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Abstract

A (not necessarily proper) k-coloring c : V (G) → {1, 2, . . . , k} of a graph G on
a surface is a facial t-complete k-coloring if every t-tuple of colors appears on the
boundary of some face of G. The maximum number k such that G has a facial t-
complete k-coloring is called a facial t-achromatic number of G, denoted by ψt(G). In
this paper, we investigate the relation between the facial 3-achromatic number and
guarding number of triangulations on a surface, where a guarding number of a graph
G embedded on a surface, denoted by guard(G), is the smallest size of its guarding
set which is a generalized concept of guards in the art gallery problem. We show that
for any graph G embedded on a surface, ψ∆(G∗)(G) ≤ guard(G) + ∆(G∗) − 1, where
∆(G∗) is the largest face size of G. Furthermore, we investigate sufficient conditions
for a triangulation G on a surface to satisfy ψ3(G) = guard(G) + 2. In particular, we
prove that every triangulation G on the sphere with guard(G) = 2 satisfies the above
equality and that for one with guarding number 3, it also satisfies the above equality
with sufficiently large number of vertices.

1 Introduction

All graphs considered in this paper are finite, undirected and simple unless otherwise men-
tioned. For a graph G, let V (G) be the set of vertices and let degG(v) be the degree of a
vertex v in G which is the number of edges incident to v. A complete graph Kn is a graph
with n vertices in which every distinct two vertices are adjacent. A graph G is said to be
embedded on a surface F 2 if G is drawn on F 2 without edge crossings. The face size of a face
f is the length of the boundary of f and ∆(G∗) means the maximum face size of faces in
G, where G∗ is the dual graph of G. A triangulation on a surface F 2 is a graph embedded
on F 2 such that every face is triangular. For basic terms and notations not defined here, we
refer to [13].

1.1 Background of our study and a general relationship

In the art gallery problem, one is given a simple polygon P in the plane and asked to find the
smallest subset S of points of P , called guards, so that every point in P is seen by at least
one point in S. The results on this problem address the extremal question; how many guards
are needed to guard a simple polygon with n points? Chvátal [10] gave the first solution to
the question by proving that ⌊n

3
⌋ guards are sufficient and sometimes necessary to guard a

polygon with n points. Subsequently, Fisk [15] presented an elegant proof to this theorem:
First, every simple polygon in the plane can be triangulated by adding only edges. Since the
resulting configuration can be regarded as a maximal outerplanar graph, such a graph has a
proper 3-coloring of points, and hence each color class in its 3-coloring becomes the desired
set of guards. In this context, for a graph G embedded on a surface, a generalized concept,
called a polychromatic k-coloring of G, is well studied, which is a (not necessarily proper)
coloring of vertices of G such that all k colors appear on the boundary of each face of G.
The polychromatic number of G, denoted by p(G), is the maximum integer k such that G has
a polychromatic k-coloring. In general, for a graph G on the sphere, it is NP-complete to
determine if p(G) ≥ 3 [2]. In the same paper, many results are provided for polychromatic
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coloring of planar graphs, and for that of graphs embedded on other surfaces, see [20, 22].
For more results and other topics, see [6, 14, 19, 21] and a survey [12, Section 6].

The guarding set of graphs on surfaces is a generalization of guards in the art gallery
problem. (Note that the polygon P in the art gallery problem is a geometric graph but in
the generalization of guards on surfaces is not.) Let G be a graph embedded on a surface.
A guarding set of G is a subset S ⊆ V (G) such that each face of G is incident to a vertex in
S. The guarding number of G, denoted by guard(G), is the number of vertices in a smallest
guarding set of G. Similarly to the polychromatic number, it is NP-hard to find the guarding
number of a given graph on the sphere [11]. By the definition, for any graph G on a surface
with n vertices, guard(G) ≤ n

p(G)
. Therefore, many results for upper bounds of the guarding

number can be obtained from known results on the polychromatic number. For example,
since every triangulation on the sphere with n ≥ 4 vertices has polychromatic number at
least 2 [6], its guarding number is at most n

2
. Note that the above bound is sharp since there

exists a triangulation G on the sphere with guard(G) = ⌊n
2
⌋ [6]. The guarding set is also

considered in several variant settings; for example, see [5, 7].
In this paper, we investigate the relation between the guarding number and facial achro-

matic number of graphs on surfaces, where the latter is recently introduced by the authors
in [23]. A (not necessarily proper) k-coloring c : V (G) → {1, 2, . . . , k} of a graph G on a
surface is a facial t-complete k-coloring if every t-tuple of colors appears on the boundary of
some face of G. The maximum number k such that G has a facial t-complete k-coloring is
called a facial t-achromatic number of G, denoted by ψt(G). (If we do not need to care about
the value t, then we simply call it a facial achromatic number.) It is clear that t ≤ ∆(G∗).
We instinctively see that if the number of vertex disjoint faces of G becomes larger, then so
do guard(G) and ψt(G). It is proved in [23] that if the number of vertex disjoint faces of a
triangulation G is at least

(
n
3

)
, then ψ3(G) ≥ n and that the cubic order with respect to n is

sharp. On the other hand, it is trivial that for any graph G, guard(G) is at least the number
of vertex disjoint faces. Thus, we can expect that ψt(G) can be bounded by a function of
guard(G) for any graph G, and in fact, we have the following general relationship.

Theorem 1.1. Let G be a graph on a surface. Then

ψ∆(G∗)(G) ≤ guard(G) + ∆(G∗)− 1.

Corollary 1.2. Let G be a graph on a surface with n vertices. Then

ψ∆(G∗)(G) ≤
n

p(G)
+ ∆(G∗)− 1.

The bound in Theorem 1.1 is best possible in general. For example, a cycle Cn of order
n embedded on the sphere has ∆(C∗

n) = n, guard(Cn) = 1 and ψn(Cn) = n.
Regarding a face of a triangulation G as a hyperedge, we can obtain a 3-uniform hy-

pergraph HG from G. Observe that the matching number and covering number of HG

corresponds to the number of vertex disjoint faces and guarding number of G, respectively.
Thus, Theorem 1.1 together with Aharoni’s result [1] leads to the following.

Corollary 1.3. For any triangulation G on a surface,

ψ3(G) ≤ 2f(G) + 2,

where f(G) is the number of vertex disjoint faces of G.

2

Theory and Applications of Graphs, Vol. 9 [2022], Iss. 1, Art. 1

https://digitalcommons.georgiasouthern.edu/tag/vol9/iss1/1
DOI: 10.20429/tag.2022.090101



1.2 Sufficient condition for ψ3(G) = guard(G) + 2

It seems to be difficult to determine the facial achromatic number of graphs on surfaces
since to find the guarding number is NP-hard in general even if those given graphs are
triangulations. Thus, we focus on triangulations G satisfying ψ3(G) = guard(G) + 2.

We first establish a sufficient condition for a triangulation on a surface to satisfy the
above equality, as follows. (Note that no trivial triangulation has guarding number 1.)

Theorem 1.4. Let G be a triangulation on a surface and let S = {v1, v2, . . . , vk} be a
guarding set of G with |S| = guard(G) = k ≥ 2. If degG(vi) ≥ 1

3
k3 + k2 + 5

3
k − 1 for each

i ∈ {1, . . . , k}, then ψ3(G) = k + 2.

The condition of Theorem 1.4 seems to be very strict and so one may think that the
theorem is trivial. However, Theorem 1.4 gives us an important observation for the relation
between the facial achromatic number and the number of vertex disjoint faces: Recall that for
any triangulation G on a surface, if G has at least

(
m
3

)
vertex disjoint faces, then ψ3(G) ≥ m,

and to improve its coefficient of the sufficient condition is proposed as an open problem [23].
Theorem 1.4 means that by increasing the degree of several specific vertices, we can make
the facial achromatic number of a given triangulation as large as possible even if the number
of vertex disjoint faces is fixed. (Note that the number of vertex disjoint faces of a graph G
is at most guard(G).) Hence the theorem asserts that the degree condition may improve the
coefficient of the evaluation of the number of vertex disjoint faces.

Moreover, we cannot relax the sufficient condition of Theorem 1.4 to the degree sum
condition. Let G be a triangulation on the sphere shown in Figure 1. Graphs inside of xay
and xyb are isomorphic to a standard form with guarding set {x, y}, where a standard form is
shown in Figure 2. Observe that {x, y, z, w} is a guarding set which forms a copy of K4. By
Theorem 1.1, we have that 4 ≤ ψ3(G) ≤ 6 and we suppose to the contrary that ψ3(G) = 6.
In this case, vertices in the guarding set are colored by different colors mutually. (Otherwise,
a tuple of three colors which are not used for vertices in the guarding set cannot appear.)
Thus, we may assume that x, y, z and w are colored by colors 1, 2, 3 and 4, respectively.
Since ψ3(G) = 6, at least four faces colored by colors other than 1 and 2 must appear.
However, there are exactly two faces zuu′ and wvv′ which are guarded by neither x nor y, a
contradiction. Therefore, ψ3(G) is at most 5. On the other hand, if we put standard forms
of sufficiently large order in the regions surrounded by xay and xyb in G, then the sum of
degree of x and y becomes sufficiently large (e.g., larger than 1

3
× 43 + 42 + 5

3
× 4− 1 = 43).

However, the number of faces which are guarded by neither x nor y is not increased. Thus,
no matter how large the sum of degree is, ψ3(G) is still at most 5. Therefore, we cannot
relax the sufficient condition of Theorem 1.4 to the degree sum condition.

1.3 Triangulations with small guarding number

In general, it seems to be not easy to characterize all triangulations G with guard(G) ≥ 4 and
ψ3(G) = guard(G)+2, since the structure of such triangulations is rather flexible. In fact, for
any fixed k ≥ 5, we can construct infinitely many triangulations G with guard(G) = k and
ψ3(G) < k+2 similarly to Figure 1: Let H be a standard form with k′ vertices for k′ ≥ 4 and
let v1, · · · , vk′ be vertices of H as shown in Figure 2. Let G be a triangulation on the sphere
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𝑢(

𝑢

𝑣
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Figure 1: A triangulation G on the sphere with guarding number 4 and ψ3(G) < 6

obtained from H by identyfying vk′−2vk′−1vk′ with xzw of Figure 1 and adding vertices inside
of vivi+1vk′−1 for i = 1, . . . , k′ − 3 as the subgraph surrounded by vivi+1vk′−1 is isomorphic
to a standard form such that vi and vi+1 are vertices in the guarding set of the standard
form as shown in Figure 3. Thus, v1, . . . , vk′−2 are in the guarding set of G. Moreover,
since the subgraph surrounded by vk′−2vk′−1vk′ is isomorphic to Figure 1, vk′−1, vk′ and y of
Figure 3 are in the guarding set of G. Thus, guard(G) = k′+1. Put k = k′+1 and consider
whether G has a facial 3-complete (k + 2)-coloring. Suppose that G has a facial 3-complete
(k+2)-coloring and we may assume that vi is assigned with color i for i = 1, · · · , k′ and y is
assigned with color k. Since ψ3(G) = k + 2, four faces colored by k′ − 1, k′, k + 1 and k + 2
must appear. However, faces other than uu′vk′−1 and v′vv′k have at least one vertex colored
by other than the above four colors. Thus, G has no facial 3-complete (k + 2)-coloring.

𝑣"#𝑣"$%&

𝑣&

𝑣'

𝑣"$%'

𝑣"$%(
𝑣(

Figure 2: A standard form H with k′ vertices

𝑣"# = 𝑤𝑣"&'( = 𝑧

𝑣(

𝑣*

𝑦

𝑣"&'* = 𝑥

𝑣"&'-

𝑣-

𝑎 𝑏

𝑢

𝑢# 𝑣

𝑣#

Figure 3: A graph G obtained from H

By the above examples, we focus on a triangulation with guarding number at most 3. If
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the minimum guarding set S is of size 2, then there are only two cases; S is an independent
set or S induces a K2. Thus we can completely characterize triangulations with guarding
number 2 (Proposition 3.1), and then we have the following using the characterization.

Theorem 1.5. Let G be a triangulation on the sphere with guard(G) = 2. Then ψ3(G) = 4.

On the other hand, a triangulation G with guard(G) = 3 satisfies the equality if G has
sufficiently large number of vertices.

Theorem 1.6. Let G be a triangulation on the sphere with |V (G)| ≥ 11 and guard(G) = 3.
Then ψ3(G) = 5.

In particular, when the minimum guarding set of a triangulation G on the sphere with
guard(G) = 3 induces a copy of K3, the lower bound of the order can be reduced by one.

Theorem 1.7. Let G be a triangulation on the sphere with |V (G)| ≥ 10 and guard(G) = 3.
If G has a minimum guarding set inducing a K3, then ψ3(G) = 5.

We show Theorem 1.6 by a computer-assisted proof. The program “plantri” (http://
users.cecs.anu.edu.au/~bdm/plantri/) is one of the fastest C program which generates
certain type of graphs on the sphere. We generate triangulations on the sphere by plantri, and
implement a Python program which determines the guarding set of the graph and whether
it has a facial 3-complete 5-coloring. The program and the data generated by plantri are
shown in the first author’s webpage https://sites.google.com/view/naokimatsumoto/

data?authuser=0.

2 Remarks on Theorems 1.6 and 1.7

We first show that the evaluation of the number of vertices in Theorem 1.6 is best possible
unless the minimum guarding set induces a copy of K3. By the computer program, we found
some triangulations G on the sphere with |V (G)| = 10 and guard(G) = 3 which have no
facial 3-complete 5-coloring (see Figure 4). The triangulation G1 in the left hand of Figure 4
has the minimum guarding set {a, c, d} which induces a path of length 2, and {a, b, d} which
induces a path of length 1 and one isolated vertex. Moreover, the triangulation G2 in the
right hand of Figure 4 has the minimum guarding set {a, b, c} which induces three isolated
vertices.

Next, we show that the evaluation of the number of vertices in Theorem 1.7 is best
possible. A pseudocomplete k-coloring of G is a (not necessarily proper) k-coloring such that
each pair of colors appears on at least one edge (cf. [3, 16]). The pseudoachromatic number of
G denoted by ψ(G) is the maximum number k for which G has a pseudocomplete k-coloring.

Theorem 2.1 (Yegnanaranayan [25]). Let Cn be the cycle on n vertices for n ≥ 3. Then{
ψ(Cn) = 2k (2k2 ≤ n ≤ k(2k + 1)− 1).
ψ(Cn) = 2k + 1 (k(2k + 1) ≤ n ≤ 2k2 + 4k + 1).

Lemma 2.2. Let G be a triangulation on the sphere with |V (G)| ≤ 9 and guard(G) = 3. If
ψ3(G) = 5, then there exists a vertex v such that the degree of v is 8.
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Figure 4: Triangulations G1 and G2 on the sphere with guarding number 3 which have no
facial 3-complete 5-coloring

Proof. Since |V (G)| ≤ 9, there exists a color which is assigned to only one vertex in G for a
facial 3-complete 5-coloring c of G. Let v be a vertex in G such that c(v) = 1 and suppose
that c(u) ∈ {2, 3, 4, 5} for any vertex u in G other than v. Since color 1 appears on only
v, triads including color 1 must appear around v. Thus, all of the pair of four colors other
than color 1 appear in the link of v. By Theorem 2.1, ψ(C7) < 4 and hence, the degree of v
is 8.

Let G be a triangulation on the sphere shown in Figure 5. Since the maximum degree
of G is seven, G has no facial 3-complete 5-coloring by Lemma 2.2. Thus, the evaluation of
the number of vertices in Theorem 1.7 is the best since the minimum guarding set {x, y, z}
forms K3.

𝑥

𝑦𝑧

𝑤

Figure 5: A triangulation G on the sphere with guard(G) = 3 and |V (G)| = 9 whose the
minimum guarding set induces a copy of K3

Finally we notice triangulations G with ψ3(G) = guard(G)+2 for large guarding number.
Recall that the guarding number of a triangulation on the sphere can be a half of the
number of vertices in general. On the other hand, for a triangulation G on a surface F 2 with
equality in Theorem 1.1, the guarding number guard(G) is bounded by O( 3

√
|V (G)|), since(

guard(G)+2
3

)
≤ 2|V (G)| − 2ϵ(F 2) by Euler’s formula, where ϵ(F 2) is the Euler characteristic
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of F 2. Moreover, we obtain the following proposition which implies that this order is the
best in general.

Proposition 2.1. There exist infinitely many triangulations G on the sphere whose order
of the guarding number is Ω( 3

√
|V (G)|).

Proof. Let G be a double wheel with |V (G)| = m + 2 for m ≥ 2, where a double wheel of
order m+2 is a triangulation with degree sequence (m,m, 4, 4, . . . , 4). Let w1, w2, · · · , wm be
vertices of degree 4 in G for m ≥ 2 and u and v be other vertices of G. Put 2

(
m+1
2

)
vertices

into the inside of wiwi+1u for i = 1, · · · ,m such that a graph whose boundary is wiwi+1u is
a standard form, where wi and wi+1 guard its vertices as shown in Figure 6 and we call it
G′. The guarding number of G′ is m and |V (G′)| = m+2+m× 2

(
m+1
2

)
= m3+m2+m+2.

Thus, the order of the guarding number of G′ is Ω( 3
√
|V (G′)|).

𝑣𝑢

𝑤$

𝑤%

𝑤&

𝑤'(%

𝑤'($

𝑤'

Figure 6: A triangulation G′ on the sphere such that the order of guard(G′) is Ω( 3
√

|V (G′)|)

3 Proofs of Theorems 1.1, 1.4 and 1.5

Proof of Theorem 1.1. Let G be a graph on a surface and let S be a minimum guarding set
of G. Since every face is incident to a vertex in S, for any facial ∆(G∗)-complete coloring,
every ∆(G∗)-tuple of colors appearing on a face contains a color used for a vertex in S. Thus,
if ψ∆(G∗)(G) ≥ guard(G) +∆(G∗), then there must exist a face which is not incident to any
vertex in S, contrary to that S is a guarding set of G.

Proof of Theorem 1.4. Suppose that each vertex vi in the guarding set S has been assigned
with color i for each i = 1, . . . , k and other vertices in G has not been assigned with colors.
We consider to assign colors to vertices of the link of v1 to vk in order. If there exist

(
k+1
2

)
independent edges on the link of v1 such that endvertices of the edges have not been assigned
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with colors, then each pair of k+1 colors can appear on those edges. Since there are at most
k − 1 vertices which have been assigned with colors in the link of v1, we may assume that
there are k − 1 vertices in the guarding set on the link of v1. Let v′1, · · · , v′k−1 be vertices
in S lying on the link of v1 in clockwise and let Vi be the set of vertices on the link of v1
between v′i and v

′
i+1 for i = 1, · · · , k− 1 where v′k = v′1. Note that each Vi contains no vertex

in S. If
⌊
|V1|
2

⌋
+ · · ·+

⌊
|Vk−1|

2

⌋
≥

(
k+1
2

)
, then all triads containing color 1 can appear around

v1. Thus, if deg(v1) ≥ 2
(
k+1
2

)
+ 2(k − 1) = k2 + 3k − 2, then we can assign colors to exactly

2
(
k+1
2

)
vertices among the neighborhoods of v1, so that all triads containing color 1 appears

around v1.
Next, we consider to assign colors to vertices on the link of v2. In this case, there are at

most (k−1)+2
(
k+1
2

)
vertices which have been assigned with colors. Since all triads containing

color 1 has appeared, we would like to make triads containing color 2 around v2 which does
not have color 1. Similarly to the previous case, if there are 2

(
k
2

)
+ 2{(k − 1) + 2

(
k+1
2

)
} =

3k2 + 3k− 2 vertices, then all triads containing color 2 can appear around v2 and hence, we
color exactly 2

(
k
2

)
vertices on the link of v2.

Repeating such a consideration, for the link of vk, there are at most (k−1)+
∑k−1

i=1 2
(
k+2−i

2

)
vertices which have been assigned with colors. Thus, if there are 2

(
k+2−k

2

)
+ 2{(k − 1) +∑k−1

i=1 2
(
k+2−i

2

)
} = 1

3
k3 + k2 + 5

3
k − 1 vertices, then all triads containing color k can appear

around vk. This completes the proof of Theorem 1.4.

Before we prove Theorem 1.5, we provide the following characterization.

Proposition 3.1. Let G be a triangulation on the sphere with guard(G) = 2. Then G is
isomorphic to either a double wheel or a standard form.

Proof. Let S = {x, y} be a guarding set of a triangulation G on the sphere and let L(x) =
u1, . . . , uk and L(y) = v1, . . . , vℓ be the links of x and y in clockwise and anti-clockwise
orders, respectively. Since S is a guarding set, there exists no face which contains neither x
nor y in its boundary. Thus, k = ℓ.

We suppose that xy ∈ E(G), and without loss of generality, we may suppose that u1 = y,
v1 = x, u2 = v2 and vk = uk. Then we also have ui = vi for each i ∈ {3, . . . , k − 1} by the
planarity of G, since otherwise, say uj ̸= vj for some j ∈ {3, . . . , k − 1}, there exists a face
which is not guarded by S in the region containing both uj and vj in its boundary (but not
containing x and y in its interior). Thus, G is isomorphic to the standard form. Similarly, if
xy /∈ E(G), then we have ui = vi for each i ∈ {3, . . . , k − 1}, and hence, G is isomorphic to
a double wheel.

Proof of Theorem 1.5. Let G be a triangulation on the sphere with guard(G) = 2 and n ≥ 4
vertices. By Proposition 3.1, G is isomorphic to either a double wheel or a standard form.
In the former case, we assign three vertices on the boundary of a face containing a vertex of
degree n−2 with colors 2, 3 and 4. Then we assign color 1 to all other vertices. In the latter
case, we assign two vertices of degree n− 2 with colors 1 and 2 and two vertices of degree 3
with colors 3 and 4. Then we assign color 3 to all other vertices of degree 4 (if exist). It is
easy to see that the above two colorings are both facial 3-complete 4-colorings. Thus, the
theorem holds.
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4 Proof of Theorems 1.6 and 1.7

Proof of Theorem 1.6. We prove the theorem by induction on |V (G)|. We can first confirm
that every triangulation G on the sphere with |V (G)| = 11 has guarding number 3 and a
facial 3-complete 5-coloring by running the computer program.

Let G be a triangulation on the sphere with guard(G) = 3 and |V (G)| = n ≥ 12, and
suppose that every triangulation on the sphere with guarding number 3 and at most n − 1
vertices has a facial 3-complete 5-coloring. If G is neither a standard form nor a double wheel,
then there exists an edge xy of G such that G is transformed to neither a standard form
nor a double wheel by contracting xy (and deleting resultant multiple edges). Thus, we can
transform G into a triangulation on the sphere G′ with |V (G′)| = n−1 and guard(G′) = 3 by
the contraction of xy. Since G′ has a facial 3-complete 5-coloring by induction hypothesis,
we color vertices of G other than x and y by the same color as ones of G′, and x and y by
the same color as x = y in G′. Therefore, G has a facial 3-complete 5-coloring.

Next we give a non-computer-assisted proof to Theorem 1.7. We first prepare the follow-
ing lemma.

Lemma 4.1. Let G be a triangulation on the sphere with guard(G) = 3 and S = {x, y, z}
be a minimum guarding set of G. If S induces a K3, then there exist one or two vertices w
and w′ which are adjacent to all of x, y and z, and each graph whose boundary is uvv′, where
u ∈ {w,w′} and v, v′ ∈ {x, y, z} with v ̸= v′, is isomorphic to a standard form or a triangle.

Proof. First, we shall show the existence of a vertex w which is adjacent to all of x, y and z.
Let R be a region surrounded by a cycle xyz. If there exists no vertex in G other than x, y
and z, then G is not a triangulation on the sphere by the definition. Thus, we may assume
that there exists at least one vertex in R other than x, y and z.

Suppose to the contrary that all vertices in R are adjacent to at most two of x, y and
z. Since G is a triangulation on the sphere, there exists a vertex a in R such that xya is a
boundary of a face. Similarly, there exists a vertex b in R such that xbz is a boundary of a
face. If a = b, then the vertex is adjacent to all of x, y and z, a contradiction. Thus, we may
assume that a ̸= b.

Let v1v2 · · · vk be a part of the link of x in R for k ≥ 2, where v1 = a and vk = b. Since
G is a triangulation on the sphere, there exist two faces which contain an edge v1v2. One
of such faces is xv1v2 and another one is v1v2y or v1v2z since {x, y, z} is a guarding set. If
the face is v1v2z, then it implies that a is the desired vertex. Thus, we may assume that the
face is v1v2y. By repeating this argument, there exists no face vivi+1z for i = 1, · · · , k − 2.
However, for an edge vk−1vk, at least one of faces vk−1vky and vk−1vkz, that is, either vk−1 or
vk is the desired vertex, a contradiction. Therefore, there exists a vertex which is adjacent
to all of x, y and z.

For the other region R′ surrounded by xyz, similarly to the above, if the number of
vertices inside of R′ is at least one, then there exists a vertex which is adjacent to all of x, y
and z. If there exist vertices inside R and R′ other than such vertices, then they cannot
be adjacent to all of x, y and z by planarity. Therefore, the number of the desired vertices
is one or two. Moreover, it is easy to see that the second claim in the lemma follows from
Proposition 3.1.

9

Matsumoto and OHNO: Facial Achromatic Number with Given Guarding Number

Published by Digital Commons@Georgia Southern, 2022



Proof of Theorem 1.7. Let S = {x, y, z} be a minimum guarding set of G and suppose that
S induces a copy of K3. Let R and R′ be two regions surrounded by xyz. By Lemma 4.1,
there exist one or two vertices w and w′ which are adjacent to all of x, y and z in R and R′,
respectively. We prove the theorem by induction on the number of vertices in the following
two cases.

Case 1. G has either w or w′, say w.

Let R1, R2 and R3 be the regions whose boundaries are xyw, xwz and wyz, respectively;
see Figure 7. We first consider the base case, where |V (G)| = 10. In this case, there are
six vertices other than x, y, z and w. If exactly one of R1, R2 and R3 has vertices inside of
it, then G is isomorphic to a standard form by Lemma 4.1 and hence, guard(G) = 2 by
Proposition 3.1, a contradiction. Thus, at least two of R1, R2 and R3 have vertices inside of
it.

𝑥

𝑦 𝑧

𝑤

𝑅& 𝑅'

𝑅(

Figure 7: The structure of G which has only w

Let (i, j, k) be a sequence representing that there are i, j and k vertices inside of R1, R2

and R3, respectively. By symmetry, it suffices to check the cases (1, 5, 0), (2, 4, 0), (3, 3, 0),
(1, 1, 4), (1, 2, 3) and (2, 2, 2). As shown in Figure 8, G has a facial 3-complete 5-coloring in
each case.

Suppose that |V (G)| = n ≥ 11 and for every triangulation with at most n − 1(≥ 10)
vertices satisfying the same condition of G, the theorem holds. Since guard(G) = 3, there
exist at least two regions among R1, R2 and R3 which have vertices. Moreover, there exists
a region which have at least two vertices, say R1, and hence, there exists a vertex v of
degree 3 inside of R1. Let v′ be a vertex which is adjacent to v other than x and y. Let
H be the graph obtained from G by removing v. By induction hypothesis, H has a facial
3-complete 5-coloring c by the assumption. We define a 5-coloring c′ of G as c′(a) = c(a)
for any a ∈ V (H) and c′(v) = c(v′). Observe that the triad appearing on a face xyv′ in H
appears a face xyv in G. Therefore, G has a facial 3-complete 5-coloring.

Case 2. G has both w and w′.

Let R1, R2, R3, R
′
1, R

′
2 and R′

3 be the regions of G surrounded by a cycle of length 3 as
shown in Figure 9. We first consider the base case, where |V (G)| = 10. If at most one of
R1, R2, R3, R

′
1, R

′
2 and R′

3 has vertices inside of it, then G is isomorphic to a standard form
by Lemma 4.1 and hence, guard(G) = 2 by Proposition 3.1, a contradiction. Moreover,
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Figure 8: Facial 3-complete 5-colorings of G when G has only w

if only Ri and R′
i for i = 1, 2, 3 have vertices inside of them, then G is isomorphic to a

standard form, a contradiction. Thus, we may assume that at least two of the regions of G
have vertices inside of them other than the above case.

𝑥

𝑦𝑧

𝑤

𝑤′

𝑅' 𝑅(

𝑅)

𝑅)*

𝑅'* 𝑅(*

Figure 9: The structure of G which has w and w′

Let (i, j, k, l,m, n) be a sequence representing that there are i, j, k, l,m and n vertices
inside ofR1, R2, R3, R

′
1, R

′
2 andR

′
3, respectively. By symmetry, it suffices to consider the cases

(1, 4, 0, 0, 0, 0), (2, 3, 0, 0, 0, 0), (1, 0, 0, 0, 4, 0), (2, 0, 0, 0, 3, 0), (1, 1, 3, 0, 0, 0), (1, 2, 2, 0, 0, 0),
(1, 1, 0, 3, 0, 0), (1, 3, 0, 1, 0, 0), (3, 1, 0, 1, 0, 0), (1, 2, 0, 2, 0, 0), (2, 1, 0, 2, 0, 0), (2, 2, 0, 1, 0, 0),
(1, 1, 0, 0, 0, 3), (3, 1, 0, 0, 0, 1), (1, 2, 0, 0, 0, 2), (2, 2, 0, 0, 0, 1), (1, 1, 1, 2, 0, 0), (2, 1, 1, 1, 0, 0),
(1, 2, 1, 1, 0, 0), (1, 1, 0, 1, 2, 0), (1, 1, 0, 0, 1, 2), (1, 2, 0, 0, 1, 1) and (1, 1, 1, 1, 1, 0). As shown in
Figure 10, G has a facial 3-complete 5-coloring in each case.

Thus, we may suppose that |V (G)| ≥ 11. If a region contains at least two vertices inside
of it, then the theorem holds by induction on |V (G)| similarly to Case 1. Hence, each region
contains exactly one inner vertex, that is, |V (G)| = 11. In this case, all vertices other than
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Figure 10: Facial 3-complete 5-colorings of G when G has w and w′

x, y, z, w and w′ are of degree 3. By removing one of vertices of degree 3, say v, we have
the last graph in Figure 10 with a facial 3-complete 5-coloring. Therefore, similarly to the
above cases, by assigning a color used for a neighbor of v to v itself, we can obtain a facial
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3-complete 5-coloring of G. This completes the proof of Theorem 1.7.

5 Concluding remarks

In this section, we describe the relationship between the facial achromatic number and other
two invariants, called a domination number and a vertex cover number. The domination
number of a graph G, denoted by γ(G), is the size of a minimum dominating set of G,
where a dominating set S of G is a subset of V (G) such that each vertex of G is adjacent
to S or is in S. The vertex cover number of a graph G, denoted by τ(G), is the size of
a minimum vertex cover of G, where a vertex cover U of G is a subset of V (G) such that
each edge of G is incident to a vertex in U . (Since there is a large amount of literatures for
domination number and vertex cover number, we refer the readers to survey several books
and articles [4, 9, 17, 18, 24].)

For a triangulation G on a surface, the guarding number lies on between the domination
number and vertex cover number, i.e., γ(G) ≤ guard(G) ≤ τ(G) (cf. [8]). Thus, for any
triangulation G on a surface, ψ3(G) ≤ τ(G) + 2 holds by Theorem 1.1. However, this
estimation is not best possible. In fact, we have the following sharp bound. (For example,
the complete graph K4 embedded on the sphere attains the equality of the following since
ψ3(K4) = 4 and τ(K4) = 3.)

Proposition 5.1. Let G be a triangulation on a surface. Then

ψ3(G) ≤ τ(G) + 1.

Proof. Let G be a graph on a surface and let U be a minimum vertex cover of G. Observe
that every face is incident to at least two vertices in U (since at least two vertices are needed
for covering three edges in a triangle). Let c : V (G) → {1, 2, . . . , k} be a facial 3-complete
k-coloring. Suppose to the contrary that k ≥ τ(G) + 2, and without loss of generality, all
vertices in U are colored by distinct τ(G) colors, say 1, 2, . . . , τ(G). By the above observation,
every face can use at most one color which is not used for any vertex in U , that is, there exists
no face with a triple {τ(G)+1, τ(G)+2, r}, where r ∈ {1, 2, . . . , τ(G)}, a contradiction.

One may mind whether ψ3(G) ≤ γ(G) + 2 holds since γ(G) ≤ guard(G). However, the
inequality does not hold in general: The triangulation H shown in Figure 11 is obtained
from the standard form (of sufficiently large order) by adding a vertex of degree 3 to each
of faces guarded by x. Note that γ(H) = 1 and H contains many vertex disjoint faces. It
is easy to see that the facial achromatic number increases as the number of vertex disjoint
faces gets bigger (cf. [23]). Thus ψ3(H) ≤ γ(H) + 2 = 3 does not hold.

Observe that for the triangulation H shown in Figure 11, guard(H) is about as large
as the number of vertex disjoint faces. Thus, we intuitively guess that the family of trian-
gulations G with ψ3(G) ≤ γ(G) + 2 is not so large. Moreover, it is difficult to completely
characterize triangulations G with ψ3(G) = guard(G) + 2; nevertheless characterizing ones
G with ψ3(G) = γ(G) + 2 seems to be more easier, since the corresponding family of trian-
gulations avoids the above example. Therefore, we conclude the paper with preparing the
following problem.

Problem 5.1. Characterize triangulations G on surfaces such that ψ3(G) = γ(G) + 2.
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x

Figure 11: A triangulation H with domination number 1 but high facial achromatic number
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