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GENERALIZATION OF NET BENEFIT OF DIAGNOSTIC TESTS INTO 

MULTI-STAGE CLINICAL CONDITIONS: A COLLAPSING APPROACH    

by 

FERDOUS AHMED  

(Under the Direction of Hani M. Samawi) 

ABSTRACT 

Using accuracy measures alone to compare diagnostic tests may be unconvincing to clinicians. 

The diagnostic test accuracy is commonly evaluated in clinical performance based on its 

classification accuracy (specificity, sensitivity, negative and positive likelihood ratio) or its 

predictive values (negative and positive predictive value). However, these accuracy measures do 

not entirely account for the clinical and health economic consequences of diagnostic errors. The 

limitation of these measures is that one test may have a better sensitivity and worse specificity 

than another test. Comparing tests on benefit-risk is another approach where benefits and risks 

are put on the same scale to determine test benefits and clinical consequences of the diagnostic 

errors. Consequently, evaluating diagnostic tests based on benefit-risk involves both the tests’ 

accuracy and the clinical implications of the diagnostic errors. Diagnostic tests are commonly 

classified into two stages: either positive or negative for a clinical condition (diseased or non-

diseased). However, some diseases have more than two stages, such as Alzheimer’s. In diseases 

with more than two stages, the benefits and risks of the clinical consequences could differ from 

stage to stage. I could not find any investigations to account for the difference in benefits and 

risks of tests with more than two stages in the literature. The benefit to cost values for each stage 

of the disease could be different. This dissertation extends the net benefit approach of evaluating 



 

 

diagnostic tests in binary disease cases to multi-stage clinical conditions. Consequently, I extend 

the diagnostic yield table to multi-stage clinical conditions. I develop a decision process based on 

net benefit for evaluating diagnostic tests. The decision process provides additional interpretation 

for rule-in or rule-out clinical conditions and their adverse consequences from unnecessary 

workups in multi-stage diseases. Numerical examples, as well as real data, are provided to 

illustrate the proposed measures. 

INDEX WORDS: Loss function, Diagnostic yield table, Relative net benefit, Clinical utility, 

Benefit-risk, Medical diagnostics yield, Decision theory, Alzheimer’s disease. 
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CHAPTER 1 

INTRODUCTION 

Diagnostic tests play a significant role in patients’ health care, including medical 

diagnosis, screening tests, appropriate therapy, research, and health policy. There are mainly 

three purposes of performing a diagnostic test, namely,  to provide reliable information about a 

patient's health condition, to influence the treatment plan for the patient from health care 

providers, and to understand that diseases have mechanisms and natural history of progress 

within the body via research (McNeil & Adelstein, 1976; Sox Jr et al., 1989; Zhou, McClish, & 

Obuchowski, 2009). A test can serve these purposes only if the health care provider knows the 

parameters and conditions of the disease and how to interpret them. This information is acquired 

by assessing the test's diagnostic accuracy, which is simply the ability of a test to discriminate 

between subjects, between diseased or non-diseased, providing a solid understanding of patients’ 

health conditions. When a diagnosis is accurate and made promptly, a patient has the best 

opportunity for a positive health outcome. Clinical decision-making has been tailored to a correct 

understanding of the patient's health problem, ultimately improving healthcare for all patients 

(Holmboe & Durning, 2014). Also, diagnostic information often influences public policy 

decisions, such as setting payment policies, resource allocation, and research priorities (Jutel & 

illness, 2009; Rosenberg, 2002; World Health Organization [WHO], 2012). 

While a perfect diagnostic test discriminates between diseased and non-diseased subjects 

completely, in reality, it is hard to achieve. A diagnostic test can only partially distinguish 

between subjects with or without the disease. Furthermore, the clinical consequences of 

diagnostic error are required for a diagnostic test or continuous biomarker in making a diagnostic 

decision in the case of binary or ordinal disease stages.  
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A diagnostic test result does not accurately represent the patient’s condition because 

diagnostic tests rarely have perfect accuracy. Accuracy refers to the probability of the test result 

that ultimately reflects the actual disease state. Developing quantitative methods to measure 

diagnostic accuracy and clinical consequences is essential. Some of the well-established 

techniques of diagnostic accuracy before test measures, such as sensitivity (Se or TPR) and 

specificity (Sp or TNR), Youden index, the area under the ROC curve (AUC), and diagnostic 

odds ratio (DOR) are used to assess the discriminative property of the test. Other methods of 

diagnostic accuracy used after test measures are likelihood ratios (LRs) and predictive values 

(PPV and NPV), which help assess its predictive ability. 

Different measures of diagnostic accuracy have various aspects of use based on the 

purpose of diagnostic procedures. Some diagnostic accuracy measures assess the ability to 

differentiate between the non-diseased and the diseased, and others measure its predictive ability. 

Diagnostic accuracy measures are also susceptible to the spectrum of diseases and the tested 

population. It is essential to know which measure to use under what conditions and interpret 

these measures carefully. Some studies have examined the efficiency of different diagnostic tests, 

but it is hard to find test results that are always accurate in reality (Akobeng, 2007; Altman & 

Bland, 1994; Deeks & Altman, 2004; Margaret Sullivan Pepe, 2003; A.-M. Šimundić, 2009; 

Wong & Lim, 2011; Zhou et al., 2009). In misclassification, a medical diagnostic test positively 

affects a subject who does not have the disease, and a diseased subject may be diagnosed as non-

diseased (Margaret Sullivan Pepe, 2003; Zhou et al., 2009). Diagnostic accuracy is the ability to 

discriminate between non-diseased and diseased or non-diseased and different stages of a 

particular disease state. Health care professionals need to assess better the performance of 

diagnostic tests on discriminating patients with and without the disease of interest to determine 
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the actual stage of the patient's condition and make treatment plans for their patients. It is 

essential to use accurate medical tests and thus avoid error, unnecessary suffering, and expense. 

Many measures for diagnostic accuracy have been developed to describe the performance of a 

biomarker for binary scale disease. Sensitivity and specificity are the correct classification rates, 

and false-positive rate (FPR) and false-negative rate (FNR) are the misclassification rates among 

these measures  (Margaret Sullivan Pepe, 2003; Zhou et al., 2009). While sensitivity and 

specificity are used to maximize correct classification rates, the FPR and FNR minimize 

misclassification rates. 

In medical diagnosis, the sensitivity of a test is the ability of a test to accurately detect 

when an individual has a disease. The specificity of a test is the ability to accurately detect an 

individual as disease-free who has no disease. A high sensitivity test helps rule out disease if a 

person tests negative. A high specificity test helps rule a condition if a person tests positive. A 

diagnostic test identifies the presence or absence of a specific disease when a subject shows 

significant disease symptoms. The diagnostic test is an essential determinant for health care 

providers to decide whether to give treatments for the disease, especially when the treatments are 

invasive or harmful procedures, such as chemotherapy and radiotherapy (Gilbert, Logan, Moyer, 

& Elliott, 2001). Sometimes the diagnostic test itself has consequences, including an invasive 

procedure, such as a biopsy, or introducing energy into the body,  as with radiation, using an X-

ray. A screening test is designed to identify asymptomatic subjects at sufficient risk of the 

disease who have not received medical attention or who do not warrant further health 

interventions among the population (Gilbert et al., 2001). Commonly, the diagnostic test is 

performed after a screening test to make a confirmed diagnosis. Different tests are carried out to 
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discriminate between diseased and non-diseased conditions based on sensitivity and specificity 

measures. 

The Receiver Operating Characteristic curve (ROC) and the area under the ROC curve 

(AUC) provide brief measures associated with single sensitivity and specificity pairs by 

including all the decision thresholds. Mo (2020) states that some of the steps integrate sensitivity 

and specificity into a single index-like accuracy called diagnostic effectiveness. For example, 

diagnostic odds ratio (OR) and Youden index overlap measure (H. M. Samawi, Yin, Rochani, & 

Panchal, 2017) and KL divergence (Lee, 1999). The OR and the Youden index do not depend on 

disease prevalence like sensitivity and specificity. These measures could quickly transfer results 

from one study to another with a different disease prevalence in the population. But these 

measures are affected by the spectrum of a disease, such as a disease severity, phase, stage, and 

comorbidity (Zhou et al., 2009).  

On the other hand, accuracy is affected by disease prevalence (A.-M. J. E. Šimundić, 

2009; Zhou et al., 2009). The accuracy of a test increases as the disease prevalence decreases 

with the same sensitivity and specificity. It means that the accuracy estimated from a population 

cannot be generalized to other populations with different disease prevalence. In addition to these 

measures introduced above, another type of diagnostic test accuracy measure is predictive 

accuracy, including the negative and positive predictive value (NPV and   PPV), respectively, 

and diagnostic likelihood ratios (LRs) (A.-M. Šimundić, 2009; Zhou et al., 2009). Predictive 

values have significant clinical implications for a diagnostic test. Although measures like 

sensitivity and specificity estimate the probability of the disease in patients, they cannot answer 

how likely it would be for patients to receive positive or negative test results. Predictive values 

are the measures that provide information about the probability that a test result gives a correct 
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diagnosis. Given a positive test result, a positive predictive value (PPV) shows the probability of 

having the state or disease of interest in a subject. That means PPV represents a proportion of 

patients with positive test results among total subjects with positive results. A negative predictive 

value (NPV) is the probability that a subject receives a negative effect yet does not have the 

disease of interest (Altman & Bland, 1994; Wong & Lim, 2011). It means that NPV represents a 

proportion of subjects without the disease, having a negative test result in a total of subjects with 

negative test results. Unlike sensitivity and specificity, predictive values are highly dependent on 

the disease prevalence, which cannot be generalized among different populations with different 

disease prevalence. Compared to predictive values,  LRs can also provide information about the 

probability that a subject can be correctly diagnosed; nevertheless, LRs do not depend on 

prevalence as the predictive values, and they apply to other clinical settings for the same disease 

(Boyko, 1994; Deeks & Altman, 2004). LRs are also the best indicator for rule-in or rule-out of 

the diagnosis (Boyko, 1994; Deeks & Altman, 2004; Gilbert et al., 2001). Mainly, a rule-in test 

assesses if the results from a diagnostic test will include the possibility that a subject has the 

disease of interest. A high specificity test's positive response makes the patient more likely to 

have the condition since it is specific. With more significant, more considerable sensitivity, a 

rule-out test emphasizes assessing if test results will exclude the possibility that a subject is non-

diseased. A high sensitivity test's negative response makes the patient more likely not to have the 

disease since it is sensitive. 

Traditionally, medical diagnostic tests are evaluated using accuracy measures of the 

discrimination ability of the test and its predictive ability. However, these accuracy measures do 

not entirely account for clinical and health economic contexts. Gail and Pfeiffer (2005) argue 

that decision theory methods could provide more relevant clinical application outcomes. H. 



13 

 

Samawi, Chen, Ahmed, and Kersey (2021) state that these methods evaluate risk models in 

treatment decisions by conveying costs and benefits on the same scale that involves the accuracy 

of diagnostic tests and clinical consequences of diagnostic errors using utilities (Rapsomaniki, 

White, Wood, Thompson, & Emerging Risk Factors, 2012). 

Furthermore, as G. Pennello, N. Pantoja-Galicia, and S. Evans (2016a) argue, evaluating 

a diagnostic test based on benefit-risk involves both the test's accuracy and the clinical 

consequences of diagnostic errors. Three things, clinical setting, the intended use of diagnostic 

tests, and the characteristics of the population on whom they will be used, may affect the 

evaluation of the clinical consequences of false positive and false negative test errors. The 

diagnostic test may have clinical effects (e.g., biopsy). Other health economics investigators may 

consider the test's cost and the consequential costs of treating positive test subjects (Tsalik et al., 

2016). 

In the literature, I find some studies that compare diagnostic tests based on benefit-risk in 

two-stage diseases. They describe methods for evaluating the benefit-risk of a binary diagnostic 

test based on its diagnostic accuracy from a clinical performance study and external information 

on clinical consequences (Pennello et al., 2016a). 

Pennello et al. (2016a) use a benefit-risk approach based on a decision-theoretic 

framework to compare diagnostic tests or biomarkers. Their method assigns losses to 

misclassifications (i.e., false-positive and negative) and gives utilities to correct classifications 

(true positive and true negative). Their theory provides different interpretations of quantities in 

the diagnostic yield table. It indicates that a weighted accuracy measure proposed previously 

(Evans et al., 2016) could be interpreted as a relative utility measure. They define comparable 

utility measure as the test's expected utility close to a perfect test. They also describe expected 
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benefits from testing and net benefits relative to a perfect test. Evans et al. ( 2016 ) indicate that 

the expected benefit of a test and the net benefit close to an ideal test are similar to the expected 

benefit measures proposed for risk prediction models (S. G. Baker, Cook, Vickers, & Kramer, 

2009; S. G. Baker & Kramer, 2012; S. G. Baker, Van Calster, & Steyerberg, 2012; S. G. J. J. J. o. 

t. N. C. I. Baker, 2009; Gail & Pfeiffer, 2005; Vickers & Elkin, 2006) and (Margaret S Pepe et 

al., 2016). 

Most medical diagnostic tests are commonly classified into two stages: either positive or 

negative for a clinical condition (diseased or non-diseased). However, some diseases have more 

than two stages in clinical practice, such as Alzheimer's. Alzheimer's disease has four stages, 

including preclinical stage, early-stage (mild), middle stage (moderate), and late-stage (severe) 

(Alzheimer's Association, 2019; Johns Hopkins Medicine, 2019a). A measure that can 

discriminate among more than two stages is desired for this type of disease. But, I could not find 

any studies comparing diagnostic tests based on the benefit-risk of multi-stage disease tests in the 

literature. Clinical utility values for each stage of the disease could be different. Therefore, this 

dissertation extends the net benefit approach of evaluating diagnostic tests to multi-stage clinical 

conditions. Consequently, I extend the diagnostic yield table to multi-stage clinical conditions. I 

develop a decision theory based on the net benefit of evaluating diagnostic tests that provide 

additional interpretation for rule-in or rule-out clinical needs and their adverse consequences 

from unnecessary workups for multi-stage diseases. 

In this research, we generalize the net benefit of a diagnostic test, from two-stage to 

multi-stage diseases, as an evaluation of a diagnostic test that involves both the test's accuracy 

and the clinical consequences of diagnostic error. This evaluation sums up the rule-in or rule-out 

information in all stages, and it comprehensively evaluates the correct classification rates in all 
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phases of a multi-stage disease. Overall, the generalization of a diagnostic test based on benefit-

risk combines correct classification rates and misclassification rates based on benefit-risk for 

conditions with more than two stages and simultaneously emphasizes the rule-in, rule-out 

potentials for diagnosis in all stages.  
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CHAPTER 2 

LITERATURE REVIEW 

Traditionally, medical diagnostic tests are evaluated using accuracy measures based on 

the discrimination ability of the test. However, using accuracy measures alone to compare 

diagnostic tests or biomarkers may be unconvincing for clinicians. Comparing tests based on 

benefit-risk may be more conclusive because it involves the accuracy of the test and the clinical 

consequences of diagnostic error. Many factors, such as clinical setting, the intended use of the 

test, and the population on whom it will be used, play an essential role in evaluating the clinical 

consequences of false positive and false negative test errors. Sometimes, the test itself has a 

clinical implication. For example, it may involve an invasive procedure (e.g., biopsy) or 

introduce energy into the body, such as radiation (e.g., X-ray computed tomography (CT) scan). 

A health economics analysis may also consider the decision-analytics framework and the 

potential cost-effectiveness of working up positive test subjects (Tsalik et al., 2016). 

To compare diagnostic tests or biomarkers on accuracy measures alone may not be 

convincing to clinicians. The diagnostic test accuracy is commonly evaluated in a clinical 

performance based on its classification accuracy (specificity, sensitivity, negative and positive 

likelihood ratio) or its predictive values (negative and positive predictive value). However, these 

evaluations can sometimes be insufficient for comparing the clinical consequences of the two 

tests. The primary constraint of these measures is that one test may have a better sensitivity and 

worse specificity than another test. 

ROC and Youden indices are prevalent, essential measures and the most popular tools for 

binary classification. They describe different aspects of a biomarker in diagnostic studies for test 
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evaluation. Both measures are built based on the four fundamental estimates of diagnostic 

accuracy: sensitivity, specificity, FPR, and FNR. Diagnostic accuracy measures are susceptible 

to the characteristics of the population in which the test accuracy is evaluated. Some estimates of 

diagnostic accuracy highly depend on the prevalence of the disease of interest, while others are 

susceptible to the spectrum of the disease in the studied population (A.-M. J. E. Šimundić, 2009). 

The four basic measures (Sensitivity (TPR), Specificity (TNR), False Positive Rate (FPR), and 

False Negative Rate (FNR)) are not affected by the prevalence of the disease of interest. Still, 

their values are intrinsic to the diagnostic accuracy of a diagnostic test (Zhou et al., 2009). In 

other words,  these measures are influenced by the disease's spectrum, which is the range of 

clinical severity or anatomic extent that constitutes a disease. Moreover, sensitivity and 

specificity measures are transferrable from a sample population to other populations with 

different prevalence rates. Additionally, sensitivity and specificity are the correct classification 

rates of diseased and non-diseased people, correctly categorizing their actual states. They provide 

a holistic picture of a diagnostic test. 

The ROC Curve was first introduced in the analysis of radar signals. Later on, it was 

employed in signal detection theory during World War II. It opened the door to new research to 

increase the prediction of correctly detecting Japanese aircraft from their radar signals after the 

attack on Pearl Harbor in 1941(Egan & Egan, 1975; Green & Swets, 1966). Later, ROC was 

applied to radiological, psychophysical, and epidemiological studies (Aoki, Watanabe, Furuichi, 

& Tsuda, 1997; Hsiao et al., 1989; Metz, 1989). ROC  curve potentials in medical diagnostics 

were recognized as early as the 1960s (Lusted, 1960). Previous studies have systematically 

reviewed and illustrated the application and evaluation of diagnostic accuracy using ROC 

(Margaret Sullivan Pepe, 2003; Swets & Pickett, 1982; Zweig & Campbell, 1993). 
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Sometimes, it is not feasible to construct ROC, and a summary index becomes a critical 

measure to summarize its information. AUC is the most widely used summary statistic of ROC 

and is computed by taking the integral of ROC statistics from 0 to 1 (Fawcett, 2006). AUC is a 

global measure of diagnostic accuracy that summarizes the test's overall diagnostic accuracy, and 

it does not provide information about sensitivity and specificity as a summary index. Moreover, 

the ROC curve and AUC have no information about predictive values of rule-in or rule-out of a 

test in medical diagnostics. 

The Youden index is another prevalent measure for binary classification in diagnostic 

accuracy. It is also a global measure, which Youden first proposed in 1950 (Youden, 1950). The 

Youden index ( J ) is a statistic that maximizes correct classification rates (i.e., sensitivity and 

specificity) and achieves the maximum discrimination between two stages of the disease. The 

Youden index also encounters the same issues as  ROC and  AUC as two diagnostics, with the 

same Youden index value having different sensitivity and specificity. It is mostly used to 

determine the overall performance, and it does not characterize the rule-in or rule-out 

information in diagnosis. 

After estimating an optimal cut-point in clinical practice, we need to understand the 

implication of the results, such as how likely it would be that the test would provide the correct 

diagnosis. The measures that can answer this question are the predictive values (i.e., the PPV and 

the NPV) and the LRs, which approach the data from an aspect different from sensitivity and 

specificity (Altman & Bland, 1994). PPV of the test is defined as the proportion of subjects with 

positive test results who are correctly diagnosed (i.e., true positive results) (Fletcher, Fletcher, & 

Fletcher, 2012). Similarly, NPV is the proportion of the cases giving negative test results which 

are truly non-diseased (i.e., true negative results) (Fletcher et al., 2012). Although PPV and  NPV 
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are commonly used in clinical decision-making, they depend on the prevalence of the disease as 

they differ in different populations of the same diagnostic test (Altman & Bland, 1994). When 

the sensitivity and specificity are fixed, the PPV of the test increases as the underlying 

prevalence of the disease of interest increases, whereas the NPV decreases (Wong & Lim, 2011). 

When the sensitivity and specificity are fixed, the PPV of the test increases as the underlying 

prevalence of the disease of interest increases, whereas the NPV decreases (Wong & Lim, 2011). 

Similarly, the PPV of the test decreases as the underlying prevalence of the disease of interest 

decreases, whereas the NPV increases. Therefore, the PPV and the NPV of a population cannot 

be generalized to a different population. 

LRs are another statistical tool to understand diagnostic tests. Compared to PPV and NPV, 

LRs do not depend on the prevalence of the disease, and LRs of the same diagnostic test can be 

generalized from one population to another population. Additionally,  LRs provide information 

about the rule-in or rule-outs of a diagnostic test (Boyko, 1994; Deeks & Altman, 2004). Rule-in 

or rule-out tests are essential for different health care purposes. For example, the rule-in principle 

(specificity) is functional when a toxic treatment of the disease will be initiated if the diagnosis is 

confirmed, such as in the use of chemotherapy or combination chemotherapy for malignancies 

(Lee, 1999). The rule-out principle (sensitivity) is also helpful when there is a significant penalty 

for missing the disease, and the initial treatment is relatively safe, like in the use of screening 

tests for tuberculosis or hypothyroidism (Lee, 1999). LRs can be calculated for either positive or 

negative test results. It allows health care professionals to determine how much the utilization of 

a particular test will alter the probability. A positive LR tells how likely it will be that a diseased 

subject will receive a positive test result compared to a non-diseased subject. In contrast, a 

negative LR shows how likely it will be that a non-diseased subject will receive a negative test 
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result compared to a diseased subject (A.-M. Šimundić, 2009). Note that these measures depend 

on the disease prevalence. However, these measures are sometimes not enough to evaluate the 

clinical consequences relative to other tests. The shortcoming of using these measures is that a 

test may have better sensitivity than another test but have worse specificity. In this case, we can 

use a benefit-risk approach where benefits and risks are put on the same scale to decide which 

test has better, worse, or about the same benefit-risk trade-off when considering the clinical 

consequences of a test. 

G. Pennello, N. Pantoja-Galicia, and S. J. J. o. b. s. Evans (2016b) describes benefit-risk 

as another approach to determine whether a diagnostic test has better, worse, or the same 

outcomes when assessing a test's clinical consequences. Consequently, evaluating diagnostic 

tests based on benefit-risk involves both test accuracy and clinical implications of diagnostic 

errors. Diagnostic tests are commonly classified into two stages: either positive or negative for a 

clinical condition (diseased or non-diseased). A biomarker that can discriminate between 

subjects into diseased and non-diseased populations is efficient for diagnosing a disease. 

However, some diseases have distinct ordinal stages that existing measures cannot recognize in 

diagnostics. Dichotomizing biomarker to binary stages generally combines disease stages, 

resulting in the delay in diagnosing patients in the early stage. Failing to diagnose patients in the 

early stage of the disease will delay appropriate treatments and cause serious health problems in 

the future. Therefore, diagnosing a patient in the early disease stage will allow physicians to 

provide early interventions and decrease the progression of the disease. The medical community 

has demonstrated high interest in the ability to discriminate diseased populations into different 

stages to provide better treatment strategies, such as the identification of mild cognitive 

impairment of Parkinson’s disease and the early diagnosis of Alzheimer's disease (Aarsland & 
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Kurz, 2010; DAFFNEr & Scinto, 2000). Thus, having the appropriate methods to discriminate 

among different stages of a disease is imperative for early clinical interventions, such as early 

interventions for breast cancer (Abe et al., 2005; Richards, Westcombe, Love, Littlejohns, & 

Ramirez, 1999). A decision-theoretic approach is vital for screening a population for disease and 

deciding whether to administer a preventive intervention with adverse or beneficial effects. 

Moreover, some frontier studies propose measures generalizing from binary to multi-

stage classification using the ROC, AUC, and Youden index (Nakas, Alonzo, & Yiannoutsos, 

2010; Nakas, Dalrymple-Alford, Anderson, & Alonzo, 2013; Brian K. Scurfield, 1996; Brian K 

Scurfield, 1998; Xiong, van Belle, Miller, & Morris, 2006). A clinical utility study can be 

another approach to evaluate clinical outcomes, which can be improved when the test influences 

subject management. But clinical utility studies can be expensive to conduct, take lengthy 

follow-up time on subjects, and be challenging to design. A poorly designed clinical utility study 

can be inefficient and may not even permit these studies to reveal whether the evaluation of a test 

affects clinical consequences (Bossuyt, Lijmer, & Mol, 2000; Hoering, Leblanc, & Crowley, 

2008; Simon, 2010). Pennello et al. (2016b) use the benefit-risk approach based on a decision-

theoretic framework to compare diagnostic tests for binary classification as a new measure for 

diagnostic accuracy, suggesting it is a better disease diagnostic procedure, in some cases, 

compared to the other existing measures. This theory indicates a weighted accuracy measure, 

proposed previously by Evans, which can be interpreted as a relative utility measure, with 

expected utility close to that for a perfect test (sensitivity = specificity = 1) (Evans et al., 2016). 

The comparisons of binary-valued tests based on benefit-risk evaluation (Pennello et al., 2016a) 

are similar to recent work in the review of new markers for risk prediction (S. G. Baker et al., 

2009; S. G. Baker & Kramer, 2012; S. G. Baker et al., 2012; S. G. J. J. J. o. t. N. C. I. Baker, 
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2009; Gail & Pfeiffer, 2005; Vickers & Elkin, 2006) and diagnosis (Margaret S Pepe et al., 2016). 

For example, the relative utility curve (S. G. Baker et al., 2009) is a fraction of the expected net 

benefit of perfect prediction, and a risk prediction model obtains it at the optimal cut point. 

Similarly, weighted accuracy (Evans et al., 2016) is a fraction of the expected utility of a perfect 

diagnostic test that is obtained by an investigational diagnostic test. 

Emerging studies of diagnostic accuracy for multi-stage diseases show high demand for 

developing a more reliable diagnostic procedure to discriminate among subjects in different 

diseased stages accurately (Attwood, Tian, & Xiong, 2014; Li & Fine, 2008; Nakas et al., 2010; 

Nakas et al., 2013; Xiong et al., 2006). For example, some chronic diseases, such as Alzheimer’s 

disease, kidney disease, and cancers (prostate, lung, colorectal, and ovarian), have more than two 

stages in nature and require measures that can identify subjects among stages (Alzheimer's 

Association, 2019; Johns Hopkins Medicine, 2019a). Ovarian cancer ranks the fifth leading 

cause of cancer death among women in developed countries (Chudecka-Głaz, 2015). It generally 

presents in advanced stages with a high case fatality ratio (CFR) but has favorable survival rates 

if diagnosed earlier. Additionally, clinical symptoms are not well manifested in the early stages 

of the disease, resulting in late diagnosis and poor prognosis (Cramer et al., 2011). Some 

traditional binary tests cannot directly be used for multi-stage diseases. However, some popular 

measures can be extended and are generalized to the multi-stage setting. 

To my knowledge, no studies have investigated accuracy measures and the clinical 

consequences of medical diagnostic test errors in multi-stage disease settings. Also, the clinical 

implications of treating or not treating patients at a different stage of the disease have different 

benefit-risk consequences. Therefore, this dissertation intends to expand the net benefit approach 

for evaluating medical diagnostic tests for a multi-stage clinical condition. And consequently, 
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this study will provide additional interpretation, using the net benefit approach for rule-in or rule-

out clinical conditions and their adverse consequences from unnecessary workups in multi-stage 

diseases. 
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CHAPTER 3 

METHODS 

This chapter provides an overview of some related methods for evaluating the benefit-

risk of a binary diagnostic test based on its diagnostic accuracy from a clinical performance 

study and external information related to clinical consequences (see Pennello et al. (2016a)).   

3.1 Introduction  

For most medical diagnostic testing, biomarkers are dichotomized to classify subjects in a 

binary manner, either positive or negative for a clinical condition (positive for diseased or 

negative for non-diseased). The test is evaluated for its diagnostic accuracy by comparing test 

negative and positive results (T = 0,1) for agreement with the absence and presence of the 

clinical condition (D = 0,1), as determined by a clinical reference standard or best available 

method.  

Pennello et al. (2016a) indicate that comparing diagnostic tests based on accuracy alone 

could be inconclusive. They propose that comparing tests based on benefit-risk may be more 

conclusive because clinical consequences of diagnostic error are considered. For benefit-risk 

evaluation, they present diagnostic yield as the expected distribution of subjects with true 

positive, false positive, true negative, and false-negative test results in a hypothetical population. 

They construct a table of diagnostic yield, which indicates the number of false-positive subjects 

experiencing adverse consequences from unnecessary workup. Then they develop a decision 

theory for evaluating tests. Pennello et al. (2016a) argue that their progressive approach provides 

additional interpretation to quantities in the diagnostic yield table. This approach also indicates 

that the expected utility of a test relative to a perfect test is a weighted accuracy measure. The 
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average sensitivity and specificity weighted for prevalence and relative importance of false-

positive and false-negative testing errors are also interpretable as the cost-benefit ratio of treating 

non-diseased and diseased subjects. These researchers also propose plots of diagnostic yield, 

weighted accuracy, and relative net benefit of tests as functions of prevalence or cost-benefit 

ratio. For example, they illustrate these concepts with hypothetical screening tests for colorectal 

cancer, with positive test subjects referred to colonoscopy. 

Furthermore, Pennello et al. (2016a) argue that the benefit-risk evaluation of a diagnostic 

test involves not just the accuracy of the test but the clinical consequences of diagnostic error. 

They explain that assessing the clinical implications of false positive and false negative test 

errors depends on the clinical setting, the intended use of the test, and the population on whom it 

will be used. Sometimes, the test itself has clinical consequences. For example, these 

consequences may involve an invasive procedure, such as a biopsy, or introducing energy into 

the body as with radiation, using an X-ray. These researchers argue that a health economics 

analysis might also consider the cost of testing and downstream costs of working up positive test 

subjects (Tsalik et al., 2016).  

A diagnostic test classifies subjects as either positive or negative for a clinical condition 

(e.g., disease absence or presence). Also, a diagnostic test predicts a future binary state (e.g., 

susceptibility or resistance of a microbe to an antimicrobial drug). Diagnostic accuracy is 

evaluated in a clinical performance study for its classification accuracy (e.g., specificity, 

sensitivity, negative and positive likelihood ratio) or its predictive accuracy (e.g., negative and 

positive predictive value – NPV, PPV). However, these evaluations can sometimes be 

insufficient for examining the clinical consequences of the test relative to other tests. For 

example, one test may have better sensitivity but actually have worse specificity than another 
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test. Thus, based on such accuracy measures alone, a determination of whether a test has better, 

worse, or about the same benefit-risk tradeoff as another test can be equivocal. 

A clinical utility study should be performed to evaluate the clinical consequences of a test 

in order to show whether clinical outcomes can be improved when the test is used in order to 

influence subject management. However, there could be limitations to performing clinical utility 

studies. They could be expensive, require lengthy subject monitoring, and design could be 

complex. A poorly designed clinical utility study can be inefficient and may not even permit an 

evaluation of test effect on clinical outcome (Bossuyt et al., 2000; Hoering et al., 2008; Simon, 

2010). Additionally, such clinical utility data are usually not available to a regulatory agency 

when deciding whether or not to approve a test for the market. 

3.2. Test Accuracy 

Pennello et al. (2016a) describe hypothetically comparing a standard test (S) and a new 

test (T) used to screen for colorectal cancer (CRC) as follows: consider a new diagnostic test that 

indicates subjects as test negative or positive for a clinical condition, (e.g., disease). The test is 

evaluated for its diagnostic accuracy by comparing test negative and positive results (T=0, 1) for 

agreement with the absence and presence of the clinical condition (D = 0, 1), as determined by a 

clinical reference standard or best available method. These researchers consider comparing the 

new test with a standard test, indicating subjects as negative or positive (S=0, 1). They provide 

the following example: the new test has better sensitivity (0.90 vs. 0.75) but worse specificity 

(0.85 vs. 0.95) than the standard. However, one of the tests could still be declared better than the 

other if its negative and positive predictive values (NPV, PPV) are better. PPV is monotone since 

it increases the positive diagnostic likelihood ratio PLR = Se/(1−Sp). NPV is monotone, 

decreasing the negative diagnostic likelihood ratio NLR = (1 − Se)/Sp. Thus, the new test would 
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have better NPV and PPV for the same prevalence as the standard test if its NLR is smaller and 

its PLR are larger. Pennello et al. (2016a) suggest using the following graph that shows an 

example of visual interpretation of the likelihood ratio graph (Figure 3.1), a helpful display 

proposed originally by Biggerstaff (2000). The graph has the same axes as the ROC plot. The 

coordinate of both the true and false-positive fractions of the standard test is plotted in the graph, 

with two lines drawn through it to the points (0,0) and (1, 1). The slope of the lines through (0,0) 

and (1,1) are PLR and NLR, respectively. These two lines define four regions in which the 

coordinate of the new test could lie. In this case, the new test falls in region A, indicating that it 

is better at detecting the absence of CRC than the standard test. However, it is worse than the 

standard test at detecting the presence of CRC because, respectively, its PLR is worse (smaller), 

while its NLR is better (smaller). In summary, evaluating which test is better based on test 

accuracy alone is equivocal. 

                 

Figure 3.1. Likelihood Ratio Graph: Regions of Comparison (source: Pennello et al., 2016) 
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3.3 Diagnostic Yield 

The measures of diagnostic accuracy are all based on conditional probabilities. 

Classification accuracy measures (Se, Sp, NLR, PLR) are based on the probabilities of test 

results conditional on disease status. In contrast, measures of predictive accuracy (NPV, PPV) 

are based on probabilities of disease status,  conditional on the test result. Likewise, Pennello et 

al. (2016a) indicate that they consider their diagnostic yield table to compare two tests based on 

benefit-risk, which can provide knowledge on the clinical significance of a test and relate 

directly to formal decision-theoretic evaluations of the benefit-risk. They consider the 

distribution of false-negative (FN), true positive (TP), true negative (TN), and false-positive (FP) 

results in the screening population as the joint probability distribution of disease status and test 

results.  

Table 3.1. Equivalent Loss and Utility Functions 

(Loss due to the act of testing is assumed to be 0) 
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The parameters of the diagnostic yield table (3.1) designated by joint probabilities' 

distribution are then given as 

                       

              0      1        

0 0 00 1 01

1
0 10 1 11

D D

T

T

   

   

= =

 
=  =

 =
 

Y

,                         (3.1)  

with Disease D= d=0 or 1(disease negative or disease positive), Test T=t=0 or 1 (test negative or 

test positive), Prevalence Pr( )d D d = = and    Pr( )   td T t D d = = = . 

In general, when comparing the diagnostic yield tables of some tests, we can quantify the 

number of FP subjects harmed from unnecessary additional workup involving an invasive 

procedure (e.g., colonoscopy) and the number of FN subjects harmed by lack of further workup. 

The harm associated with an FN result includes not receiving necessary treatment for a disease, 

which then may progress unattended. The disease is typically aggressive in some settings, and all 

FN subjects are harmed by lack of detection. In other settings, the disease is typically slowly 

progressing, and harm from delay in detection may be weighed against competing risks, as may 

occur with older men with early-stage prostate cancer, who may die of other causes (Pennello, 

2016). 

Based on test accuracy alone, the new test may seem more worthwhile than a standard 

test because of its superior sensitivity to detecting the disease. Yet its inferior specificity of the 

new test may have clinical consequences for many subjects in the intended use population who 

will falsely test positive. The diagnostic yield table facilitates a quantitative discussion of 

questions related to these consequences. 
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3.4 Decision-Theoretic Evaluation 

A diagnostic yield table and plots (Table 3.1) provide information about the clinical 

significance of test results. This information will directly impact formal decision-theoretic 

evaluations of benefit-risk. 

3.4.1 Expected Loss 

If d= 0, 1 indicates disease absence, presence, and  t= 0, 1 indicates the binary test results 

(negative, positive), Pennello et al. (2016) express the loss of a test as follows, 

                                          0 1 0( , ) ( ) ( ( ) ( ))L t d L d t L d L d= + − , (3.2)  

where, 0( )L d and 1( )L d are the losses ascribed to negative and positive test results, respectively. 

This is related to the incorrect classification of stages 0, 1, and 2 of a disease condition. We 

consider ascribing a loss 
td

r to the binary test result T = t on a subject with disease state D = d 

with d= 0, 1 (absent and present disease stages), and t = 0, 1 (negative and positive test result). 

General loss functions follow; 

                                      0 00 01( ) (1 )L d d r dr= − +  

                                      1 10 11( ) (1 ) ,L d d r dr= − +  

With the loss of a test (3.2)  

            
11 010 10 00

0

( , ) ( ) [(1 )( ) ( ))]

( ) [(1 ) ],

r rL t d L d t d r r d

L d t d C dB

= + − − − −

= + − −
               (3.3)  

           
0
( ) /( , ) { [(1 ) ]}L d BL t d B t d r d+= − −                               (3.4)  
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In expression (3.3), the loss depends on test result t only through C and B, with 
01 11

B r r= − and

10 00.C r r= −  In expression (3.4), the loss function is proportional to one, which depends on test 

result t only through r, where :  loss ratio=TN:TP utility ratio.
C

r FP FN
B

= =  

3.4.2 Expected Utility 

Losses 0 1( ) and ( )L d L d are defined based on incorrect binary test classifications (false 

negative, false positive), and utilities 0 1( ) and ( )U d U d are credited to correct test classifications 

(true negative, true positive). Pennello et al. (2016a) present the “utility” of the test as: 

                                            0 1( , ) (1 ) ( ) ( )U t d t U d tU d= − +   

                                                       0 1 0( ) ( ( ) ( )).UU d t U d d−= +                (3.5)  

The utility function is simply the negative of the loss. So, the expected loss is the 

negative of the expected utility ( 01 0 1( )( ) ( ) ( )d LU d U d L d=− − ). This equality occurs if, for 

instance 1 0 0 1 (1 )( ) ( )  and ( ) ( )L U d rU d d d d L d= = −= = . Thus, r is interpretable as the relative 

loss ratio of false-positive to false-negative test results and the relative utility ratio of true 

negative to true positive test results. Under these utility functions, Pennello et al. (2016) express 

the utility functions as    

                                    ( , ) (1 )(1 ) ,U t d t d r td= − − +                                  (3.6)  

and hence the expected utility for the test as 

0 00 1 11( , ) rE EU t d     = +                   (3.7) 

  

Upon examination of utility and loss functions, respectively, B and C have been 

interpreted as the overall net benefit and net cost of treating test positive subjects with and 
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without disease, respectively (S. G. Baker et al., 2012; Pauker & Kassirer, 1975; Margaret S 

Pepe et al., 2016; Vickers & Elkin, 2006). Upon examining the utility function, r may be 

interpreted as the TN: TP utility ratio and the FP: FN loss ratio. 

3.4.3 Net Benefit 

The net benefit of a test compared with a random test with test positive probability τ is 

defined as the difference in expected utility between the test (E) and the random test ( E ). 

          NB E E = −             (3.8) 

The net benefit of the test over never treating a subject is 0NB a difference in expected 

utility from the always negative test. The net benefit over always treating a subject is 1NB a 

difference in expected utility from the always positive test. The relative net benefit of a test is 

defined as 

                       ( ) / ( )perfE E E ERNB  = − −            (3.9) 

which scales the net benefit to have a maximum of 1 relative to the net benefit of a perfect test. 

The following graphs (Figure 3.2 and Figure 3.3) show a visual interpretation of the relative net 

benefit over never treat and always treat policies as a function of relative importance ratio r, 

which provide an overall comparison of the new and standard tests (Pennello et al., 2016a). 

Findings from these plots indicate that relative net benefit over the never treat policy is 

noticeably worse for the new test than the standard test over an extensive range of r values. 

However, the relative net benefit over the always treat policy is slightly worse than the standard 

test over an extensive range of r values. Thus, the two tests can be considered comparable in 

settings where prophylactic treatment is practiced in place of testing. 
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Figure 3.2. Relative Net Benefit over Never Treat by Cost-Benefit Ratio r (source: Pennello et al., 

2016) 

 

Figure 3.3. Relative Net Benefit over Always Treat by Cost-Benefit Ratio r (source: Pennello et al., 2016) 
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3.4.4 Choosing r 

Pennello et al. (2016a) indicate that, at a minimum, the expected utility of the new test 

should be greater than the expected utility of any non-informative test that renders a positive test 

result at random with probability (0 1)   . The difference in the expected utility of a test 

compared with a random test is called net benefit. The test has a positive net benefit compared 

with any random test if the FP: FN relative importance ratio 1
1

1(1 )

P
r

P
 

−
. 

It is used where  p Pr( 1 )   t D T t= = =  is the predictive value of test results    T t= for the disease. In 

other words, the test is valid (better than any random test) only for choices when 1r  .  

The note 1 11
1

0 00(1 )

 


 
=

−
is the reciprocal of the FP to TP ratio. Thus, information should 

be acquired based on choices of r that are acceptable for the test. Equivalently, 

                              11 00 ,( / (1 ) ( / )r    −   

Where, 1
1

0





= is the pre-test odds of disease. Noting that a test is informative only if the ratio of 

its true to false-positive fraction 11 00 1(  /1 ) −  , we find that   r  is an additional constraint 

on valid choices of r. Thus, in terms of reducing expected loss relative to the trivial test, the new 

test is valid only for FP: FN loss ratios 

                                           1( , )r    

Thus,  1 11
1

0 00(1 )

 


 
=

−
is the reciprocal of the FP to TP ratio. Also, θ is the reciprocal of the FP to 

TP ratio for a trivial test that classifies everyone as test positive. 

This dissertation proposes extending the net benefit approach of evaluating diagnostic 

tests to multi-stage clinical conditions. This new approach uses the diagnostic yield table, all the 
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classification information, and both correct and incorrect classification probabilities. Also, this 

approach aims to demonstrate the application of the net benefit approach to evaluating diagnostic 

tests for multi-stage clinical conditions based on their diagnostic accuracy from a clinical 

performance study, along with external information on clinical consequences. More details of the 

proposed criterion in the multi-stage setting are discussed in Chapter 4. 
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CHAPTER 4 

NET-BENEFIT APPROACH FOR COMPARING DIAGNOSTIC 

TESTS OF MULTI-STAGE DISEASES 

This dissertation proposes extending the net benefit approach of evaluating diagnostic 

tests to multi-stage clinical conditions (k>2). Consequently, I extend the diagnostic yield table 

presented by Pennello et al. (2016a) to multi-stage clinical conditions. I develop a decision 

theory based on net benefit for evaluating diagnostic tests that provide additional interpretation 

for rule-in or rule-out clinical needs and their adverse consequences from unnecessary workup in 

multi-stage diseases.  

4.1 Introduction and Preliminaries  

As in Samawi et al.  (2021), we define a class of probabilities bdp

0,1,..., 1; 0,1,..., 1b k d k= − = −  for classifying a randomly selected subject in the thb test class, 

given the subject is in the thd stage of the disease (In general, when the number of the test 

outcomes is equal to the number of the disease stages). Based on the continuous biomarker X, 

cut-points 1 0 1 2 1( , , ,..., , )k kc c c c c− − −
 = = − =c are needed to diagnose the disease’s k-stage 

(Patients with biomarker values within the range of 1 , 0,1,..., 1,b d bc X c b k−   = −  diagnosed as 

stage b). Let dX  denote the thd disease stage (determined by the gold standard) with pdf and CDF

( )df x , ( )dF x respectively. Then bd  defines as   

                         , 1 1( | ) ( ) ( ) ( | ),b d b d b d b d bP c X c D d F c F c P T b D d − −=   = = − = = =           (4.1) 

0,1,..., 1; 0,1,..., 1b k d k= − = − where T is the random variable of the test results, and D is the 

random variable for the disease stage's true classification. Now we can define the probability 

classification matrix as follows: 
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Noting that 
1

1

1, 0,1,2,..., 1.
k

bd

b

d k
−

=

= = −  Also, let ( ); 0,1,2,..., 1d p D d d k = = = − be the 

prevalences of the dth disease stage.   

To show how to calculate the classification matrix (4.2), when we have a continuous 

biomarker, we introduce the case for the number of three stages of disease condition to simplify 

the discussion. When cut-points are specified, one can use the empirical or kernel smoothing 

approach to estimate the distribution function to find the classification matrix (4.2). For k=3, the 

classification matrix in (4.2) reduces to  

00 01 02 0 1 1 1 2 1

10 11 12 0 2 0 1 1 2 1 1 2 2 2 1

20 2,1 22 0 2 1 2 2 2

      0  D=1   D=2

0 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( ) .

2 1 ( ) 1 ( ) 1 ( )

D

T F c F c F c

T F c F c F c F c F c F c

T F c F c F c

  

  

  

=

  =  
   

= = = − − −   
   = − − −  

Ρ
         

4.2 Three-stage Diseases Diagnostic Yield Tables 

Following Pennello et al.'s (2016) definitions, we define the diagnostic yield table, which 

can provide knowledge about the clinical significance and relate these findings directly to formal 

decision-theoretic evaluations of the benefit-risk. I assign losses to misclassification or utilities to 

correct classification as in table 4.1.                        
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Table 4.1. Equivalent Loss and Utility Functions 

(Loss due to the act of testing is assumed to be 0) 

 

 

 

 

 

 

 

 

 

 

However, the parameters of the diagnostic yield table (4.1) designated by the joint 

probabilities' distribution are then given as 

                      

              0      1     2    

0 0 00 1 01 2 02

.1
0 10 1 11 2 12

2
0 20 1 21 2 22

D D D

T

T

T

     

     

     

= = =

 
=  

 = =
 

=  
 

Y
 (4.3)  

I have two major categories for the test t=0 or 1 (test negative or test positive for any 

stage of the disease). Also, I have two major categories: disease d=0 or 1 (absence or presence, 

for any stage of the disease). I can identify the loss functions 

   1- 0 00 01 02( ) (1 )L d d r dr dr= − + +  

    2- 1 10 11 12( ) (1 )L d d r dr dr= − + +  

Test   D=0 D =1 D =2 

T=0 
00r

 
01r

   02r
   

T=1 
10r

 11r
   12r

   

T=2 
20r

   21r
 22r

   

Test   D=0 D =1 D =2 

T=0 
00r−

 
01r−

   02r−
   

T=1 
10r−

 11r−
   12r−

   

T=2 
20r−

   21r−
 22r−
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     3- 2 20 21 22( ) (1 ) .L d d r dr dr= − + +  

Similarly, I can extend the diagnostic yield tables to k-stage diseases.   

4.3 Expected Loss Function 

As in Pennello et al. (2016), we will express the loss of a test as follows. 

                                          10 1 2 0( , ) ( ) ( ( ) ( ) ( ))L t d L d t L d L d L d= + + − , (4.4)   

which is related directly to the incorrect classification of stages 0, 1, and 2 diseases. I consider 

ascribing a loss 
td

r to the three-stage disease test result T = t on a subject with disease state D = 

d where d= 0, 1 (absent and present disease stages), and t = 0, 1 (negative and stage 1 or 2 of a 

disease [positive test result]). 

Therefore, from the table (4.1), I can get  

0 10 11 12 20 21 22

00 01 02

20 11 12 21 22 02

20 02 11

0 1 2 0

0 10 00 01

0 10 00 01

( ) [(1 ) (1 )

(1 ) ]

( , ) ( ) [ ( ) ( ) ( )]

  ( )

( ) [(1 )( ) ( )]

( ) [(1 )( ) ( (

L d t d r dr dr d r dr dr

d r dr dr

r r r r r r

r r r

L t d L d t L d L d L d

L d t d r r d r

L d t d r r d r

+ − + + − + +

− + +

+

= + + −

= +

−

= + − + − + + + − −

= + − + − − + −
12 21 22

))]

(1 ) ].

r r r

t d r d

+



+ +

− −

 (4.5) 

Thus, the cost to benefit ratio is given by    

10 20 00

01 02 11 12 21 22

( )
:  loss ratio=TN:TP utility ratio,

( ( ))

r r rC
r FP FN

B r r r r r r

+ −
= = =

+ − + + +
 

C =net cost (harm) of treating a subject without disease with stage one or two treatments, 

B =net benefit of using stage 1 or 2 treatments to treat a subject at stage 1 or 2 of the disease. 

This ratio is for rule-out patients, and then .ROr r= To distinguish between loss and utility ratio, 

we have   10 20 00

01 02 11 12 21 22

  and .RO RO

L U

r r r
r r

r r r r r r

+
= =

+ + + +
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Traditionally, clinicians choose the most sensitive diagnostic test to rule-out disease and 

the most specific diagnostic test to rule-in disease. In this dissertation, following Pennello (2019) 

(ENAR presentation for binary screening tests), I will examine the validity of these 

recommendations concerning the expected loss or expected utility of clinical consequences of 

diagnostic error in multi-stage clinical conditions. I must simultaneously capture the tradeoffs 

between sensitivity to each stage of the disease, specificity, disease probability, and utilities of 

correct and incorrect disease classifications by the diagnostic test to determine which strategy 

minimizes expected loss or maximizes expected clinical utility. 

4.3.1 Expected Loss Function for Rule-In 

In general, a rule-in test assesses if the results from a diagnostic test will include the 

possibility that a subject has the disease of interest. A positive response (from stage 1 or 2) from 

a specific test (high correct classifications of stage 0 (non-diseased)) makes the presence of the 

disease (at stage 1 or 2) more likely since it is specific to that disease.  

The counts in the diagnostic yield tables are the products of joint probabilities in (4.3) by 

N (population size), using tables 4.1 and (4.3), and for the rule-in patient where 
1

L RO

L

r
r

=  

0 10 0 20 1 11 2 22 1 21 2 12

0 10 20 1 11 21 2 22 12

 ( , )

( ) ( ) ( )

[Note: Only applicable terms are  ( , ) (1,0),  (1,1)].

RI

L L L

L

E E L t d r r

r

t d

           

        

= = + − − − −

= + − + − +

=

 

4.3.2 Expected Loss Function for Rule-Out 

Similarly, based on correct classifications of the stage (1 or 2), a rule-out test emphasizes 

assessing if test results will exclude the possibility that a subject is non-diseased or not in the 

lower stage. 
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I consider ascribing a loss tdr to the three-stage disease test result T = t on a subject with 

disease state D = d where d= 0, 1 (absent and present disease stages), and t = 0, 1 (negative and 

correct stage 1 and 2 of the diseases [positive test result]). 

Hence, from the table (4.5), I can get  

( , ) [(1 ) ]RO

LL t d t d r d − −                              (4.6) 

where 
1

,RO

Lr
r =  and 

Lr are defined above, and  

0 10 20 1 11 21 2 22 12 ( , ) ( ) { ( ) ( )}

[Note: Only applicable terms are  ( , ) (1,0),  (1,1)].

RO RO

L LE E L t d r

t d

        = = + − + + +

=
 

Therefore, I can find the expected loss of rule-in and rule-out as follows: 

0 10 20 1 11 21 2 22 12

0 10 20 1 11 21 2 22 12

( ) ( ) ( ),

 ( ) { ( ) ( )}.

RI

L

L RO RO

L

E r
E

E r

        

        

 = + − + − +
= 

= + − + + +
 (4.7) 

Finally, (4.7) can be generalized for k-stages diseases as follows: 

1 1 1 1 1

0 0 0 0 0

1 1 1 1 1

1 1 1 1 1

0 0 0 0 0

1 1 1 1 1

(1 ) ,

 (1 ) .

k k k k k
RI

GL L i i i L i i ji

i i i i j

GL k k k k k
RO RO RO

GL i L i i i L i ji

i i i i j

E r r

E

E r r

       

       

− − − − −

= = = = =

− − − − −

= = = = =


= − − = −


= 
 = − − = −


    

    

 

4.4 Expected Utility Function  

Utility function tables are simply the negative of loss tables, assuming no testing cost. 

Like in Pennello et al. (2016), I express utility functions as    

                                     
2

2

0 1

0 1 0

( ))

( )]

( , ) (1 ) ( ) ( ( )

( ) ([ ( ) ( ))

U d

d U

t d t U d t U d U

U d t U d U d−

= − + +

= + +
 (4.8) 

which are related directly to correct test classifications (true negative, true positive in stages 1 

and 2). Since t is in the right term of (4.5) and (4.8), then modulo a constant expected loss is the 
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negative of the expected utility if 2 21 0 0 1( )) ( )].[( ( ) ( )] [ ( ) ( ( )d L U dL d L d d U d U−+ = − + This 

equality exists because, for example 

 2 21 0 0 1( )] ( )] (1 ) .[ ( ) ( )  and ( ) [ ( )d L U d d rU d U d d d L d L= = −+ = = +  

4.4.1 Expected Utility Functions for Rule-In 

 I define utility functions for rule-in as follows: from (4.8), we can get  

                                 (1 )( , ) (1 ) Ud r tdU t d t − += − , 

where 
1

,U RO

U

r
r

= and hence the expected utility is given by  

0 00 1 11 21 2 22 12

(1 ) ]

( ) ( ),

( , ) [(1 ) U

U

d r td

r

EU t d E t

       

− +

= + + +

= −

+
   (4.9) 

[Note: Only applicable terms are  ( , ) (0,0),  (1,1)].t d =  

4.4.2 Expected Utility Function for Rule-Out  

Similarly, I define utility functions for rule-out as follows: 

0

1 2

( ) (1 )

( ) ( ) .RO

U

U d d

U d U d r d

= −

+ =
 

Therefore,  

0 00 1 11 21 2 22 12 ( , ) [ ( ) ( )],RO

UE U t d r       = + + ++   (4.10) 

  [Note: Only applicable terms are  ( , ) (0,0),  (1,1)].t d =  

Note that 
1

.RO

U

Ur
r =  

Therefore, I have the expected utility of rule-in and rule-out as follows 

0 00 1 11 21 2 22 12

0 00 1 11 21 2 22 12

( ) ( ),

[ ( ) ( )].

RI

U U

RO RO

U U

E r
E
U E r

       

       

 = + + + +
= 

= + + + +
  (4.11) 
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Similarly, (4.11) can be generalized for the k-stage diseases as follows: 

 

1 1 1

0 00 0 0 00

1 1 1

1 1 1

0 00 0 0 00

1 1 1

(1 ) ,

(1 ) .

k k k
RI

GU U i i U i ji

i i j

GU k k k
RO RO RO

GU U i i U i ji

i i j

E r r

E

E r r

       

       

− − −

= = =

− − −

= = =


= + − = +


= 
 = + − = +


  

  

  

4.5 Expected Relative Net Benefit  

    4.5.1 Relative Net Benefit of Rule-In 

Based on table 4.1, I can see that evaluating expected loss can be equivalently defined as 

a problem of assessing expected utility. I can say that utilities are set to the negatives of the 

losses to define utility functions corresponding to the three equivalent loss functions. Upon 

examining the utility and loss tables, :  loss ratio=TN:TP utility ratio,r FP FN= r has been 

interpreted as the overall net benefit and net cost of treating test positive subjects with and 

without any stage of the disease. Under the utility function, the expected utility for the random 

test is 

Expected util  ity of a testE =   

Expected utility of a random test with E =  

1 2 1 2, , ;P( 0) 1-  ( 1) ( 2)R P R P R     = += = = = = =  

11 22 00Expected utility of perfect test ( 1, 1, 1).pE   = = = =  

Therefore, the expected net benefit for rule-in is given by  

NB E E = − , where 0 00 1 11 21 2 22 12( ) ( )UE r        = + + ++ and 0 1 1 2 2(1 ) ,UE r      = − ++  

resulting in  

0 00 1 11 21 2 22 12 0 1 1 2 2

0 00 1 11 21 1 2 22 12 2

( ) ( ) [ (1 ) ]

( 1 ) ( ) ( )

U U

U

NB r r

r

              

          

= + + + − − +

= − + + + − + + −

+ +
    (4.12) 
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For rule-in 1 20 0  =  = =  (so we do not send the patient to treatment), then I have  

0 1 11 21 2 22 12 0 00( ) ( ) (1 ).U

RI NB rNB        = = + + + − −    (4.13) 

Furthermore, when the test is perfect, we have 11 22 00 21 22( 1, 1, 1, 0, 0).    = = = = = From 

(4.13); the expected utility for the perfect test would be  

1 2

RI

PNB  = + . 

Therefore, the relative net benefit for rule-in can be defined as the ratio of expected utility to 

perfect expected utility. 

11 21 22 12 11 21 22 12

0 1 11 21 2 22 12 0 00

1 2

01 2
11 21 22 12 00

1 2 1 2 1 2

1
1 2 00 1 2 00( ) ( ) ( ) ( ) ,

( ) ( ) (1 )

( ) ( ) (1 )

(1 ) = (1 )

U

RI

RI
RI

RI
P

m

NB r
RNB

NB

r

W W rO W W       

       

 

 
    

     

 −+ + + +

+ + + − −
= =

+

= + + + − −
+ + +

= + − − + − −

    

(4.14) 

where, -11 2 1 2
1 2 1 2

1 2 1 2 0

1,  ,  ,  and .RI UW W W W m r O O
   

    

+
+ = = = = =

+ +
 

Like in Pennello et al. (2016), I notice that 0RIRNB   if and only if 

1 11 21 2 22 12 00( ) ( ) (1 ) ,RIW W m    + + +  −  which implies that  

1 11 21 2 22 12 11 21 22 12
1 2

00 00 00

( ) ( ) ( ) ( )

(1 ) (1 ) (1 )

Weighted  Function of  (stage 1 or 2) of the disease

RI

W W
m W W

TP

FP

       

  

+ + + + +
= = +

− − −



   (4.15) 

which I call the Generalized Weighted Positive Likelihood Ratio (GPLR) 

and 1 11 21 2 22 12 00( ) ( ) (1 ) RIW W m    + + + = − is the line in ROC space.  

Also, I can generalize to k-stage diseases as follows: from (4.14), I have 
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1 1 1 1
1

1 1 1 1
00 00(1 ) = (1 )

k k k k

i ji U G i ji RI

i j i j

RI W W mGRNB r O  
− − − −

−

= = = =

= − − − −    , 

where, 
1

1 1 0

1 1
1

1 1

1,  ( , 1,2,..., 1),  and .
k

i
i i RI U G Gk k

i
i i

i i

W W i k m r O O
 

 

−
− −

− −
=

= =

= = = − = =
 

 

Like in Pennello et al. (2016, 2019 ENAR), we notice that 0RIGRNB   if and only if 

1 1

1 1
00 ,(1 )

k k

i ji RI

i j

W m 
− −

= =

 −   which implies that  

1 1

1 1

00(1 )

Weighted  Function of  (of k-stages diseases)

k k

i ji

i j

RI

W

m

TP

FP





− −

= =
=

−



 

.    

I call the Generalized Weighted Positive Likelihood Ratio (GPLR) for the k-stage diseases  

and
1 1

00

1 1

(1 )
k k

RI i ji RI

i j

Y W m 
− −

= =

= = −   is the line in ROC space.  

4.5.2 Relative Net-Benefit of Rule-Out 

Similarly, to find the relative net benefit for rule-out patients, I have  

0 00 1 11 21 2 22 12 0 1 2

0 00 1 2 1 11 21 2 22 12

[ ( ) ( )] (1 ) ( )

( 1 ) [ ( ) ( ) ( )]

RO RO

U U

RO

U

NB E E

r r

r

 

            

           +

= −

= + + + + − − − +

= − + − − + − +

 

and 

  
1 0 00 1 11 21 2 22 12

0 00 1 2 1 11 21 2 22 12

(1 ) (1 )

[( ) ( ) ( )].

RO RO RO

U U

RO

U

NB NB r r

r

       

         +

= = − − − − − −

= − − + − +
,  
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This occurs where 1 2 1 21 { 1 and 0} or { 0 and 1}    =  = = = =  because we send the patient to 

treatment, despite the disease stage. Also, I have 0 ,RO

PNB =  when I have 00 01 021, 0  = = =  

(the false-negative rate at all stages =0). Additionally, I have 

0 00 1 2 1 11 21 2 22 121

0

1 2 1 11 21 2 22 12
00

0

1 2 1 2
00 11 21 22 12

0 1 2 1 2

1

00 0 1 11 21 2 22 12

[( ) ( ) ( )]

[( ) ( ) ( )]

( )
[1 ( ) ( )]

( ) ( )

[1 ( ) ( )

RORO
RO U

RO

P

RO

U

RO

U

rNB
RNB

NB

r

r

m W W

         



       




   
    

    

    

+

+

+

+ +

−

− − + − +
= =

− + − +
= −

= − − + − +

= − − + − + ]     

   (4.16) 

where 0
0 1 1

1 2

 [ ,  ].Um r O O


 
= =

+
 

Finally, I have 1

00 0 1 11 21 2 22 12[1 ( ) ( )]RORNB m W W    −= − − + − + . Again, I notice that 0RORNB 

if and only if 1

00 0 1 11 21 2 22 12[1 ( ) ( )]m W W    − − + − + . Hence, when 

0 00 1 11 21 2 22 12

1 11 21 2 22 12 0 00

0 00

[1 ( ) ( )]

( ) ( ) 1

1 (1 1 ),

m W W

W W m

m

    

    



= − + − +

+ + + = −

= − − +

       

where

1 11 21 2 22 12
0

00

[1 ( ) ( )] Weighted Function of  from stage 1 and 2 of the disease
,

W W FN
m

TN

   



− + − +
=   

calling it the Generalized Weighted Negative Likelihood Ratio (GNLR), I find,      

1 11 21 2 22 12 0 0 00( ) ( ) 1 (1 ).W W m m    + + + = − + −                   (4.17) 

Also, I can generalize to k-stage diseases as follows: from (4.16), I have 

1
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where 0
0 1 1

1 1

 [ ,  , ; 2,3,..., 1].i
u im r O O O i k

 

 
= = = = −  

Finally, I have
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−

−
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 + and hence, when 
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0 0 00 11 21
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(1 ) (1 ( )) (1 ),

k

i i

i

k

i i

i

k k

i ij

i j

m O

m O

m m O

  

  

   

−

=

−

=
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1

01 0

2
0

00

[ ]
Weighted Function of  in the k-stages disease

,

k

i i

i

O
FN

m
TN

 



−

=

+
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I call it the Generalized Weighted Negative Likelihood Ratio (GNLR), with the result being 

1 1 1

11 21 0 0 00

2 1 2

( ) 1 (1 )
k k k

i ij i

i j i

O O m m   
− − −

= = =

+ + = + − + −   is in the line in ROC space.  

4.5.3 The Valid Choice of Utility Ratio r  

Using (4.12), I have  

0 00 1 11 21 1 2 22 12 2

0 00 1 11 21 1 2 22 12 2

( 1 ) ( ) ( )

       (1 ) ( ) ( ).

U

U

NB E E r

r

            

          

= − = − + + + − + + −

= − − − + + − + + −
  

For a test to have a positive net benefit 0NB   when it is

0 00 1 11 21 1 2 22 12 2(1 ) ( ) ( )Ur           − −  + − + + − . 

 Depending on the order, 00 11 21 22 12, , ( ),  and ( ),     + +  I have  

1 11 21 1 2 22 12 2
00 1 11 21 2 22 12

0 00

( ) ( )
,  if (1 ), ( ) and/or ( ),

(1 )
Ur

       
       

  

+ − + + −
  −  +  +

− −
   (4.18) 
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provided that 1 11 21 1 2 22 12 2( ) ( ) 0       + − + + −  ; 

 1 1 11 21 2 2 22 12
00 1 11 21 2 22 12

0 00

( ) ( )
,  if (1 ) , ( ) and / or ( )

[ (1 )]
Ur

       
       

  

− − + − −
 −   +  +

− −
 

(8.19) provided that 1 11 21 1 2 22 12 2( ) ( ) 0       + − + + −  . The upper bound inequality is 

minimized when 1 2 1 2, , ,  and      = +  are chosen, and such that

11 21 22 12 0011 21 1 22 12 2 11 21 22 12

00 00 00

( (1 ))( ) ( ) ( )
1

[(1 ) ) [(1 ) ) [(1 ) )

              

     

+ + + − −+ − + + − + + + −
= = +

− − − − − −
. We 

can achieve this when 1 20 0  =  = =  (by never sending a patient to treatment at any stage). 

This conclusion is similar to Pennello et al. (2016), so we need a trivial test to find the right 

choice of ru,where the NB for a test relative to any random test remains positive. Therefore, from 

(4.18), the constraint on the upper bound of ru is  

1 11 21 2 22 12

0 00

( ) ( )
.

(1 )
Ur

     

 

+ + +


−
  However, when the constraint for the lower bound of r 

for an informative test is 11 21 22 12 00( ) (1 )    + + +  − , I require that the pre-test odds at any 

stage of the disease 1 2

0

 



 +
 
 

by the lower bound 1 2

0

r
 



+
  to eliminate random tests from 

consideration. Therefore, as in Pennello et al. (2016), (4.19), no additional constraint is required. 

Furthermore, for the general case, k-stage disease, the restriction on the upper bound of r is  

1 1

1 1

0 00

,
(1 )

k k

i ij

i j

Ur

 

 

− −

= =


−

 
and on the lower bound is 

1

1

0

.

k

i

i





−

=

 
 
 
 
 
 


 

4.5.3.1 Parametric Expressions for Utility Ratio r 

As I discussed in (4.5), we derive ur (loss ratio or the utility) as follows: For rule-out 

patients  
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10 20 00

01 02 11 12 21 22

( )
:  loss ratio=TN:TP utility ratio,

( ( ))

RO

U

r r rC
r FP FN

B r r r r r r

+ −
= = =

+ − + + +
 

C =net cost (harm) of treating a subject without disease with stage one or two treatments, 

B =net benefit of using stage 1 or 2 treatments to treat a subject at stage 1 or 2 of the disease. 

Therefore, we identify r as a loss ratio by defining it 10 20

01 02

( )
:  loss ratio

( )

RO

L

r r
r FP FN

r r

+
= =

+
. 

Similarly, we represent 00

11 12 21 22

TN : TP utility ratio = .
( )

RI

U

r
r

r r r r
=

+ + +
 Consequently, from 

(4.3), we have the parametric expression RO

Lr as follows: 0 10 0 20

1 01 2 02

( )

( )

RO

Lr
   

   

+
=

+
and for RO

Ur we 

have 0 00

1 11 21 2 22 12

= .
( ) ( )

RO

Ur
 

     + + +
 

4.6 Numerical Examples  

My research considers a disease with three stages (i.e., k=3) (non-diseased, stage 1, and 

stage 2 diseased). Numerical examples are conducted for the three-stage diseases, assuming 

different prevalence settings, with varying parameters for the diseased underlying distributions as 

shown in Table 4.2, Table 4.3, Table 4.4, and Table 4.5. To illustrate, we 1 2 3, ,and X X X  denote 

biomarker values for non-diseased, stage 1, and stage 2 diseased subjects with pdfs

1 2 3(.),  (.),and (.)f f f , respectively. In Tables 4.2-4.5, I discuss symmetric distributions and 

assume that 1 1 1 2 2 2 3 3 3( , ), ( , ) and ( , ).X N X N X N       For illustration purposes, we use one 

objective function, the Youden index (i.e., ( )J C ), to select the cut-points 1 2(  and )C C  and then 

calculate the values of the lower bound, the upper bound, the average, and the proposed form of 

r. For each prevalence set, I consider seven different parameters for three underlying disease 

distributions for various means and variances. 
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Table 4.2. Settings of Parameters and Prevalences by Using Lower Bound of r for Rule-In 
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Table 4.3. Settings of Parameters and Prevalences by Using Upper Bound of r for Rule-In 
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Table 4.4. Settings of Parameters and Prevalences by Using the average of r for Rule-In 
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Table 4.5. Settings of Parameters and Prevalences by Using Cost-Benefit Ratio r for Rule-In 
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Table 4.6. Settings of Parameters and Prevalences by Using Upper Bound of r for Rule-Out 
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Table 4.7. Settings of Parameters and Prevalences by Using Lower Bound of r for Rule-Out 
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Table 4.8. Settings of Parameters and Prevalences by Using Cost-Benefit Ratio r for Rule-Out 
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Tables 4.2-4.8 contain different numerical parameters, results of the lower bound, the 

upper bound, the average, and the proposed form of r. Also, they include correct classification 

rate, expected utility of rule-in and rule-out, expected loss of rule-in and rule-out, and the relative 

net benefit of the rule-in and rule-out under different prevalence settings. The proposed r values 

decrease when increasing 
00 but decrease

11 22,  and   . This observation implies that the test is 

more specific, which means that this test is better at detecting the absence of diseases and has a 

positive net benefit. On the other hand, the proposed r values increase when decreasing 
00 but 

increasing 11 22,  and   . This observation implies that the test is more sensitive, indicating that the 

test has more power to detect the presence of diseases and still has a positive net benefit.  

Figures 4.1, 4.2, and 4.3 show the plots of relative net benefit for rule-in by utility ratio 

(r) under different prevalence settings to gain insight into decision-theoretic benefit-risk. These 

figures indicate that all chosen values of r for the lower bound, upper bound, average, and 

proposed r show a similar pattern of relative net benefit (RNB) values for different prevalence 

settings. However, the values of RNB are different depending on prevalence settings and the 

underlying distribution set of parameters of the stages of a disease.   

For the upper bound of r with different prevalence settings, r values are greater with 

larger 00  but smaller 11 22,  and   , implying the test is more specific indicating that the test is 

better at detecting the absence of disease. Also, I notice that the test has zero net benefits, which 

is fixed for every case at the upper bound of r. The test at the upper bound of r balances benefit 

to risk, and RNB will be negative if r is larger than the upper bound of r. The value of r is 

increasing 0.599,  0. ) ( 139, 0.540td  if we compare it with 0.637,  0. ) ( 196, 0.560td . This means 

that larger 00 but smaller 11 22,  and   , implying the test has better specificity, better at detecting 
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the absence of disease. I can also see that when all
00 11 22, ,  and     are increasing at every point, 

RNB increases.  

 For the lower bound, the average, and the proposed r with different prevalence settings, 

relative net benefit values are maximized for larger
00 11 22, ,  and    , implying the test has high 

correct classification rates of disease stages. In all prevalence settings, RNB is higher for the 

lower bound of r, except when the proposed value of r is smaller than the lower bound of r. The 

value of r increases 0.599,  0. ) ( 139, 0.540td if I compare it with 0.637,  0. ) ( 196, 0.560td in 

terms of net benefit, which means larger 00 ,  but smaller 11 22,  and   , implying the test is more 

specific and has a better ability to detect the absence of disease. More specific tests enable the 

health care provider not to send a patient for treatment, thus lowering the possibility of adverse 

events of treating a non-diseased subject. I can also see that when all 00 11 22, ,  and    are 

increasing at every point, the relative net benefit increases for every prevalence setting. Hence, 

the test with higher correct classifications rates has better RNB, reducing adverse events when 

treating the non-diseased and treating the correct stage of the disease.   

Tables 4.6-4.8 present rule-out as the proposed utility ratio (1/r)= TN: TP values 

decrease when increasing 00 but decreasing 11 22,  and   . This observation implies that the test is 

more sensitive, which means that this test is better at detecting the presence of disease and has a 

positive net benefit. On the other hand, 1/r values increase when they 00  decrease but

11 22,  and    increase. This observation implies that the test is more specific, indicating that the 

test has more power to detect the absence of disease and still has a positive net benefit.  

Figures 4.4, 4.5, and 4.6 show the plots of relative net benefit for rule-out by utility ratio 

(1/r)=TN: TP under different prevalence settings to gain insight into decision-theoretic benefit-
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risk. These figures indicate that all choices of the values of 1/r for the lower bound, upper bound, 

average, and proposed utility ratio (1/r)=TN: TP, which showed a similar pattern of relative net 

benefit (RNB) values for different prevalence settings. However, the values of RNB are different 

depending on prevalence settings and the underlying distribution set of parameters of disease 

stages.   

For the upper bound of r with different prevalence settings, the 1/r value is greater and 

constant with larger
00  but smaller

11 22,  and   , implying the test is more sensitive indicating that 

the test is better at detecting the presence of disease. Also, I notice that the test has a constant 

value of 1/r, which is fixed for every case at the upper bound of r, which means the test at the 

upper bound of 1/r balances the benefit to risk. Also, the RNB is changing with a constant value 

of 1/r. Additionally, when all 00 11 22, ,  and     are increasing at every point, the implication is that 

RNB increases.  

 For the lower bound, the average, and the proposed 1/r with different prevalence 

settings,  relative net benefit values are maximized for larger 00 11 22, ,  and    , implying the test 

has high correct classification rates of disease stages. In all prevalence settings, RNB is higher 

for the lower bound of 1/r. The value of the relative net benefit increases 

0.599,  0. ) ( 139, 0.540td if I compare it with 0.637,  0. ) ( 196, 0.560td terms of the net benefit. 

This results in larger 00  but smaller 11 22,  and   , implying the test is more sensitive and has a 

better ability to detect the presence of disease. More sensitive tests are most likely to send a 

patient to treatment, lowering the adverse events of not treating a diseased subject. When all

00 11 22, ,  and     are increasing at every point,  relative net benefit increases for every prevalence 

setting. Hence, the test with higher correct classification rates has better RNB, reducing the 
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adverse events of not treating the diseased while at the same time treating the proper stage of the 

disease.   

Accordingly, my proposed measures have the advantage of indicating which biomarker to 

be used based on the diagnostic purpose to identify rule-in or rule-out patients. 
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Figure 4.1. Prevalence 1: Relative Net Benefit for Rule-In by Utility Ratio (r) = TP:TN 
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Figure 4.2. Prevalence 2: Relative Net Benefit  for Rule-In by Utility Ratio (r) = TP:TN 
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Figure 4.3. Prevalence 3: Relative Net Benefit for Rule-In by Utility Ratio (r) = TP:TN 
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Figure 4.4. Prevalence 1: Relative Net Benefit  for Rule-Out by Utility Ratio (1/r)=TN:TP 
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Figure 4.5. Prevalence 2: Relative Net Benefit  for Rule-Out by Utility Ratio (1/r)=TN:TP 
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Figure 4 6. Prevalence 3: Relative Net Benefit  for Rule-Out by Utility Ratio (1/r)=TN:TP 
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CHAPTER 5 

REAL DATA ANALYSIS (ADNI DATA) 

I use a dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to 

demonstrate the application of the net benefit approach to evaluating the biomarkers for the 

diagnosis of Alzheimer’s Disease (AD) on its diagnostic accuracy based on a clinical 

performance study, along with external information on clinical consequences. Consequently, I 

describe the diagnostic yield table for the multi-stage clinical condition of Alzheimer's Disease. I 

develop a decision theory based on net benefit for evaluating the biomarkers, which provides 

additional interpretation for rule-in or rule-out clinical needs, as well as their adverse 

consequences from unnecessary workup in multi-stage Alzheimer’s Disease. 

5.1 Introduction of Alzheimer’s Disease and Dementia 

Alzheimer's Disease (AD), a complex and progressive neurodegenerative disease, is the 

common form of dementia among seniors. AD damages mental and memory functions and 

eventually includes physical disability due to neurons' death and brain tissue deterioration. Based 

on 2022 Alzheimer’s Disease Facts and Figures information, AD is one of the most common 

causes of dementia, with 60% to 80% of cases occurring among 6.5 million Americans aged 65 

and older. Approximately seventy-three percent are age 75 or older, and about 1 in 9 people 

(10.7%) age 65 and older have Alzheimer’s Dementia. The sixth-leading cause of death in the 

USA is AD. It is also predicted that every state in the United States will experience an increase 

of at least 6.7% in the number of people with Alzheimer’s between 2020 and 2025, with 

treatment costs increasing for patients during those years. 

Dementia is a primary term that is used for describing memory impairment. Yet, 

dementia due to Alzheimer’s disease is characterized by noticeable memory, language, thinking, 
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or behavioral symptoms that impair a person’s ability to function in daily life. When combined 

with biomarker evidence of Alzheimer's-related brain changes, these brain and behavioral 

symptoms yield a more accurate Alzheimer's diagnosis ("2022 Alzheimer's disease facts and 

figures," 2022). Individuals commonly experience multiple symptoms that change over time as 

Alzheimer’s progresses. These symptoms represent the degree of damage to neurons in different 

parts of the brain, as well as the pace at which dementia is advancing from mild to moderate to 

severe, person to person. ADNI provides data that tracks the progression of Alzheimer’s disease 

over time, using biomarkers and clinical measures (Alzheimer’s Disease Neuroimaging Initiative  

(ADNI), 2017).  

Not all individuals with evidence of Alzheimer’s-related brain changes go on to develop 

symptoms of Mild Cognitive Impairment (MCI) or dementia due to Alzheimer’s. However, 

people with MCI tend to have a higher risk of developing Alzheimer's or other Dementia 

(Alzheimer's Association, 2020). According to Johns Hopkins Medicine (2019b), Alzheimer's 

disease typically develops slowly and gradually in four general stages; preclinical stage, mild 

(early stage), moderate (middle-stage), and severe (late-stage). In the preclinical stage, 

individuals may have measurable brain changes that indicate the earliest signs of Alzheimer’s 

disease, but they have not yet developed symptoms such as memory loss. In another study, 

MAYO Clinic (2020) presents a more transitional stage: mild cognitive impairment (MCI). They 

name five progressive stages; preclinical stage, mild cognitive impairment (MCI), mild 

Dementia, moderate Dementia, and severe Dementia. In this application for my proposed method, 

we consider three clinical disease stages for Alzheimer's disease:  Cognitively Normal (non-

diseased), MCI (early diseased), and dementia (fully diseased), as suggested by Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) (2020). The gold standard to determine AD stages is 
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based on the following global clinical dementia rating (CDGLOBAL). CDGLOBAL 0, 0.5, and 

1, and greater than 1 (2 or 3) indicate cognitively normal (non-diseased), MCI (early diseased), 

and dementia (fully diseased), respectively.  

5.2 Data Analysis 

5.2.1 Data File from ADNI 

The data files for this study are obtained from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). ADNI is a global longitudinal multicenter study 

that unites researchers to collect, validate and utilize data, including MRI and PET images, 

genetics, cognitive tests, CSF, and blood biomarkers for early detection and tracking of the 

progression of AD. The main goals of the ADNI study are to detect and track the disease's 

progression with biomarkers of AD and to support AD intervention advancement, prevention, 

and treatment through the application of new diagnostic methods at the earliest possible stage of 

AD. It also provides all data to all scientists in the world without limitation. ADNI was started in 

2004 under the leadership of Dr. Michael W. Weiner and funded as a private-public partnership 

with contributions from 20 companies and two foundations. The primary goal of ADNI is to 

determine the relationships between clinical, brain imaging measures, and biochemical 

biomarkers through the progress of AD. It also adds brain scans that detect tau protein tangles 

(tau PET), a vital indicator of the disease. ADNI also continues the discovery, optimization, 

standardization, and validation of clinical trial measures and biomarkers used in AD research.  

To demonstrate the application of the net benefit approach to evaluating biomarkers for 

the diagnosis of multi-stage Alzheimer’s Disease based on its diagnostic accuracy and clinical 

consequences of diagnostic errors, ADNI-1 data collected between September 2005 to August 

2007 are included. Kersey previously used the ADNI dataset to measure diagnostic accuracy 
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with cut-point criteria for multi-stage diseases based on concordance and discordance (Kersey, 

Samawi, Yin, Rochani, & Zhang, 2022). I am using the same dataset to compare biomarkers of 

Alzheimer’s Disease by using our proposed approach. The dataset consists of 415 subjects with 

114, 256, and 45 subjects for the non-diseased (Cognitively Normal, or CN), the early diseased 

(Mild Cognitive Impairment, or MCI), and the fully diseased (Dementia) groups, respectively.  

The data file presents test results from five core biomarkers for Alzheimer's disease, 

including three biomarkers from core cerebrospinal fluid (CSF) and two from magnetic 

resonance imaging (MRI). Blennow, Hampel, Weiner, and Zetterberg (2010) summarize that the 

core CSF biomarkers reflect AD pathology, evaluate disease risk or prognosis, and have high 

diagnostic accuracy when diagnosing AD with dementia and prodromal AD in mild cognitive 

impairment cases, along with monitoring therapeutic interventions on previous studies (Das, 

Murphy, Younkin, Younkin, & Golde, 2001; Garcia-Alloza et al., 2009; Levites et al., 2006). 

The data file includes results of total tau (TAU), phosphorylated tau (PTAU), and the 42 amino 

acid form of amyloid- (ABETA142). These three CSF biomarkers are the central pathogenic 

processes in AD and have been proposed as candidate markers for predicting cognition decline 

as the progression indicator of dementia. Previous studies also discuss the other two potential 

biomarkers of Alzheimer's disease measured from MRI: rate of volume change of the 

Hippocampus and whole brain. Imaging has a significant role in improving our understanding of 

this disease. Studies present the relationship between volume change and the initiative of 

Alzheimer's disease and how these biomarkers change over time, relating to the injury and death 

of neurons (Duthey, 2013; Grundman & Delaney, 2002; Shaffer et al., 2013). 
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5.2.2 Biomarker Selection 

 ADNI uses five core biomarkers to help predict the onset of AD over the progression of 

clinical disease stages. I am interested in biomarkers of Alzheimer's disease measured from CSF 

variables, including ABETA142, PTAU, and TAU. I also include in our analysis the other two 

potential biomarkers of Alzheimer's disease measured from MRI, including hippocampus 

volume and brain volume, because these biomarkers are related to the severity of cognitive 

impairment (Vijayakumar & Vijayakumar, 2013). 

 5.2.3 Analysis of ADNI Data  

I apply the generalized Youden index (GYI) measure of diagnostic accuracy to ADNI-1 

data. I also apply GYI criteria for cut-point selection to the dataset to find the corresponding 

optimal cut-points. Using the gold standard in the dataset (CDGLOBAL), the prevalence of 

Alzheimer’s disease in different stages is approximated as 1 2 3( ), ( ),  ( )0.72 0.2 and 0.08p p p for 

stages 1, 2, and 3, respectively, where 1 2 3
, ,  and p p p  are the prevalence of stage 1 (CN), stage 2 

(MCI), and stage 3 (Dementia), respectively, based on estimates from Kantarci et al. (2009); 

Mitchell and Shiri‐Feshki (2009); Roberts and Knopman (2013). 

My primary goal is to illustrate the application of the net benefit approach to evaluating 

the five biomarkers of interest: hippocampus volume (Hippocampus), brain volume 

(WholeBrain), Total tau (TAU), Aβ1-42 (ABETA142), and p-tau181 (PTAU181P) of 

Alzheimer's disease based on diagnostic accuracy and clinical consequences of diagnostic errors. 

Another goal is to compare those biomarkers using my proposed measure based on the 

diagnostic purpose to identify rule-in or rule-out patients. I use the correct classification rate 

(CCR) for each stage, misclassification rates over three stages, and the benefit and the loss to 

evaluate the performances of the biomarkers of interest using the above-proposed methods. I 
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calculate the values of the lower bound, the upper bound, and the proposed form of the Cost-

Benefit Ratio (r). I also calculate the expected utility for rule-in and rule-out, expected loss for 

rule-in and rule-out, and relative net benefit for rule-in and rule-out to evaluate the benefits of the 

five biomarkers of interest. 

5.2.4 Results of ADNI Data  

The dataset consists of a total of 415 subjects with 114, 256, and 45 subjects for the non-

diseased (Cognitively Normal, or CN), the early diseased (Mild Cognitive Impairment, or MCI), 

and the fully diseased (Dementia) groups, respectively. The actual sample sizes for biomarkers in 

the dataset may vary and are smaller than the group sizes due to some missing values. Table 5.1 

presents the summary descriptive statistics of the five interested biomarkers in the ADNI dataset. 

Table 5.1 shows that Hippocampus, WholeBrain, and ABETA142 average values decrease as the 

severity of the disease increases. This indicates that the lower the value of the biomarker is, the 

more severe the disease is. In contrast, the average values of the rest biomarkers, including 

PTAU181P and TAU, increase when the disease progresses to later stages. 

Table 5.1. Summary of Descriptive Statistics of Five Biomarkers (source: Kersey et al., 2022) 

 

The optimal statistics of GYI are calculated, and corresponding optimal cut-points

1 2(  and )c c  are shown in Table 5.2. Based on estimated statistics, the five biomarkers are ranked 
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in Table 5.3. The best biomarker is Hippocampus using the GYI  measure of diagnostic accuracy, 

followed by ABETA142, PTAU181P, TAU, and WholeBrain. Hippocampus has the highest 

estimated GYI  measure of diagnostic accuracy among the five biomarkers. Thus, Hippocampus 

is the best biomarker to use to discriminate subjects among the three clinical stages of 

Alzheimer's disease. WholeBrain is the least favorable biomarker to use to distinguish subjects 

among the three stages of Alzheimer's disease. 

Table 5.2. Estimated Optimal Statistics and Corresponding Cut-points for Five Biomarkers 

 

Table 5.3. The Rank of Biomarkers with Different Diagnostic Measures 

 

 

Correct classification rates 11 22 33( , ,  and )p p p and corresponding misclassification rates 

01 02 10 12 20 21( , , , , , and )p p p p p p of the five interested biomarkers are calculated and presented in 

Table 5.4. The estimated optimal cut-points 1 2 and c c of ABETA142 and PTAU181P using GYI 
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measure criteria are identical. The corresponding correct classification rates for the second class 

(the early diseased or Mild Cognitive Impairment) are zeros. These results show no subject was 

correctly diagnosed with Mild Cognitive Impairment by the GYI criterion. Such results imply 

that ABETA142 and PTAU181P are not suitable biomarkers to distinguish early disease stage 

patients if using the GYI criterion. The nature of Hippocampus and WholeBrain biomarkers 

show the average values of these two biomarkers decrease as the severity of the disease increases. 

For this reason, the optimal statistics of the reciprocal of Hippocampus and WholeBrain using 

GYI are calculated, and corresponding optimal cut-points 1 2(  and )c c  are shown in Table 5.5. 

Consequently, correct classification rates 11 22 33( , ,  and )p p p and corresponding misclassification 

rates 01 02 10 12 20 21( , , , , , and )p p p p p p of these two biomarkers are calculated and presented in 

Table 5.6. The correct classification rates, and corresponding misclassification rates of 

Hippocampus, WholeBrain, using GYI measure criteria, are the same as the correct classification 

rates and corresponding misclassification rates of the reciprocal Hippocampus and WholeBrain 

biomarkers using GYI measure criteria. I could see that the results are not affected by taking the 

reciprocal biomarkers. Thus, Hippocampus is the best biomarker, and WholeBrain is the least 

favorable biomarker to discriminate between subjects among the three stages of Alzheimer's 

disease. 
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Table 5.4. The Corresponding Misclassification Rates for Five Biomarkers 

 

Table 5.5. Estimated Optimal Statistics and Corresponding Cut-points for Biomarkers 

 

Table 5.6. The Corresponding Misclassification Rates for Reciprocal Biomarkers 

 

The expected utility of rule-in and rule-out, expected loss of rule-in and rule-out, the 

relative net benefit of rule-in and rule-out using the lower bound, upper bound, and proposed 
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form of r for the five interested biomarkers are calculated and presented in Tables 5.7 to 5.9 

respectively. 

Table 5.7. Expected Utility, Expected Loss, Relative Net Benefit Using Lower Bound of r 

 

Table 5.8. Expected Utility, Expected Loss, Relative Net Benefit Using Upper Bound of r 
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Table 5.9. Expected Utility, Expected Loss, Relative Net Benefit Using Proposed Form of r 

 

Based on the relative net benefit for rule-in and rule-out with different forms of r, the five 

biomarkers are ranked in Tables 5.10-5.11. For example, the relative net benefit for rule-in and 

rule-out with a lower bound of r, the best biomarker is Hippocampus, followed by ABETA142, 

PTAU181P, and TAU. Hippocampus has the highest relative net benefit among the five 

biomarkers for all three forms of r. Thus, Hippocampus is the best biomarker to discriminate 

between subjects among the three stages of Alzheimer's disease. All three forms of r agree that 

WholeBrain is the least favorable biomarker. In both rule-in and rule-out of the disease, 

ABETA142, PTAU181P, and TAU are ranked very differently using the three forms of r, while 

Hippocampus, ABETA142, PTAU181P, and TAU are consistent for the lower bound of r. The 

best biomarker for the proposed form of r is Hippocampus for rule-in, followed by TAU, 

ABETA142, PTAU181P, and WholeBrain. However, for the proposed form of a risk-benefit 

ratio (r), the best biomarker is Hippocampus for rule-out, followed by ABETA142, PTAU181P, 

TAU, and WholeBrain. In this sense, the proposed form of a risk-benefit ratio (r) performs better 
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than other forms of r for deciding which biomarker to use based on the diagnostic purpose to 

identify rule-in or rule-out patients. 

Table 5.10. The Rank of Biomarkers for Rule-In with Different Forms of r 

 

Table 5.11. The Rank of Biomarkers for Rule-Out with Different Forms of r 

 

Figures 5.1 and 5.2 show the relative net benefit of the biomarkers of interest for rule-in 

and rule-out by the proposed risk-benefit ratio. In this case, Hippocampus is the best biomarker 

that can discriminate between subjects among the three stages of Alzheimer's disease, and 

WholeBrain is the least favorable biomarker. 
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Figure 5.1. Relative Net Benefit of Biomarkers for Rule-In by Proposed Utility Ratio (r) 
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Figure 5. 2. Relative Net Benefit of Biomarker for Rule-Out by Proposed Utility Ratio (1/r) 

The relative net benefit over never-treat and always-treat policies can be plotted as 

relative importance (risk-benefit) ratio r to compare the biomarkers (Figures 5.3–5.4). These 

plots indicate that the relative net benefit over the never-treat policy is noticeably worse for the 

WholeBrain than the Hippocampus over an extensive range of r values. In contrast, the relative 

net benefit over the always-treat policy for WholeBrain is still worse than Hippocampus over a 

comprehensive range of r values. Thus, the two tests can be considered comparable in settings 

where prophylactic treatment is practiced in place of testing. 
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Figure 5.3. Relative Net Benefit over Never-Treat Utility Ratio (r) 
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Figure 5.4. Relative Net Benefit over-Always Treat Utility Ratio (r) 

Based on the proposed form of r, Hippocampus is the best biomarker to discriminate 

between subjects among the three stages of Alzheimer's disease. I illustrate these results with the 

Likelihood Ratio Graph (Figure 5.5), a helpful display proposed by Biggerstaff (2000). The 

graph has similar axes to the ROC plot. The coordinate of the biomarker's true and false-positive 

fractions is plotted in the graph. The biomarker is plotted with two lines on the ROC plot with 

PLR and NLR, respectively. The two lines define four regions in which the coordinate of the 

biomarker could lie. 
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Consequently, the biomarker coordinates of TPR and  FPR fall in region A, indicating 

that the biomarker is better at detecting the absence of Alzheimer's disease than the 

Hippocampus but worse at detecting its presence because its PLR is worse (smaller). Still, its 

NLR is better (smaller). The evaluation of which biomarker is better based on test accuracy alone 

is equivocal. 

 

Figure 5.5. Likelihood Ratio Graph: Regions of Comparison 

Comparing the diagnostic yield of biomarkers reveals several insights (Table 5.12- Table 

5.16). The results represent positive test counts by disease status. In the table, clinical 

consequences are explored, assuming that a subject testing positive would be referred to an 

additional procedure that puts him or her at risk for adverse events. Also, I compare tests based 

on benefit-risk in a decision-theoretic framework. I assign losses to test misclassifications or 
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utilities to correct classifications equivalently. The theory provides additional interpretations of 

quantities in the diagnostic yield table. In addition to the number of FP subjects harmed from 

unnecessary additional workup involving an invasive procedure, I can quantify the number of FN 

subjects harmed by lack of further workup. The harm associated with an FN result includes not 

receiving necessary treatment for a disease that may progress unattended. The disease is typically 

aggressive in some settings, and all FN subjects are harmed by lack of detection.  

Table 5.12. Diagnostic Yield of Hippocampus biomarker for Alzheimer's disease 

 

Table 5.13. Diagnostic Yield of Whole-Brain biomarker for Alzheimer's disease 
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Table 5.14. Diagnostic Yield of ABETA142 biomarker for Alzheimer's disease 

 

Table 5.15. Diagnostic Yield of PTAU181P biomarker for Alzheimer's disease 

 

Table 5.16. Diagnostic Yield of TAU biomarker for Alzheimer's disease 

 

5.3. Discussion 

Based on the optimal statistics in Table 5.2, Hippocampus has the highest statistics 

compared to other biomarkers. Also, the plots show that Hippocampus has the most distinct 

distribution curve among the three clinical stages. 
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The optimal cut-points of Abeta and PTAU selected by GYI are identical, and the correct 

classification rate at the early disease stage is zero for both biomarkers. The results imply that 

Abeta and PTAU are not suitable biomarkers for detecting between subjects among the three 

stages in this study. However, the optimal statistics of these two biomarkers are close to the 

optimal statistics of TAU and slightly higher than the optimal statistics of WholeBrain. The 

optimal statistic of TAU lies between the values of Abeta and PTAU, and it is somewhat higher 

than the optimal statistics for the whole-Brain. Hippocampus has much higher optimal statistics 

than other biomarkers. Thus, Hippocampus is the best biomarker to use to discriminate between 

subjects among the three stages of Alzheimer's disease. It is important to properly diagnose 

subjects in the early stage of Alzheimer's disease since it is an irreversible condition that 

progresses over time, and brain changes caused by Alzheimer's disease may begin 20 years or 

more before any signs and symptoms appear (Gaugler, James, Johnson, Marin, & Weuve, 2019). 

Early diagnosis, intervention, prevention, and treatment by application of new diagnostic 

methods at the earliest possible stage of AD  are essential in slowing down the progression of the 

disease. Gaugler et al. (2019) mention that seniors believe the early diagnosis is important 

because of early intervention for the disease, allowing them time to understand what is 

happening with the disease and all concerned. This helps them to adjust and offers access to 

advice, financial support, and non-pharmacological and pharmacological treatments, allowing 

the family to plan for the future. Compared to existing measures, our proposed measure has high 

correct classification rates of stage 1 and stage 2, the specificity of stages 1 and 2, along with the 

sensitivity of stages 1 and 2, respectively, for the Hippocampus. The specificity of stages 1 and 2 

emphasizes rule-in information and provides essential information for the early diagnosis of 

Alzheimer's disease. The sensitivity for stages 1 and 2 highlights rule-out information and 
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provides crucial information to avoid unnecessary additional workup of Alzheimer's disease 

early on. 

In conclusion, the net benefit approach is the most effective approach to evaluating 

biomarkers of Alzheimer's disease when using the Hippocampus as the biomarker for early 

diagnosis for subjects in stage 1 and stage 2. Its classification rates in early diagnosis are the 

highest. In summary, among the five biomarkers, Hippocampus has presented the best 

performance results in the scenario of a three-stage setting, while Abeta has presented an 

acceptable performance in the two-stage setting. 
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CHAPTER 6 

FINAL REMARKS, CONCLUSIONS, LIMITATIONS, AND 

FUTURE RESEARCH 

6.1 Final Remarks and Conclusions 

Comparing tests based on benefit-risk plays a crucial role in convincing clinicians 

because it involves the accuracy of the test and the clinical consequences of diagnostic errors. 

Evaluating diagnostic tests is essential in placing patients on appropriate treatment plans; thus, 

measuring the benefit-risk of a test has significant clinical implications. In my study, benefit-risk 

approaches are used for binary tests, where benefit and harm are put on the same scale to 

determine whether a diagnostic test has better, worse, or the same outcomes when assessing a 

test's clinical consequences. No studies have investigated the accuracy of measures and the 

clinical consequences of the medical diagnostic test errors in multi-stage disease settings. 

However, the clinical implications of treating or not treating patients at a different stage of the 

disease have different benefit-risk consequences. In practice, it is vital to detect the early stage of 

illness for timely medical interventions to reduce the cost of the treatment and improve the 

quality of life for patients. Diagnostic tests that can identify multiple stages are precious, 

desirable, and in need. As I have studied, I have realized that the benefit-risk approach for multi-

stage diseases requires more research than two-stage diseases. 

Motivated by Pennello's approach, this dissertation proposes a descriptive, diagnostic 

yield table for multi-stage clinical conditions in practice. I extend the net benefit approach of 

evaluating diagnostic tests to multi-stage clinical conditions. Consequently, I extend the 

diagnostic yield table to multi-stage clinical conditions. I develop a decision theory based on net 

benefit for evaluating diagnostic tests. It provides additional interpretation for rule-in or rule-out 
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clinical conditions and their adverse consequences from unnecessary work-up in multi-stage 

diseases. Numerical examples are conducted for the three-stage disease to illustrate the proposed 

measures, assuming different prevalence settings with varying parameters for the diseased 

underlying distributions. Numerical examples show that the higher correct classification rates 

test has a better relative net benefit. Consequently, it will reduce adverse events by treating the 

non-diseased and helping to avoid not treating the right stage of the disease. My results indicate 

that using our proposed research methods will yield the advantage of most effectively deciding 

which biomarker should be used based on the diagnostic purpose to identify rule-in or rule-out 

patients. 

This study also provides an example of applying the proposed measure for multi-stage 

diseases, using a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Results 

concur with the numerical study and highlight the strengths of the proposed measure that benefits 

and risks could be different from stage to stage. This study provides clues for the early diagnosis 

of Alzheimer's disease. For example, the net benefit approach of evaluating diagnostic tests can 

detect subjects in the first and the second stages with the highest correct classification rates in 

these two stages of the biomarkers. This study provides exciting exploratory outcomes in 

improving both diagnostic accuracy tests and the clinical consequences of diagnostic error for 

multi-stage diseases, especially for those who want to discover biomarkers for early diagnosis.  

6.2 Limitations and Future Work 

In this study, the net benefit approach has shown some advantages in detecting subjects 

in the last stage of a multi-stage disease and has been beneficial for diagnosis; however, the 

correct classification rate has been found to be slightly lower in the last stage of the disease. 

Additionally, when comparing the benefit-risk among all disease stages, I have found that there 
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can be no existing standardized methods to compare the performance of the measures since they 

have different properties. For two-stage diseases, high correct classification rates in both stages 

are desired. For multi-stage disease cases, the demand for a high correct classification rate of a 

specific stage relies on clinical needs, clinical consequences, and treatment cost. For example, 

when a clinical test or biomarkers are considered to identify subjects in the early stages, the 

correct classification rates are expected to be as high as needed. In contrast, when a clinical test 

or biomarkers are considered to identify patients in late stages, the correct classification rate of 

the last stage would be more critical than the others. In reality,  it is hard to achieve a balanced 

diagnostic test or biomarker with high correct classification rates among all stages. Hence, a 

method that can evaluate the performance of diagnostic test accuracy and clinical consequences 

of diagnostic errors, besides the benefit-risk, is desired in future studies. 

Mainly the focus of this study is on the ordinal stages of diseases. But many cases of 

disease deal with multiple nominal classes, including genomic studies. Additional research is 

needed for nominal cases, including a general outline of specific benefit-risk comparisons of 

tests that permit multiple nominal test results. 

Furthermore, the findings of this study's estimations are restricted to using the kernel 

approach. The simulation of estimation using other methods is highly encouraged to compare the 

performance of diagnostic test accuracy and clinical consequences of the diagnostic errors of 

multi-stage disease. Additional research is needed into the properties and strengths of different 

measures under various distributions.  

Diagnosis of multi-stage disease at an early stage provides enough time for health care 

practitioners to make a plan, fight severe diseases, and minimize the cost, specifically for 

conditions without a cure. However, I have found a lack of practical applications of net benefit 
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analysis of diagnostic tests for multi-stage diseases to research data. Therefore, there is a top 

priority to develop reliable and reasonable measures to compare diagnostic test accuracy and 

clinical consequences of diagnostic errors, which will further improve diagnosis and assist in 

designing clinical treatments and guidelines. 

Lastly, a single biomarker is less than satisfactory for confirmation of the clinical 

diagnosis of a disease. For example, genetic and epigenetic biomarkers are not enough to identify 

the subtypes of cancer or confirm the staging of cancer patients and treatment evaluation. As a 

result, the generalization of single biomarker measures to multiple biomarkers is encouraged for 

future study of the diagnosis of multi-stage diseases. 

Although the net benefit approach is relatively novel, the net benefit of comparing 

diagnostic tests has recently gained increasing attention. Unlike traditional measures such as 

sensitivity, specificity, or area under the curve,  studying net benefit provides information about 

the clinical judgment of the relative value of benefit and harm associated with diagnostic errors 

(Vickers, Van Calster, & Steyerberg, 2016). This approach helps doctors make better decisions 

and make wider use of net benefits. It also quantifies the good and harm of a clinical decision 

based on a biomarker, diagnostic test, or statistical model and better matches the clinical aim of 

much medical research. As a result, the broader use of the net benefit approach should be an 

exciting focus in the future study of the diagnosis of multi-stage diseases. 
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