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Abstract

An even 2-factor is one such that each cycle is of even length. A 4-regular graph
G is 4-edge-colorable if and only if G has two edge-disjoint even 2-factors whose union
contains all edges in G. It is known that the line graph of a cubic graph without
3-edge-coloring is not 4-edge-colorable. Hence, we are interested in whether those
graphs have an even 2-factor. Bonisoli and Bonvicini proved that the line graph of a
connected cubic graph G with an even number of edges has an even 2-factor, if G has
a perfect matching [Even cycles and even 2-factors in the line graph of a simple graph,
Electron. J. Combin. 24 (2017), P4.15]. In this paper, we give a sufficient condition
for the existence of an even 2-factor in the line graph of a connected cubic graph G
that can be applied to cubic graphs having no perfect matching and satisfying certain
conditions.

1 Introduction

In this paper, we deal with only simple graphs, unless otherwise stated. For a graph G,
the chromatic index is the least integer k such that G has a k-edge-coloring, that is, an
assignment of a color to each edge by at most k colors such that no two edges of the same
color are adjacent. For a positive integer k, a graph is said to be k-regular if every vertex has
degree exactly k. Vizing [7, 8] proved that every k-regular graph has the chromatic index
either k or k + 1. A k-regular graph with chromatic index k is said to be Class 1, while one
with chromatic index k + 1 is said to be Class 2. This means that the family of k-regular
graphs can be partitioned into two classes by the chromatic index.

In this paper, we are interested in the case k = 4 and study the further partition of the
4-regular graphs of Class 2, in the view of a 2-factor. Recall that a 2-factor of a graph G is
a spanning subgraph in which every vertex has degree 2. For spanning subgraphs F1, F2, . . .
of a graph G, if E(Fi) ∩ E(Fj) = ∅ for i ̸= j and

⋃
i≥1 E(Fi) = E(G), then G is said to be

decomposed into F1, F2, . . . . The following theorem is classical but important.

Theorem 1.1 (Petersen [6]). Every 4-regular graph is decomposed into two 2-factors.

A 2-factor F of a graph G is said to be even if the length of each cycle in F is even. The
following relation between the chromatic index of a 4-regular graph and its even 2-factors
was mentioned in [1]. Since the proof is easy, we show that for self-containedness.

Proposition 1.2 (Bonisoli and Bonvicini, [1]). Let G be a 4-regular graph. Then G has the
chromatic index 4 if and only if G can be decomposed into two even 2-factors.

Proof. Suppose that G has the chromatic index 4, that is, G has a 4-edge-coloring, say
1, 2, 3, 4 for its colors. Then the edges of color 1 or 2 induce a 2-factor of G, and so do the
edges of color 3 or 4. Since all cycles in the 2-factors contain two colors alternately, they are
all even cycles. Thus, G can be decomposed into two even 2-factors.

Conversely, if G can be decomposed into two even 2-factors, then by coloring each cycle
of one 2-factor by alternately color 1 and 2 and each cycle of the other 2-factor by alternately
color 3 and 4, we obtain a 4-edge-coloring of G.
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Therefore, if a 4-regular graph G is of Class 2, then G cannot be decomposed into two
even 2-factors. With this proposition in mind, 4-regular graphs of Class 2 with an even
2-factor can be regarded to be closer to Class 1 than those without an even 2-factor. Thus,
the existence of an even 2-factor gives a further hierarchy to the family of 4-regular graphs
of Class 2. This fact motivates us to study sufficient conditions for the existence of an even
2-factor, which will be discussed in this paper.

The following is an easy observation, but useful.

Proposition 1.3. A 4-regular graph of odd order has no even 2-factors.

Therefore, we are interested in 4-regular graphs of even order and of Class 2. The line
graph of a 3-regular graph of Class 2 with even number of edges is in fact such a graph, see
the next section, and we focus on those graphs.

2 Line graph of a cubic graph

The line graph of a graph G is the graph L(G) with the edges of G as its vertices, where two
edges of G are adjacent in L(G) if and only if they are adjacent in G. A 3-regular graph is
also called a cubic graph, and the line graph of a cubic graph G is 4-regular, since each edge
in G is adjacent with exactly four edges. Note that a graph has an even number of edges if
and only if its line graph has an even order.

Cubic graphs of Class 2 with certain connectivity condition, such as the Petersen graph,
have attracted by researchers as the name of snark. Jaeger proved that such graphs are
related to 4-regular graphs of Class 2, through the line graph operation.

Theorem 2.1 (Jaeger [4]). The line graph of any cubic graph of Class 2 has no 4-edge-
coloring.

By this theorem, one thinks the line graph of a cubic graph of Class 2 is a typical 4-
regular graph of Class 2. By Proposition 1.2, such a graph cannot be decomposed into two
even 2-factors. For the existence of an even 2-factor, Bonisoli and Bonvicini [1] proved the
following theorem.

Theorem 2.2 (Bonisoli and Bonvicini, [1]). Let G be a connected cubic graph with an even
number of edges. If G has a perfect matching, then the line graph L(G) has an even 2-factor.

As mentioned in [1], there are connected cubic graphs G with an even number of edges
such that G does not have a perfect matching, but the line graph L(G) has an even 2-factor.
The graph G depicted in Figure 1 is one of such graphs, where one can easily check that
G does not have a perfect matching. (In fact, the graph G is known as the smallest simple
cubic graph without perfect matching.) However, the line graph L(G) of G has an even
2-factor, which can be seen by our main theorem.

In this paper, in order to cover those graphs, we show the following Theorem. An edge
e in a graph G is called a cut edge if G − e has more components than G. Recall that any
cubic graph without perfect matching must contain a cut edge by Petersen’s theorem [6].
Thus, to study cubic graphs without perfect matching, we consider conditions on cut edges.
A vertex of degree 0 in a graph is said to be isolated.
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Figure 1: A connected cubic graph G with 24 edges. This graph G does not have a perfect
matching, but satisfies Conditions (S1) and (S2).

Theorem 2.3. Let G be a connected cubic graph with an even number of edges, and let S
be the set of cut edges in G. If G satisfies both of the following conditions, then the line
graph L(G) has an even 2-factor.

(S1) For each isolated vertex v in G− S, every component in G− v has an odd number of
edges.

(S2) Each component in G − S that is not an isolated vertex is incident with at most two
cut edges.

In Section 5, we discuss the best possibility of Conditions (S1) and (S2).
We show that the graph G depicted in Figure 1 satisfies the assumptions of Theorem 2.3.

As remarked, it does not satisfy Theorem 2.2 since it has no perfect matching but Theorem
2.3, that will be proved later, show that the corresponding line graph has an even 2-factor.
There are three cut edges in G, all of which are incident with the center vertex v. After
removing the cut edges from G, exactly one isolated vertex v and three components that
are not isolated vertices remain. Note that G − v has three components each of which has
seven edges, and hence Condition (S1) is satisfied. Each of the three components that are
not isolated vertices is incident with exactly one cut edge, and hence Condition (S2) is also
satisfied. Thus, by Theorem 2.3, we see that the line graph L(G) of G has an even 2-factor.

If we take 2-edge-connected cubic graphs H of order 0 modulo 4 with one edge subdivided
and replace one component of G−v (indicated by a red circle in Figure 1) with H by joining
v with the vertex obtained by subdivision, then we obtain cubic graphs to which we can
apply Theorem 2.3 but not Theorem 2.2. (We leave the readers to check that the obtained
graph has an even number of edges.) Therefore, there are infinitely many connected cubic
graphs G with an even number of edges such that G does not have a perfect matching, but
satisfies Conditions (S1) and (S2).

Remark 1: Let G be a connected cubic graph satisfying the assumptions in Theorem 2.3.
Suppose that there does not exist an isolated vertex in G − S. By Condition (S2), we see
that all cut edges are contained in a path in G. It follows from the Petersen’s theorem (see
Theorem 3.3 below) that G has a perfect matching, and hence Theorem 2.2 implies that the
line graph L(G) of G has an even 2-factor.
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On the other hand, if there exists an isolated vertex in G − S, then we can easily see
that G does not have a perfect matching, and hence we cannot apply Theorem 2.2 to such
a graph G.

Therefore, the family of cubic graphs to which we can apply Theorem 2.3 but not Theorem
2.2 is indeed equivalent to the family of connected cubic graphs G with even number of edges
such that Conditions (S1) and (S2) are satisfied and there is an isolated vertex in G− S.

Remark 2: Our proof of Theorem 2.3 uses different ideas from the proof of Theorem 2.2
by Bonisoli and Bonvicini [1]. In [1], they consider a pair of P2-decompositions, where a P2-
decomposition of a graph G is a decomposition into subgraphs of G all of which are isomorphic
to the path of order three (of length two). They gave a necessary and sufficient condition for
the line graph to have an even 2-factor in terms of a pair of disjoint P2-decompositions, that
is, two P2-decompositions without common members, see [1, Proposition 5]. The existence
of a pair of disjoint P2-decompositions is a refinement of a result by Kotzig [5]. We give
an alternative proof of the existence of an even 2-factor in the line graph of a cubic graph
through a decomposition into extended circuits with an even number of edges. Our approach
relies on the results in [2] (see Proposition 3.1) and then we adjust the parity of the length
of each cycle.

3 Preliminary

In this section, we give some terminology and propositions that are used in our proof. A
circuit is a connected graph in which every vertex has positive even degree. An extended
circuit is a circuit together with edges that are incident with vertices in the circuit, where
the circuit is called the base of the extended circuit. A star is the complete bipartite graph
K1,r for some integer r ≥ 1. The following is essentially shown by Harary and Nash-Williams
[3].

Proposition 3.1 (c.f. [3]). Let G be a graph of order at least three. Then the line graph
of G contains a Hamiltonian cycle if and only if G is either an extended circuit or a star.

Using this idea, we can show that the line graph L(G) of a graph G has a 2-factor if
and only if G can be decomposed into extended circuits and stars with at least three edges.
This was essentially shown by Gould and Hynds [2]. When we restrict ourselves to an even
2-factor in the line graph of a cubic graph, we obtain the following.

Proposition 3.2. Let G be a connected cubic graph. Then the line graph L(G) of G has an
even 2-factor if and only if G can be decomposed into extended circuits with even number
of edges.

Proof. Since any subgraph isomorphic to a star in a cubic graph can have at most three edges,
it follows from Proposition 3.1 that each even cycle in L(G) corresponds to an extended
circuit in G. This observation, together with the criteria by Gould and Hynds [2] shows the
statement.

We also use the following theorem.
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Theorem 3.3 (Petersen, [6]). For a connected cubic graph G, if all cut edges are contained
in a path in G, then G has a 2-factor.

4 Proof of the main theorem

Let G be a connected cubic graph with an even number of edges, and S be the set of cut
edges. Suppose that G satisfies Conditions (S1) and (S2). By Proposition 3.2 it suffices to
find a decomposition of G into extended circuits with even number of edges.

Let v be an isolated vertex in G− S, and let e1, e2, e3 be the edges incident with v in G.
Note that e1, e2, e3 are all cut edges in G. We replace v with three new vertices v1, v2, v3 so
that the edge ei is incident with vi for i = 1, 2, 3, see Figure 2. This operation breaks G into
three components each containing vi for some i = 1, 2, 3.

v
v1

e3

e1

e2 e3

e1

e2
v3 v2

Figure 2: The operation for an isolated vertex v in G− S.

We perform this operation to all isolated vertices v in G − S one by one, and let G′ be
the obtained graph. With abuse of notation, we may regard that G′ has the edge set same
as G, that is, E(G′) = E(G).

Claim 1. Each component of G′ has an even number of edges, and in particular, at least
three vertices.

Proof. Let v1, v2, . . . be the isolated vertices in G − S in the order that we perform the
operation to obtain G′, and let Gi be the graph obtained by the operation at vi. Let
G0 = G. By the induction on the number of steps, we prove the stronger statement that

• every component of Gi has an even number of edges and

• (S1’) for every isolated vertex vj in G−S with j ≥ i+1, each of the three components
in Gi − vj that have a vertex adjacent with vj in G has an odd number of edges.

Note that the original graph G = G0 has an even number of edges and satisfies Condition
(S1’) by the assumption and Condition (S1), respectively.

We assume that i ≥ 0 and every component in Gi has an even number of edges and
satisfies Condition (S1’). Suppose that there still remains the isolated vertex vi+1 in G− S
that has not performed the operation yet. Let C i be the component of Gi containing vi+1.
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Note that C i contains an even number of edges. If we perform the operation at vi+1 to
obtain Gi+1, C i breaks into three components. By Condition (S1’) for Gi, each component
of C i − vi+1 has an odd number of edges. Hence together with the edge incident with vi+1,
we see that every component of Gi+1 has an even number of edges.

Therefore, it suffices to check Condition (S1’) for Gi+1. Let vj be an isolated vertex in
G − S with j ≥ i + 2. If vj is not contained in C i, then we have nothing to show since
each component of Gi+1 − vj that has a vertex adjacent with vj in G is also a component
of Gi − vj. Thus, we may assume that vj is contained in C i. Let C i+1 be the component
of Gi+1 containing vj, which is obtained by the operation at vi+1. Note that C i+1 has an
even number of edges. Let D1, D2, D3 be the three components of Gi+1 − vj that have a
vertex adjacent with vj in G. Note that they are also the three components of C i+1−vj. By
symmetry, we may assume that D1 contains the vertex obtained by the operation at vi+1.
In this case, D2 and D3 are also components of Gi − vj. By Condition (S1’) for Gi, both
|E(D2)| and |E(D3)| are odd. Since |E(D1)|+ |E(D2)|+ |E(D3)| = |E(C i+1)| − 3 (where 3
corresponds to the three edges incident with vj) and C i+1 has an even number of edges, we
have that |E(D1)| is also odd. This proves that Gi+1 satisfies Condition (S1’), and completes
the proof of Claim 1.

Since we regard E(G′) = E(G), it follows from Proposition 3.2 that it suffices to find a
decomposition of G′ into extended circuits with even number of edges. To do that, we focus
on each component of G′. Let C be a component of G′. The next claim shows that C has a
certain set of disjoint cycles, each of which will be a base circuit of an extended circuit that
we will find.

Claim 2. C has pairwise disjoint cycles whose union contains all vertices of degree three in
C.

Proof. Note that each vertex of C has degree either one or three. To each vertex of degree
one, we add the subdivided-K4, which is the graph obtained from K4 by subdividing an edge
once, as in Figure 3. We denote by C+ the resultant graph, which is a cubic graph.

Figure 3: The addition of subdivided-K4 to a vertex of degree one in C.

Consider the block-cut tree TC of C+, and suppose that TC has three leaves. This means
that there is a cut vertex that is incident with three blocks or there is a block that has
three cut vertices. However, this contradicts the construction of G′ and Condition (S2),
respectively. Thus, TC has at most two leaves. This implies that all cut edges are contained
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in a path in C+. By Theorem 3.3, C+ has a 2-factor. By deleting a cycle in the added
subdivided-K4’s, we obtain the desired cycles.

Let X1, X2, . . . , Xt be the pairwise disjoint cycles whose union contains all vertices of
degree three in C, which are obtained by Claim 2. Now, we will find an assignment f that
assigns each edge e in E(C) −

⋃t
i=1 E(Xi) to a cycle f(e) = Xi for some 1 ≤ i ≤ t so that

f(e) contains at least one of the end vertices of e and for 1 ≤ i ≤ t,

E(Xi) ∪ {e : f(e) = Xi}

has an even number of edges. By the conditions on the assignment f , we see that E(Xi)∪{e :
f(e) = Xi} induces an extended circuit with even number of edges, and those extended
circuits form a decomposition of C with properties mentioned in Proposition 3.2.

To find such an assignment f , we delete all vertices of degree one and contract each Xi

into one vertex for 1 ≤ i ≤ t, keeping all edges in E(C)−
⋃t

i=1 E(Xi), even in the case when

multiples edges or loops are created. Let T̃ be a spanning tree of the resultant graph. Note
that all edges in T̃ connect two vertices of degree three in C that belong to distinct cycles
in X1, X2, . . . , Xt.

To each edge e in E(C) −
⋃t

i=1 E(Xi) − E(T̃ ), we first assign Xi as f(e) so that Xi

contains at least one of the end vertices of e. Since C contains at least three vertices (by
Claim 1) and each vertex of degree three in C is contained in one of X1, X2, . . . , Xt, such a
cycle Xi must exist.

We regard T̃ as a rooted tree with root X1 such that all edges are oriented from the leaves
to the root. From the leaves of T̃ we will find the assignment of the edges in E(T̃ ) along

the tree T̃ as follows. Suppose that for a cycle Xi with Xi ̸= X1, all edges in T̃ incoming
to Xi are already assigned by f , including the case that Xi corresponds to a leaf of T̃ . Let
e be an edge in T̃ that outgoes to the parent, say Xj, of Xi in T̃ . In this case, we assign
Xi or Xj to e as f(e) so that E(Xi) ∪ {e : f(e) = Xi} has an even number of edges. By

this procedure, we can assign all edges in T̃ one by one so that E(Xi) ∪ {e : f(e) = Xi} has
an even number of edges for any i with i ̸= 1. It follows from Claim 1 that C has an even
number of edges, which is the union of E(Xi) ∪ {e : f(e) = Xi} over all 1 ≤ i ≤ t. Hence,
E(X1) ∪ {e : f(e) = X1} also has an even number of edges.

Therefore, each component C of G′ has a decomposition of G′ into extended circuits with
even number of edges, and so G does. This completes the proof of Theorem 2.3. □

5 Conclusion

In this paper, we give a new sufficient condition for the line graph of a connected cubic
graph to have an even 2-factor. Before closing this paper, we discuss the best possibility of
Conditions (S1) and (S2).

One may think that Condition (S1) is technical, but we emphasize that it is indeed a
necessary condition. Let G be a connected cubic graph with an even number of edges, and S
be the set of cut edges in G. Suppose that for an isolated vertex v in G− S, there are some
components in G− v that have an even number of edges. If we perform the operation to v
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as in Figure 2, we obtain the three components, say D1, D2, D3, some of which have an odd
number of edges. By symmetry, we may assume that D1 has an odd number of edges. Thus,
D1 cannot have a decomposition into extended circuits with even number of edges. Since
no extended circuit in G can contain edges in two of D1, D2, D3, this shows that G does not
have a decomposition into extended circuits with even number of edges. By Proposition 3.2,
the line graph L(G) of G does not have an even 2-factor.

On the other hand, we assume Condition (S2) by a technical reason. For example,
consider the connected cubic graph depicted in the left of Figure 4, which has three cut
edges represented by double lines. Since the center component of G − S is incident with
three cut edges, this does not satisfy Condition (S2). However, we can check that the line
graph of G has an even 2-factor.

On the other hand, the connected cubic graph G′ depicted in the right Figure 4, does not
satisfy Condition (S2) and the line graph of G′ has no even 2-factor. Thus, in order to give
a further extension of Theorem 2.3, we need to distinguish those graphs in Figure 4, which
makes the statement more complicated. Therefore, we decide to state our main theorem as
in Theorem 2.3.

G
G′

Figure 4: Connected cubic graphs G (left) and G′ (right) with three cut edges, which are
indicated by double lines. Both of the graphs G and G′ do not satisfy Condition (S2). The
line graph L(G) of G has an even 2-factor, while the line graph L(G′) of G′ has no even
2-factor.
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Pěst. Mat. 82 (1957). 76–92.
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