any integer n such that $1 \leq n \leq p$, there exists a prime labeling on the $p \times n$ planar grid graph $P_p \times P_n$. We show that $P_p \times P_n$ has a prime labeling for any odd prime p and any integer n such that $p < n \leq p^2$.

1 Introduction

Graph labelings were formally introduced in the 1970s by Kotzig and Rosa [6]. Graph labelings have been applied to graph decomposition problems, radar pulse code designs, X-ray crystallography and communication network models. The interested reader should consult J. A. Gallian's comprehensive dynamic survey on graph labelings [3] for further investigation. We refer the reader to Chartrand, Lesniak, and Zhang [1] for concepts and notation not explicitly defined in this paper. All graphs in this paper are simple and connected.

Definition 1.1. Let G be a graph on n vertices. We say that G is a prime graph if there exists a bijective function $f : V(G) \to \{1, 2, ..., n\}$ such that f(u) and f(v) are relatively prime whenever u is adjacent to v.

Dean [2], and Ghorbani and Kamali [4] have independently shown that the ladder $P_2 \times P_n$ has a prime labeling. Kanetkar [5] found prime labelings for the grid graph $P_{n+1} \times P_{n+1}$ when n and $(n+1)^2 + 1$ are primes, and either n = 5 or $n \equiv 3$ or 9 (mod 10), and a prime labeling on the grid graph $P_n \times P_{n+2}$ when $n \not\equiv 2 \pmod{7}$ is prime. Sundaram et al. [7] have shown that the grid graph $P_p \times P_n$ has a prime labeling when $p \ge 5$ is a prime and $n \le p$. They conjecture that the planar grid graph $P_m \times P_n$ is prime for all positive integers m and n. In this paper we show that, for any odd prime p and any positive integer $p < n \le p^2$, the $p \times n$ planar grid graph $P_p \times P_n$ has a prime labeling. Combining this result with that of Sundaram et al. [7], for any odd prime p and any positive integer $1 \le n \le p^2$, the $p \times n$ planar grid graph $P_p \times P_n$ has a prime labeling.

2 Preliminaries

Vilfred et al. [8] have shown the following result.

Theorem 2.1. [8] Let p be a prime, and let n be an integer such that $n \leq 3$. Then there exists a prime labeling on $P_p \times P_n$.

Sundaram et al. [7] have extended their result to the following theorem.

Theorem 2.2. [7, Theorem 2.1] Let $p \ge 5$ be a prime, and let n be an integer such that $3 < n \le p$. Then there exists a prime labeling on $P_p \times P_n$.

Combining Theorems 2.1 and 2.2 yields the following result.

Theorem 2.3. Let p be an odd prime, and let n be an integer such that $1 \le n \le p$. Then there exists a prime labeling on $P_p \times P_n$.

Figure 1: Grid graph $P_4 \times P_5$.

Remark 2.1. We make use of the fact that gcd(a, b) = gcd(a, b + ha) = gcd(a, ha - b) for any integer h.

Example 2.1. We illustrate the grid graph $P_4 \times P_5$ in Figure 1. Due to the orientation of the vertices, we refer to the set of vertices $\{u_{i,j} : 1 \leq j \leq n\}$ as the *i*th row of $P_m \times P_n$ and $\{u_{i,j} : 1 \leq i \leq m\}$ as the *j*th column of $P_m \times P_n$.

3 Prime labeling on $P_p \times P_n$

Remark 3.1. In order to show that the $p \times n$ grid has a prime labeling, we begin with the labeling $f(u_{i,j}) = (j-1)p+i$ for all $u_{i,j} \in V(P_p \times P_n)$. We first show that the only labels that prevent this labeling from being prime are the labels on the vertices in the p^{th} row. We have $gcd((j-1)p+i, (j-1)p+i \pm 1) = 1$. For $1 \leq i < p$, we have $(j-1)p+i \equiv i \not\equiv 0 \pmod{p}$. By Remark 2.1, we have $gcd((j-1)p+i, (j-1)p+i, (j-1)p+i, (j-1)p+i \pm p) = gcd((j-1)p+i, p) = 1$.

We establish the main result of this paper.

Theorem 3.1. Let $p \ge 5$ be a prime, and let n be an integer such that $p < n \le p^2$. Then there exists a prime labeling on $P_p \times P_n$.

Proof. The idea of the proof is to start with the labeling $f(u_{i,j}) = (j-1)p + i$ for all $u_{i,j} \in V(P_p \times P_n)$. By Remark 3.1, the labels in the p^{th} row prevent this labeling from being prime. So we swap the labels on some of the vertices in the p^{th} row with the labels on some of the vertices in the other rows to transform this labeling into a prime labeling. So in order to verify that the resulting labeling is prime, we need only check for primeness at the vertices $u_{i,j} \in V(P_p \times P_n)$ where $1 \leq i < p$ and $f(u_{i,j}) \neq (j-1)p + i$, and at the vertices in the p^{th} row.

We define the integers $j_0, j_1, j_2, e_1, i_3, j_3$, and k_j and ℓ_j for all $1 \leq j \leq j_1$ as follows. Let

$$j_0 = \left\lfloor \frac{n}{p} \right\rfloor \, j_1 = \left\lfloor \frac{n}{2p} \right\rfloor, \, \, j_2 = \left\lfloor \frac{n}{2} \right\rfloor,$$

 $e_1 = \lfloor \log_2(p^2) \rfloor$, let $1 \leq i_3 \leq p$ and $1 \leq j_3 < p$ be the unique integers such that $(j_3-1)p+i_3 = n$, and for all $1 \leq j \leq j_1$, let k_j and ℓ_j be the unique integers such that $j 2^{e_1+1} = (\ell_j - 1)p + k_j$ and $1 \leq k_j \leq p$. Since $j \leq j_1 < p$, we have $1 \leq k_j < p$.

_	25	6	55	16	21	26	31	36	41	46	51	56	61	66
	2	35	12	17	22	27	10	37	42	47	52	57	62	67
	15	8	65	18	23	28	33	38	43	48	53	58	63	68
	4	45	14	19	24	29	34	39	44	49	54	59	64	69
	5	32	3	20	1	30	7	40	9	50	11	60	13	70

Figure 2: Prime labeling on $P_5 \times P_{14}$.

We need to consider the following four cases separately. These cases are $p < n \leq p^2 - p$ and j_0 is even, $p < n \leq p^2 - p$ and j_0 is odd, $p^2 - p < n < p^2$, and $n = p^2$.

Case 1. Suppose $p < n \leq p^2 - p$ and $j_0 = 2j_1$ is even. We define the labeling $f : V(P_p \times P_n) \to \{1, 2, \ldots, pn\}$ as follows.

- 1. For all $1 \leq i \leq j_0$ such that *i* is odd, let $f(u_{i,1}) = ip^2$.
- 2. For all i and j such that i + j is even, and either
 - j = 1 and $j_0 < i < p$,
 - $1 < j < j_3$ and $1 \leq i < p$, or
 - $j = j_3$ and $1 \leq i \leq i_3$,

let $f(u_{i,j}) = ((j-1)p + i)p$.

- 3. For all $j_0 < j \leq n$ such that j is odd and $j \not\equiv 0 \pmod{p}$, let $f(u_{p,j}) = j$.
- 4. For all $1 \leq j \leq j_0$ and j is odd, let $f(u_{p,jp}) = j$.
- 5. For all $1 \leq j \leq j_1$, let $f(u_{p,2j}) = j 2^{e_1+1}$. Then, for all $1 \leq j \leq j_0$ and j is even, $f(u_{p,j}) = j 2^{e_1}$.
- 6. For all $1 \leq j \leq j_1$, let $f(u_{k_j,\ell_j}) = (2j)p$.
- 7. For all other vertices $u_{i,j}$, let $f(u_{i,j}) = (j-1)p + i$.

See Figure 2 for an example of this labeling on $P_5 \times P_{14}$. By Remark 3.1, in order to check that this labeling is prime, we need only check for primeness at all vertices $u_{i,j} \in V(P_p \times P_n)$ such that $1 \leq i < p$ and $f(u_{i,j}) \neq (j-1)p + i$, and at all vertices in the p^{th} row.

Subcase (i). Suppose j = 1 and $1 \le i \le j_0 < p$ is odd. Then $f(u_{i,1}) = ip^2$, $f(u_{i\pm 1,1}) = i\pm 1$, and $f(u_{i,2}) = p+i$. Since $gcd(i, i\pm 1) = gcd(i\pm 1, p) = 1$ and gcd(i, p+i) = gcd(i, p) = gcd(i, p) = 1, we have $gcd(ip^2, i\pm 1) = 1$ and $gcd(ip^2, p+i) = 1$.

Subcase (*ii*). Suppose i+j is even, and either j = 1 and $j_0 < i < p-1$, or $1 < j < j_3$ and $1 \le i < p-1$, or $j = j_3$ and $1 \le i \le \min(i_3, p-2)$. Then $f(u_{i,j}) = ((j-1)p+i)p$, $f(u_{i\pm 1,j}) = (j-1)p+i\pm 1$, and $f(u_{i,j\pm 1}) = (j-1)p+i\pm p$. We have $gcd(((j-1)p+i)p, (j-1)p+i\pm 1) = 1$ since $gcd((j-1)p+i, (j-1)p+i\pm 1) = 1$ and $gcd(p, (j-1)p+i\pm 1) = 1$. Also, we have

 $gcd(((j-1)p+i)p,(j-1)p+i\pm p) = 1$ since $gcd((j-1)p+i,(j-1)p+i\pm p) = 1$ and $gcd(p,(j-1)p+i\pm p) = 1$. When i = p-1 and j is even, we have $f(u_{p,j}) = j2^{e_1}$. We will check that $gcd(f(u_{p-1,j}), f(u_{p,j})) = 1$ in Subcase (*iii*).

Subcase (*iii*). Suppose i = p - 1, $1 \leq j \leq j_3$, and j is even. If $i_3 = p - 1$, then $j_3 = j_0 + 1$ is odd. Thus, $1 \leq j < j_3$, and j is even. (We will consider the situation $i_3 = p - 1$ and $j_3 = j_0 + 1$ is even in Case 2.) Since $j_0 = j_3$ or $j_0 = j_3 - 1$, we have $1 \leq j \leq j_0 < p$, and j is even.

Thus, $f(u_{p-1,j}) = (jp-1)p$, $f(u_{p,j}) = j 2^{e_1}$, $f(u_{p-1,j\pm 1}) = jp-1\pm p$, and $f(u_{p-2,j}) = jp-2$. We observe that gcd((jp-1)p, j) = 1 since gcd(jp-1, j) = 1 and gcd(p, j) = 1. Because jp-1 and p are odd, we have $gcd((jp-1)p, j 2^{e_1}) = gcd((jp-1)p, j) = 1$. Since $f(u_{p-2,j}) = jp-2$ and $f(u_{p-1,j\pm 1}) = jp-1\pm p$, an argument similar to that in Subcase (*ii*) shows that $gcd((jp-1)p, jp-2) = gcd((jp-1)p, jp-1\pm p) = 1$.

Subcase (*iv*). Suppose $i = p, 1 \leq j < j_0$, and j is even. Then $f(u_{p,j}) = j 2^{e_1}$, $f(u_{p-1,j}) = (jp-1)p$, and $f(u_{p,j\pm 1}) = (j\pm 1)p$. Since $j\pm 1$ is odd, we have $gcd(j 2^{e_1}, j\pm 1) = gcd(j, j\pm 1) = 1$. Since $1 \leq j < p$ and p is odd, we have $gcd(j 2^{e_1}, (j\pm 1)p) = gcd(j 2^{e_1}, j\pm 1) = 1$. It was shown in Subcase (*iii*) that $gcd((jp-1)p, j 2^{e_1}) = 1$.

Subcase (v). Suppose i = p and $j = j_0$. Since j_0 is even, $f(u_{p,j_0}) = j_0 2^{e_1}$, $f(u_{p-1,j_0}) = (j_0 p - 1)p$, $f(u_{p,j_0-1}) = (j_0 - 1)p$, and $f(u_{p,j_0+1}) = j_0 + 1$. Since $j_0 + 1$ is odd, we have $gcd(j_0 2^{e_1}, j_0 + 1) = gcd(j_0, j_0 + 1) = 1$. It was shown in Subcase (*iii*) that $gcd(j_0 2^{e_1}, (j_0 p - 1)p) = 1$. It was shown in Subcase (*iv*) that $gcd(j_0 2^{e_1}, (j_0 - 1)p) = 1$.

Subcase (vi). Suppose $i = p, 1 \leq j < j_0$, and j is odd. Then $f(u_{p,j}) = jp$, $f(u_{p-1,j}) = jp - 1$, and $f(u_{p,j\pm 1}) = (j \pm 1)2^{e_1}$. By an argument similar to that in Subcase (iv), we have $gcd(jp, (j \pm 1)2^{e_1}) = 1$. Also, gcd(jp, jp - 1) = 1.

Subcase (vii). Consider the vertex $u_{p,jp}$, where $1 \leq j \leq j_0$ and j is odd. We have $f(u_{p,jp}) = j$, $f(u_{p,jp\pm 1}) = (jp\pm 1)p$, and $f(u_{p-1,jp}) = jp^2 - 1$. Since j is relatively prime to $p, jp\pm 1$ and $jp^2 - 1$, we have $gcd(j, (jp\pm 1)p) = gcd(j, jp^2 - 1) = 1$.

Subcase (viii). Suppose $i = p, j_0 < j \leq n, j$ is odd, and $j \not\equiv 0 \pmod{p}$. If $j > j_0 + 1$, then $f(u_{p,j}) = j, f(u_{p,j\pm 1}) = (j \pm 1)p$, and $f(u_{p-1,j}) = jp - 1$. We have $gcd(j, (j \pm 1)p) = gcd(j, jp - 1) = 1$ since j is relatively prime to $p, j \pm 1$, and jp - 1.

If $j = j_0 + 1$, then $f(u_{p,j_0}) = j_0 2^{e_1}$ and $f(u_{p,j_0+1}) = j_0 + 1$. Since $gcd(j_0 + 1, j_0) = 1$ and $j_0 + 1$ is odd, we have $gcd(j_0 + 1, j_0 2^{e_1}) = 1$.

Subcase (*ix*). Consider the vertex u_{k_j,ℓ_j} for some $1 \leq j \leq j_1$. We have $f(u_{k_j,\ell_j}) = (2j)p$. Recall that k_j and ℓ_j are the unique integers such that $j 2^{e_1+1} = (\ell_j - 1)p + k_j$ and $1 \leq k_j < p$. Since $e_1 = \lfloor \log_2(p^2) \rfloor$, we have $p^2 < 2^{e_1+1} < 2p^2$. Since $1 \leq j \leq j_1 \leq \frac{n}{2p}$, we have $n + p \leq p^2 < j 2^{e_1+1} < np$.

Since $1 \leq k_j < p$, we have $f(u_{k_j,\ell_j\pm 1}) = ((\ell_j - 1) \pm 1)p + k_j = j 2^{e_1+1} \pm p$. Since $j 2^{e_1+1} \pm p = (\ell_j - 1)p + k_j \pm p \equiv k_j \neq 0 \pmod{p}$, we have $\gcd(p, j 2^{e_1+1} \pm p) = 1$. By Remark 2.1, we have $\gcd(j, j 2^{e_1+1} \pm p) = \gcd(j, p) = 1$. Thus, $\gcd(2jp, j 2^{e_1+1} \pm p) = 1$.

If $1 < k_j < p$, we have $f(u_{k_j-1,\ell_j}) = j 2^{e_1+1} - 1$. Also, if $1 \leq k_j , we have <math>f(u_{k_j+1,\ell_j}) = j 2^{e_1+1} + 1$. Since $j 2^{e_1+1} \pm 1 = (\ell_j - 1)p + k_j \pm 1 \equiv k_j \pm 1 \not\equiv 0 \pmod{p}$, $\gcd(p, j 2^{e_1+1} \pm 1) = 1$. By Remark 2.1, we have $\gcd(j, j 2^{e_1+1} \pm 1) = \gcd(j, 1) = 1$. Thus, $\gcd(2jp, j 2^{e_1+1} \pm 1) = 1$.

Finally, we suppose $k_j = p-1$. Since $\ell_j p = j2^{e_1+1}+1$ is odd, ℓ_j is odd. Thus, $f(u_{k_j+1,\ell_j}) = f(u_{p,\ell_j}) = \ell_j$ if $\ell_j \not\equiv 0 \pmod{p}$ or $f(u_{k_j+1,\ell_j}) = f(u_{p,\ell_j}) = \frac{\ell_j}{p}$ if $\ell_j \equiv 0 \pmod{p}$. Since

 $\ell_j p - j 2^{e_1+1} = 1$, we have $\gcd(j 2^{e_1+1}, \ell_j p) = 1$. Thus, $\gcd(2j, \ell_j) = 1$. If $\ell_j \neq 0 \pmod{p}$, then $\gcd(2jp, \ell_j) = \gcd(p, \ell_j) = 1$. Since $\ell_j \leq p^2 - p$, we have $\frac{\ell_j}{p} \leq p - 1$. So, if $\ell_j \equiv 0 \pmod{p}$, then $\gcd(2jp, \frac{\ell_j}{p}) = \gcd(p, \frac{\ell_j}{p}) = 1$.

Case 2. Suppose $p < n \leq p^2 - p$ and $j_0 = 2j_1 + 1$ is odd. We observe that when we apply the labeling given in Case 1 to the present case, the labels $f(u_{p,j_0}) = j_0 p$ and $f(u_{p,j_0+1}) = (j_0 + 1)p$ (and also $f(u_{p-1,j_0+1}) = np$ if $n = j_0 p + p - 1$) are the only labels that prevent the labeling from being prime. We must find a vertex $u_{k',\ell'}$ in which to swap the value of $f(u_{p,j_0+1})$ with that of $f(u_{k',\ell'})$ so that the resulting labeling is prime.

Since j_0+1 is even, we write j_0+1 in the form of $j_0+1 = 2^{\alpha}\beta$, where α and β are the unique integers such that $\alpha \ge 1$ and β is odd. Let $e_0 = \lfloor \log_2(p) \rfloor$ and $e_1 = \lfloor \log_2(p^2) \rfloor$. Since $2^{\alpha}\beta < p$ and $\frac{1}{2}p < 2^{e_0} < p$, we have $\alpha \le e_0$. We define the labeling $f : V(P_p \times P_n) \to \{1, 2, \ldots, pn\}$ by the labeling defined in Case 1 with the additional condition that we swap the labels on $f(u_{p,j_0+1})$ and $f(u_{k',\ell'})$ for some $u_{k',\ell'} \in V(P_p \times P_n)$ as follows.

- 1. If $\beta \ge 3$, we let k' and ℓ' be the unique integers such that $2^{e_1}\beta = (\ell' 1)p + k'$ and $1 \le k' \le p$. Then we let $f(u_{p,j_0+1}) = 2^{e_1}\beta$ and $f(u_{k',\ell'}) = (j_0+1)p = 2^{\alpha}\beta p$.
- 2. If $\beta = 1$ and $\alpha < e_0 1$, we let k' and ℓ' be the unique integers such that $2^{e_1} = (\ell'-1)p+k'$ and $1 \leq k' \leq p$. Then we let $f(u_{p,j_0+1}) = 2^{e_1}$ and $f(u_{k',\ell'}) = (j_0+1)p = 2^{\alpha}p$.
- 3. If $\beta = 1$, $\alpha = e_0 1$, $e_1 = 2e_0$ is even, and p is not a Fermat prime, we let k' and ℓ' be the unique integers such that $2^{e_0+e_1-1} = (\ell'-1)p + k'$ and $1 \leq k' \leq p$. Then we let $f(u_{p,j_0+1}) = 2^{e_0+e_1-1}$ and $f(u_{k',\ell'}) = (j_0+1)p = 2^{e_0-1}p$.
- 4. If $\beta = 1$, $\alpha = e_0 1$, $e_1 = 2e_0$ is even, and p is a Fermat prime, we let k' and ℓ' be the unique integers such that $2^{e_1} = (\ell' 1)p + k'$ and $1 \leq k' \leq p$. Then we let $f(u_{p,j_0+1}) = 2^{e_1}$ and $f(u_{k',\ell'}) = (j_0+1)p = 2^{e_0-1}p$.
- 5. If $\beta = 1$, $\alpha = e_0 1$, and $e_1 = 2e_0 + 1$ is odd, we let k' and ℓ' be the unique integers such that $2^{e_1} = (\ell' - 1)p + k'$ and $1 \leq k' \leq p$. Then we let $f(u_{p,j_0+1}) = 2^{e_1}$ and $f(u_{k',\ell'}) = (j_0 + 1)p = 2^{e_0-1}p$.
- 6. If $\beta = 1$, $\alpha = e_0$, and $e_1 = 2e_0$ is even, we let k' and ℓ' be the unique integers such that $2^{e_0+e_1} = (\ell'-1)p + k'$ and $1 \leq k' \leq p$. Then we let $f(u_{p,j_0+1}) = 2^{e_0+e_1}$ and $f(u_{k',\ell'}) = (j_0+1)p = 2^{e_0}p$.
- 7. If $\beta = 1$, $\alpha = e_0$, $e_1 = 2e_0 + 1$ is odd, and p is not a Mersenne prime, we let k' and ℓ' be the unique integers such that $2^{e_1} = (\ell' 1)p + k'$ and $1 \leq k' \leq p$. Then we let $f(u_{p,j_0+1}) = 2^{e_1}$ and $f(u_{k',\ell'}) = (j_0+1)p = 2^{e_0}p$.
- 8. If $\beta = 1$, $\alpha = e_0$, $e_1 = 2e_0 + 1$ is odd, and p is a Mersenne prime, we let k' and ℓ' be the unique integers such that $2^{e_0+e_1} = (\ell'-1)p + k'$ and $1 \leq k' \leq p$. Then we let $f(u_{p,j_0+1}) = 2^{e_0+e_1}$ and $f(u_{k',\ell'}) = (j_0+1)p = 2^{e_0}p$.

We first observe that the values $2^{e_1}\beta$, 2^{e_1} , $2^{e_0+e_1-1}$, and $2^{e_0+e_1}$ are relatively prime to p. Thus, in all eight selections of the vertex $u_{k',\ell'}$, we have $1 \leq k' < p$.

25	6	55	16	21	26	31	36	41	$\stackrel{46}{-} e_1$
2	35	12	85	22	27	10	37	42	$47 e_2$
75	8	65	18	23	28	33	38	43	48
4	45	14	95	24	29	34	39	44	e_3 49
5	32	15	64	1	30	7	40	9	$ \begin{array}{c} \bullet \\ 50 \end{array} $
•	• 51	• 56	• 61	6 6	• 71	• 76	• 81	• 86	$ e_5$ 91
e_1 –	52	57	62	67	72	77	82	87	92
e_2 —	53	58	63	•	•	•	•	•	•
$e_{3}-$	•	•	•	68	73	78	83	88	93
e_4 —	54	59	20	69	7 4	7 9	84	89	9 4
$e_5 -$	•11	60	13	70	3	80	17	90	19

Figure 3: Prime labeling on $P_5 \times P_{19}$.

See Figure 3 for an example of this labeling on $P_5 \times P_{19}$. We verify that each choice of $f(u_{p,j_0})$ and $f(u_{k',\ell'})$ results in a prime labeling. In order to check for primeness at vertex $u_{k',\ell'}$, we need to determine the labels at each of its neighboring vertices. In particular, we want to show that $f(u_{k',\ell'\pm 1}) = (\ell'-1)p + k' \pm p$, $f(u_{k'-1,\ell'}) = (\ell'-1)p + k' - 1$ if 1 < k' < p, and either

- $f(u_{k'+1,\ell'}) = (\ell'-1)p + k' + 1$ if $1 \le k' ,$
- $f(u_{k'+1,\ell'}) = \ell'$ if k' = p-1 and $\ell' \not\equiv 0 \pmod{p}$, or
- $f(u_{k'+1,\ell'}) = \frac{\ell'}{p}$ if k' = p 1 and $\ell' \equiv 0 \pmod{p}$.

In addition, we need to choose a vertex $u_{k',\ell'}$ whose label has not been previously swapped with another value. Thus, we need to choose a vertex $u_{k',\ell'}$ whose label is $f(u_{k',\ell'}) = (\ell' - 1)p + k'$. Hence, we need to show $(\ell' - 1)p + k' \notin \{j2^{e_1+1} : 1 \leqslant j \leqslant j_1\}$ and $n + p < (\ell' - 1)p + k' \leqslant np$. When $j_0 > 1$, we have $f(u_{p,2}) = 2^{e_1+1}$ and $f(u_{k_1,\ell_1}) = 2p$. In Case 1, we verified that $n + p < 2^{e_1+1} \leqslant np$. So if $(\ell' - 1)p + k' < 2^{e_1+1}$, we will only need to verify that $n + p < (\ell' - 1)p + k'$. Otherwise, if $2^{e_1+1} < (\ell' - 1)p + k'$, we will only need to verify that $(\ell' - 1)p + k' \leqslant np$. However, in the case when $j_0 = 1$, we will need to verify $n + p < (\ell' - 1)p + k' \leqslant np$.

Subcase (i). Assume $\beta \ge 3$. Then k' and ℓ' are the unique integers such that $2^{e_1}\beta = (\ell'-1)p + k'$ and $1 \le k' < p$. We have $f(u_{p,j_0+1}) = 2^{e_1}\beta$ and $f(u_{k',\ell'}) = (j_0+1)p = 2^{\alpha}\beta p$.

We first show that $n + p < 2^{e_1}\beta \leq np$ and $2^{e_1}\beta \notin \{j2^{e_1+1}: 1 \leq j \leq j_1\}$. We know that $n+p \leq p^2 < 2^{e_1+1}$. Since $\beta \geq 3$, we have $n+p < 3 \cdot 2^{e_1} \leq 2^{e_1}\beta$. Since $2j_1+2=j_0+1=2^{\alpha}\beta \geq 6$, we have $2 \leq j_1 \leq \frac{n}{2p}$. Thus, $n \geq 4p$. We observe that $\beta = \frac{j_0+1}{2^{\alpha}} = \frac{2j_1+2}{2^{\alpha}} \leq j_1+1 \leq \frac{n}{2p}+1$. Since $2^{e_1} < p^2$ and n > 2p, we have $2^{e_1}\beta < p^2(\frac{n}{2p}+1) < np$. Also, since every value

in $\{j2^{e_1+1}: 1 \leq j \leq j_1\}$ is divisible by 2^{e_1+1} and $2^{e_1}\beta$ is not divisible by 2^{e_1+1} , we have $2^{e_1}\beta \notin \{j2^{e_1+1}: 1 \leq j \leq j_1\}$.

We consider vertex u_{p,j_0+1} . We have $f(u_{p,j_0+1}) = 2^{e_1}\beta$, $f(u_{p,j_0}) = j_0p$, $f(u_{p,j_0+2}) = j_0+2$, and either

•
$$f(u_{p-1,j_0+1}) = (j_0+1)p - 1 = 2^{\alpha}\beta p - 1$$
 if $i_3 \neq p - 1$ or

•
$$f(u_{p-1,j_0+1}) = ((j_0+1)p-1)p = (2^{\alpha}\beta p - 1)p$$
 if $i_3 = p - 1$.

Since p is odd and $1 \leq \beta < p$, we have $gcd(2\beta, p) = 1$. Since j_0 and $j_0 + 2$ are relatively prime to $j_0 + 1 = 2^{\alpha}\beta$, we have $gcd(j_0p, 2^{e_1}\beta) = 1$ and $gcd(j_0 + 2, 2^{e_1}\beta) = 1$. Since $(j_0 + 1)p - 1 = 2^{\alpha}\beta - 1$ is relatively prime to 2 and β , we have $gcd((j_0 + 1)p - 1, 2^{e_1}\beta) = 1$. Also, since $gcd(p, 2\beta) = 1$, we have $gcd(((j_0 + 1)p - 1)p, 2^{e_1}\beta) = 1$.

Next consider vertex $u_{k',\ell'}$. If 1 < k' < p, then $f(u_{k'-1,\ell'}) = 2^{e_1}\beta - 1$. Since $2^{e_1}\beta - 1 \equiv k' - 1 \neq 0 \pmod{p}$ and $\gcd(2\beta, 2^{e_1}\beta - 1) = 1$, we have $\gcd(2^{\alpha}\beta p, 2^{e_1}\beta - 1) = 1$. If $1 \leq k' , then <math>f(u_{k'+1,\ell'}) = 2^{e_1}\beta + 1$. Since $2^{e_1}\beta + 1 \equiv k' + 1 \neq 0 \pmod{p}$ and $\gcd(2\beta, 2^{e_1}\beta + 1) = 1$, we have $\gcd(2^{\alpha}\beta p, 2^{e_1}\beta + 1) = 1$. Suppose k' = p - 1. Since $\ell'p = 2^{e_1}\beta + 1$ is odd, ℓ' is odd. Thus, $f(u_{k'+1,\ell'}) = f(u_{p,\ell'}) = \ell'$ if $\ell' \neq 0 \pmod{p}$ and $f(u_{k'+1,\ell'}) = f(u_{p,\ell'}) = \frac{\ell'}{p}$ if $\ell' \equiv 0 \pmod{p}$. Since $\ell'p - 2^{e_1}\beta = 1$, we have $\gcd(2^{e_1}\beta, \ell'p) = 1$. Thus, $\gcd(2^{\alpha}\beta p, \ell') = 1$ if $\ell' \equiv 0 \pmod{p}$. We observe that $\frac{\ell'}{p} \leq \frac{n}{p} \leq p - 1$. Thus, $\gcd(2^{\alpha}\beta p, \frac{\ell'}{p}) = 1$ if $\ell' \equiv 0 \pmod{p}$. Since $1 \leq k' < p$, we have $f(u_{k',\ell'\pm 1}) = 2^{e_1}\beta \pm p$. By Remark 2.1, we have $\gcd(2^{e_1}\beta \pm p, 2^{\alpha}\beta) = \gcd(p, 2^{\alpha}\beta) = 1$. We observe that $2^{e_1}\beta \pm p \equiv k' \neq 0 \pmod{p}$. Thus, $\gcd(2^{e_1}\beta \pm p, 2^{\alpha}\beta p) = 1$.

Subcase (*ii*). Assume $\beta = 1$, $\alpha < e_0 - 1$, and $j_0 > 1$. Then k' and ℓ' are the unique integers such that $2^{e_1} = (\ell' - 1)p + k'$ and $1 \leq k' < p$, $f(u_{p,j_0+1}) = 2^{e_1}$, and $f(u_{k',\ell'}) = (j_0 + 1)p = 2^{\alpha}p$. Since p > 4, we have

$$n+p < (j_0+1)p + p = 2^{\alpha}p + p \leq 2^{e_0-2}p + p < \frac{1}{4}p^2 + p < \frac{1}{2}p^2 < 2^{e_1}.$$

Also, $2^{e_1} < 2^{e_1+1} \leq np$. Since $2^{e_1} < 2^{e_1+1}$ and 2^{e_1+1} is the minimum value in $\{j2^{e_1+1}: 1 \leq j \leq j_1\}$, we have $2^{e_1} \notin \{j2^{e_1+1}: 1 \leq j \leq j_1\}$.

We first consider vertex u_{p,j_0+1} . We have $f(u_{p,j_0+1}) = 2^{e_1}$, $f(u_{p,j_0}) = j_0 p$, $f(u_{p,j_0+2}) = j_0 + 2$, and either

• $f(u_{p-1,j_0+1}) = (j_0+1)p - 1 = 2^{\alpha}p - 1$ if $i_3 \neq p - 1$ or

•
$$f(u_{p-1,j_0+1}) = ((j_0+1)p-1)p = (2^{\alpha}p-1)p$$
 if $i_3 = p-1$.

Since p, j_0 , $j_0 + 2$, and $(j_0 + 1)p - 1$ are odd, we have $gcd(j_0p, 2^{e_1}) = gcd(j_0 + 2, 2^{e_1}) = gcd((j_0 + 1)p - 1, 2^{e_1}) = gcd(((j_0 + 1)p - 1)p, 2^{e_1}) = 1.$

Next consider vertex $u_{k',\ell'}$. If 1 < k' < p, then $f(u_{k'-1,\ell'}) = 2^{e_1} - 1$. Since $2^{e_1} - 1 \equiv k' - 1 \not\equiv 0 \pmod{p}$ and $2^{e_1} - 1$ is odd, we have $\gcd(2^{\alpha}p, 2^{e_1} - 1) = 1$. If $1 \leq k' , then <math>f(u_{k'+1,\ell'}) = 2^{e_1} + 1$. Since $2^{e_1} + 1 \equiv k' + 1 \not\equiv 0 \pmod{p}$ and $2^{e_1} + 1$ is odd, we have $\gcd(2^{\alpha}p, 2^{e_1} + 1) = 1$. Suppose k' = p - 1. Since $\ell'p = 2^{e_0} + 1$ is odd, ℓ' is odd. Thus, $f(u_{k'+1,\ell'}) = f(u_{p,\ell'}) = \ell'$ if $\ell' \not\equiv 0 \pmod{p}$ and $f(u_{k'+1,\ell'}) = f(u_{p,\ell'}) = \ell'$ if $\ell' \not\equiv 0 \pmod{p}$. Since ℓ' is odd, we have $\gcd(2^{\alpha}p, \ell') = 1$ if $\ell' \not\equiv 0 \pmod{p}$. We observe that $\frac{\ell'}{p} \leq \frac{n}{p} \leq p - 1$. Thus, $\gcd(2^{\alpha}p, \frac{\ell'}{p}) = 1$ if $\ell' \equiv 0 \pmod{p}$. We next consider $f(u_{k',\ell'\pm 1}) = 2^{e_1} \pm p$. By Remark

2.1, we have $gcd(2^{e_1} \pm p, 2^{\alpha}) = gcd(p, 2^{\alpha}) = 1$. We observe that $2^{e_1} \pm p \equiv k' \neq 0 \pmod{p}$. Thus, $gcd(2^{e_1} \pm p, 2^{\alpha}p) = 1$.

Subcase (*iii*). Assume $\beta = 1$, $\alpha = e_0 - 1$, $j_0 > 1$, $e_1 = 2e_0$, and p is not a Fermat prime. Then k' and ℓ' are the unique integers such that $2^{e_1+e_0-1} = (\ell'-1)p + k'$ and $1 \leq k' < p$, $f(u_{p,j_0+1}) = 2^{e_1+e_0-1}$, and $f(u_{k',\ell'}) = (j_0+1)p = 2^{e_0-1}p$.

We need to show that $n + p < 2^{e_1+e_0-1} \leq np$. Let $r_1 = p - 2^{e_0}$. Since r_1 is odd and p is not a Fermat prime, we have $r_1 \geq 3$. Thus, $p \geq 2^{e_0} + 3$. Since $2^{e_0} \geq 4$, we have

$$2^{e_1+e_0-1} = 2^{3e_0-1} < \frac{1}{2}(2^{e_0})^3 + 2(2^{e_0})^2 - \frac{3}{2}(2^{e_0}) - 9 = (2^{e_0-1}-1)(2^{e_0}+3)^2 \le j_0 p^2 \le np.$$

Also, $n + p < 2^{e_1 + 1} \leq 2^{e_0 + e_1 - 1}$.

Since $j_0 + 1 = 2^{e_0 - 1}$, the largest power of 2 in $\{j : 1 \leq j \leq j_1\}$ is $2^{e_0 - 3}$. Thus, the largest power of 2 in $\{j2^{e_1+1} : 1 \leq j \leq j_1\}$ is $2^{e_0+e_1-2}$. Hence, $2^{e_0+e_1-1} \notin \{j2^{e_1+1} : 1 \leq j \leq j_1\}$. An argument similar to the one given in Subcase (*ii*) demonstrates that this is a prime labeling.

Subcase (*iv*). Assume $\beta = 1$, $\alpha = e_0 - 1$, $e_1 = 2e_0$, $j_0 > 1$, and p is a Fermat prime. Then k' and ℓ' are the unique integers such that $2^{e_1} = (\ell' - 1)p + k'$ and $1 \leq k' < p$, $f(u_{p,j_0+1}) = 2^{e_1}$, and $f(u_{k',\ell'}) = (j_0 + 1)p = 2^{e_0-1}p$.

We need to show that $n + p < 2^{e_1} \leq np$. We have $j_0 + 2 = 2^{e_0-1} + 1$. Since p is a Fermat prime and $\frac{1}{2}p < 2^{e_0} < p$, we have $p = 2^{e_0} + 1$. Since $2^{e_0} \geq 4$, we have

$$n + p < (j_0 + 2)p = (2^{e_0 - 1} + 1)(2^{e_0} + 1) = \frac{1}{2}(2^{e_0})^2 + \frac{3}{2}(2^{e_0}) + 1 < (2^{e_0})^2 = 2^{e_1}$$

Also, $2^{e_1} < 2^{e_1+1} \leq np$. The argument given in Subcase (*ii*) shows that $2^{e_1} \notin \{j2^{e_1+1} : 1 \leq j \leq j_1\}$. An argument similar to the one given in Subcase (*ii*) demonstrates that this is a prime labeling.

Subcase (v). Assume $\beta = 1$, $\alpha = e_0 - 1$, $j_0 > 1$, and $e_1 = 2e_0 + 1$ is odd. Then k' and ℓ' are the unique integers such that $2^{e_1} = (\ell' - 1)p + k'$ and $1 \leq k' < p$, $f(u_{p,j_0+1}) = 2^{e_1}$, and $f(u_{k',\ell'}) = (j_0 + 1)p = 2^{e_0-1}p$.

We have $j_0 + 2 = 2^{e_0 - 1} + 1$. Because $\frac{1}{2}p < 2^{e_0} < p$, we have $p < 2^{e_0 + 1}$. Since $2^{e_0} \ge 4$,

$$n + p < (j_0 + 2)p = (2^{e_0 - 1} + 1)(2^{e_0 + 1}) = (2^{e_0})^2 + 2(2^{e_0}) < 2(2^{e_0})^2 = 2^{e_1}.$$

Also, $2^{e_1} < 2^{e_1+1} \leq np$. The argument given in Subcase (*ii*) shows that $2^{e_1} \notin \{j2^{e_1+1} : 1 \leq j \leq j_1\}$. An argument similar to the one given in Subcase (*ii*) demonstrates that this is a prime labeling.

Subcase (vi). Assume $j_0 = 1$. Since $j_0 + 1 = 2 = 2^{\alpha}$, we have $\alpha = 1$. For the primes 5 and 7, we have $\alpha = e_0 - 1$ since $e_0 = 2$. For all other primes $p \ge 11$, we have $e_0 \ge 3$ which implies that $\alpha < e_0 - 1$.

We first consider p = 5. Since p = 5 is a Fermat prime, Subcase (iv) applies and thus $2^{e_1} = (\ell' - 1)p + k'$. Then $f(u_{p,2}) = 2^{e_1} = 16$ and $f(u_{k',\ell'}) = 2p = 10$. A calculation shows that $n + p < (j_0 + 2)p = 15 < 16 = 2^{e_1}$ and $2^{e_1} = 16 < 25 = j_0 p^2 \leq np$.

We next consider p = 7. Since $e_1 = 2e_0 + 1$ for p = 7, Subcase (v) applies and thus $2^{e_1} = (\ell' - 1)p + k'$. Then $f(u_{p,2}) = 2^{e_1} = 32$ and $f(u_{k',\ell'}) = 2p = 14$. A calculation shows that $n + p < (j_0 + 2)p = 21 < 32 = 2^{e_1}$ and $2^{e_1} = 32 < 49 = j_0p^2 \leq np$.

Finally, we consider primes $p \ge 11$. Since $\alpha < e_0 - 1$, Subcase (*ii*) applies and thus $2^{e_1} = (\ell' - 1)p + k'$. Then $f(u_{p,2}) = 2^{e_1}$ and $f(u_{k',\ell'}) = 2p$. The argument given in Subcase (*ii*) shows that $n + p < 2^{e_1} < np$.

Also, the argument given in Subcase (*ii*) shows that $2^{e_1} \notin \{j2^{e_1+1} : 1 \leqslant j \leqslant j_1\}$. An argument similar to the one given in Subcase (*ii*) demonstrates that each of these labelings is prime.

Subcase (vii). Assume $\beta = 1$, $\alpha = e_0$, and $e_1 = 2e_0$. Then k' and ℓ' are the unique integers such that $2^{e_1+e_0} = (\ell'-1)p + k'$ and $1 \leq k' < p$, $f(u_{p,j_0+1}) = 2^{e_1+e_0}$, and $f(u_{k',\ell'}) = (j_0+1)p = 2^{e_0}p$.

We need to show that $n + p < 2^{e_1 + e_0} \leq np$. We have $j_0 = 2^{e_0 - 1} - 1$. Since p is odd and $\frac{1}{2}p < 2^{e_0} < p$, we have $p \geq 2^{e_0} + 1$. Since $2^{e_0} \geq 4$, we have

$$2^{e_1+e_0} = 2^{3e_0} < (2^{e_0})^3 + (2^{e_0})^2 - (2^{e_0}) - 1 = (2^{e_0} - 1)(2^{e_0} + 1)^2 \le j_0 p^2 \le np.$$

Also, $n + p < 2^{e_1 + 1} < 2^{e_1 + e_0}$.

Since $j_0 + 1 = 2^{e_0}$, the largest power of 2 in $\{j : 1 \leq j \leq j_1\}$ is 2^{e_0-2} . Thus, the largest power of 2 in $\{j2^{e_1+1} : 1 \leq j \leq j_1\}$ is $2^{e_0+e_1-1}$. Hence, $2^{e_0+e_1} \notin \{j2^{e_1+1} : 1 \leq j \leq j_1\}$. An argument similar to the one given in Subcase (*ii*) demonstrates that this is a prime labeling.

Subcase (viii). Assume $\beta = 1$, $\alpha = e_0$, $e_1 = 2e_0 + 1$, and p is not a Mersenne prime. Then k' and ℓ' are the unique integers such that $2^{e_1} = (\ell' - 1)p + k'$ and $1 \leq k' < p$, $f(u_{p,j_0+1}) = 2^{e_1}$, and $f(u_{k',\ell'}) = (j_0 + 1)p = 2^{e_0}p$.

We need to show that $n + p < 2^{e_1} \leq np$. We have $j_0 + 2 = 2^{e_0} + 1$. Let $r_2 = 2^{e_0+1} - p$. Since r_2 is odd and p is not a Mersenne prime, we have $r_2 \geq 3$. Thus, $p \leq 2^{e_0+1} - 3$. Hence,

$$n + p < (j_0 + 2)p \leq (2^{e_0} + 1)(2^{e_0 + 1} - 3) = 2^{2e_0 + 1} - (2^{e_0}) - 3 < 2^{e_1}$$

Also, $2^{e_1} < 2^{e_1+1} \leq np$. The argument given in Subcase (*ii*) shows that $2^{e_1} \notin \{j2^{e_1+1} : 1 \leq j \leq j_1\}$. An argument similar to the one given in Subcase (*ii*) demonstrates that this is a prime labeling.

Subcase (ix). Assume $\beta = 1$, $\alpha = e_0$, $e_1 = 2e_0 + 1$, and p is a Mersenne prime. Then k' and ℓ' are the unique integers such that $2^{e_1+e_0} = (\ell'-1)p + k'$ and $1 \leq k' < p$, $f(u_{p,j_0+1}) = 2^{e_1+e_0}$, and $f(u_{k',\ell'}) = (j_0+1)p = 2^{e_0}p$.

We need to show that $n + p < 2^{e_1+e_0} \leq np$. We have $j_0 = 2^{e_0} - 1$. Since $p < 2^{e_0+1} < 2p$ and p is a Mersenne prime, we have $p = 2^{e_0+1} - 1$. Since $2^{e_0} \geq 4$, we have

$$2^{e_1+e_0} = 2^{3e_0+1} < 4(2^{e_0})^3 - 8(2^{e_0})^2 + 5(2^{e_0}) - 1 = (2^{e_0} - 1)(2^{e_0+1} - 1)^2 = j_0 p^2 \le np.$$

Also, $n + p < 2^{e_1+1} < 2^{e_1+e_0}$. The argument given in Subcase (*vii*) shows that $2^{e_0+e_1} \notin \{j2^{e_1+1} : 1 \leq j \leq j_1\}$. An argument similar to the one given in Subcase (*ii*) demonstrates that this is a prime labeling.

Case 3. Suppose $p^2 - p < n < p^2$. Then $j_0 = p - 1$ is even and $j_1 = \frac{p-1}{2}$. We let $r = n - (p^2 - p)$. Then 0 < r < p and $n + p = p^2 + r$. Let $t_r = \lfloor \log_2(p^2 + r) \rfloor$. Then $n + p < 2^{t_r+1} < 2(n+p)$. Let $1 \leq j \leq \frac{p-1}{2}$. Then $n + p < j2^{t_r+1} < (p-1)(n+p) < np$. For all $1 \leq j \leq \frac{p-1}{2}$, let $k_{r,j}$ and $\ell_{r,j}$ be the unique integers such that $j2^{t_r+1} = (\ell_{r,j} - 1)p + k_{r,j}$ and $1 \leq k_{r,j} < p$. We define the labeling $f : V(P_p \times P_n) \to \{1, 2, \ldots, pn\}$ as follows.

- 1. For all $1 \leq i < p$ such that *i* is odd, let $f(u_{i,1}) = ip^2$.
- 2. For all i and j such that i + j is even, and either

2	25	6	55	16	105	26	31	36	41	46	51	$\stackrel{56}{-} e_{\pm}$	1
2	2	35	12	85	22	27	10	37	42	47	52	$\frac{57}{2}e_{2}$	
7	75	8	65	18	115	28	33	38	43	48	53	$\frac{58}{-}e_{3}$	
4	1	45	14	95	24	29	34	39	44	49	54	$\frac{59}{2} e_2$	
Ę	5	32	15	64	1	30	7	40	9	50	11	$\frac{60}{e_i}$	
•		61	66	71	76	81	86	91	96	101	106	C;	116
	1-	62	67	72	77	82	87	92	97	102	107	112	117
	2-	63	68	73	78	83	88	93	98	103	108	113	118
	3 —	20	69	74	79	84	89	94	99	104	109	114	119
e e	4 —	13	70	3	80	17	90	19	100	21	110	23	120

Figure 4: Prime labeling on $P_5 \times P_{24}$.

- 1 < j < p and $1 \leqslant i < p$, or
- j = p and $1 \leq i \leq r$,

let $f(u_{i,j}) = ((j-1)p + i)p$.

- 3. For all $p < j \leq n$ such that j is odd and $j \not\equiv 0 \pmod{p}$, let $f(u_{p,j}) = j$.
- 4. For all $1 \leq j \leq p-1$ and j is odd, let $f(u_{p,jp}) = j$.
- 5. For all $1 \leq j \leq \frac{p-1}{2}$, let $f(u_{p,2j}) = j 2^{t_r+1}$. Then, for all $1 \leq j \leq p-1$ and j is even, we have $f(u_{p,j}) = j 2^{t_r}$.
- 6. For all $1 \leq j \leq \frac{p-1}{2}$, let $f(u_{k_{r,j},\ell_{r,j}}) = (2j)p$.
- 7. For all other vertices $u_{i,j}$, let $f(u_{i,j}) = (j-1)p + i$.

See Figure 4 for an example of this labeling on $P_5 \times P_{24}$. An argument similar to the one given in Case 1 demonstrates that this is a prime labeling.

Case 4. Suppose $n = p^2$. Then $j_0 = p$, $j_1 = \frac{p-1}{2}$ and $n + p = p^2 + p$. Let $e_3 = \lfloor \log_2(p^2 + p) \rfloor$. Then $n + p < 2^{e_3+1} < 2(n+p)$. Let $1 \leq j \leq \frac{p-1}{2}$. Then $n + p < j2^{e_3+1} < (p-1)(n+p) < np$. For all $1 \leq j \leq \frac{p-1}{2}$, let k_j and ℓ_j be the unique integers such that $j 2^{e_3+1} = (\ell_j - 1)p + k_j$ and $1 \leq k_j < p$. Let k' and ℓ' be the unique integers such that $(p^2 - 1)2^{e_0-1} = (\ell' - 1)p + k'$ and $1 \leq k' \leq p$. We define the labeling $f : V(P_p \times P_n) \to \{1, 2, \dots, pn\}$ as follows.

- 1. For all $1 \leq i < p$ such that *i* is odd, let $f(u_{i,1}) = ip^2$.
- 2. For all i and j such that i + j is even, $1 < j \leq p$, and $1 \leq i < p$, let $f(u_{i,j}) = ((j-1)p+i)p$.

25	6	55	16	105	26	31	36	41	46	51	56	$ \stackrel{61}{\leftarrow} e_1 $
2	35	12	85	22	27	10	37	42	47	52	57	$62 e_2$
75	8	65	18	115	28	33	38	43	120	53	58	$63 e_3$
4	45	14	95	24	29	34	39	44	49	54	59	$20 e_4$
5	32	15	64	1	30	7	40	9	50	11	60	$13 e_5$
$e_1 - $	66	71	76	81	86	91	96	101	106	111	116	121
$e_{1} - e_{2} - e_{2$	67	72	77	82	87	92	97	102	107	112	117	122
	68	73	78	83	88	93	98	103	108	113	118	123
e ₃ -	69	74	79	84	89	94	99	104	109	114	119	124
$e_4 - e_5 $	70	3	80	17	90	19	100	21	110	23	48	125

Figure 5: Prime labeling on $P_5 \times P_{25}$.

- 3. For all $p < j < p^2$ such that j is odd and $j \not\equiv 0 \pmod{p}$, let $f(u_{p,j}) = j$.
- 4. For all $1 \leq j < p$ and j is odd, let $f(u_{p,jp}) = j$.
- 5. For all $1 \leq j \leq \frac{p-1}{2}$, let $f(u_{p,2j}) = j 2^{e_3+1}$. Then, for all $1 \leq j \leq p-1$ and j is even, we have $f(u_{p,j}) = j 2^{e_3}$.
- 6. For all $1 \leq j \leq \frac{p-1}{2}$, let $f(u_{k_j,\ell_j}) = (2j)p$.
- 7. Let $f(u_{p,p^2-1}) = (p^2 1)2^{e_0-1}$ and $f(u_{k',\ell'}) = (p^2 1)p$.
- 8. For all other vertices $u_{i,j}$, let $f(u_{i,j}) = (j-1)p + i$.

See Figure 5 for an example of this labeling on $P_5 \times P_{25}$.

This labeling is similar to the labeling in Case 1 except for the labels given by $f(u_{p,p^2-1}) = (p^2 - 1)2^{e_0-1}$ and $f(u_{k',\ell'}) = (p^2 - 1)p$. Thus, we only need to check for primeness at these vertices.

We first show that $p^2 + p < (p^2 - 1)2^{e_0 - 1} < p^3$. Suppose p > 5. Since $\frac{1}{4}p < 2^{e_0 - 1} < \frac{1}{2}p$, we have $p^2 + p < \frac{1}{4}p(p^2 - 1) < 2^{e_0 - 1}(p^2 - 1) < \frac{1}{2}p(p^2 - 1) < p^3$. When p = 5, we have $e_0 = 2$. Thus, $p^2 + p = 30 < 48 = 2^{e_0 - 1}(p^2 - 1)$ and $2^{e_0 - 1}(p^2 - 1) = 48 < 125 = p^3$.

We next show that $(p^2 - 1)2^{e_0-1} \notin \{j2^{e_1+1} : 1 \leqslant j \leqslant \frac{p-1}{2}\}$. Every element of $\{j2^{e_1+1} : 1 \leqslant j \leqslant \frac{p-1}{2}\}$ is divisible by 2^{e_1+1} . We show that $2^{e_0-1}(p^2 - 1)$ is not divisible by 2^{e_1+1} .

Suppose $p \equiv 1 \pmod{4}$. Since $p+1 \equiv 2 \pmod{4}$, p+1 is divisible by 2 but not 4. Since $p-1 \equiv 0 \pmod{4}$ and $\frac{1}{2}p < 2^{e_0} < p$, p-1 is divisible by $2^{\alpha'}$ for some $2 \leq \alpha' \leq e_0$. Thus, $(p^2-1)2^{e_0-1}$ is divisible by $2^{e_0+\alpha'}$ for some $2 \leq \alpha' \leq e_0$. Hence, $(p^2-1)2^{e_0-1}$ is not divisible by 2^{2e_0+1} . Since $2e_0 \leq e_1$, $2^{e_0-1}(p^2-1)$ is not divisible by 2^{e_1+1} .

Suppose $p \equiv 3 \pmod{4}$. Since $p-1 \equiv 2 \pmod{4}$, p-1 is divisible by 2 but not 4. Since $p+1 \equiv 0 \pmod{4}$ and $p < 2^{e_0+1} < 2p$, p+1 is divisible by $2^{\alpha'}$ for some $2 \leqslant \alpha' \leqslant e_0 + 1$. Thus, $(p^2-1)2^{e_0-1}$ is divisible by $2^{e_0+\alpha'}$ for some $2 \leqslant \alpha' \leqslant e_0 + 1$. We consider the cases $\alpha' < e_0 + 1$ and $\alpha' = e_0 + 1$ separately. Suppose $\alpha' < e_0 + 1$. Thus, $(p^2-1)2^{e_0-1}$ is divisible by $2^{e_0+\alpha'}$ for some $2 \leqslant \alpha' \leqslant e_0$. Then $(p^2-1)2^{e_0-1}$ is not divisible by 2^{2e_0+1} . Since $2e_0 \leqslant e_1$, $2^{e_0-1}(p^2-1)$ is not divisible by 2^{e_1+1} . Suppose $\alpha' = e_0 + 1$. Because 2^{e_0+1} divides p+1 and $p < 2^{e_0+1} < 2p$, $p = 2^{e_0+1} - 1$ is a Mersenne prime. We observe that $\frac{1}{2}p < 2^{e_0} < \frac{1}{\sqrt{2}}p$. Thus, $e_1 = 2e_0 + 1$. Hence, $2^{e_0-1}(p^2-1)$ is divisible by $2^{2e_0+1} = 2^{e_1}$, but it is not divisible by 2^{e_1+1} . We consider vertex u_{p,p^2-1} . We have $f(u_{p,p^2-1}) = 2^{e_0-1}(p^2-1)$, $f(u_{p,p^2-2}) = p^2 - 2$, $f(u_{p,p^2}) = p^3$, and $f(u_{p-1,p^2-1}) = (p^2-1)p - 1$. We observe that $p^2 - 1$ is relatively prime to $p, p^2 - 2$, and $(p^2 - 1)p - 1$. Since $p, p^2 - 2$, and $(p^2 - 1)p - 1$ are odd, we have $gcd(2^{e_0-1}(p^2-1), p^3) = gcd(2^{e_0-1}(p^2-1), p^2-2) = gcd(2^{e_0-1}(p^2-1), (p^2-1)p - 1) = 1$.

We next consider vertex $u_{k',\ell'}$. Since p is odd and p is relatively prime to $p^2 - 1$, $gcd(2^{e_0-1}(p^2-1),p) = 1$. Thus, $k' \equiv 2^{e_0-1}(p^2-1) \not\equiv 0 \pmod{p}$. Hence, $1 \leq k' < p$. Since $\ell'p = 2^{e_0-1}(p^2-1) + 1$ is odd, ℓ' is odd. We have $f(u_{k',\ell'}) = p(p^2-1)$, $f(u_{k',\ell'\pm 1}) = 2^{e_0-1}(p^2-1) \pm p$, $f(u_{k'-1,\ell'}) = 2^{e_0-1}(p^2-1) - 1$ if 1 < k' < p, and either

- $f(u_{k'+1,\ell'}) = 2^{e_0-1}(p^2-1) + 1$ if $1 \le k' < p-1$,
- $f(u_{k'+1,\ell'}) = \ell'$ if k' = p-1 and $\ell' \not\equiv 0 \pmod{p}$, or
- $f(u_{k'+1,\ell'}) = \frac{\ell'}{p}$ if k' = p 1 and $\ell' \equiv 0 \pmod{p}$.

By Remark 2.1, we have $gcd(2^{e_0-1}(p^2-1) \pm p, p^2-1) = gcd(p, p^2-1) = 1$. Since $2^{e_0-1}(p^2-1)\pm p \equiv k' \neq 0 \pmod{p}$, we have $gcd(2^{e_0-1}(p^2-1)\pm p, p) = 1$. Thus, $gcd(2^{e_0-1}(p^2-1)\pm p, (p^2-1)p) = 1$.

For 1 < k' < p, we have $f(u_{k'-1,\ell'}) = 2^{e_0-1}(p^2 - 1) - 1$, and for $1 \leq k' ,$ $we have <math>f(u_{k'+1,\ell'}) = 2^{e_0-1}(p^2 - 1) + 1$. By Remark 2.1, we have $gcd(2^{e_0-1}(p^2 - 1) \pm 1, p^2 - 1) = gcd(1, p^2 - 1) = 1$. Since $2^{e_0-1}(p^2 - 1) \pm 1 \equiv k' \pm 1 \not\equiv 0 \pmod{p}$, we have $gcd(2^{e_0-1}(p^2 - 1) \pm 1, p) = 1$. Thus, $gcd(2^{e_0-1}(p^2 - 1) \pm 1, (p^2 - 1)p) = 1$.

Suppose k' = p - 1. Thus, $f(u_{k'+1,\ell'}) = f(u_{p,\ell'}) = \ell'$ if $\ell' \not\equiv 0 \pmod{p}$ and $f(u_{k'+1,\ell'}) = f(u_{p,\ell'}) = \frac{\ell'}{p}$ if $\ell' \equiv 0 \pmod{p}$. Since $\ell'p - 2^{e_0-1}(p^2 - 1) = 1$, we have $\gcd(\ell'p, 2^{e_0-1}(p^2 - 1)) = 1$. Thus, $\gcd(\ell', p^2 - 1) = 1$. Hence, $\gcd(\ell', (p^2 - 1)p) = 1$ if $\ell' \not\equiv 0 \pmod{p}$. Since $2^{e_0-1} < \frac{1}{2}p$, we have $(\ell' - 1)p < (\ell' - 1)p + k' = 2^{e_0-1}(p^2 - 1) < \frac{1}{2}p(p^2 - 1)$. Thus, $\ell' < \frac{1}{2}p^2 + \frac{1}{2}$, which, in turn, implies that $\frac{\ell'}{p} < \frac{1}{2}p + \frac{1}{2p} < p$. Hence, $\gcd(\frac{\ell'}{p}, (p^2 - 1)p) = 1$ if $\ell' \equiv 0 \pmod{p}$. \Box

Remark 3.2. Suppose $p < n < p^2$. We see from the proof of Theorem 3.1 that we can swap the labels $f(u_{2i-1,1}) = (2i-1)p^2$ and $f(u_{p,2i-1}) = (2i-1)p$, for all integers $1 \le i \le \lfloor \frac{n+p}{2p} \rfloor$, so that the resulting labeling is prime. Thus, a lower bound on the number of distinct prime labelings on the $p \times n$ grid is $2^{\lfloor \frac{n+p}{2p} \rfloor}$ if $p < n < p^2$.

Suppose $n = p^2$. Then we can swap the labels $f(u_{2i-1,1}) = (2i-1)p^2$ and $f(u_{p,2i-1}) = (2i-1)p$, for all integers $1 \le i \le \frac{p-1}{2}$, so that the resulting labeling is prime. Thus, a lower bound on the number of distinct prime labelings on the $p \times p^2$ grid is $2^{(p-1)/2}$.

Figure 6: Prime labeling on $P_3 \times P_4$.

1	1	6	7	12	13	18	19	24	25
2	2	5	8	11	14	17	20	23	26
	15	4	9	10	3	16	21	22	27

Figure 7: Prime labeling on $P_3 \times P_9$.

4 Prime labeling on $P_3 \times P_n$

We consider prime labelings on the $3 \times n$ grid.

Theorem 4.1. Let n be a positive integer such that $n \leq 9$, then $P_3 \times P_n$ has a prime labeling.

Proof. Case 1. Suppose $1 \le n \le 4$. Consider the labeling on $P_3 \times P_n$ given by $f(u_{i,j}) = 3(j-1) + i$ if j is odd, and $f(u_{i,j}) = 3(j-1) + 4 - i$ if j is even. The reader can observe that this is a prime labeling on $P_3 \times P_n$. See Figure 6.

Case 2. Suppose $5 \le n \le 9$. Consider the labeling on $P_3 \times P_n$ given by $f(u_{i,j}) = 3(j-1) + i$ if j is odd and $(i,j) \notin \{(3,1), (3,5)\}, f(u_{i,j}) = 3(j-1) + 4 - i$ if j is even, $f(u_{3,1}) = 15$, and $f(u_{3,5}) = 3$. The reader can observe that this is a prime labeling on $P_3 \times P_n$. See Figure 7.

Combining Theorems 2.3, 3.1, and 4.1 yields the following result.

Theorem 4.2. Let p be an odd prime, and let n be an integer such that $1 \leq n \leq p^2$. Then there exists a prime labeling on $P_p \times P_n$.

5 Further problems for investigation

Sundaram et al. [7] conjecture that $P_m \times P_n$ has a prime labeling for all positive integer m and n. We propose two more modest versions of this conjecture.

Conjecture 5.1. Let p be a prime, and let n be a positive integer. Then there exists a prime labeling on $P_p \times P_n$.

Conjecture 5.2. Let p and q be primes, and let n be a positive integer. Then there exists a prime labeling on $P_{pq} \times P_n$.

References

- Chartrand, G., Lesniak, L., and Zhang, P., Graphs & Digraphs, (2016) CRC Press, Boca Raton, 6th ed.
- [2] Dean, N., Proof of the prime ladder conjecture, Integers, (2017) 17 A40.
- [3] Gallian, J.A., A dynamic survey of graph labeling, *Electron. J. Combin.*, (2021) 24 #DS6; doi.org/10.37236/27.
- [4] Ghorbani, E., and Kamali, S., Prime labelings of ladders, (2019); arXiv:1610.08849v3 [math.CO].
- [5] Kanetkar, A., Prime labeling of grids, *AKCE J. Graphs Comb.*, (2009) **6** 135-142; www.tandfonline.com/doi/abs/10.1080/09728600.2009.12088880.
- [6] Kotzig, A., and Rosa, A., Magic valuations of finite graphs, *Canad. Math. Bull.*, (1970) 13 451–461; doi.org/10.4153/CMB-1970-084-1.
- [7] Sundaram, M., Ponraj, R., and Somasundaram, S., On a prime labeling conjecture, Ars Combin., (2006) 80 205–209.
- [8] Vilfred, V., Somasundaram, S., and Nicholas, T., Classes of prime graphs, International J. Management and Systems, (2002) 18 217–226.