
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2022

Design And Implementation of An Automatic Word
Generator For Word Matching Interactives
Evan Miles Gertis

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Software Engineering Commons

Recommended Citation
Gertis, Evan Miles, "Design And Implementation of An Automatic Word Generator For Word
Matching Interactives" (2022). Electronic Theses and Dissertations. 2406.
https://digitalcommons.georgiasouthern.edu/etd/2406

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/2406?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2406&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

DESIGN AND IMPLEMENTATION OF AN AUTOMATIC GENERATOR FOR WORD

MATCHING INTERACTIVES

by

EVAN M. GERTIS

(Under the Direction of Daniel Liang)

ABSTRACT

An Automatic Word Match Generator is a software tool that can be used to generate word-

matching interactives automatically. The purpose of a word-matching interactive is to pro-

vide students with the mechanism to learn new vocabulary and improve their reading com-

prehension skills. This thesis will present the design and implementation of an Automatic

Word Match Generator, as well as the research and algorithms used in the program.

INDEX WORDS: Automatic programming, Computer science education, Online
learning, programming synthesis, Word matching

DESIGN AND IMPLEMENTATION OF AN AUTOMATIC GENERATOR FOR WORD

MATCHING INTERACTIVES

by

EVAN M. GERTIS

B.S., University of North Carolina at Chapel Hill, 2017

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

©2022

EVAN M. GERTIS

All Rights Reserved

1

DESIGN AND IMPLEMENTATION OF AN AUTOMATIC GENERATOR FOR WORD

MATCHING INTERACTIVES

by

EVAN M. GERTIS

Major Professor: Daniel Liang
Committee: Ryan Florin

Andrew Allen

Electronic Version Approved:
May 2022

2

DEDICATION

I dedicate my work to my professors at Georgia Southern University.

3

ACKNOWLEDGMENTS

I would like to sincerely thank Dr. Daniel Liang for his mentorship and support throughout

this process, Dr. Florin, for his willingness to provide feedback on my work and Dr. Allen,

for motivating me with positive reinforcement.

4

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . 3

LIST OF TABLES . 6

LIST OF FIGURES . 7

CHAPTER

1 INTRODUCTION . 10

1.1 Problem And Motivation . 10

1.2 Definition Of Terms . 15

1.3 Review Of Literature . 17

1.4 DESCRIPTION OF REMAINING CHAPTERS 30

2 METHODOLOGY . 31

2.1 Requirements Specification 31

2.2 Design . 32

2.3 Implementation . 37

2.4 Drag, Drop, And Match Algorithm 44

2.4.1 Algorithm: Drag, Drop, and Match 45

2.5 Testing . 46

3 RESEARCH COMPONENTS . 51

3.1 Survey Of Automatic Programming 51

3.2 A Generic Model For Generating A Web Page 52

3.3 Applying The Generator Model To Other Problems 53

5

4 CONCLUSION . 57

5 FUTURE WORK . 59

REFERENCES . 64

 APPENDICES . 68

Appendix A: User’s Manual 68

Appendix B: Maintenance Manual 72

Appendix C: Design Documents 74

Appendix D: Source Code 75

Appendix E: Test Suite . 113

6

LIST OF TABLES

Page

1.1 Two-Sample t-test Assuming Equal Variances, Spring 2015 Exam
Average (N=79) And Fall 2015 Exam Average (n=79) And Fall 2015
Exam Average (n=41)) Cooney (2015) 25

7

LIST OF FIGURES

Page

1.1 School-level Online Platforms (Kansal et al., 2021) 12

1.2 Automatic Word Match Generator UI Before Dragging Boxes 13

1.3 Automatic Word Match Generator UI After Dragging Boxes 13

1.4 Congratulations Dialog Box . 13

1.5 Original Word Matching Interactive Built With Static HTML AND
Javascript . 14

1.6 The Word Match Generator Generates a Word Matching Interactive . . 15

1.7 Correlation Between Average Revel Grade And Final Course Grade, Fall
2015(n=41) Cooney (2015) . 22

1.8 Correlation Between Average Revel Grade And Average Quiz Grade,
Fall 2015 (n=41) Cooney (2015) 23

1.9 Relationship Between Average Revel Score And Average Quiz Letter
Grades, Fall 2015 (n=41) Cooney (2015) 24

1.10 Relationship Between Average Revel Grade And Average Exam, Lab,
And Final Course Grades, Spring 2016 (n=100) Cooney (2016) . . . 26

1.11 Comparison of Average Exam Scores And Average Final Course Grade,
Before Implementation of Revel, Spring 2015 (n=79) And After
Implementation of Revel, Fall 2015 (n=41) Cooney (2015) 27

1.12 Learning Curve: Fast Forward Middle and High School (Agocs et. al,
2006) . 29

2.1 Automatic Word Match Generator Custom multi-tiered Application
Diagram Before And After. 34

2.2 Sending a Word-Matching Interactive To The Server 36

8

2.3 XmlHttpRequest Request Body Shown In Chrome Developer Tools . . 36

2.4 Id Returned After Saving a Word-Matching Interactive 36

2.5 Flow Diagram For Generating html 38

2.6 XmlHttpRequest From The Word Match Generator Client To Server . . 38

2.7 Technical Diagram For The Automatic Word Match Generator 39

2.8 Logging The Output From The Javascript Console 40

2.9 Initial Attempt At Developing Rendering 42

2.10 Word Match Controller . 43

2.11 Word Match . 43

2.12 View . 43

2.13 Word Match Service . 44

2.14 Initial Screen For The Automatic Word Match Generator 45

2.15 Key Terms And Description Inputs 47

2.16 Generated Html Code . 48

2.17 Clicking Post Button . 49

2.18 Generated Word-Matching Exercise 50

3.1 A Generic Model For Generating a Web Page. 52

3.2 Explanation For Line 4 of Compute Area With Console Input. 54

3.3 Explanation For Line 6 of Compute Area With Console Input. 55

5.1 Adding a Question . 60

5.2 Before Flipping a Card . 61

9

5.3 After Flipping a Card . 62

A.1 Word Match Generator Without Input Data 69

A.2 Word Match Generator With Input Data 70

A.3 Word Match Generator After Generating HTML 70

A.4 Word Match Generator Before Dragging Boxes 71

10

CHAPTER 1

INTRODUCTION

This chapter will cover the problem and motivation, definition of key terms, and sup-

porting literature. It will also cover research history, significance of the field, and the

specific research problem that we aim to address.

1.1 PROBLEM AND MOTIVATION

Students tend to face difficulties when they are required to learn new terminology. For

example, understanding how to differentiate between the terms “hardware” and “software”

can be challenging for beginner computer science students. In a typical introductory pro-

gramming course, students first learn the key terms and definitions of the subject material.

In general, hardware is the physical aspect of the computer that can be seen, and software

is the invisible instructions that control the hardware and make it work. As stated by Liang

(2020), the hardware of a computer consists of a control processing unit (CPU), cache,

memory, hard disk, floppy disk, monitor, printer, and communication devices.

From a technical perspective, one way to address the learning difficulties that students

face is to provide them with tools that make their learning experience more enjoyable. Stu-

dents face difficulties concentrating on the task at hand. It is also challenging to follow

a consistent pattern while studying online. Currently, e-learning is enhancing the knowl-

edge of students, academic staff, and other professionals via the internet (Adams et. al,

2018). Many higher education universities are providing online courses for their students

(Shahzad et. al, 2021). Amongst the multitude of challenges that schools have faced in the

transition to online learning accessibility has been challenging for students with disabilities

and/or their parents or caregivers with disabilities (Badge et. al, 2008). The word-matching

interactives created by the Automatic Word Match Generator addresses these challenges

by providing students with access to online study material.

11

Vocabulary development is an essential part of the learning process. As stated by

Young (2005), teaching content-area science vocabulary through a variety of inquiry meth-

ods and engaged word-meaning concept strategies allows learners to make their own intel-

lectual connections while gaining an understanding and confidence in the language of the

science content. Arifah and Kusumarasdyati (2013) showed that in order for students to

be successful, they should be able to understand the differences between specific terminol-

ogy. Our tool, Automatic Word Match Generator, can be used to help students develop their

academic vernacular through word-matching interactives. Given a set of key terms and cor-

responding definitions, students can use word-matching interactives to learn the meanings

of specific key terms used in computer science.

A significant paradigm shift has occurred in the education system post-COVID-19

outbreak (Kansal et. al., 2021). Many in-person classes now feature a remote component.

The graph shown in Figure 1.1 shows that Udemy usage increased during the pandemic

around March 2020. It is possible that this growth can be attributed to the forced isola-

tion brought on by COVID-19. The findings from Shahzad et al. (2021) showed that the

consequences of the pandemic were unstoppable and uncontrollable for higher education

industries, much like the rest of the world. Azzi-Huck and Shmis (2020) indicated that

most higher education systems are now operating through e-learning platforms. At least

120 countries stopped face-to-face learning and approximately one billion students’ educa-

tion was affected worldwide with COVID-19. The stabilization of the curve in Figure 1.1

could indicate that the world has adopted online learning platforms like Udemy, Whitehat

Junior, Vendatu, Byjus, Khan Academy, Sqayam, Edx, and Unaacademy.

The effects of the COVID-19 pandemic created a need for online resources that can

help students learn remotely. The pandemic forced the universities to close face-to-face ed-

ucation and send students home. This resulted in universities introducing courses through

online portals (Azzi-Huck and Shmis 2020). In the absence of effective mitigation pro-

12

Figure 1.1: School-level Online Platforms (Kansal et al., 2021)

grams, for example, distance-learning programs will have many detrimental impacts on

children and youth (Azzi-Huck and Shmis 2020). The word-matching interactives created

by the Automatic Word Match Generator provides students with an opportunity to improve

their reading comprehension from any location where there is a stable internet. Previous

researchers developed successful methods for utilizing word-matching games in the class-

room. However, few have developed a system that enables students to learn vocabulary

from anywhere in the world.

Figure 1.2 shows an example of a word-matching interactive. Another live example

can be viewed from https://liveexample.pearsoncmg.com/wordmatch/Section1 2.html.

Figure 1.3 shows the result after the user drags the key terms to match their descrip-

tions. A congratulations dialog (see Figure 1.4) is displayed when all of the key terms are

matched to their descriptions.

We have developed more than 60 word-matching interactives. The following ebooks

Liang (2018), Liang (2020), Liang (2021) have embedded interactives. These interactives

have received good reviews as shown in Cooney (2015) and Cooney (2016). They help

students learn and grasp key terms. Previously, each of the word-matching interactives

were programmed manually. The effort required to develop word-matching interactives

13

Figure 1.2: Automatic Word Match Generator UI Before Dragging Boxes

Figure 1.3: Automatic Word Match Generator UI After Dragging Boxes

Figure 1.4: Congratulations Dialog Box

14

Figure 1.5: Original Word Matching Interactive Built With Static HTML AND Javascript

involved advanced programming skills and a significant time investment. The Automatic

Word Match Generator empowers instructors with the ability to create word-matching in-

teractives through a simple web-based GUI as shown in Figure A.1. Instructors can use

the Automatic Word Match Generator to enter key terms and their descriptions. Then, they

can automatically generate the HTML code for a word-matching interactive, thus, saving

precious time and resources. Our system can be utilized by instructors from any academic

discipline to create exercises that will help students learn the appropriate language corre-

sponding to their academic subject.

As mentioned previously, we created each word-matching interactive manually. This

was time-consuming and inefficient. We created an Automatic Word Match Generator to

automatically generate word-matching interactives. It uses a generic model to automati-

cally generate web pages for similar problems. In this thesis, we present the design and

implementation of the Automatic Word Match Generator. In Chapter 2 and Chapter 3, we

15

Figure 1.6: The Word Match Generator Generates a Word Matching Interactive

discuss how automatic programming can be used to generate web pages.

1.2 DEFINITION OF TERMS

1. Automatic Programming: the study of generative programming in the sense that

the source code is generated automatically.

2. Generative Programming: the application of using code for a new function or soft-

ware.

3. Word-matching Interactive: a word-matching exercise that can be embedded within

an ebook.

4. Word Matching Games: exercises that involve matching key terms with their de-

scriptions.

5. Word Match Generator: a web-based system that takes key terms and their descrip-

tions to generate a word-matching interactive.

6. Key Term: a word or entity that can be defined for a specific topic.

7. Description: a statement that describes a key term.

8. Web Page: a hypertext document provided by a website and displayed to a user in a

web browser.

16

9. Javascript: a scripting language that allows you to implement complex features on

web pages.

10. JSP (Java Server Pages): a Java standard technology that enables you to write dy-

namic, data-driven pages for your Java web applications.

11. Java: a programming language and computing platform first released by Sun Mi-

crosystems in 1995.

12. Spring Boot: open source Java-based framework used to create a micro Service.

13. View Resolver: is a Spring Boot specific component. Once Model and View receive

the data, Dispatch Servlet will transfer it to the view resolver to get the actual page

view. The View Resolver provides a mapping between view models and actual views.

14. Model: a component of an MVC architecture that is responsible for managing the

data of the application.

15. View: a component of an MVC architecture that is used to return a user interface

output to the user in response to the user request.

16. Controller: a component of an MVC architecture that is responsible for controlling

the way that a user interacts with an MVC application.

17. Web Service: used for enabling an application to invoke a method of another appli-

cation.

18. HTML: the standard markup language for creating Web pages.

19. Spring Boot: open source, microservice-based Java web framework that creates a

fully production-ready environment that is completely configurable using its prebuilt

code within its codebase.

17

20. API: a set of programming code that enables data transmission between one software

product and another.

21. XMLHttpRequest: an object used to interact with servers. Allows the retrieval data

from a URL without having to do a full page refresh.

22. Dispatch Servlet: is the front controller in Spring web applications. It calls a method

when a browser requests the page and combines the results with the matching jsp file

to make an html document.

23. REST: refers to a specific set of rules that dictate how data is transmitted from a

client to a server.

24. POST Request: used to send data to a server to create/update a resource via HTTP

request.

25. GET Request: used to request data from a specified resource via HTTP request.

26. XML: a markup language and file format for storing, transmitting, and reconstructing

arbitrary data.

27. DOM (document object model): the data representation of the objects that comprise

the structure and content of a document on the web.

28. GUI (graphical user interface): is a system of interactive visual components for com-

puter software.

29. Request: a communicative message that is transmitted between the client to a server.

1.3 REVIEW OF LITERATURE

A variety of concepts from biology to computer science can be taught through word-

matching games. Specifically, subjects that use a hierarchical structure for learning vocab-

18

ulary. The instruction of these subjects can be enhanced with word-matching interactives.

Forma Curran introduced the concept of word-matching games in 1994 when she showed

that vocabulary was an essential part of effective communication (Arifah and Kusumaras-

dyati 2013). Further, Masri and Najar proved that word-matching games were effective in

two ways:

1. Games engaged students in a pleasurable manner, thus supporting them and helping

them memorize new words.

2. Gains in conceptual knowledge were reported for interactive courses, regardless of

whether the course was high school, college, or university level.

The average post-test score in the experimental group was higher than the average

post-test score in the control group (Masri and Najar 2014). Their studies revealed post-

test scores of 80.40 for their experimental group and 77.20 for the controlled group. The

measured p-value of the post-test was less than the significance value of 0.05. Therefore,

the null hypothesis was rejected and the alternative hypothesis was accepted.

In a comparison of 14 classes using traditional methods with 48 classes using in-

teractive engagement the performance of interactive engagement, and traditional lecture

methods in introductory physics courses were measured (Hake 1998). Hake (1998) demon-

strated that interactive classroom activities were shown to have a positive engagement effect

on the 6,500 students studied. However, the relationship between cause and effect cannot

be completely isolated in this non-equivalent group design.

Masri and Najar (2014) designed an experiment that involved matching pairs of words,

cards, or pictures. In their study, students had to find a partner with the appropriate card

or picture. For example, students shuffled 20 word cards, 10 word matches, in random

order. Then, each student was tasked with looking for a matching pair of words or pic-

tures within a certain time until each card had the right pair (Masri and Najar 2014). The

19

reported significance value from the experiment was 0.023, which was less than the p-

value of 0.05. An additional study, The Effect of Using Word Matching Games on Primary

Stage Students Achievement in English Language Vocabulary in Jordan, showed that word-

matching games did not have an impact as far as gender was concerned, but they concluded

that there were drastic differences in the post-test between the control and experimental

groups (Masri and Najar 2014).

The study consisted of 76 males and 82 females and reported post-test scores of 81.82

for males and 82.34 for females. The control group reported post-test scores of 76.64 for

males and 77.42 for females. Essentially, the treatment had the same effect on male and

female students. However, the experimental group managed to substantially improve their

English vocabulary. This indicates that word-matching games have a positive effect on

students’ achievement in learning English vocabulary. They applied an analytical method

for measuring the effectiveness of word-matching games. Few studies have actually mea-

sured the impact of games on student learning. However, this study revealed that there was

a statistically significant difference between the experimental and control groups which

consisted of 158 students.

Ria Dhatun and Nikmah Husein (2010) identified that vocabulary is closely related to

the four language skills of reading, writing, listening, and speaking. They employed a ver-

sion of make a match, which encouraged students to practice their vocabulary by dealing

cards to each other to explain the meaning of the words. The difference between the usage

of make a match by Ria Dhatun and Nikmah Husein (2010) differs from Forma Curran in

that students used pictures instead of words in their word-matching games. In a typical

make a match game, students are split into two groups. Then, they are paired with partners

and they attempt to match words with corresponding pictures. Arifah and Kusumarasdyati

(2013) defined make a match as one of the cooperative learning techniques that is used

with pairs. The disadvantages of make a match are that it requires guidance from teachers,

20

involves time restrictions, and involves organizing groups of students. However, the advan-

tages of make a match are that it encourages them to cooperate, helps them avoid boredom

by encouraging daily participation, which tends to lead to a more interesting classroom

dynamic (Arifah and Kusumarasdyati 2013).

Students who participated in make a match received a mean score of 18.67 in their

pre-test and 25.30 in their post-test. The p-value associated with make a match technique

was less than 0.05 (Ria Dhatun and Nikmah Husein 2010). Ria Dhatun and Nikmah Husein

(2010) showed that there was a statistically significant difference between pre-test and post-

test groups after they participated in make a match. Their experiments involved a technique

where students were split into two groups, A and B. Each group received topic cards.

After playing the game, students typically ended up having more discussions with teachers,

which lead to an overall improvement in their vocabulary. Since the null hypothesis for this

study was rejected, this supports the claim that games like make a match are effective at

helping students improve their communication skills.

We believe that language is an essential component of learning a new topic. As stated

in the introduction, games create a fun environment for students and help keep them en-

gaged. They provide them with an outlet, especially for students who struggle to learn

new vocabulary. Learning activities such as games create a fun atmosphere and keep stu-

dents engaged. Ria Dhatun and Nikmah Husein (2010) showed that games that involve

matching pairs of words, cards, or pictures can be used to teach a variety of academic sub-

jects. The statistical significance of their work supports the hypothesis that word-matching

games have a measurable effect on improving student vocabulary. The disadvantage of

their methods is that they required the guidance of teachers.

The role of success from games in student development cannot be understated. Games

bring relaxation and help students learn new words. However, they require a lot of effort on

behalf of the instructor. Masri and Najar (2014) designed a game to investigate the effect

21

of using word-matching games as a strategy to aid in the achievement of primary stage

male and female students learning English as a foreign language. Their work has been sta-

tistically proven to help students improve their English vocabulary. In their experiments,

students used pairs of cards and words to match colors, shapes, numbers, and word def-

initions. In each case, the experimental group subjects managed to significantly improve

their English vocabulary; meanwhile, the control group did not. They showed that games

promoted knowledge transfer. This is most likely due to the fact that they require student

participation and active involvement with the material.

Over the last decade, books for teachers and students have focused on ways of organiz-

ing, practicing, and processing new vocabulary to help make it accessible and memorable

for students. Yang and Dai (2011) showed that memorization is a major problem for stu-

dents. The word-matching interactives created by the Automatic Word Match Generator

follows a similar pattern as prescribed by Masri and Najar (2014). The word-matching

interactives generated by the Automatic Word Match Generator employs word-matching

strategies to help students improve their vocabulary and reading comprehension. The dif-

ference between our research and that of Ria Dhatun and Nikmah Husein (2010) and Masri

and Najar (2014) is that the word-matching interactives generated by Automatic Word

Match Generator do not require in-person participation. They can be accessed from any-

where in the world where there is a stable internet connection. Word-matching interac-

tives serve a specific purpose. They help students develop their vocabulary for a particular

academic topic. The success of interactives can be seen in Figure. 1.7, Figure. 1.9, Fig-

ure. 1.8, Figure 1.10, and Figure 1.1. Cooney (2016) reported that 83 percent of students

strongly agree or agree that their understanding of the course material increased as a result

of using Revel interactives. Cooney (2015) showed that 80 percent of students agree or

strongly agree that they learned more using Revel interactives than they would have from

a traditional printed textbook. Our intuitive user interface can be used by any instructor

22

Figure 1.7: Correlation Between Average Revel Grade And Final Course Grade, Fall

2015(n=41) Cooney (2015)

to generate word-matching interactives based on a set of key terms and descriptions. By

default, two entries for key terms and descriptions are displayed in the Automatic Word

Match Generator as shown in Figure A.1. An instructor can click the Add More button to

display more entries for creating additional key terms and descriptions.

Computer software products that focus on developing cognitive skills and provide an

optimal learning environment have been proven by university-based research studies to

help improve memory, attention, processing, and sequencing skills, which are critical for

success (Agocs et. al, 2006). FAST FORWORD products used progress tracker reports to

study how phonemic awareness and the acoustic properties of speech impacted the rapid

development of language and reading skills.

23

Figure 1.8: Correlation Between Average Revel Grade And Average Quiz Grade, Fall 2015

(n=41) Cooney (2015)

24

Figure 1.9: Relationship Between Average Revel Score And Average Quiz Letter Grades,

Fall 2015 (n=41) Cooney (2015)

25

Table 1.1: Two-Sample t-test Assuming Equal Variances, Spring 2015 Exam Average

(N=79) And Fall 2015 Exam Average (n=79) And Fall 2015 Exam Average (n=41)) Cooney

(2015)

26

Figure 1.10: Relationship Between Average Revel Grade And Average Exam, Lab, And

Final Course Grades, Spring 2016 (n=100) Cooney (2016)

The games used in FAST FORWORD products vary in nature. In Matches and Bug

Out!/Laser Match, students chose a square on a grid and hear a sound or a word. The

goal was to find each square’s match and clear the grid (Agocs et. al, 2006). Students

who participated in Bear Bags and Bear Bags: More Lunch developed an understanding of

alphabetic principles (phonics) by helping “Momma Bear” sort words (on pieces of toast)

into phoneme-based categories (Agocs et. al, 2006). In Quail Mail, a squirrel mail car-

rier pulls words out of a mailbag and participants sort them into different categories by

clicking on the appropriate mailbox (Agocs et. al, 2006). Students develop their under-

standing of words meanings, auditory recognition of phonemes, and sound processing by

clicking on pictures that match words that they heard (Agocs et. al, 2006). In Ant Antics,

participants improved their vocabulary by picking one of the four alternatives (cards that

display pictures) (Agocs et. al, 2006). As students played Canine Crew, they developed

27

Figure 1.11: Comparison of Average Exam Scores And Average Final Course Grade, Be-

fore Implementation of Revel, Spring 2015 (n=79) And After Implementation of Revel,

Fall 2015 (n=41) Cooney (2015)

28

their vocabulary, decoding, and automatic word recognition by matching pairs of words

together on the basis of a criteria in a grid. Finally, in Twisted Pictures, students built their

sentence comprehension by developing syntax, working memory, logical reasoning, and

vocabulary by selecting sentences that more accurately described a picture based on a set

of alternatives (Agocs et. al, 2006).

Students who used FAST FORWORD products noticed a significant improvement in

their reading comprehension skills. Their improvement was measured by the Brigance

Comprehensive inventory of Basic Skills as shown in Figure 1.12. The results showed that

students gained three and one-half years in reading grade level. Their average letter-word

identification improved by 14 months and their average gain on the passage comprehension

subtest of the Woodcock-Johnson III Tests of Achievement was two years.

FAST FORWORD products took a previously successful concept, computer software

that focuses on developing learning and cognitive skills, and improved upon it. They pro-

vided computer-based products that combined an optimal learning environment with a fo-

cus on early reading and cognitive skills (Agocs et. al, 2006). They added seven word-

matching games to their software. Their contribution led to an overall improvement of

reading comprehension skills of the participants. They noted that the longer the students

used the product, the more their skill level improved.

Fundamentally, word-matching games help students learn the relationships between

words and their meanings. An Automatic Word Match Generator provides instructors with

the capability to create word-matching interactives which are analogous to Canine Crew,

Matches and Bug Out!/Laser Match, Bear Bags and Bear Bags: More Lunch, Quail Mail,

Cards, Ant Antics, Canine Crew, and Twisted Pictures. The word-matching interactives

generated by the Automatic Word Match Generator get students to match key terms to their

descriptions through a drag and drop action.

Word matching games increase student participation by providing them with an oppor-

29

Figure 1.12: Learning Curve: Fast Forward Middle and High School (Agocs et. al, 2006)

tunity to get away from traditional learning activities. In games like Canine Crew, students

were forced to change the way they viewed the relationships between words and meanings.

The daily practice of matching different pairs of words and meanings has been shown to

lead to an overall improvement in reading comprehension skills (Agocs et. al, 2006).

The effects of student participation in games used by FAST FORWARD products can

be seen in Figure 1.12. This graph shows that as students practice their vocabulary with

word-matching games their ability to correctly match terms with their meanings increases.

This supports the claim that word-matching games help students improve their vocabulary

and reading comprehension skill levels.

30

1.4 DESCRIPTION OF REMAINING CHAPTERS

The purpose of the methodology section is to describe the requirements specifica-

tion, design, implementation, and testing of the Automatic Word Match Generator. In

the requirements specification section, we will discuss the problems our research aims to

address. In the design section, we will cover the reasoning behind why we selected spe-

cific components used in the software implementation design of an Automatic Word Match

Generator.

Then we will discuss some of the obstacles that we encountered while planning and

implementing our software. We will then describe the process of creating an Automatic

Word Match Generator in the implementation section. This will be accomplished by walk-

ing through a specific set of development phases. In each of these phases, we will explain

how we implemented our software. Then we will provide the reader with an example of

how word-matching interactives are used in the testing section of the methodology. In the

research components section, we will provide a brief overview of automatic programming.

Then, we will cover how we used a generic model to generate a web page and how our

pattern can be applied to other problems.

The purpose of the automatic programming section is to provide the reader with a

basic historical context of its relationship to our research. We will cover specific examples

of how previous researchers used it. In the discussion on using a generating model for

creating a web page we will learn what a generator is. Then, we will describe how we

applied the generator model to our problem. Finally, we will look at how we can apply the

generator model to other problems. In the conclusion section, we will describe how our tool

saves instructors’ time and resources while providing students with easy accessibility to

learning. Then, we will provide a link to a live demonstration of our tool. In our discussion

of future work, we will cover the next steps for adding additional features.

31

CHAPTER 2

METHODOLOGY

2.1 REQUIREMENTS SPECIFICATION

The specifications for the Automatic Word Match Generator consisted of the following

criteria:

1. Instructors shall be able to automatically create interactive word-matching games as

shown in Figure 1.5.

2. Students shall be able to access the games online.

We have addressed the desired specifications by providing instructors with a tool that

will help them consolidate the content from their course material into word-matching in-

teractives. Instructors will be able to use the interface shown in Figure A.2 to create word-

matching interactives. Students can access these word-matching interactives by visiting the

URL associated with word-matching interactive. An example of retrieving a word-match

interactive by its ID is shown in Figure 1.3. The generated interactives meet the needs

of the students by providing them with online study material which can be used to help

them improve their vocabulary by matching key terms with their descriptions. The Auto-

matic Word Match Generator meets the requirements listed above by providing students

with online study material and enabling instructors with the ability to create interactives

automatically.

The input to the Automatic Word Match Generator program is the instructor input for

key terms and descriptions. The output from the program is a web page that displays a

word-matching interactive. From the users perspective the Automatic Word Match Gener-

ator can be used to automatically generate word-matching interactives that provide students

with the intent to learn new vocabulary and improve their reading comprehension skills.

32

From the perspective of a developer, the specifications for the Automatic Word Match

Generator were:

1. Enable the storage and retrieval of word-matching interactives.

2. Capture the input data necessary to create word-matching interactives

3. Provide a web interface for displaying word-matching interactives

4. Develop a drag and drop algorithm that facilitates an interactive learning experience

using the derived data from the output.

The specifications described at the beginning of this section were designed with the

intention of meeting the requirements mentioned above. Using trial and error, the devel-

opment of each specification was achieved. The input to output validation was tested by

generating example word-matching interactives based on a quiz. The output was manually

tested by dragging and dropping key terms to their descriptions.

The algorithm used in the development of the Automatic Word Match Generator is a

drag and drop algorithm. The list of major functions, as well as the inter-relationships used

in the program are described in the implementation section.

2.2 DESIGN

The design of the Automatic Word Match Generator was based on a custom multi-

tiered design pattern. The technology stack that we used to build our application consisted

of HTML, CSS, Javascript, Java Server Pages and Spring Boot (a popular micro-service

framework). Like most web applications, the Automatic Word Match Generator client

submits an HTTP request to a server which processes the request and returns a response.

In our case, an XMLHttpRequest object was designed to send a request body consisting

of base64 encoded HTML code to to a server via HTTP POST method. When the server

33

accepts the data, the HTML code is saved as a word-matching interactive on the server.

The value in utilizing an XMLHttpRquest object is that it is asynchronous. In other words,

instructors are able to create word-matching interactives without having to refresh the page.

The interaction for this behavior is shown in Figure 2.6.

To understand the custom multi-tiered application that we have designed, we will

describe how it can be used through an example. When an instructor wants to create a

new word-matching interactive, they have to visit the instructor graphical user interface

(GUI) as shown in Figure A.2. The request to visit this page is processed by a dispatch

servlet. The dispatch servlet will study the class of the request and send it to the relevant

controller class, in this case WordMatchController. The controller will then return the view

wordmatch.jsp which will present the data to model and view. The source code for the

WordMatchController and wordmatch.jsp are shown in Appendix C. The process for this

interaction is shown in Figure 2.1. The steps for this process are listed below:

1. The dispatch servlet processes the request from the browser.

2. The mapping handler then routes the request to the correct controller class.

3. The WordMatchController then processes the request, which then calls the appropri-

ate method from the WordMatchService.

4. The model data and view name (wordmatch.jsp) are returned.

We have designed the Automatic Word Match Generator to be a self-contained appli-

cation so that it can be deployed to any web server that supports a Java virtual machine and

I/O operations. All of the I/O (input/output) file operations take place on a single server,

as shown in Figure 2.7. The purpose of the class WordMatchController.java is to process

incoming requests from the client. The methods within the controller were arranged to the

call methods from WordMatchService.java which were designed to save word-matching

34

Figure 2.1: Automatic Word Match Generator Custom multi-tiered Application Diagram

Before And After.

35

interactives on the server. The client to server interaction is captured in Figure 2.6. Subse-

quent methods in WordMatchController were designed to return the newly created word-

match.jsp file. The methods used in the WordMatchController facilitate the following op-

erations:

1. Retrieve word-matching interactives from the server.

2. Save word-matching interactives on the server.

As we can see in Appendix C in WordMatchService.java, the methods saveWord-

MatchJSP and getWordMatch handle the controller interactions listed above. In the case

of saveWordMatchJSP, this method was used to save the content sent by the HTTP POST

method. The purpose behind this method is to save a word-matching interactive on the

server.

The model View.java was designed to facilitate the sending and receiving of data re-

lated to displaying word-matching interactives. The view, wordmatch.jsp, was tailored to

follow the original structure of the first word-matching interactive introduced at the begin-

ning of the project as shown in Figure 1.2. In Figure 2.3, we can see how the request is sent

to the server by using the chrome developer tools panel to the right. The specific request

body used in the request is shown in Figure 2.3.

Finally, we can see the returned ID associated with the word-matching interactive in

the response shown in Figure. 2.4. Following best practices for developing web applica-

tions, we have ensured that proper response codes are returned. In this case, we return a

201 CREATED response code when an object has been saved to the server this is shown in

Figure 2.2.

One of the first obstacles in designing the Automatic Word Match Generator was to de-

velop a method for generating the static HTML code. The HTML generating function that

we landed upon leverages a Javascript method. The source code for this method is shown

36

Figure 2.2: Sending a Word-Matching Interactive To The Server

Figure 2.3: XmlHttpRequest Request Body Shown In Chrome Developer Tools

Figure 2.4: Id Returned After Saving a Word-Matching Interactive

37

in Appendix C under generate html. The primary function of this method is to retrieve con-

tent from HTML inputs, key terms, and descriptions, then concatenate them into a string.

The key terms and descriptions are randomly shuffled before they are concatenated. Then

they are processed into a string, which represents a word-matching interactive. After this

process is completed, the entire HTML string is then displayed in a textarea box as shown

in Figure 2.16. We used the resulting HTML string shown in the textarea box to design

the render html method which was used to render a word-matching interactive. Finally,

we used the render html method to trouble shoot the rendered word-matching interactive

HTML string. Once the final output matched the original word-matching interactive shown

in Figure 1.5, we designed the save content method. The save content method was used to

send the generated HTML string from the textarea to the server through an XMLHttpRe-

quest, as mentioned previously.

2.3 IMPLEMENTATION

The process of implementing our software began with the planning phase. During the

planning phase, we created an initial set of objectives to achieve before implementing the

project. The goal of our project was to use the base structure of the original word-matching

interactive as shown in Figure 1.5. The initial goal was to create an HTML parser that

could recreate the same HTML page for different inputs. The example shown in Figure

1.5 demonstrated the feasibility of completing the project. After analyzing the HTML

structure, we defined a consistent output, i.e., a (word-matching interactive), based on a

predetermined set of input criteria, i.e., (key terms and descriptions).

An overview of the steps used to develop the Automatic Word Match Generator are

shown below:

1. Selected languages for developing the program.

38

Figure 2.5: Flow Diagram For Generating html

Figure 2.6: XmlHttpRequest From The Word Match Generator Client To Server

39

Figure 2.7: Technical Diagram For The Automatic Word Match Generator

2. Identified an expected output for the program.

3. Created a proof of concept that collected the data needed to generate the derived data

to create a word-matching interactive.

4. Developed a user interface for collecting the input data.

5. Implemented an HTML generating function to collect the input data and generate the

derived data.

6. Implemented an HTML rendering function to display the expected output with the

derived data.

7. Developed a system for displaying the output to the user.

The major data structures used in the development of the Automatic Word Match

Generator were two arrays: one for capturing the key terms, and another for capturing the

descriptions.

Before implementing our project, a survey of possible solutions was conducted. In

this phase, various programming languages were evaluated. Initially, Java and Python were

selected as potential candidates for programming languages. Given that Python is typically

used for scripting we decided to use Java for two reasons: it supports a set of frameworks

for implementing web applications and we had more experience using it. Since the original

40

Figure 2.8: Logging The Output From The Javascript Console

word-matching interactive only consisted of Javascript, CSS, and HTML. We decided to

use a popular web application framework, Spring Boot. This framework would allow us

to create an application that could be used to generate, serve, and store word-matching

interactives as static HTML pages.

To accomplish the goal of generating static HTML pages, we used the Document Ob-

ject Model (DOM) to manipulate the value attributes of the key terms and descriptions

associated with the instructor GUI as shown in Figure 2.14. The direct manipulation of

these objects provided our program with access to the value attributes associated with each

of the inputs. Therefore, enabling our application to extract specific input values and con-

catenate them into a string of HTML which represents a word-matching interactive.

The implementation of the Automatic Word Match Generator consisted of four phases.

Phase one was a two-step process. In step one, we used Javascript to get the values of the

HTML input elements. Then, we used chrome developer tools to log the input values to the

Javascript console as shown in Figure 2.8.

41

In step two, we recreated the HTML string which represented a word-matching inter-

active as a string. Then, we logged the HTML string to the javascript console as shown in

Figure 2.8. In phase two, we combined steps one and two from phase one into a function

that concatenates two strings into a single string. One of the strings contained the values

from the value attributes from the input elements. The other string contained the HTML

string which represented the word-matching interactive. The combination of these two

strings represented the HTML for a word-matching interactive as a single Javascript string.

Phase three consisted of displaying the concatenated string from phase two in a textarea

element below the instructor GUI as shown in Figure 2.14. Since it was difficult to read the

Javascript string from Javascript console, a systematic approach of copying and pasting the

output from the textarea was repeated until the desired output matched the exact HTML

structure for the original word-matching interactive as shown in Figure 1.5.

In phase four, one of the obstacles that we faced was rendering the generated word-

matching interactive from the textarea box. The initial attempt at developing a rendering

section is shown in Figure 2.9.

At first, we attempted to render the word-matching interactive in a separate tab using

the new window.document.write method. In this scenario, a user clicks the Render HTML

button and a new tab should appear with the rendered HTML. This test should have allowed

us to drag and drop the key terms onto their descriptions. However, the actual result was

that when Render HTML was clicked, a new tab appeared with the rendered HTML, but

the drag and drop functionality did not work. This was because the Javascript libraries used

by the application were not being loaded into the page properly. Therefore, a new plan was

devised to render the word-matching interactive in the same page as the instructor GUI as

shown in Figure 2.14. This was a step forward in the right direction, but we still needed to

find some way to show the rendered HTML in a separate tab.

To overcome this obstacle, we decided to implement a micro-service based web ap-

42

Figure 2.9: Initial Attempt At Developing Rendering

plication that leveraged a custom multi-tiered design pattern. This decision was made so

that our application could display a word-matching interactive in a separate view by its ID.

This decision solved the problem that we faced with loading the Javascript libraries. It pro-

vided our application with the ability to dynamically load Javascript libraries. The custom

classes used in the implementation of our micro-service are shown in Figures 2.10, 2.11,

2.12, 2.13.

The classes shown above in Figures 2.10, 2.11, 2.12, 2.13 are custom classes used in

a custom multi-tiered web application. The primary purpose of the controller class shown

in Figure 2.10 is to provide URL routes for our application. The specific routes used in this

class are shown in Appendix C. The purpose of the classes shown in Figure 2.11 and Figure

2.12 is to provide models, which can be used to transport data throughout the service. The

purpose of the View class shown in Figure 2.12 is to keep track of the word-matching

interactives saved on the server. The WordMatch class shown in Figure 2.11 is used as a

model to transport the word-matching interactive. The model exists entirely on the server.

43

Figure 2.10: Word Match Controller

Figure 2.11: Word Match

Figure 2.12: View

44

Figure 2.13: Word Match Service

The WordMatchService class shown in Figure 2.13 provides two methods

1. saveJSP

2. saveHTML

The method saveJSP was used to save a word-matching interactive as a jsp (Java

Server Pages) file on the server and saveHTML was used to convert a jsp (Java Server

Pages) file to a static HTML file.

2.4 DRAG, DROP, AND MATCH ALGORITHM

One of the key features of the Automatic Word Match Generator is the Drag, Drop,

and Match algorithm. In this section, we present this algorithm.

The code generated from the Automatic Word Match Generator is an interactive HTML

page that enables a user to be able to drag a key term from the key term pool to a matching

description. If there is no match, the key term is sent back to the key term pool. If there is

a match, the key term stays in the matched row. The matched row is set with a new color.

The key terms and descriptions are saved in the separate arrays and they are randomly

shuffled. A map was used to map the key with its corresponding description. The algorithm

works with Javascript events and it is described as follows:

45

Figure 2.14: Initial Screen For The Automatic Word Match Generator

2.4.1 ALGORITHM: DRAG, DROP, AND MATCH

1. successCount is set to 0.

2. Obtain the index of the dragged key term as sourceIndex.

3. Obtain the index of the row where the key term was dropped as targetIndex.

4. if (sourceIndex != targetIndex) return the key term back to the key term pool.

5. Disable the key term object to be undraggable.

6. Set a new color for the matched row object.

7. Test if all key terms are matched. If so, display a Congratulations dialog.

8. Increase the successCount by 1.

46

The UI has a Reset button, clicking the Reset button also sets successCount to 0. This

is an example of event-driven programming. The algorithm is actually triggered when the

user drops a key term on a row. Note that there are two parts in this project: one is the

generator program, and the other is the generated program. This algorithm was used in the

generated program.

2.5 TESTING

An example of the Automatic Word Match Generator can be seen at http://livelab.ge

orgiasouthern.edu/wordmatchgenerator as shown in Figure 2.10.

The functionality of our application can be described in a simple sequence of steps.

In step one, an instructor can simply enter a title, Key Term 1, Description for Key Term 1,

Key Term 2, and Description for Key Term 2. In step 2, he or she can click the Add More

button to create more entries for key terms and their descriptions. For example, an instructor

can enter the following inputs and descriptions shown in Figure 2.15. An Automatic Word

Match Generator then displays the HTML code as shown in Figure 2.18. An instructor can

click the Post button to send the generated HTML code for the word-matching interactive

to the server as shown in Figure 2.17.

After clicking the Post button to post the word-matching interactive to the server,

the server then saves the generated HTML file for the word-matching interactive. It then

creates a URL for the exercise. After the generated HTML file is posted, a View button

is displayed, as shown in Figure 2.17. An instructor can access any of the exercises by

clicking the View button. The View button serves two purposes: first, it renders the HTML

code for the exercise; second, it shows the URL for the exercise on the server. Clicking the

View button displays the exercise using the URL, as shown in Figure 2.17. The instructor

can give this URL to the student. An example of the created word-matching interactive is

shown in Figure 2.18.

47

Figure 2.15: Key Terms And Description Inputs

48

Figure 2.16: Generated Html Code

49

Figure 2.17: Clicking Post Button

50

Figure 2.18: Generated Word-Matching Exercise

51

CHAPTER 3

RESEARCH COMPONENTS

3.1 SURVEY OF AUTOMATIC PROGRAMMING

Automatic programming is used to write a program that generates another program

based on certain specifications. For example, a compiler is an automatic program that takes

a source code and generates an executable. In a broad sense, automatic programming can

be classified into two types:

1. Generative programming: the application of reusing code for a new function or

software.

2. Code generation: a mechanism to produce the executable form of a program.

The Automatic Word Match Generator is an example of code generation. It takes key

terms and their descriptions as an input and generates an HTML source code.

The research of automatic programming started in the 1970s. The initial goal was to

provide a specification and let the computer automatically generate a program that met the

specification. Unfortunately, the task of automatically generating a program is harder than

expected. Formal specifications were proposed to give precise requirements in a mathe-

matical structure (Balzer 1985), (Jazayeri 1976), (Ngolah and Wang 2004), (Olsson 1995),

(Whalen and Heimdahl 1999), (YooN 1990). Experimental systems were developed that

take the requirements written in formal specification and generate a program automatically.

However, these systems are not used in industry, because there is a wide gap between the

high-level specification and target implementation (Palshikar 2001).

In recent years, domain-specific automatic programming systems have been devel-

oped. A system called “Wrex” was created to automatically generate Python code for

analyzing data (Balzer 1985). A system called “Falx” was created to automatically gener-

52

Figure 3.1: A Generic Model For Generating a Web Page.

ate R programming code for visualizing data (Wang et al., 2021). A system called “Scythe”

was created to generate certain types of SQL statements (Wang et al., 2021).

Inspired by the current development in the domain-specific automatic programming

systems, we developed an Automatic Word Match Generator that automatically generates

a word-matching interactive. We hope that the knowledge obtained in the Automatic Word

Match Generator can be expanded and applied into generating web pages for other types

of problems.

3.2 A GENERIC MODEL FOR GENERATING A WEB PAGE

To apply and extend the Automatic Word Match Generator to other types of problems

in the same domain such as code animation, we propose a generic model for generating a

web page as shown in Figure 3.1

The generator is a web-based program. It contains the five components: Receive

Input, Validate Input, Process Data, Create Web Page, and Post Web Page. In the case

of the Automatic Word Match Generator, the input is entered from text fields and stored

53

in arrays. The validation might be simply to check if key terms or their descriptions are

empty. In Process Data, data is randomly shuffled and the key terms are mapped to their

descriptions. Create Web Page uses HTML, CSS and javascript to create a word-matching

interactive. Post Web Page automatically posts the generated Web page to a web server so

that the page can be viewed on the internet.

The problems in the same domain are similar in the sense that the generator receives

the input and generates a web page. However, the implementation of the generators will

be different because the problems are not the same. For example, the input may be in

different forms. So, the input receiver will be different and validation of the input will

also be different. Processing data needs to be customized to tailor to the specific problem.

Create Web page needs to be written to generate the page that meets the specification of

the problem. Post Web Page will be the same for the problems that fall into this model.

3.3 APPLYING THE GENERATOR MODEL TO OTHER PROBLEMS

Let us look at a similar problem and see how we apply our generator model to generate

a web page for this example. Consider the Code Animation problem. In this example, the

goal is to process source code and generate an HTML file for animating the source code.

We will call this HTML file a Code Animation.

Figure 3.2 gives an example of a Code Animation. Code Animation simulates the

execution of a program with step-by-step explanation of the code. Figure 3.2 shows the

next step of 3.2. This example of code animation can be accessed from https://liveexampl

e.pearsoncmg.com/codeanimation/ComputeAreaWithConsoleInput.html

Our objective is to develop a Code Animation Generator that takes any Java program

code and generates an HTML file that animates the execution of the code.

For our generic model of the generator, we use a textarea for code input as shown in

Figure 2.17. The generator receives the input and validates whether the program is correct

54

Figure 3.2: Explanation For Line 4 of Compute Area With Console Input.

55

Figure 3.3: Explanation For Line 6 of Compute Area With Console Input.

56

in syntax. This can be done by invoking a Java compiler. If the program has compile errors,

the generator will display the compile error and ask the user to fix the error and resubmit.

In the Process Data module, we will build a set of code structural patterns with a template

and have the Code Animation Generator to search for code pattern and use the template

to generate the animation. We will develop a code analyzer to identify the code structural

pattern and search a template for the pattern. We will also build a database of statement

patterns with explanations for the statements. In the Generate Web Page module, we will

create a page with the buttons “Reset,” “Next,” and “Previous” associate each statement in

the code with an appropriate explanation. The explanation will be obtained from the search

of the similar statement in the database. The Post Web module will post the page to the

website. The Code Animation Generator is not implemented. The implementation of the

Code Animation Generator is not part of this thesis. We implemented the Automatic Word

Match Generator. It is our hope that the Automatic Word Match Generator will serve as the

base for implementing the future web page generating projects such as the Code Animation

Generator. As with many software research projects, creating new types of software is a

big part of the problem. The devil is in the details. We have a complete implementation of

the Automatic Word Match Generator. Although there are other programs that are capable

of generating word-matching games, our Automatic Word Match Generator is amongst

a few programs that generate simple word-matching interactives. The simplicity of our

interactives distinguish them from word-matching games commonly found on the internet.

The Automatic Word Match Generator is freely available. It does not require a subscription,

nor does it feature distracting ads.

57

CHAPTER 4

CONCLUSION

We proposed a generic model for automatically generating web pages. The Automatic

Word Match Generator is a demonstration of a concrete implementation for this generic

model. We believe that many other web page generation projects can be implemented using

similar approaches. Our Automatic Word Match Generator project serves as a stepping

stone in the field of automatic programming for generating web pages.

An Automatic Word Match Generator removes the pain that instructors typically face

when they have to create word-matching games. Before implementing the Automatic Word

Match Generator, all of the word-matching interactives had to be developed manually. The

process of manually creating exercises was a large waste of time for instructors. To create

each exercise, an individual file with specific content had to be created, updated, and main-

tained. This is where automatic programming comes into play. We employed an automatic

programming strategy to develop an Automatic Word Match Generator to remedy the dif-

ficulties associated with this process. The automated process of creating word-matching

interactves saves instructors valuable time and effort that could be spent on more important

tasks.

Our tool provides instructors with the ability to create word-matching interactives

without having to write any code. The first iteration of our tool required instructors to at

least copy and paste their code from the textarea onto the server. The manual effort required

to copy and paste resulted in poor adoption, so we added a Post button to save the generated

HTML code. Once the content is saved onto the server, a URL is created for the instructor

to access the exercise directly without any extra work. In retrospect, we should have created

this tool earlier to save hundreds of hours of writing word-matching interactives manually.

Our tool addresses the need for computer science instructors to be able to teach new

vocabulary from anywhere in the world. Its primary purpose serves to help students im-

58

prove their computer science vocabulary through word-matching interactives. The con-

tribution from our research is a web-based tool that can automatically generate a word-

matching interactives. Now, instructors can enter their terms and descriptions to create fun

word-matching interactives which can be shared with students by sending them a URL.

The tool is freely available from http://livelab.georgiasouthern.edu/wordmatchgenerator.

It enables the instructors to guide the students in need, leading to a better learning experi-

ence. The effectiveness of our application is supported by the research shown in (Arifah

and Kusumarasdyati 2013), (Dewi 2014), (Manik and Christiani 2016), (Masri and Najar

2014), Ria Dhatun and (Nikmah Husein 2010).

59

CHAPTER 5

FUTURE WORK

At present, the generated exercises are not associated with a user. We plan to let in-

structors create accounts so they can create and store exercises in a database. An instructor

will be able to view all created exercises and delete them as well. With a user account, the

keys and their descriptions for each exercise will be saved in the database and regenerated.

The instructor will not need to re-enter the keys terms and descriptions if new functionality

or a new user interface is added to the generated HTML file.

We have iterated on the generic programming model that we used for the Automatic

Word Match Generator to create another teaching tool called Automatic Word Flip Gen-

erator. This tool is still in the early stages of development. It will provide students an

opportunity to improve their reading comprehension skills by flipping cards that display a

question and answer. An example of the interface for a word-flip interactive is shown in

Figure 5.1.

Once a question and answer is loaded into the system, a category is generated. Each

of these categories contains a set of questions and answers. An instructor can create a

category and give the URL to a student to practice their vocabulary. An example exercise

is shown in Figure 5.2 and Figure 5.3.

Another direction of the future work is to create multiple word-matching interactives

at once. This idea was proposed by an instructor. If an instructor wishes to create an XML

file that stores information for multiple exercises, as long as that file specifies the title, key

terms, and their descriptions, the Automatic Word Match Generator will take the informa-

tion from the XML file and automatically generate a word-matching interactive for each

exercise specified in the XML file.

In Section 3.3, we proposed to apply the generic model for web page generation to the

60

Figure 5.1: Adding a Question

61

Figure 5.2: Before Flipping a Card

62

Figure 5.3: After Flipping a Card

63

Code Animation problem. In the future, we will work on the implementation of the Code

Animation Generator.

REFERENCES

Adams, D., Sumintono, B., Mohamed, A., & Noor, N. S. M. (2018). E-learning readiness

among students of diverse backgrounds in a leading malaysian higher education

institution. Malaysian Journal of Learning and Instruction, 15(2), 227–256.

Agocs, M. M., Burns, M. S., De Ley, L. E., Miller, S. L., & Calhoun, B. M. (2006). Fast

forword language. Treatment of language disorders in children, 471–508.

Arcuri, A., & Yao, X. (2014). Co-evolutionary automatic programming for software devel-

opment. Information Sciences, 259, 412–432.

Arifah, M., & Kusumarasdyati. (2013). The effectiveness of make a match technique for

teaching writing descriptive text to the seventh graders of smpn 1 karang binangun

lamongan. UNESA, 1(1), 1–8.

Azzi-Huck, K., & Shmis, T. (2020). Managing the impact of covid-19 on education systems

around the world: How countries are preparing, coping, and planning for recovery.

World Bank Blogs, 18.

Badge, J. L., Dawson, E., Cann, A. J., & Scott, J. (2008). Assessing the accessibility of

online learning. Innovations in Education and Teaching International, 45(2), 103–

113.

Balzer, R. (1985a). A 15 year perspective on automatic programming. IEEE Transactions

on Software Engineering, (11), 1257–1268.

Balzer, R. (1985b). A 15 year perspective on automatic programming. IEEE Transactions

on Software Engineering, (11), 1257–1268.

Cooney, C. (Fall 2015). Revel educator study assesses quiz, exam, and final course grades at

central michigan university. http://www.pearsoned.com/results/revel-educator-study-

assesses-quiz-exam-final-course-grades-central-michigan-university.

64

65

Cooney, C. (Spring 2016). Revel™ educator study observes homework and exam grades

at university of louisiana. http://www.pearsoned.com/results/revel-educator-study-

observes-homework-exam-grades-university-louisiana/.

Dewi, M. (2014). The impact of the application of a match technique towards students’

vocabulary mastery. The Second International Conference on Education and Lan-

guage (2nd ICEL) 2014 Bandar Lampung University (UBL), Indonesia ISSN 2303-

1417.

Drosos, I., Barik, T., Guo, P. J., DeLine, R., & Gulwani, S. (2020). Wrex: A unified

programming-by-example interaction for synthesizing readable code for data sci-

entists. Proceedings of the 2020 CHI conference on human factors in computing

systems, 1–12.

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-

student survey of mechanics test data for introductory physics courses. American

journal of Physics, 66(1), 64–74.

Jazayeri, M. (1976). Formal specification and automatic programming. Proceedings of the

2nd international conference on Software engineering, 293–296.

Kansal, A. K., Gautam, J., Chintalapudi, N., Jain, S., & Battineni, G. (2021). Google trend

analysis and paradigm shift of online education platforms during the covid-19 pan-

demic. Infectious Disease Reports, 13(2), 418–428.

Liang, Y. D. (2018). Revel™ for introduction to python programming and data structures

2e.

Liang, Y. D. (2020). Revel™ for introduction to java programming and data structures 12e.

Liang, Y. D. (2021). Revel™ for introduction to c++ programming and data structures 5e.

Luxton-Riley Andrew, W. B., & Tyne, C. (2018). Intelligent tutoring systems for program-

ming education: A systematic review. ACE Annual Convention & Exibition, 10(3),

11.

66

Manik, S., & Christiani, M. (2016). Teaching vocabulary using matching word on computer

assisted language learning. International Journal of English Language Teaching,

4(7), 1–26.

Masri, A. A., & Najar, M. A. (2014). The effectivness of using word games on primary

stage students achievement in english language vocabulary in jordan. American In-

ternational Journal of Contemporary Research, 4(9), 22.

Ngolah, C. F., & Wang, Y. (2004). Exploring java code generation based on formal spec-

ifications in rtpa. Canadian Conference on Electrical and Computer Engineering

2004 (IEEE Cat. No. 04CH37513), 3, 1533–1536.

Olsson, R. (1995). Inductive functional programming using incremental program transfor-

mation. Artificial intelligence, 74(1), 55–81.

Palshikar, G. K. (2001). Applying formal specifications to real-world software develop-

ment. IEEE Software, 18(6), 89–97.

Ria Dhatun Nikmah, B. G., & Husein, R. (2010). The effectiveness of make a match tech-

nique in teaching vocabulary. ACM Transactions on Computing Education, 10(3),

22.

Sarah Cohen, W. N., & Sagic, Y. (2007). Deciding equivalances among conjunctive aggre-

gate queries. 54(2). https://doi.org/10.1145/1219092.1219093

Shahzad, A., Hassan, R., Aremu, A. Y., Hussain, A., & Lodhi, R. N. (2021). Effects of

covid-19 in e-learning on higher education institution students: The group compar-

ison between male and female. Quality & quantity, 55(3), 805–826.

Tallal, P., Merzenich, M. M., Miller, S., & Jenkins, W. (1998). Language learning impair-

ments: Integrating basic science, technology, and remediation. Experimental Brain

Research, 123(1), 210–219.

67

Wang, C., Feng, Y., Bodik, R., Dillig, I., Cheung, A., & Ko, A. J. (2021). Falx: Synthesis-

powered visualization authoring. Proceedings of the 2021 CHI Conference on Hu-

man Factors in Computing Systems, 1–15.

Whalen, M. W., & Heimdahl, M. P. E. (1999). An approach to automatic code genera-

tion for safety-critical systems. 14th IEEE International Conference on Automated

Software Engineering, 315–318.

Yang, W., & Dai, W. (2011). Rote memorization of vocabulary and vocabulary develop-

ment. English Language Teaching, 4(4), 61–64.

YooN, S. S. (1990). A translator description language tdl for specification languages. Jour-

nal of information processing, 3(3).

Young, E. (2005). The language of science, the lanuage of students: Bridging the gap with

engaged learning vocabulary strategies. Science Activities, 42(2), 12–17.

68

 APPENDIX A: USER’S MANUAL

The first step will be installing g it. Please visit https://git-scm.com/book/en/v2/G

etting-Started-Installing-Git for instructions on how to install the software on the your

machine.

Then you will need to install maven. Please visit https://maven.apache.org for

instructions on how to install maven.

Word Match Generator can be downloaded and installed by executing the following

steps:

1. visit the github page for the source code at https://github.com/EvanGertis/Selected

-Topics/tree/master. Then run:

2. git clone https://github.com/EvanGertis/Selected-Topics.git

3. cd Selected-Topics

This will pull down the source code for the application.

4. To clean and build maven project, use:

mvn clean install

5. To create and run the Spring boot application, run the following code:

mvn spring-boot:run

69

This will start the web server.

6. open the browser to

http://localhost/wordmatchgenerator

The purpose of this section is to describe how to use Word Match Generator. Start the

application by running the command:

mvn spring-boot:run

Go to the wordmatchgenerator endpoint.

Figure A.1: Word Match Generator Without Input Data

Then create a set of key terms and definitions.

Then click “generate HTML” button.

Then click the View button as shown below:

Then share this url with the student.

70

Figure A.2: Word Match Generator With Input Data

Figure A.3: Word Match Generator After Generating HTML

71

Figure A.4: Word Match Generator Before Dragging Boxes

72

 APPENDIX B: MAINTENANCE MANUAL

The modules used in the Automatic Word Match Generator are listed below:

1. reset(): Used to initialize the drag and drop boxes used in the init() method.

2. init(): used to initialize the variables needed to run the word matching interactive

drag and drop algorithm.

3. show answer(): Used to display the correct answer for a word matching interactive.

4. generate html(): Processes the HTML inputs from the instructor UI into a javascript

string.

5. save content(): Sends the request body to the server via XMLHttpRequest to create a

word matching interactive. Retrieves the response from the server to display the view

button that is linked to the id associated with the created word matching interactive.

6. add more(): Used to create more input boxes in the instructor UI.

7. render html(): Used to originally display the processed HTML from the javascript

string.

8. drag(): Provides a dragging functionality in a word matching interactive.

9. drop(): Updates the word matching interactive after a user drags the key term to a

description.

10. handDrop(): Used to verify whether or not the correct key term matches the descrip-

tion.

11. speak(): Provides audio narration of the program.

12. add logging(): Sets up application logging for javascript.

73

13. clickMessage(): Provides logging for javascript.

14. saveWordMatchJSP(): Processes the POST request that contains the request body

for generating a word matching interactive.

15. getWordMatch(): Returns the view associated with a word matching interactive.

16. getWordMatch(): Returns the view associated with a word matching interactive.

17. saveJSP(): Generates a word matching interactive jsp file. Uses the java.io library

to create files, the java.util library for decoding the base64 encoded HTML string,

log4j library to provide application logging, and the java.util library to interact with

file streams.

18. JSPtoHTML(): converts the generated jsp file within the saveJSP method to a static

HTML file.

74

APPENDIX C: DESIGN DOCUMENTS

The specifications for a Word Match Generator consisted of the following criteria:

1. Instructors must be able to automatically create interactive word matching games as

shown in Figure 1.5.

2. Students should be able to access the games online.

From the perspective of the developer the specifications for the Automatic Word

Match Generator are the following:

1. Enable the storage and retrieval of word-matching interactives.

2. Capture the input data necessary to create word-matching interactives

3. Provide a web interface for displaying word-matching interactives

4. Develop a drag and drop algorithm that facilitates an interactive learning experience

using the derived data from the output.

75

 APPENDIX D: SOURCE CODE

package com.company.app;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class Application {

public static void main(String[] args) {

SpringApplication.run(Application.class, args);

}

}

package com.frugalis.Spring.Boot.Resources;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.

ResourceHandlerRegistry;

import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration

public class ResourceConfigs implements WebMvcConfigurer

{

private static final String[] CLASSPATH_RESOURCE_LOCATIONS =

{

"classpath:/htmlFiles/",

"classpath:/static/",

76

"classpath:/static/images"

};

@Override

public void addResourceHandlers(ResourceHandlerRegistry registry)

{

registry.addResourceHandler("/**")

.addResourceLocations(CLASSPATH_RESOURCE_LOCATIONS)

.setCachePeriod(3000);

}

}

package com.company.app.service;

/*

* WordMatchService.java

* Author: Evan Gertis

*/

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

import com.company.app.model.WordMatch;

import java.io.File;

import java.io.IOException; // Import the IOException class to handle

errors

import java.io.FileWriter; // Import the FileWriter class

import java.io.IOException; // Import the IOException class to handle

77

errors

import java.nio.file.Path;

import java.nio.file.Paths;

import java.util.stream.Stream;

import java.nio.file.Files;

import java.util.Base64;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileReader;

@Service

public class WordMatchService {

private static final Logger logger = LogManager.getLogger(

WordMatchService.class);

@Autowired

WordMatchService(){

}

public Long saveJSP(WordMatch wordMatch){

logger.info(wordMatch);

Long numberOfFiles = (long) 0;

try {

File file = new File("./src/main/webapp/view/

word_match0.jsp");

logger.info("Decoding String");

String cleanedHTML = wordMatch.toString().replace("

78

WordMatch(content=","").replace(")","");

logger.info(cleanedHTML);

byte[] decodedBytes = Base64.getDecoder().decode(

cleanedHTML.getBytes());

String html = new String(decodedBytes, "UTF-8");

logger.info(html);

if (file.createNewFile()) {

System.out.println("File created: " + file.

getName());

try {

FileWriter myWriter = new FileWriter

("./src/main/webapp/view/

word_match0.jsp");

myWriter.write(html);

myWriter.close();

} catch (IOException e) {

System.out.println("An error occurred

.");

e.printStackTrace();

}

} else {

String fileName = file.getName().toString();

String index = fileName.substring(fileName.

indexOf("h") + 1);

index = index.substring(0, index.indexOf("."))

;

Integer parsedInt = Integer.parseInt(index);

System.out.println(parsedInt);

79

Stream<Path> files = Files.list(Paths.get("./

src/main/webapp/view/"));

numberOfFiles = files.map(Path.class::cast)

.filter(path -> path.

getFileName().

toString().

startsWith("

word_match"))

.count();

fileName = fileName.replace(index,

numberOfFiles.toString());

System.out.println(numberOfFiles);

System.out.println("fileName should have been

printed by now");

file = new File(fileName);

String JSPfileName = "./src/main/webapp/view

/"+file;

FileWriter myWriter = new FileWriter(

JSPfileName);

myWriter.write(html);

myWriter.close();

// Write JSP file to HTML

// File path is passed as parameter

File jspFile = new File(JSPfileName);

// Note: Double backquote is to avoid compiler

// interpret words

// like \test as \t (ie. as a escape sequence)

80

// Creating an object of BufferedReader class

BufferedReader br

= new BufferedReader(new FileReader(jspFile));

// Declaring a string variable

String st;

// Condition holds true till

// there is character in a string

String htmlFileName = JSPfileName.replace("jsp

","html");

File htmlFile = new File(htmlFileName);

String content = "Writing To File";

if (!htmlFile.exists()) {

htmlFile.createNewFile();

}

try {

FileWriter fw = new FileWriter(htmlFile

.getAbsoluteFile());

BufferedWriter bw = new BufferedWriter(

fw);

while ((st = br.readLine()) != null) {

System.out.println(st);

bw.write(st);

}

bw.close();

} catch (IOException e) {

e.printStackTrace();

81

}

System.out.println("Done");

// try

// {

// JSPtoHTML(JSPfileName);

// }

// catch (IOException e) {

// System.out.println("An error occurred

.");

// e.printStackTrace();

// }

}

} catch (IOException e) {

System.out.println("An error occurred.");

e.printStackTrace();

}

return numberOfFiles;

}

public void JSPtoHTML(String fileNameForJSP) throws Exception {

// File path is passed as parameter

File file = new File(fileNameForJSP);

// Note: Double backquote is to avoid compiler

// interpret words

// like \test as \t (ie. as a escape sequence)

// Creating an object of BufferedReader class

82

BufferedReader br

= new BufferedReader(new FileReader(file));

// Declaring a string variable

String st;

// Condition holds true till

// there is character in a string

String htmlFileName = fileNameForJSP.replace("jsp","html");

File htmlFile = new File(htmlFileName);

String content = "Writing To File";

if (!htmlFile.exists()) {

htmlFile.createNewFile();

}

try {

FileWriter fw = new FileWriter(htmlFile.

getAbsoluteFile());

BufferedWriter bw = new BufferedWriter(fw);

while ((st = br.readLine()) != null) {

System.out.println(st);

bw.write(st);

}

bw.close();

} catch (IOException e) {

e.printStackTrace();

}

System.out.println("Done");

}

83

public Long saveHTML(WordMatch wordMatch){

logger.info(wordMatch);

Long numberOfFiles = (long) 0;

try {

File file = new File("./src/main/webapp/view/

word_match0.html");

logger.info("Decoding String");

String cleanedHTML = wordMatch.toString().replace("

WordMatch(content=","").replace(")","");

logger.info(cleanedHTML);

byte[] decodedBytes = Base64.getDecoder().decode(

cleanedHTML.getBytes());

String html = new String(decodedBytes, "UTF-8");

logger.info(html);

if (file.createNewFile()) {

System.out.println("File created: " + file.

getName());

try {

FileWriter myWriter = new FileWriter

("./src/main/webapp/view/

word_match0.html");

myWriter.write(html);

myWriter.close();

} catch (IOException e) {

System.out.println("An error occurred

.");

e.printStackTrace();

}

84

} else {

String fileName = file.getName().toString();

String index = fileName.substring(fileName.

indexOf("h") + 1);

index = index.substring(0, index.indexOf("."))

;

Integer parsedInt = Integer.parseInt(index);

System.out.println(parsedInt);

Stream<Path> files = Files.list(Paths.get("./

src/main/webapp/view/"));

numberOfFiles = files.map(Path.class::cast)

.filter(path -> path.

getFileName().

toString().

startsWith("

word_match"))

.count();

fileName = fileName.replace(index,

numberOfFiles.toString());

System.out.println(numberOfFiles);

System.out.println("fileName should have been

printed by now");

file = new File(fileName);

FileWriter myWriter = new FileWriter("./src/

main/webapp/view/"+file);

myWriter.write(html);

myWriter.close();

}

85

} catch (IOException e) {

System.out.println("An error occurred.");

e.printStackTrace();

}

return numberOfFiles;

}

}

package com.company.app.model;

/*

* WordMatch.java

* Author: Evan Gertis

*/

import lombok.Data;

@Data

public class View {

public Long id;

public void setId(Long Id) {

this.id = Id;

}

}

package com.company.app.model;

86

/*

* WordMatch.java

* Author: Evan Gertis

*/

import lombok.Data;

@Data

public class WordMatch {

public String content;

}

package com.company.app.controller;

//WordMatchController.java

//Author: Evan Gertis 10/11/2021

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.PathVariable;

87

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestBody;

import org.springframework.web.bind.annotation.RequestMapping;

import com.company.app.model.View;

import com.company.app.model.WordMatch;

import com.company.app.service.WordMatchService;

@Controller

public class WordMatchController {

private static final Logger logger = LogManager.getLogger(

WordMatchController.class);

private final WordMatchService wordMatchService;

@Autowired

public WordMatchController(WordMatchService wordMatchService) {

logger.info("visiting word match");

this.wordMatchService = wordMatchService;

}

@PostMapping("/wordmatchgenerator")

public ResponseEntity<View> saveWordMatchJSP(@RequestBody WordMatch

wordMatch) {

logger.info("Processing word match from client");

logger.info(wordMatch);

Long Id = wordMatchService.saveJSP(wordMatch);

View view = new View();

logger.info("New view created with id {}",Id);

88

logger.info("View object before {}",view);

view.setId(Id);

logger.info("View object after {}",view);

return new ResponseEntity<View>(view, HttpStatus.CREATED);

}

@PostMapping("/wordmatchgeneratorXML")

public ResponseEntity<HttpStatus> saveWordMatchXML(@RequestBody

WordMatch wordMatch) {

logger.info("Processing word match from client");

logger.info(wordMatch);

// Long Id = wordMatchService.saveHTML(wordMatch);

// View view = new View();

// logger.info("New view created with id {}",Id);

// logger.info("View object before {}",view);

// view.setId(Id);

// logger.info("View object after {}",view);

return new ResponseEntity<HttpStatus>(HttpStatus.OK);

}

@RequestMapping("/wordmatchgenerator")

public String getWordMatch(Model model) {

return "word_match";

}

@RequestMapping("/wordmatchgenerator/{id}")

public String getWordMatch(@PathVariable String id ,Model model) {

return "word_match"+id;

89

}

}

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<!DOCTYPE HTML>

<html lang="en">

<head>

<title>Word Match Generator</title>

<style>

*:focus {outline: 2px solid blue; outline-offset: 2px;}

details {padding:3px;}

</style>

<link rel="stylesheet" type="text/css" href="${pageContext.request.

contextPath}/static/css/boxes.css" />

<link rel="stylesheet" type="text/css" href="${pageContext.request.

contextPath}/static/css/style.css" />

<script type="text/javascript" src="${pageContext.request.contextPath}/

static/js/event1.js"></script>

<!-- Global Site Tag (gtag.js) - Google Analytics -->

<script async src="https://www.googletagmanager.com/gtag/js?id=UA

-89940905-27"></script>

<script>

window.dataLayer = window.dataLayer || [];

function gtag(){dataLayer.push(arguments)};

gtag(’js’, new Date());

90

gtag(’config’, ’UA-89940905-27’);

</script>

<!-- <script type="text/javascript" src="../logging.js"></script> -->

</head>

<body>

<div id="maincontentstyle">

<div id="boxstyle">

<h3 id= "title">Word Match Generator</h3>

<div>

<div id="inputs">

<div id="inputBoxes">

<title>Input:</title>

<div>

Title: <input id= "title_input" type="text">

</div>

<div>

Key Term 1: <input id="el1" type="text" value="">

</div>

<div>

Description 1: <input id="dl1" type="text" value="">

</div>

<div>

Key Term 2: <input id="el2" type="text" value="">

</div>

91

<div>

Description 2: <input id="dl2" type="text" value="">

</div>

</div>

<button id ="add_more" class="button" type="button"

onClick="add_more()">Add More</button>

<button id ="one" class="button" type="button" onClick="

generate_html()">Generate Html</button>

</div>

</div>

</div>

<div id="results" class="row">

</div>

<div id="renderedHTML" class="row">

</div>

</div>

<script src="${pageContext.request.contextPath}/static/js/jquery-1.7.2.min.

js"></script>

<script src="${pageContext.request.contextPath}/static/js/jquery-ui.min.js

"></script>

92

<script src="${pageContext.request.contextPath}/static/js/jquery.ui.touch-

punch.min.js"></script><script src="${pageContext.request.contextPath}/

static/js/jquery.alerts.js"></script><link href="${pageContext.request.

contextPath}/static/js/jquery.alerts.css" rel="stylesheet" type="text/

css" media="screen" />

<script type="text/javascript">

$(init);

$(window).unload(function() {

removeStorage.removeItem("someVarKey1");

});

function init() {

document.getElementById(’resetButton’).style.display = ’none’;

document.getElementById("resetButton").style.visibility = "hidden";

if (false && sessionStorage.getItem("someVarKey1")) // No focus for the

first time

$("#one").focus();

var numbers = [3, 4, 5, 1, 2];

initialize(numbers);

}

</script>

<script type="text/javascript" src="${pageContext.request.contextPath}/

static/js/word_match.js"></script>

<script type="text/javascript" src="${pageContext.request.contextPath}/

static/js/GetElementPosition3.js"></script>

93

<script>

audioOn = false;

$(function() {

$(’.menulink’).click(function(){

if (audioOn) {

$("#bg").attr(’src’,"${pageContext.request.contextPath}/static/images/

audioOff.png");

audioOn = false;

}

else {

$("#bg").attr(’src’,"${pageContext.request.contextPath}/static/images/

audioOn.png");

audioOn = true; speak(" ");

}

return false;

});

});

</script>

</body>

</html>

<script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/10.7.1/highlight

.min.js"></script>

// window.load = main()

94

// function main(){

// initially html is not generated.

var htmlGenerated = false;

// number of inputs start out as 2.

var numberOfInputs = 2;

// initially no addtional inputs have been added.

var addMore = false;

// initialize the answer.

var answer = ’’;

// saved variables

var saved = false

var saved_id = 0

function reset() {

// reset the htmGenerated to false.

htmlGenerated = false;

numberOfInputs = 2;

var someVarName = true;

sessionStorage.setItem("someVarKey1", someVarName);

window.location.reload();

}

function populate_numbers_array(footer, dlArray){

console.log("populating numbers")

dlArray.forEach(i => {

footer += i.replace (/[^\d.]/g, ’’);

footer += ’,’;

95

console.log("adding "+i+" to the numbers array")

})

return footer

}

function show_answer() {

jAlert(answer, ’Correct Match’);

}

function generate_html() {

// retrieve the keys and descriptions. Then load them into their

respective arrays.

const e_inputs = document.querySelectorAll("[id^=’el’]");

const d_inputs = document.querySelectorAll("[id^=’dl’]");

let elArray = [];

let dlArray = [];

const title = document.getElementById(’title_input’).value;

e_inputs.forEach(i => { if(i.value) elArray.push(i.value) });

d_inputs.forEach(i => { if(i.value) dlArray.push(i.value) });

//has the html already been generated?

if(!htmlGenerated){

//fetch the results box

results = document.getElementById("results");

//create textarea

96

textarea = document.createElement("textarea");

textarea.setAttribute("id","generated_html_textarea");

// initialize blank html

header = ’<!DOCTYPE HTML>\n<html lang=\"en\">\n\t<head>\n\t\t<title>

Word Matching Exercise</title>\n\t\t<style>\n*:focus {outline: 2

px solid blue; outline-offset: 2px;}\n\t\tdetails {padding:3px

;}\n\t\t</style>\n\t\t<link rel=\"stylesheet\" type=\"text/css\"

href=\"${pageContext.request.contextPath}/static/css/boxes.css

\" />\n\t\t<script type=\"text/javascript\" src=\"${pageContext.

request.contextPath}/static/js/event1.js\">’;

header += "<link rel=\"stylesheet\" type=\"text/css\" href=\"${

pageContext.request.contextPath}/static/css/style.css\" />"

header += ’</’

header += ’script>\n’

header += ’<script async src=\"https://www.googletagmanager.com/gtag

/js?id=UA-89940905-27\">’

// header += ’</’

// header += ’script>\n<script>\n\t window.dataLayer = window.

dataLayer || [];\n\t function gtag(){dataLayer.push(arguments)

};\tgtag(\"js\", new Date());\tgtag(\"config\", \"UA

-89940905-27\");\n’

header += ’</’

header += ’script>\n’

header += ’<script src="${pageContext.request.contextPath}/static/js

/jquery-1.7.2.min.js">’

header += ’</’

header += ’script>\n’

97

header += ’<script src="${pageContext.request.contextPath}/static/js

/jquery-ui.min.js">’

header += ’</’

header += ’script>\n’

header += ’<script src="${pageContext.request.contextPath}/static/js

/jquery.ui.touch-punch.min.js">’

header += ’</’

header += ’script>\n’

header += ’<script src="${pageContext.request.contextPath}/static/js

/event1.js">’

header += ’</’

header += ’script>\n’

header += ’<script src="${pageContext.request.contextPath}/static/js

/jquery.alerts.js">’

header += ’</’

header += ’script>\n’

header += ’<link href="${pageContext.request.contextPath}/static/js/

jquery.alerts.css" rel="stylesheet" type="text/css" media="

screen">’

header += ’<script type=\"text/javascript\" src=\"${pageContext.

request.contextPath}/static/js/logging.js\">’

header += ’</’

header += ’script>\n</head>\n\t\t<body>’;

let html = ’’;

html += header;

html += ’<div id=\’maincontentstyle\’>\n’

html += ’\t<center>\n’

html += ’\t\t<div id=\’boxstyle\’>\n’

98

html += ’\t\t\t<h3 id=\’title\’>’+title+"</h3>\n";

//create key inputs

html += ’\t\t\t\t<center>\n’

html += ’\t\t\t\t\t<div class=\’source\’>\n’

console.log("The value of the dlArray is")

console.log(dlArray)

console.log("The value of the elArray is")

console.log(elArray)

dlArray = shuffleDescriptions(dlArray);

for (let i = numberOfInputs; i < elArray.length+numberOfInputs; i++)

{

html += ’\t\t\t\t\t\t<div id=\’s’;

id = i-numberOfInputs+1;//elArray[i-numberOfInputs].replace

(/[^\d.]/g, ’’);

console.log("id "+id)

html += id;

html +=’\’ class=\’draggyBox-small ui-draggable\’>\n’;

html += ’\t\t\t\t\t\t\t’

html += elArray[i-numberOfInputs]

html += ’\n’;

html +=’\t\t\t\t\t\t</div>\n’;

}

elArray = shuffleKeys(elArray);

console.log("The value of the dlArray is")

console.log(dlArray)

console.log("The value of the elArray is")

console.log(elArray)

html += ’\t\t\t\t\t</div>\n’

99

html += ’\t\t\t\t\t</center>\n’

//create description inputs

html += ’\t\t\t\t\t<table id=\’tablestyle\’>\n’

for (let i = numberOfInputs; i < dlArray.length+numberOfInputs; i++)

{

html +=’\t\t\t\t\t\t<tr>\n’

html += ’\t\t\t\t\t\t<td id=\’row’;

id = i-numberOfInputs+1;//dlArray[i-numberOfInputs].replace (

/[^\d.]/g, ’’);

console.log("id "+id);

html += id;

html +=’\’>\n’;

html += ’\t\t\t\t\t\t\t<div id=\’t’;

html += id;

html +=’\’ class=\’ltarget ui-droppable\’>’

html +=’</div>\n’

html +=’\t\t\t\t\t\t</td >\n’

html +=’\t\t\t\t\t\t<td id=\’d’

html += id

html += ’\’>\n’

html += ’\t\t\t\t\t\t\t’;

html += dlArray[i-numberOfInputs];

html += ’\n’;

html +=’\t\t\t\t\t\t\t</td >\n’

html +=’\t\t\t\t\t\t</tr>\n’;

}

html += ’\t\t\t\t\t</table>\n’;

100

html += ’\t\t\t\t</center>\n’

html += ’\t\t</div>\n’

html += ’\t</center>\n’

html += ’</div>’

html += ’ <button id =\"one\" class=\"

button\" type=\"button\" onClick=\"show_answer’

html += ’()’

html += ’"’

html += ">"

html += ’Show Answer’

html += ’</’

html += ’button> <button id = \"resetButton\" class=\"button\" type

=\"button\" onClick=\"reset’

html += ’()’

html += ’"’

html += ’>’

html += ’Reset’

html += ’</’

html += ’button>’

html += ’’

html += ’’

html += ’<a href="" title="Turns Text-to-Speech Output On or Off"

class="menulink" style="text-decoration: none;">’

html += ’<img id="bg" src="${pageContext.request.contextPath}/static

/images/audioOff.png" height="30" width="30" style="margin-

bottom:-10px; padding-bottom:-20px;">’

html += ’’

html += ’’

101

footer = ’\n\t\t</body>\n</html>\n’;

footer += ’’

footer += ’<script type="text/javascript">’

footer += ’$(init);’

footer += ’$(window).unload(function() {’

footer += ’removeStorage.removeItem("someVarKey1");’

footer += ’});’

footer += ’function reset() {’

footer += ’ var someVarName = true;’

footer += ’sessionStorage.setItem("someVarKey1", someVarName);’

footer += ’window.location.reload();’

footer += ’}’

footer += ’function init() {’

footer += ’ document.getElementById(\’resetButton\’).style.

display = \’none\’;’

footer += ’document.getElementById("resetButton").style.visibility =

"hidden";’

footer += ’if (false && sessionStorage.getItem("someVarKey1"))’

footer += ’$("#one").focus();’

console.log(’var numbers = [’);

footer += ’var numbers = [’

for (let i = numberOfInputs; i < dlArray.length+numberOfInputs; i++)

{

footer += dlArray[i-numberOfInputs].replace (/[^\d.]/g, ’’);

console.log(dlArray[i-numberOfInputs].replace (/[^\d.]/g, ’’))

footer += ’,’;

console.log(’,’)

}

102

console.log(’];’)

footer += ’];’

footer += ’initialize(numbers);’

footer += ’}’

footer += ’</script>’

footer += ’ <script>’

footer += ’ answer = ’

footer += ’\"’

answer = ’’;

for (let i = numberOfInputs; i < dlArray.length+numberOfInputs; i++)

{

answer += elArray[i-numberOfInputs];

answer += ’:’;

answer += dlArray[i-numberOfInputs];

answer += ’ ’

}

footer += answer

console.log(answer)

footer += ’\"’

footer += ’;’

// footer += ’\n’

// footer += ’ Iteration: is one time execution of the loop body.’

// footer += ’\n’

// footer += ’Loop Continuation Condition: is a Boolean expression

that controls the execution of the loop.’

// footer += ’\n’

// footer += ’Infinite Loop: is a loop that runs forever due to an

error in the code.’

103

// footor += ’\n’

// footer += ’Off-by-one: is an error in the program that causes the

loop body to be executed one more or less time."’

footer += ’ function show_answer() {’

footer += ’ jAlert(answer, \’Correct Match\’);’

footer += ’ }’

footer += ’</script>’

footer += ’ ’

footer += ’<script type="text/javascript" src="${pageContext.request

.contextPath}/static/js/GetElementPosition3.js"></script>’

footer += ’ <script>’

footer += ’ $(function(){’

footer += ’ if (\’speechSynthesis\’ in window) {’

footer += ’ speechSynthesis.onvoiceschanged = function() {’

footer += ’ var $voicelist = $(\’#voices\’);’

footer += ’’

footer += ’ if($voicelist.find(\’option\’).length == 0) {’

footer += ’ speechSynthesis.getVoices().forEach(function(voice,

index) {’

footer += ’ var $option = $(\’<option>\’)’

footer += ’ .val(index)’

footer += ’ .html(voice.name + (voice.default ? \’ (default)

\’ :\’\’));’

footer += ’ $voicelist.append($option);’

footer += ’ });’

footer += ’’

footer += ’ $voicelist.form_select();’

footer += ’ }’

104

footer += ’ }’

footer += ’ } ’

footer += ’}); ’

footer += ’audioOn = false;’

footer += ’$(function() {’

footer += ’$(\’.menulink\’).click(function(){’

footer += ’ if (audioOn) {’

footer += ’ $("#bg").attr(\’src\’,"${pageContext.request.

contextPath}/static/images/audioOff.png"); ’

footer += ’ audioOn = false;’

footer += ’ }’

footer += ’ else {’

footer += ’ $("#bg").attr(\’src\’,"${pageContext.request.

contextPath}/static/images/audioOn.png");’

footer += ’ audioOn = true; speak(" ");’

footer += ’ }’

footer += ’ return false;’

footer += ’});’

footer += ’});’

footer += ’ </script> ’

html += footer;

// html generation is done.

htmlGenerated = true;

textarea.value = html;

results.replaceChildren(textarea);

// Generate reset, show answer, , and render html buttons

105

controls = document.createElement("div");

controls.setAttribute("id","program1");

controls.setAttribute("style","border: 1px solid #EB0D1B; width: 450

px; font-family: courier; font-size: 100.5%; margin: 0px auto;

border: 1px; text-align: center; margin-top: 5px;");

controls.innerHTML += ’<button id = "renderHTMLButton" class="button

" type="button" onClick="render_html()">Render html</button>\n’;

controls.innerHTML += ’<button id = "submit" class="button" type="

button" onClick="saveContent()"> Save </button>\n’;

controls.innerHTML += ‘<button id=\"view_button\" class=\"button\"

style=\" display: none;\"><a href=\"${window.location.href}/${

saved_id}\"> view </button>\n‘;

if(document.getElementById("renderHTMLButton"))

results.parentNode.replaceChild(controls);

results.parentNode.appendChild(controls);

}

}

function saveContent(){

console.log("calling save content");

var html_content = document.getElementById("generated_html_textarea

");

var b64_string = btoa(html_content.value)

console.log(b64_string)

var xhr = new XMLHttpRequest();

xhr.open("POST", "/wordmatchgenerator", true);

xhr.setRequestHeader("Content-Type", "application/json;charset=UTF

106

-8");

xhr.onreadystatechange = function()

{

if(xhr.readyState == 4 && xhr.status == 201) {

console.log(xhr.status)

console.log("content saved");

saved = true;

view_button = document.getElementById("view_button");

view_button.style.display = "inline";

console.log(’JSON.parse(xhr.response).id ’ + JSON.parse(xhr.

response).id)

saved_id = JSON.parse(xhr.response).id

console.log(’saved_id ’ +saved_id)

view_button.children[0].href = ‘${window.location.href}/${

saved_id}‘

}

else{

console.log(xhr.status)

console.log(xhr.response)

console.log("content was not save successfully");

}

}

console.log(’{"content":\"’

+b64_string+’\"}’);

xhr.send(JSON.stringify({content: b64_string}));

}

function add_more() {

107

// we’ve added more inputs.

addMore = true;

// set html generated to false, because new inputs have been added.

htmlGenerated = false;

// increment the number of inputs.

numberOfInputs++;

//fetch the input boxes.

inputs = document.getElementById("inputBoxes");

// create newline

br = document.createElement("br");

//create a new row for a key term.

row = document.createElement("div");

// set the key term text.

row.innerHTML = "Key Term ";

row.innerHTML +=numberOfInputs;

row.innerHTML +=" :";

// create the input for the key.

key = document.createElement("input");

key.setAttribute("id","el"+numberOfInputs);

//add the key to the row.

108

row.appendChild(key);

row.after(br);

//create a row for the new description.

row2 = document.createElement("div");

// set the description text.

row2.innerHTML = "Description "

row2.innerHTML+=numberOfInputs;

row2.innerHTML+=" :";

row2.after(br);

// create the description input

description = document.createElement("input");

description.setAttribute("id","dl"+numberOfInputs);

// add the description to the row.

row2.appendChild(description);

// add the rows for the key and the description to the inputBoxes.

inputs.appendChild(row);

inputs.appendChild(row2);

}

function render_html(){

textarea = document.getElementById("generated_html_textarea");

// Set the generate html to the value from the textarea.

109

generated_html = textarea.value;

console.log(generated_html);

// Create a new tab.

var new_window = window.open(’’);

maincontentstyle = document.getElementById("maincontentstyle");

if(document.getElementById("rendered_html"))

document.getElementById("rendered_html").remove();

rendered_html = document.createElement("div");

rendered_html.setAttribute("id","rendered_html");

rendered_html.setAttribute("style","border: 1px solid #EB0D1B; width:

450px; font-family: courier; font-size: 100.5%; margin: 0px auto;

border: 1px; text-align: center; margin-top: 5px;");

rendered_html.innerHTML += generated_html;

results = document.getElementById("results");

if(document.getElementById("rendered_html"))

results.parentNode.appendChild(rendered_html);

// Append the rendered html to the results tab

results.parentNode.appendChild(rendered_html);

header = ’<!DOCTYPE HTML>\n<html lang=\"en\">\n\t<head>\n\t\t<title>

Word Matching Exercise</title>\n\t\t<style>\n*:focus {outline: 2px

solid blue; outline-offset: 2px;}\n\t\tdetails {padding:3px;}\n\t\t

</style>\n\t\t<link rel=\"stylesheet\" type=\"text/css\" href=\"

static/css/boxes.css\" />\n\t\t<script type=\"text/javascript\" src

=\"static/js/event1.js\">’;

header += ’</’

110

header += ’script>\n’

header += ’<script async src=\"https://www.googletagmanager.com/gtag/js

?id=UA-89940905-27\">’

header += ’</’

header += ’script>\n’

// header += ’<script>\n\t window.dataLayer = window.dataLayer || [];\n

\t function gtag(){dataLayer.push(arguments)};\tgtag(\"js\", new

Date());\tgtag(\"config\", \"UA-89940905-27\");\n’

// header += ’</’

// header += ’script>\n’

header += ’</head>\n\t\t<body>’;

new_tab_html = header;

new_tab_html += rendered_html.innerHTML;

footer = ’\n\t\t</body>\n</html>\n’;

footer += ’<script type="text/javascript" src="static/js/

GetElementPosition3.js">’

footer += ’</’

footer += ’script>’

footer += ’<script type=\"text/javascript\" src=\"static/js/word_match.

js\">’

footer += ’<script src="static/js/jquery-1.7.2.min.js">’

footer += ’</’

footer += ’script>\n’

footer += ’<script src="static/js/jquery-ui.min.js">’

footer += ’</’

footer += ’script>\n’

footer += ’<script src="static/js/jquery.ui.touch-punch.min.js">’

footer += ’</’

111

footer += ’script>\n’

footer += ’<script src="static/js/event1.js">’

footer += ’</’

footer += ’script>\n’

footer += ’<script src="static/js/jquery.alerts.js">’

footer += ’</’

footer += ’script>\n’

footer += ’<link href="static/js/jquery.alerts.css" rel="stylesheet"

type="text/css" media="screen">’

footer += ’<script type=\"text/javascript\" src=\"static/js/logging.js

\">’

footer += ’</’

footer += ’script>\n’

new_tab_html += footer;

console.log(new_tab_html);

new_window.document.write(new_tab_html);

}

rand = Math.random();

function shuffleDescriptions(a){

for(let j,i=a.length;i>1;){

j=Math.floor(rand*i--);

if (i!=j) [a[i],a[j]]=[a[j],a[i]]

}

console.log("shuffled dlarray")

console.log(a)

return a

}

112

function shuffleKeys(a){

for(let j,i=a.length;i>1;){

j=Math.floor(rand*i--);

if (i!=j) [a[i],a[j]]=[a[j],a[i]]

}

console.log("shuffled elarray")

console.log(a)

return a

}

// }

113

 APPENDIX E: TEST SUITE

We can ensure that the Automatic Word Match Generator meets the specifications

listed in the in requirements specification by completing the following tests:

1. Visit the instructor UI.

2. Enter the following title: Section 1.2 Word Matching Exercise.

3. Enter the following key terms and descriptions

(a) CPU: is a computers brain. It retrieves instructions from memory and executes

then.

(b) Memory: stored data and program instructions for the CPU to execute. It is

volatile, because information is lost when the power is turned off.

(c) storage device: stores programs and data permanently.

(d) hardware: is the physical aspect of the computer that can be touched.

(e) software: are the invisible instructions that control hardware and make it per-

form tasks.

(f) Click generate HTML.

(g) Click Post.

(h) Click View.

(i) Drag CPU to is a computers brain. It retrieves instructions from memory and

executes then.

(j) Memory to stored data and program instructions for the CPU to execute. It is

volatile, because information is lost when the power is turned off.

(k) Storage device to stores programs and data permanently.

114

(l) Hardware to is the physical aspect of the computer that can be touched.

(m) Software to are the invisible instructions that control hardware and make it per-

form tasks.

1. Repeat steps 1-6 from Test 1.

2. Drag CPU to stores program and data permanently.

3. Ensure that CPU dragging box returns to original position.

1. Repeat steps 1-6 from Test 1.

2. Toggle the audio box.

3. Repeat step 7 from Test 1.

4. Ensure that audio functionality works.

1. Repeat steps 1-6 from Test 1.

2. Repeat step 7 from Test 1 except for the last key term.

3. Click the reset button.

4. Ensure that the key terms goes back to their original positions.

	Design And Implementation of An Automatic Word Generator For Word Matching Interactives
	Recommended Citation

	tmp.1652138221.pdf.z0UE6

