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MOLYBDENUM OXIDE/ANTIMONY NANOBELTS EMBEDDED IN ASYMMETRIC 
MEMBRANES FOR USE AS HIGH-CAPACITY LITHIUM/SODIUM-ION BATTERY ANODES 

by 

LOGAN WILLIAMS 

(Under the Direction of Ji Wu) 

ABSTRACT 

 

Lithium-ion batteries (LIB) are a key aspect of our daily lives, from smartphones to electric vehicles. 

Commercially available LIB use graphite anodes due to their reliability and safety. Graphite anodes 

present one key disadvantage: a relatively low theoretical capacity of 372 mAh g-1. It is of great 

importance that new research focuses on high-capacity anode materials to further our sustainability and 

usage of LIB. While increasing the performance of LIB is of great interest, developing alternative energy 

storage devices is gaining attention in academia and industry R&D. Sodium has become a topic of interest 

in recent years due to sodium’s much higher abundance relative to lithium. Intensive research has been 

done on one-dimensional morphologies of anode materials, such as nanobelts for lithium/sodium-ion 

batteries alike. One-dimensional electrode materials are believed to provide superior cycling performance 

due to the continuous framework for electron transfer they provide. To increase the performance of LIB, 

molybdenum oxides are considered due to the relatively high theoretical capacity of 838 mAh g-1 for 

molybdenum dioxide (MoO2). MoO2 has one significant flaw: upon lithiation, a severe volume expansion 

is experienced. To accommodate this volume expansion we present a scalable, low-cost method of 

embedding MoO2 nanoplatelets and nanobelts into a conductive carbon asymmetric membrane structure. 

The large voids within the asymmetric membrane structure can provide an area for the active materials to 

undergo volume expansion without damaging the electrode. Anodes consisting of both MoO2 

nanoplatelets and nanobelts exhibit excellent capacity retentions of 97.3% and 97.4%, respectively, after 

nearly 160 cycles. In spite of the difference in morphologies used, we have found that the incorporation of 

either morphology into asymmetric membranes presents highly stable anode materials, as the lithium-ion 

diffusion is a limiting factor. We also present promising preliminary findings of antimony nanomaterials 



embedded in asymmetric membranes for sodium-ion battery anodes. It has been determined that the 

choice of polymer, active material concentration/morphology, and surface coating play important roles in 

the performance of the anodes. These two projects can further our understanding of LIB/SIB anode 

materials, as well as present promising alternatives to commercially available energy storage devices. 

 

INDEX WORDS: Lithium-ion batteries, Sodium-ion batteries, Anodes, Molybdenum dioxide, Antimony, 
nanobelts, nanoplatelets, High-capacity 
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CHAPTER 1 
INTRODUCTION 

 
1.1 Lithium-ion battery history  

Lithium-ion batteries (LIB) for scalable energy storage have been researched in laboratories for 

over half a century. Prior to the commercialization of lithium-ion batteries in the 1990s, lead-acid 

batteries were used everywhere; since lithium-ion batteries exhibit a much higher specific energy density 

than lead-acid batteries (150-190 Wh kg-1 compared to 30-50 Wh kg-1, respectively), LIB have replaced 

lead-acid batteries in many areas.1 Recently, The Nobel Prize in Chemistry 2019 was awarded to John B. 

Goodenough, M. Stanley Whittingham, and Akira Yoshino for their groundbreaking work leading to the 

development of the lithium-ion battery.2 Whittingham developed a cathode able to store relatively 

massive amounts of energy, which was later improved upon by Goodenough.2 Yoshino went on to 

develop a much safer anode material than lithium metal, leading to the first commercially viable LIB.2  

Originally lithium-ion batteries used lithium metal anodes, but these were short lived due to the formation 

of dendrites on the anode surface, resulting in poor safety and reliability. Once research documented the 

ability for intercalation of lithium-ions into anode (negative electrode) and cathode (positive electrode) 

materials, graphite-based lithium-ion batteries gained much attention in the commercial world due to their 

safety, scalability, and cyclability. Although graphite-based lithium-ion batteries have proven to be 

successful, the need for higher-capacity energy storage devices has grown in recent years with electric 

vehicles and solar energy storage devices becoming more mainstream. Because of this, the discovery of 

high-capacity electrode materials is of increasing importance.  

1.2 Lithium-ion battery usage in consumer electronics and portable power tools 

Lithium-ion batteries have been used widely throughout our lives since their commercialization 

by Sony in the 1990s. Modern smartphones use lithium batteries as their energy source and many tactics 

have been used to achieve the highest capacity in the smallest volume possible for internal storage as well 

as for external battery packs. The success of these devices is commonly associated with their weight, size, 
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and capacity. Electric vehicles, like those developed by Tesla, also utilize lithium-ion batteries as a main 

source of power. It has been noted in literature that one of the biggest future issues for electric vehicles is 

the future required battery capacity.3  

1.3 Construction of lithium-ion batteries and how they function  

Commercially available lithium-ion batteries consist of a variety of components: the cathode, the 

anode, a separator membrane, an electrolyte dissolved in organic solution, and current collectors placed at 

the anode and the cathode. In addition, in order to stabilize the LIB structure it is necessary to use binding 

materials for the electrodes to keep them stationary during battery use. 

At the cathode, lithium cobalt oxide (LiCoO2) is typically used in broad applications such as 

laptops, cell phones, and other various portable electronics due to safety, reliability, and higher cell 

voltage of the materials.4 At the anode, graphite is the most common material used due to its safety, 

reliability, and its ability to accommodate lithium ions during cycling. The separator membrane is a thin, 

porous, polymeric membrane placed between the anode and cathode; the separator membrane is used as a 

channel for lithium-ions to transport to and from the electrodes, while preventing the two electrodes from 

contacting and reacting with each other during cycling.5 The electrolyte is commonly comprised of an 

inorganic lithium salt such as lithium hexafluorophosphate (LiPF6) dissolved in organic solvents such as 

ethylene carbonate (EC) and/or propylene carbonate (PC).5 Various electrode binding materials have been 

studied in recent years for lithium-ion batteries, with two common choices being polyvinylidene fluoride 

(PVDF) and carboxymethyl cellulose (CMC). The current collector at the anode typically consists of a 

copper grid, while the cathode current collector consists of an aluminum foil; these current collectors are 

used in commercially available lithium-ion batteries due to their low cost and good electrical 

conductivity.5  

During charging of a lithium-ion battery, the cathode is oxidized to give up electrons and lithium 

ions in the process, as demonstrated below:5 
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𝐿𝑖𝐶𝑜𝑂! → 𝐿𝑖"#$𝐶𝑜𝑂! + 𝑥𝐿𝑖% + 𝑥𝑒#	(𝑐𝑎𝑡ℎ𝑜𝑑𝑒) 

During this same charging time lithium ions and electrons travel to the anode, causing reduction 

to occur, as shown below:5 

6𝐶 + 𝑥𝐿𝑖% + 𝑥𝑒# → 𝐿𝑖$𝐶&	(𝑎𝑛𝑜𝑑𝑒) 

The half-cell potential of the cathode is 1V, while that of the anode is -3V; the two combine to 

create a full-cell potential of 4V.5 These equations are observed during charging of the lithium-ion battery 

cell and are flipped when discharging of the cell is occurring, resulting in the reduction of the cathode and 

oxidation of the anode.5,6 The charge/discharge process is shown in figure 1.6 

 
Figure 1. Diagram of Charge/Discharge Process for Lithium-ion Batteries.6  

 

As shown in the above equations, graphite-based anodes for lithium-ion batteries can 

accommodate one lithium-ion for every six carbon atoms, resulting in a theoretical capacity of 372 mAh 

g-1.5 While graphite anode materials have proven to be reliable, scalable and low cost, this relatively low 

theoretical capacity is not likely to be enough for the increasing demand of consumer electronics and 

electric vehicles, as these devices are constantly in need of increased capacity without increasing volume 

or weight significantly.  
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1.4 Current research status in lithium-ion batteries 

1.4.1 Anode materials  

As mentioned earlier, graphite-based anodes for lithium-ion batteries can accommodate one 

lithium-ion for every six carbon atoms, resulting in a rather low theoretical capacity of 372 mAh g-1.5 Due 

to this, much research has been done in efforts to develop/discover new anode materials with higher 

theoretical capacity while maintaining the excellent safety, reliability, and cyclability of graphite.  

Much attention has been given to silicon as an anode material recently, but these bulk materials 

suffer from lower electrical conductivity and severe volume change during lithiation/de-lithiation. Silicon 

has an impressive theoretical capacity of 3579 mAh g-1 based on Li15Si4.7 Many strategies to enhance the 

material’s electrochemical performance in lithium-ion batteries have been extensively explored, as bare 

silicon can result in significant capacity loss after just 20 cycles.7 Coating silicon particles in a conductive 

carbon shell has been studied due to the ability of the carbon shield to prevent unwanted reactions 

between silicon particles and electrolyte, accommodate volume expansion, and aid in electrical 

conductivity.7 While research has shown much advancement, the performance during varying charging 

rates of these materials is still in need of significant improvement. 

Iron oxides have also been studied as a promising anode material for lithium-ion batteries due to 

iron’s natural abundance and low cost.8 Fe2O3 also exhibits a higher theoretical capacity of 1006 mAh g-1, 

allowing for a theoretical capacity that is 2.7 times higher than graphite.8 In practice, iron oxides exhibit 

poor electronic conductivity and lower capacity, which needs to be improved before iron oxides can be 

used commercially in lithium-ion batteries.8      

1.4.2 Cathode materials  

Cathode materials have also been extensively studied as a method of improving lithium-ion 

batteries. Tesla Motors has incorporated cathode materials made of lithium nickel cobalt aluminum oxide 

(NCA) into their Model S, which has allowed for an improvement in the vehicle’s range and energy 
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density.9 These NCA materials require liquid cooling to run efficiently and safely and are also rather 

expensive.9 NCA cathodes also must have the component ratio tuned carefully, as too much nickel is 

known to cause severe capacity degradation due to the undesired reactions between electrolyte and 

unstable Ni+4.10 Other transition metal oxides have been studied as cathode materials, such as LiNiO2, 

however it is known that this cathode material is extremely difficult to synthesize.11  

1.4.3 Electrolytes  

As discussed above, typical commercially available lithium-ion batteries use electrolytes 

consisting of a salt dissolved in organic solvents. Most organic solvents are flammable, and this presents a 

level of danger associated with typical lithium-ion batteries. To improve safety, research has been done 

using solid electrolytes as opposed to the common liquid-based electrolytes. The electrolyte choice is 

driven by many factors, including safety, cost, ease of synthesis, and electrochemical potential window. 

Many solid electrolytes have their own problems, such as an internal short-circuit due to the dendrite 

growth from lithium metal.12 Research has been done using single-crystal oxide electrolytes in an all-

solid-state battery to counter these issues, but still resulted in a significantly small capacity.12 It is known 

that research into the tuning of structures of solid-state electrolytes is needed, as lithium-ions are too large 

to pass through some crystal structures, while some crystal structures create areas that “trap” ions.13  To 

overcome these limitations, substitution of various components within crystal structures has been studied, 

such as the substitution of P+5 by Ge+4 in LISICON compounds.13 These substitutions are known to create 

excess Li+, which can allow for much faster lithium-ion conduction.13 While studies have shown 

improvements for solid electrolytes, electrolytes consisting of salts dissolved in organic solvents are still 

considered the most reliable and successful electrolyte materials to date. 

One aspect of electrolytes that is of interest is the electrolyte’s ability to undergo decomposition 

reactions with the electrode material during the first few cycles of a battery, creating a solid-electrolyte 

interphase (SEI). Typically, assembled batteries undergo cycling at very low rates for several cycles 

before being used so that a stable SEI layer may be formed. The SEI layer is known to be an ionically 
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conducting, electronically insulating layer of various organic and inorganic compounds such as lithium 

carbonate. The slower the growth of the SEI layer, the more uniform and stable the layer becomes.  

1.4.4 Electrode binder choice  

The binding of active material to the current collector is a crucial aspect of lithium-ion battery 

assembly.14 It is known that the choice of binding materials is critical when using active materials that 

exhibit severe volume change during lithiation/de-lithiation.14 When studying transition metal oxide 

active materials for lithium-ion battery anodes, literature has shown that the choices of PVDF and CMC 

binding material demonstrate excellent mechanical strength, with CMC being the stronger of the two.15 

1.5 Molybdenum dioxide as an anode material for lithium-ion batteries  

As mentioned previously, many materials have been studied as anode materials for lithium-ion 

batteries. Silicon, titanium dioxide, and germanium have all received much attention due to their high 

theoretical capacities. 16,17,18 One transition metal oxide that has also received much attention recently is 

molybdenum dioxide, due to its relatively high theoretical capacity and molybdenum’s natural abundance. 

Molybdenum oxides are frequently employed as catalysts, gas sensors, and capacitors.19 These oxides 

have been studied as they allow for the intercalation of Li+, with molybdenum trioxide and molybdenum 

dioxide being the most commonly studied oxides due to their stability.20 Molybdenum dioxide (MoO2) 

and molybdenum trioxide (MoO3) exhibit high theoretical capacities of 838 mAh g-1 and 1117 mAh g-1, 

respectively, which is a major improvement over traditional graphite anode materials.20 Although MoO3 

exhibits the higher theoretical capacity due to its ability to accommodate 6 Li+, literature suggests that 

nearly half of the uptake of Li+ is unusable after the first cycle due to irreversible reaction.20 This leads to 

MoO2 being a worthy anode material to be studied, as it can accommodate 4 Li+.20 While this material has 

a relatively high theoretical capacity, its practical capacity is typically much lower due to the slow 

kinetics experienced for conversion reactions during cycling of lithium-ion battery.21 Literature has 

demonstrated that the reaction mechanism between lithium and molybdenum dioxide is not a fully 
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understood topic.20 Some literature believes it to be an intercalation process similar to graphite, but other 

literature suggests it may be a conversion reaction.20 The two reactions typically described in literature are 

shown below, with the first being an intercalation mechanism and the second being a conversion 

reaction.18  

𝑀𝑜𝑂! + 𝑥𝐿𝑖% + 𝑥𝑒# ⇌ 𝐿𝑖$𝑀𝑜𝑂!	(0 < 𝑥 < 0.98) 

𝐿𝑖$𝑀𝑜𝑂! + 3𝐿𝑖% + 3𝑒# ⇌ 2𝐿𝑖!𝑂 +𝑀𝑜 

Like other transition metal oxides, molybdenum dioxide experiences extreme volume expansion 

during lithiation/de-lithiation, resulting in severe capacity loss over many cycles. The use of 

nanostructured molybdenum dioxide has been studied previously, as nanomaterials have a much shorter 

diffusion length for lithium-ions and can accommodate volume expansion more successfully than bulk 

material.21,22 Additional research has been done to address the issue of volume expansion such as 

employing a carbon coating of the molybdenum dioxide nanomaterials, as well as synthesizing 

molybdenum dioxide materials with mesoporous structures.22,23,24                                                                                                                            

1.6 Sodium-ion batteries 

While lithium-ion batteries have shown tremendous use in society, the sustainability of lithium-

ion batteries is a concern. Analysts predict, due to the increase in electric vehicles in use, the earth’s 

available lithium could run out by 2040.25 Sodium-ion batteries have been studied as viable alternatives to 

lithium-ion batteries due to sodium’s favorable relative abundance and cost.26 The design of sodium-ion 

battery cells is of special research interest in many industries. Sodium-ion battery construction is very 

similar to that of lithium-ion battery construction, as shown in figure 2.  
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Figure 2. Graphical Representation of the Components of Sodium-ion Batteries.27 Reprinted from 
Renewable and Sustainable Energy Reviews, 119, Perveen et. Al, Prospects in anode materials for 

sodium ion batteries, with permission from Elsevier. 
 
 

The conventional LIB anode material, graphite, cannot be used as anode materials in SIB. The 

reason for this instability is generally uncertain, but two theories have emerged. In one aspect, the spaces 

in which lithium ions intercalate themselves into graphite are simply too small for sodium ions to be 

accommodated.28 On the other hand, the formation of graphite intercalation compounds becomes less 

stable as the size of alkali metals decreases, with lithium being an exception.28 In the 1980s, sodium-ion 

batteries were investigated using lead as the anode material.28 This resulted in an extremely poor energy 

density and a negative environmental impact.28 To find safe, sustainable, and less expensive anode 

materials for sodium-ion batteries is a top priority in academic and industrial research. To accomplish this 

task, many materials have been investigated as anode materials for sodium-ion batteries, such as hard 

carbon. Hard carbon was initially used as an anode material in lithium-ion batteries but was later replaced 

by graphite.29 Hard carbon has recently gained attention as a possible anode material in sodium-ion 

batteries yet the storage mechanism of sodium ions in hard carbon is not greatly understood, while the 

structure of hard carbon plays a significant role in its electrochemical performance.29 Another area of 

interest is electrolyte composition in sodium-ion batteries. LIB and SIB are alike in that they both 

typically use organic solvents in electrolyte composition such as ethylene carbonate or propylene 

carbonate. A large selection factor for the use of organic solvents in sodium-ion batteries is their effect on 

the solid-electrolyte interphase. Studies have shown that the addition of a small amount (~5%) of 
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fluoroethylene carbonate (FEC) can aid in the formation of a stable solid-electrolyte interphase in sodium-

ion batteries.30 It is believed that the mechanism for this is that FEC can prevent SEI layer species from 

becoming detached from the electrode over time.30 

1.7 Antimony materials for high-capacity sodium-ion battery anodes 

Antimony has received much attention as an appropriate anode material for sodium-ion batteries 

due to its low cost and high theoretical capacity of 660 mAh g-1. The theoretical capacity of antimony is 

the same for both lithium-ion and sodium-ion batteries alike due to the formation of alloys based on the 

following equations.31 

𝑆𝑏 + 3𝐿𝑖% + 3𝑒# ⟷ 𝐿𝑖'𝑆𝑏 

𝑆𝑏 + 3𝑁𝑎% + 3𝑒# ⟷𝑁𝑎'𝑆𝑏 

Antimony has two major problems during sodiation: volume expansion of 290%, as well as poor 

conductivity.31,32 The severe volume expansion during cycling can result in the destruction of the anode 

material leading to shortening of the cell life. This volume expansion could also cause the material to 

become detached from the current collector over time, creating a rapidly decreasing capacity. It is also 

noted in literature that after the first sodiation/desodiation, a combination of crystalline and amorphous 

antimony materials is found. To date, one of the most successful methods of accommodating the volume 

expansion experienced by antimony materials has been the use of a yolk-shelled structure that embeds the 

antimony material inside a carbon layer.32 This yolk-shelled structure allows for improved rate 

performance, as well as improved capacity retention during cycling tests.32 Literature also has shown that 

the two best methods of improving the electrochemical performance of antimony-based materials for 

sodium-ion batteries is the use of nanostructured materials, as well as the use of a buffer matrix.31  
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1.8 Asymmetric membranes: uses and synthesis  

As nearly 33% of the world does not have access to clean drinking water 33, many technologies 

have been studied to address this issue. One method that has been employed for decades is the use of 

membrane separation to remove impurities.34 The use of polymeric membranes has shown much success 

as water purification devices due to the mechanical strength, salt rejection, and high-water permeability of 

these membranes.34,35  

Polymeric membranes can be easily formed via a phase inversion method. The formation of these 

polymeric membranes typically is explained using a ternary phase diagram, as the formation involves a 

solvent, non-solvent, and polymer. When a polymer is dissolved in a solvent, the resulting solution can be 

cast onto a substrate such as a glass plate, and then submerged into a non-solvent. The solvent is usually 

miscible in the non-solvent, while the polymer is not. Once submerged, the solvent is replaced by the 

non-solvent, creating two phases: a polymer-rich phase and a polymer-lean phase. The polymer-rich 

phase allows for the formation of a solid polymer matrix, while the polymer-lean phase creates pores full 

of non-solvent, where no polymer is present.36 The resulting structure is a porous, asymmetric membrane 

with one face composed of nano-pores, and the other face composed of micro-pores. When viewed in 

cross-section, the structure features finger-like pores throughout.  

As seen in figure 3, the ternary phase diagram represents this polymer, solvent, and non-solvent 

system well.36 The diagram is a triangle, with the three corners representing 100% polymer, 100% 

solvent, and 100% non-solvent. Prior to submersion into non-solvent, the solution is found on the side of 

the diagram between solvent and polymer.36 Upon submersion, the solution point moves on the diagram 

towards the binodal curve, where the two distinct phases are formed.36 A tie line can be formed between 

the two, representing the state at which the two phases are at equilibrium.36  
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Figure 3. Ternary Phase Diagram of Phase Inversion Method for Asymmetric Membrane Formation. 

 

1.9 Hypothesis  

 It is hypothesized that using one-dimensional molybdenum dioxide nanobelts embedded in a 

porous asymmetric membrane structure will have better cycling performance than molybdenum dioxide 

nanoplatelets embedded in a porous asymmetric membrane structure when used as high-capacity lithium-

ion battery anode materials. It is also hypothesized that using one-dimensional antimony nanobelts 

embedded in a porous asymmetric membrane structure will have better cycling performance than 

antimony macroparticles embedded in a porous asymmetric membrane structure when used as high-

capacity sodium-ion battery anodes. The asymmetric membrane structure can provide enhanced 

mechanical strength to the electrode, thereby reducing the degradation effects of continual cycling. The 

void structure of the asymmetric membranes can provide free volume for active material expansion 

during cycling, while the thin carbon surface of the asymmetric membrane can aid in the growth of a 

stable artificial SEI layer.
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CHAPTER 2 
MOLYBDENUM DIOXIDE NANOBELTS EMBEDDED IN ASYMMETRIC 
MEMBRANE STRUCTURE FOR USE AS HIGH-CAPACITY LITHIUM-ION 

BATTERY ANODES 
2.1 Introduction  

Current graphite-based anode materials for lithium-ion batteries have been shown to exhibit 

excellent safety, rechargeability, scalability, reliability, and long shelf life with minimal self-discharging 

as well. Their low theoretical capacity of 372 mAh g-1, however, is known to be a limiting factor in their 

future applications.20 This has led to the investigation of alternative high-capacity anode materials for 

lithium-ion batteries. Molybdenum oxides, notably orthorhombic molybdenum trioxide (𝛼-MoO3) and 

monoclinic molybdenum dioxide, are attractive anode replacements due to their outstanding theoretical 

capacities of 1117 mAh g-1 and 838 mAh g-1, respectively.20 Orthorhombic molybdenum trioxide is 

known as a wide band gap semiconductor, allowing for its operation at a higher temperature.22 While 

these materials demonstrate high capacity and unique characteristics upon cycling, their severe volume 

expansion during lithiation/de-lithiation is known to be a major problem, as this can cause the material to 

be pulverized and  delaminated from the current collector and leach into the electrolyte, decreasing the 

initially high capacity rapidly. Another issue facing the use of these active materials is their low lithium-

ion diffusivity of 9.0x10-11 cm2s-1 and 1.0x10-10 cm2s-1 for MoO3 and MoO2, respectively. 37,38 This is 

relatively slow compared to the lithium-ion diffusion into graphite anode (>4.0x10-10 cm2s-1). 

In this study, a unique asymmetric membrane structure is utilized to efficiently accommodate the 

large volume expansion of these materials. The asymmetric membrane structure is developed using a 

polymer of choice and performing phase inversion to create a membrane with a macroporous bottom and 

a nanoporous surface.36 The macropores throughout the membrane can provide a void space for the active 

material to expand during lithiation, while the nanoporous surface can prevent any cracked material from 

leaching out into electrolyte during repeated cycling, also contributing to the formation of a stable SEI 

layer. In addition, two conductive additives are employed to improve the electrical conductivity of the 

asymmetric membranes: conductive carbon black (CB TIMCAL SUPER C45 with a surface area of 45 
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m2 g-1) and graphene (Cheap Tubes Inc with a surface area >700 m2 g-1). Also, the impact of 

morphologies on the electrochemical properties has been explored, e.g., nanoplatelets and nanobelts. It is 

believed that the one-dimensional nanobelts can maintain better cycling performance by increasing the 

contact between the active material and conductive additives, as well as creating a continuous network of 

active material throughout the asymmetric membrane structure to enhance electron transport.  

2.2 Materials and Methods 

2.2.1 Fabrication of PS/MoO2 nanoplatelet (NP)and PS/MoO3 nanoplatelet (NP) asymmetric membranes 

Ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24∙4H2O) was used as a precursor for 

molybdenum trioxide nanoplatelets. The precursor was heated in air at 350℃ for 12 hours to form MoO3 

nanoplatelets (NP). In the next step, 2.0 g of MoO3 NP, 1.0 g polysulfone (PS, Mn = 60,000, pellets, 

Across), 0.3 g carbon black (CB TIMCAL SUPER C45 with a surface area of 45 m2 g-1), and 10 mL N-

methyl-2-pyrrolidone (NMP, Sigma Aldrich, >99.5%) were mixed by means of a planetary ball mill 

(Across International, PQ-N04 Planetary Ball Mill) for 4 hours. The resulting slurry was cast onto silicon 

wafers with a thickness of 200 μm. The silicon wafers with the uniform slurry were submerged into 1 L 

DI water for 10 minutes to allow for phase inversion process to occur. The newly formed asymmetric 

membrane structure containing MoO3 NP underwent pyrolysis at 500 ℃ for 1 hour under the protection 

of 100 standard cubic centimeters per minute (sccm) helium gas (99.9999%, Airgas He UHP300) to 

remove all non-carbon elements, as 500 ℃ has shown to be the appropriate temperature for polysulfone.18 

The pyrolysis was performed using a Lindber/Blue MTM 1100 ℃ tube furnace with a ramp rate of ~20 oC 

min-1. The resulting sample was named PS/MoO2 NP asymmetric membrane. The fabrication of PS/MoO3 

NP asymmetric membranes was the same as PS/MoO2 NP asymmetric membrane except that after 

pyrolysis, the sample was annealed in air at 380 ℃ to oxidize all MoO2 to MoO3. A general fabrication 

design is shown in figure 4. Included in figure 5 is a chart indicating the investigated parameters in the 

respective order of investigation. 
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2.2.2 Fabrication of PAN/MoO3 NP asymmetric membranes 

The fabrication process of PAN/MoO3 NP asymmetric membranes was the same as PS/MoO3 NP 

asymmetric membranes, except that polysulfone was replaced by polyacrylonitrile (PAN, Mn = 150,000, 

powders, Pfaltz & Bauer). The pyrolysis of PAN/MoO3 NP asymmetric membranes was performed at 

800℃, as a higher temperature is required for the full removal of non-carbon elements in 

polyacrylonitrile, as demonstrated by previous reports.39 The resulting sample was named PAN/MoO3 NP 

asymmetric membranes. 

2.2.3 Synthesis of MoO3 nanobelts (NB) 

To synthesize MoO3 nanobelts, a previously established method was performed to obtain 

nanobelts with an average thickness of 10-20 nm.40 First, 0.72 g of metallic molybdenum powder (Alfa 

Aesar ~250 mesh, 99.9% metal basis) was dispersed in 60 mL DI water.40 Next, 5 mL of 30% hydrogen 

peroxide (H2O2) (VWR Chemicals) was added and allowed to stir for at least 20 minutes.40 The solution 

was transferred to a Teflon lined stainless steel autoclave, and the reaction was allowed to proceed at 180 

℃ for 12 hours.40 The materials were then rinsed with DI water and ethanol, then dried at 60 ℃ for at 

least 10 hours.40 The resulting materials were named MoO3 nanobelts. 

2.2.4 Fabrication of PS/MoO2 NB asymmetric membranes 

First, 0.9 g MoO3 nanobelts was dispersed in 5 mL mL N-methyl-2-pyrrolidone (NMP, Sigma 

Aldrich, >99.5%) using a higher-power sonication device (BRANSON Digital Sonifier). Next, 1.5 g 

polysulfone (PS, Mn = 60,000, pellets, Across) and 0.3 g carbon black (CB TIMCAL SUPER C45 with a 

surface area of 45 m2 g-1) were added and dispersed for 1 hour at 15% power using high-power 

sonication. The resulting uniform slurry was cast onto a silicon wafer with a thickness of 200 μm and 

submerged into 1 L DI water for 10 minutes to allow the phase inversion process to occur. The resulting 

asymmetric membrane structure underwent pyrolysis the same as PS/MoO2 NP asymmetric membranes. 

The sample was named PS/MoO2 NB asymmetric membrane. 
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2.2.5 Fabrication of PAN/MoO3 NB asymmetric membranes 

The fabrication process of PAN/MoO3 NB asymmetric membranes was the same as PS/MoO2 NB 

asymmetric membranes except that polysulfone was replaced by polyacrylonitrile (PAN, Mn = 150,000, 

powders, Pfaltz & Bauer). The pyrolysis of PAN/MoO3 NP asymmetric membranes was performed at 

800℃. The resulting sample was named PAN/MoO3 NP asymmetric membranes.  

2.2.6 Fabrication of PS/MoO2 NB asymmetric membranes containing boron carbide 

The fabrication process of PS/MoO2 NB asymmetric membranes containing boron carbide was 

the same as PS/MoO2 NB asymmetric membranes except that the amount of polysufone used was reduced 

from 1.5 g to 1.0 g, and 0.15 g of boron carbide (Electron Microscopy Sciences, 8 µm) was added. The 

sample was named PS/MoO2 NB asymmetric membranes containing boron carbide. 

2.2.7 Fabrication of PS/MoO2 NB asymmetric membranes containing graphene  

The fabrication of PS/MoO2 NB asymmetric membranes containing graphene was the same as 

PS/MoO2 NB asymmetric membranes except that conductive carbon black was replaced with an equal 

mass of graphene (Cheap Tubes Inc with a surface area >700 m2 g-1). The sample was named PS/MoO2 

NB asymmetric membranes containing graphene. 

2.2.8 Fabrication of PS/MoO2 NB asymmetric membranes containing boron carbide and graphene  

The fabrication of PS/MoO2 NB asymmetric membranes containing boron carbide and graphene 

was the same as PS/MoO3 NB asymmetric membranes containing boron carbide except that conductive 

carbon black was replaced by an equal mass of graphene (Cheap Tubes Inc, surface area >700 m2 g-1). 

The sample was named PS/MoO2 NB asymmetric membranes containing boron carbide and graphene. 

A diagram showing a general fabrication process for the asymmetric membrane samples can be 

seen below in figure 4. A chart showing the overall experimental design, including the parameters tested 

can be seen below in figure 5.  
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Figure 4. Diagram Showing a General Fabrication Process of Asymmetric Membrane Structure. 

 

 
Figure 5. Chart Showing the Overall Experimental Design with Parameters Tested. 

 

2.2.9 Characterization Methods  

Morphological, compositional, and structural characterization was accomplished using a field 

emission scanning electron microscope (JEOL JSM-7600F) equipped with a transmission electron 

detector (TED). RAMAN spectroscopy studies were accomplished using a Thermo Scientific DXR 

SmartRaman Spectrometer using 0.4-1.0 mW 532 nm laser, x10 objective lens, and a 30-120s integration 

time. A thermogravimetric analyzer (TGA, TA Instruments Q50 TGA) was also used to characterize 

samples with high purity compressed gas (Ultra Zero, Airgas) for the purge gas with a flow rate of 20 
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mL/min.. The oven temperature during TGA analysis was ramped at 10 °C/min until 120 °C, then held 

for 10 minutes to remove all water present in the sample. The temperature was then ramped at 10 °C/min 

until 500 °C, then held for 30 minutes. Powder X-ray diffractometer (PXRD, PANalytical Empyrean) was 

used to characterize samples using Cu Ka radiation (l = .1542 nm) from 10° to 90° (2q) with a step rate of 

0.1°/s for a total of 32 scans, with an acceleration voltage of 40 kV and current of 40 mA.  

2.2.10 Electrode preparation  

Approximately 1-2 mg of the asymmetric membranes containing MoO3 nanoplatelets or 

nanobelts were glued to circular copper current collectors (MTI Corporation: diameter 15 mm, thickness 

11 μm). A slurry made of 0.15 g carbon black, 0.10 g polyvinylidene difluoride, and 3 mL NMP was used 

as the glue to keep asymmetric membranes attached to copper current collector. Electrodes were then 

dried at 120 °C for 24 hours. The copper current collector and asymmetric membrane were then 

assembled into a 2032-type coin cell. For the electrolyte, 1 M LiPF6 was dissolved in ethylene carbonate 

(EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) (MIT Corporation), all with equal 

volume. Lithium metal (EQ-Lib-LiC25, MTI Corporation) was used as a counter electrode for coin cell 

assembly. The membrane separator purchased from MTI was made of polyethylene and polypropylene. 

All assembly was performed in a glove box (LCPW, LC Technology Solutions, Inc.), keeping moisture 

and oxygen concentrations below 1ppm. 

2.2.11 Electrochemical Analysis 

Using a multi-channel Potentiostat/EIS (BIO-LOGIC VMP3), galvanostatic cycling tests were 

conducted on all samples. Formation cycles were allowed to proceed at a current density of 30 mA g-1, to 

allow for the formation of a stable SEI layer. Rate performance tests were carried out with current 

densities of 30, 60, 120, and 240 mA g-1.  All charge/discharge tests were carried out in the voltage range 

of 0.01 V-2.00 V (vs. Li/Li+). For cyclic voltammetry testing, the voltage scan window was 0.01 V-2.00 

V. For electrochemical impedance spectroscopy (EIS), a frequency range of 0.1 Hz – 1.00 MHz was used 

with an AC perturbation of 10 mV.  
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2.3 Results and Discussion  

2.3.1 Fabrication of Molybdenum Oxide Asymmetric Membranes 

During slurry creation using molybdenum trioxide nanobelts, it was noted that the viscosity of 

such slurry was dramatically high. This is likely due to the length of the nanobelts causing significant 

agglomeration within the slurry. This high viscosity caused the coating process of membrane fabrication 

to be too difficult to complete. To reduce the viscosity, boron carbide was used as an additive with the 

hopes that it would cause the nanobelts to fracture into shorter nanobelts, leading to a reduced slurry 

viscosity. Another method of fabrication was also tested to lower the viscosity: the use of high-powered 

sonication (BRANSON Digital Sonifier) to break apart the nanobelts. Both processes worked, so both 

were characterized and used for electrochemical testing. 

The high-temperature carbonization process was believed to reduce the antimony oxide nanobelts 

to elemental antimony, as has been demonstrated in previous literature that under inert, high-temperature 

conditions carbon can reduce molybdenum trioxide, as shown below 41,42: 

𝑀𝑜𝑂' + 𝐶
∆
→𝑀𝑜𝑂! + 𝐶𝑂 

RAMAN spectroscopy was not employed for any samples with MoO2, as it was found in our 

testing that MoO2 will be oxidized to MoO3 when using a laser power high enough to give an adequate 

signal-to-noise ratio, which is consistent with previous literature.43  

For the sample using polyacrylonitrile, it was determined by X-ray diffraction that the high-

temperature carbonization necessary for the removal of organic compounds from the polymer was able to 

reduce the 𝛼-MoO3 to 𝛼-Mo2C, which has extraordinarily low capacity when used as anode material in 

lithium-ion batteries.44 This was the case for both nanoplatelet and nanobelt samples of MoO3, so this 

sample was not included for further analysis. 

2.3.2 Characterization  
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To investigate the morphology of the molybdenum trioxide nanoplatelets and nanorods, 

Transmission Electron Microscopy was used in combination with Scanning Electron Microscopy. TEM 

images of MoO3 nanoplatelets revealed irregularly shaped nanoplatelets with diameters ranging from 

~140 nm to 160 nm, as shown in figure 6a. In figure 6b, it is shown that the typical thickness of the MoO3 

nanobelt is ~30 nm – 50 nm. The diameters of the nanoplatelets and nanobelts were calculated using 

ImageJ software. 

 
Figure 6. Transmission Electron Microscopy (TEM) Images of Synthesized Samples. (a) MoO3 

nanoplatelets and (b) MoO3 nanobelts. Scale bar is 100 nm in both images. Figure 6a reprinted by 
permission from Springer Nature License: Springer, Journal of Materials Science, Molybdenum oxide 

nanoporous asymmetric membranes for high-capacity lithium-ion battery anode, Emilee Larson, Logan 
Williams et al, Copyright 2021. 

  
To investigate the composition of the 𝛼-MoO3 nanoplatelets and nanobelts RAMAN spectroscopy 

(Figure 7a and b) and X-ray diffraction (XRD) (Figure 8a and b) were used. Three main peaks occur in 

RAMAN spectroscopy above 400 cm-1 for both the nanoplatelets and nanobelts. The peaks can be found 

at 664 cm-1, 818 cm-1, and 994 cm-1. The 664 cm-1 can be attributed to (B2g, B3g) asymmetric stretching 

along the c axis of Mo-O-Mo.41 for both MoO3 nanoplatelets and nanobelts. The 818 cm-1 peak is due to 

the terminal oxygen atoms’ (Ag, B1g) symmetric stretching.41 Finally, the 994 cm-1 peak is a result of the 

terminal oxygen atoms’ (Ag, B1g) asymmetric stretching.41 These peaks confirm the nanoplatelets and 

nanobelts are orthorhombic molybdenum trioxide. Further confirming this, the XRD patterns aligned well 

with those of 𝛼-MoO3. For the 𝛼-MoO3 nanoplatelets, the planes (020), (110), (040), (021), (111), (060), 

(002) are most prominent at 2q of 12.7°, 23.3°, 25.7°, 27.3°, 34.3°, 38.9°, and 49.2°, respectively (ICDD: 
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01-076-2711). For the 𝛼-MoO3 nanobelts the most prominent crystal planes observed are (020), (040), 

(060), at 12.7°, 25.7°, and 38.9°, respectively.  

 

 
Figure 7. RAMAN Spectra of all Active Material Samples. a) MoO3 Nanoplatelets; b) MoO3 Nanobelts. 
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Figure 8. X-ray Diffraction Patterns of all Samples. a) nanobelt-containing samples; b) nanoplatelet 

containing samples and MoO3 and MoO2 references. Figure 8b reprinted by permission from Springer 
Nature License: Springer, Journal of Materials Science, Molybdenum oxide nanoporous asymmetric 

membranes for high-capacity lithium-ion battery anode, Emilee Larson, Logan Williams et al, Copyright 
2021. 

 
 

To determine the molybdenum dioxide content in all samples, manual calculations were used in 

combination with thermogravimetric analysis (TGA). The content of active material and additives was 

known, while the carbon content available after carbonization of the polymers used was not. TGA of a 

pure polysulfone asymmetric membrane was performed in an inert atmosphere with the same conditions 

as the carbonization process. It was determined that ~35% of the original mass remained after 

carbonization, allowing for the manual calculation of active material within the samples. The calculation 

for MoO2 nanobelt asymmetric membrane showed that ~47% of the electrode mass was due to 

molybdenum dioxide and for MoO2 nanoplatelet asymmetric membranes ~52% of the electrode mass was 

molybdenum dioxide. 
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By using scanning electron microscopy, the top, bottom, and cross-sectional areas of all samples 

were able to be observed. The samples containing carbon black conductive additive and molybdenum 

dioxide active material were found to have a dense top surface containing small (<5 µm) pores, while the 

bottom surface contained larger (>15 µm) pores (Figure 9). The cross-sectional images revealed void 

spaces throughout, providing an area for the active material to experience volume change (Figure 9).  It is 

determined that the nanorod morphology of the active material does not interfere with the phase inversion 

process. 

 
Figure 9. Scanning Electron Microscopy Images of Samples. a-c) top, bottom, cross-sectional views of 

PS/MoO2 NP asymmetric membrane; d-f) top, bottom, cross-sectional views of PS/MoO2 NB asymmetric 
membrane; g-i) top, bottom, cross-sectional views of PS/MoO2 NB asymmetric membrane containing 
boron carbide Note: all scale bars are 10 µm. Figure 9c reprinted by permission from Springer Nature 

License: Springer, Journal of Materials Science, Molybdenum oxide nanoporous asymmetric membranes 
for high-capacity lithium-ion battery anode, Emilee Larson, Logan Williams et al, Copyright 2021. 
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The samples containing graphene conductive additive and molybdenum dioxide nanobelts were 

found to contain a much “denser” asymmetric membrane structure (Figure 10). However, the smaller (<5 

µm) and larger (>10 µm) pores were still present on the top and bottom surfaces, respectively (Figure 10). 

It was also discovered that the large (>10 µm) void spaces were still present throughout the asymmetric 

membrane structure, indicating that the phase inversion process is independent of additive or active 

material morphology, assuming viscosity is controlled by using the appropriate amount of solvent.  

 
Figure 10. Scanning Electron Microscopy Images of Graphene Samples. a-c) top, bottom, cross-sectional 

views of PS/MoO2 NB asymmetric membrane containing graphene; d-f) top, bottom, cross-sectional 
views of PS/MoO2 NB asymmetric membrane containing graphene and boron carbide. Note: all scale 

bars are 10 µm. 
 

To confirm the presence of m-MoO2 in the asymmetric membrane structures after carbonization, 

X-ray diffraction was used in combination with energy-dispersive X-ray analysis (figure 8a and b). X-ray 

diffraction showed three major patterns consistent with monoclinic molybdenum dioxide, located at 

26.005°, 36.98°, and 53.487°, corresponding to the (110)/(011), (020), and (022)/(220), respectively 

(ICDD: 01-074-6246). This is due to the reduction of 𝛼-MoO3 to form m-MoO2 during the high-

temperature carbonization process, as mentioned in 2.3.1 Fabrication of Molybdenum Oxide Asymmetric 

Membranes. 
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2.3.3 Electrochemical Analysis 

The PS/MoO3 NP asymmetric membrane demonstrates capacity retention of 97.3% after 100 

cycles, with a coulombic efficiency of 99.5%. Coulombic efficiency is known to be the efficiency of a 

battery in regard to charging, i.e., the ratio of de-lithiation capacity and lithiation capacity during a cycle. 

Commercial lithium-ion batteries typically have a coulombic efficiency ≥99.9%, as this is an important 

feature for commercial success. The most successful sample containing MoO2 nanobelts is PS/MoO2 NB 

asymmetric membranes containing graphene, as the capacity retention after the formation cycles was 

97.4% after 140 cycles, with a coulombic efficiency of 99.6%.  

The cycling performance of all samples can be seen in Figure 11a and 14b. The sample PS/MoO2 

NB asymmetric membrane containing graphene and boron carbide demonstrated capacity retention, after 

50 cycles, of 95.2%. PS/MoO2 NB asymmetric membrane and PS/MoO2 NB asymmetric membrane with 

boron carbide experienced capacity retentions of 85.7% and 85.8%, respectively. A summary of the 

initial capacity loss, capacity retention after cycling, and coulombic efficiency is shown in table 1. The 

initial capacity loss and coulombic efficiency were not calculated for the samples with the least capacity 

retention.  

The relatively poor capacity retention for the samples containing carbon black conductive 

additive and MoO2 nanobelts is believed to be due to the conductive carbon black, as it creates a higher 

viscosity during slurry formation compared to graphene; MoO2 nanobelts also cause a higher viscosity 

during slurry formation, and the combination of both carbon black and nanobelt structure requires more 

solvent to make the coating process possible. Using an increased amount of solvent to reduce viscosity for 

coating caused a less dense membrane structure to be present, creating larger areas for cracked active 

material to lose contact with the conductive carbon structure during cycling. This is evident in the 

scanning electron images in Figure 9, as the asymmetric membrane structure found in the samples 

containing both MoO2 nanobelts and carbon black have larger nanopores on the top face of the 
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membrane, creating more areas for the cracked active material to lose contact with the conductive carbon 

matrix during cycling.  

The asymmetric membrane structures of the samples containing graphene additive have a much 

“denser” top surface compared to samples containing conductive carbon black, creating the ability to trap 

the active material during cycling to maintain contact with the conductive carbon matrix. PS/MoO2 NB 

asymmetric membrane containing graphene demonstrated a capacity retention of 97.5% after 140 cycles 

(figure 11c), while PS/MoO2 NP asymmetric membrane retained 97.3% of initial capacity after 160 cycles 

(figure 11d). It can be noticed that the two samples have two different cycling profiles. The sample 

containing nanobelts exhibits fluctuating capacities with ~2% fluctuation. While the sample containing 

nanoplatelets exhibits a less fluctuating capacity between cycles, there exists a severe increase (~15%) 

during the initial 20 cycles which decreases gradually for the remaining cycles.  

The fluctuation in capacity for the samples containing nanobelts can be due to a number of 

factors. During continual cycling, some active material and conductive carbon additive is consumed in an 

irreversible decomposition, which may lead to a very slight variation in capacity. This slight variation can 

be observed in both samples. The nanobelts may also fracture over time along the long axis providing 

areas for lithium-ion insertion, which may be consumed in the formation of the SEI layer or may lose 

contact with the conductive carbon matrix over several cycles, creating a brief increase in capacity 

followed by a slight decrease over the next few cycles.  

Nanoplatelet agglomerates have many interlinking domains which have been shown in other 

studies to increase capacity in the initial cycling of the material, which is likely the reason the 

nanoplatelets sample exhibits a major increase. These interlinking domains, upon cracking, create a 

dramatically increased surface area that allows for many new areas for lithium-ion insertion. 
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Initial capacity loss 
(ICL) 

Capacity retention after 
cycling 

Average coulombic 
efficiency  

PS/MoO2 NP 
asymmetric membrane 

33.9% 97.3% after 165 cycles 99.5% 

PS/MoO2 NB 
asymmetric membranes 
containing graphene 

34.0% 97.4% after 140 cycles 99.6% 

PS/MoO2 NB 
asymmetric membrane 
containing graphene 
and boron carbide 

n/a 95.2% after 50 cycles n/a 

PS/MoO2 NB 
asymmetric membrane 

n/a 85.7% after 50 cycles n/a 

PS/MoO2 NB 
asymmetric membrane 
with boron carbide 

n/a 85.8% after 50 cycles n/a 

Table 1. Summary of the Electrochemical Performance of Five Samples. 

 
Figure 11. Electrochemical Evaluations of all Samples. a) Comparative cycling of all MoO3 nanobelt 

samples; b) comparative cycling of all MoO3 nanoplatelet samples; c) Cycling performance of PS/MoO2 
NB asymmetric membrane containing graphene; d) Cycling performance of PS/MoO2 NP asymmetric 
membrane. Figure 11a,c reprinted by permission from Springer Nature License: Springer, Journal of 

Materials Science, Molybdenum oxide nanoporous asymmetric membranes for high-capacity lithium-ion 
battery anode, Emilee Larson, Logan Williams et al, Copyright 2021. 
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Figure 12. Rate Performance Test of the Best MoO2 Samples. a) PS/MoO2 NB asymmetric membrane 

containing graphene; b) PS/MoO2 NP asymmetric membrane.  
 

The rapid capacity loss during the first cycle is known as the initial capacity loss (ICL). The ICL 

of both PS/MoO3 NP asymmetric membrane and PS/MoO2 NB asymmetric membranes containing 

graphene was 33.9% and 34.0%, respectively. It is known that the solid electrolyte interphase (SEI) forms 

by the reduction of electrolyte on the anode material. 45,46,47 Conductive additives such as conductive 

carbon black or graphene are known to aid in the formation of a stable SEI layer during the first several 

cycles, which reduces the amount of conductive additive available and makes it increasingly difficult for 

lithium ions to make contact with active material. It is especially important for these first cycles to be at a 

lower current density (≤ 30 mA g-1), as this has been shown as a method of creating a stable SEI layer. 

The SEI layer is considered to be one of the most critical pieces to the success of modern LIB and SIB as 

the SEI layer can prevent further consumption of the active material by the electrolyte during extensive 

cycling and the insertion of solvated ions into host materials.44,45,46  

After the initial capacity loss, the samples containing nanoplatelets experience an increase in 

overall capacity. This is believed to be due to the nanoplatelets having many inter-linking domains that 

may allow for cracking of material during the first few cycles, making it easier for lithium ions to access 

active material. This is not seen in the samples containing the nanobelt structure, as these materials are 
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one-dimensional, so a significant increase in capacity is not expected due to the lack of inter-linking 

domains, which prevents the material from cracking/fracturing during lithiation.  

During rate performance tests it was shown that the PS/MoO2 NB asymmetric membrane 

containing graphene (figure 12a) and PS/MoO2 NP asymmetric membranes (figure 12b) experienced a 

decrease in capacity of only ~16% when increasing the current density from 60 mA g-1 to 120 mA g-1, 

respectively. This phenomenon is believed to be caused by the carbon matrix providing ample contact 

areas between the conductive carbon additives and active material. 

Cyclic voltammetry (CV) was used in combination with galvanostatic charge-discharge to 

determine the behavior of the molybdenum oxide active material with lithium-ions. Cyclic voltammetry 

(CV) of the best samples, PS/MoO2 NB asymmetric membranes containing graphene, and PS/MoO2 NP 

asymmetric membrane (figure 13a and b) showed two reduction peaks at ~1.4 V and 0.85 V, which can 

be attributed to the phase transformations during lithiation: monoclinic to orthorhombic, and 

orthorhombic to monoclinic, respectively.20 The large, broad peak below 0.6 V and above 0.1 V is due to 

the conversion reaction of partially lithiated LixMoO2 and Li+.20 The sharp peak below 0.1 V is believed 

to be caused by the decomposition of electrolytes on the anode surface to form the SEI layer. The 

oxidation peaks occurring at ~1.6 V and 1.9 V are attributed to the phase transformations during de-

lithiation: monoclinic to orthorhombic, and orthorhombic to monoclinic, respectively.20 These peaks 

appear to have experienced a downward lithiation potential and an upward de-lithiation potential 

compared to those found in the literature. These upward and downward potential changes are caused by 

overpotentials. While increasing the scanning rate, more lithiation/de-lithiation can occur, hence more 

current, since a faster scan rate causes a smaller diffusion layer. The diffusion layer is known to hinder the 

lithium-ion’s ability to reach the electrode surface, so a smaller diffusion layer should aid in lithium-ion 

access to electrode surface. If the diffusion of lithium ions is inherently slow, as it is for MoO2, the 

increase in current will be accompanied by an overpotential due to factors such as charge-transfer 

overpotential, ohmic overpotential, or concentration overpotential. 
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The voltage profile of the best two samples can be seen in figures 14a and b. At a relatively low 

current density of 30 mA g-1, plateaus are observed at potentials (vs. Li/Li+) that correspond to the CV 

results. Upon increasing the current density to 120 mA g-1, the plateaus corresponding to the intercalation 

of lithium-ions become less prominent, again owing to the slow lithium-ion diffusivity into the MoO2 

lattice.45 It is noted that the plateaus are slightly more prominent in the PS/MoO2 NP asymmetric 

membrane sample, which is believed to be due to the higher number of interlinking domains in the MoO2 

nanoplatelets, creating more areas into which lithium ions may easily diffuse.  

 
Figure 13. Cyclic Voltammogram of the Best MoO2 Samples. a) PS/MoO2 NB asymmetric membrane 

containing graphene; b) PS/MoO2 NP asymmetric membrane.  
 
 

 
Figure 14. Typical voltage profiles of the Best MoO2 Samples. a) PS/MoO2 NB asymmetric membrane 

containing graphene; b) PS/MoO2 NP asymmetric membrane. 
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Nyquist plots illustrating electrochemical impedance spectroscopy were generated by simulating 

our electrodes before and after cycling using an equivalent circuit with Rs, RSEI, RCT, representing ohmic, 

SEI, and charge transfer resistance, respectively. Also used were the electrode double-layer capacitance 

(Cdl), and SEI capacitance (CSEI). The reported values of interest from the equivalent circuit (EC) are Rs, 

RSEI, RCT. These values are shown below in table 2 and 3. The Nyquist plots of each sample can be seen in 

figure 15a and b.  

 Rs (ohm) RSEI (ohm) RCT (ohm) 

Cycle 1 5.0 70.6 235 

Cycle 165 8.0 43.2 250 

Table 2. EC Parameters for PS/MoO2 NP Asymmetric Membrane. 
 

 Rs (ohm) RSEI (ohm) RCT (ohm) 

Cycle 1 3.9 66.7 677 

Cycle 140 4.3 89.7 286 

Table 3. EC Parameters for PS/MoO2 NB Asymmetric Membrane Containing Graphene. 
 

 
Figure 15. Nyquist Plots Obtained from Electrochemical Impedance Spectroscopy. a) PS/MoO2 NB 

asymmetric membrane containing graphene; b) PS/MoO2 NP asymmetric membrane. 
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It can be seen in tables 2 and 3 that the ohmic resistance did not change significantly for either 

sample, indicating that both samples maintained excellent contact with their copper current collector. The 

SEI layer resistance was slightly decreased for PS/MoO2 NP asymmetric membrane, which is likely due 

to the formation of a porous SEI layer. It is interesting that the SEI resistance slightly increased during 

cycling of PS/MoO2 NB asymmetric membrane containing graphene. As the topic of SEI layer formation 

is not certain with many variables, this could be due to the increased density of the asymmetric membrane 

structure; the increased density of the structure could allow for a similarly formed SEI layer through the 

decomposition of the electrolyte. Having an SEI that is too thick can impede the ability for lithium-ions to 

travel to the electrode active material. It has also been demonstrated in previous research that adding 

graphene sheets to the surface of electrodes can decrease the ability for lithium ions to reach the inner 

workings of the electrode.47 The charge-transfer resistance of PS/MoO2 NP asymmetric membrane 

experienced very little change, indicating that the nanoplatelets are easily fractured after formation cycles 

and continual cycling does not increase the ability for lithium ions to migrate to the material. The charge-

transfer resistance of PS/MoO2 NB asymmetric membrane containing graphene was initially high but 

experienced a decrease of ~57%. This indicates that the double layer found on the surface of the active 

material likely impairs lithium-ion migration, but upon fracturing of the nanobelt structure more areas of 

lithium-ion insertion are available, thereby decreasing resistance.  

2.4 Conclusion  

The addition of a conductive carbon asymmetric membrane structure, along with molybdenum 

dioxide nanomaterials, creates a high-capacity, stable anode material for lithium-ion batteries. The 

investigation into the morphology of the MoO3 nanomaterial concluded that the lithium-ion diffusion into 

MoO2 is a limiting factor for immediate improvements in cycling stability and capacity. While the 

morphology of nanobelts may allow for more contact areas between conductive additive and active 

material, the lack of available insertion sites for lithium-ions limits its effectiveness. Nanoparticles with 

irregular shapes do not have an ultra-long axis compared to nanobelts, so the specific surface area is much 
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greater. The greater surface area of the nanoparticles creates more areas for lithium-ion diffusion to occur. 

The nanoparticle samples witnessed an increase in capacity during the initial twenty cycles, owing to the 

many inter-linking domains within the agglomerates that create areas vulnerable to fracturing during 

lithiation/de-lithiation. The nanobelt morphology appears not to be an agglomerate, but more of a singular 

large piece. The lack of fracturing domains does not allow for the initial capacity increase (~20%) 

characteristic of the nanoparticles, but instead provides areas that may gradually become disconnected 

from one another during long-term cycling. For applications with a goal of consistent cycling from the 

very beginning, the nanobelt morphology may provide a better option relative to irregularly shaped 

nanoparticles. Future work should be done to investigate the effects of varying morphologies inside an 

asymmetric membrane structure for other materials such as germanium, tin, and silicon. The investigation 

of conductive additives, electrolyte composition, polymer choice, carbonization temperature, and cathode 

materials should also be conducted if the most optimal LIB materials are to be discovered.  
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CHAPTER 3 
ANTIMONY NANOBELTS EMBEDDED IN ASYMMETRIC MEMBRANES FOR USE AS 

HIGH-CAPACITY ANODE MATERIALS FOR SODIUM-ION BATTERIES 
 

3.1 Introduction 

Although lithium-ion batteries are the most common method in electrochemical energy storage, 

the scarcity of lithium in Earth’s crust demands for more sustainable materials, especially in static energy 

storage systems for power grids. Sodium is nearly 1000 times more abundant than lithium, and acquiring 

sodium is much easier. Most lithium comes from underground reservoirs or mines, resulting in a costly 

acquisition process. Sodium, alternatively, is present nearly everywhere. It is estimated that switching to 

sodium-ion batteries (SIB) as a method of energy storage would provide a massive relief on the 

environment, as well as create a market of much more affordable energy storage devices.26,27 

As sodium has an ionic volume nearly 2.5 times that of lithium, the conventional LIB anode, 

graphite, is unable to be used in SIB.26 Current research investigates many types of anode materials for 

SIB, such as expanded graphite, hard carbon, and carbon nanotubes, with capacities of 284 mAh g-1, 320 

mAh g-1, and 215 mAh g-1
, respectively.26,29,48,49 Of considerable note, elemental antimony exhibits an 

impressive theoretical capacity of 660 mA g-1, by means of an alloying/dealloying reaction mechanism, as 

shown. 

𝑆𝑏 + 𝑁𝑎% + 𝑒# → 𝑁𝑎𝑆𝑏 

𝑁𝑎𝑆𝑏 + 2𝑁𝑎% + 2𝑒# → 𝑁𝑎'𝑆𝑏 

Like molybdenum oxides mentioned in the previous chapter, antimony also experiences severe 

volume expansion during sodiation/de-sodiation. Because of the larger ionic radius of sodium ions 

relative to lithium ions (227 pm and 182 pm, respectively), the volume expansion of antimony 

nanostructures in SIB is more severe than in LIB. Thus, a need for a method to accommodate the volume 

expansion of antimony-based electrodes is heavily desired.  
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As demonstrated in the prior chapter, asymmetric membranes are a capable method of 

accommodating the severe volume expansion of anode active materials in LIB. In this chapter, antimony 

nanobelts embedded in carbonaceous asymmetric membranes are prepared, characterized, and utilized as 

anode materials for high-capacity SIBs. It is hypothesized that the two-dimensional morphology of 

nanobelts combined with the unique porous membrane structure provided by asymmetric membranes is 

expected to facilitate ionic diffusion and electron transport by providing a continuous framework, thus 

significantly enhancing the electrochemical performance by Sb-based anodes for SIB.  

3.2 Materials and Methods 

3.2.1 Synthesis of antimony oxide nanobelts 

Antimony oxide nanobelts were synthesized by using a previously established method by Deng et 

al.50 Antimony powder, 240 mg (BEANTOWN CHEMICAL, Antimony powder, ~200 mesh, 99.5% trace 

metals basis) 15 mmol ethyl diamine, 800 mg polyvinylpyrrolidone, and 148 mL deionized water were 

used to create a homogenous solution. The resulting solution was stirred for 1 hour at 60°C. The solution 

was then allowed to sit over the weekend. The resulting Sb2O3 nanobelt precipitate was washed with 

ethanol and de-ionized water.  

3.2.2 Fabrication of asymmetric membrane containing antimony nanobelts 

First, 2.4 g of the newly synthesized antimony nanobelts were added to a solution of 0.15 g 

carbon black (CB TIMCAL SUPER C45 with a surface area of 45 m2 g-1), 0.5 g polyacrylonitrile (PAN) 

(Mn=150,000; Pfaltz & Bauer), and 5 mL N-methyl-2-pyrrolidone (NMP) (Sigma Aldirch, >99.5%). The 

resulting slurry was mixed thoroughly using high-powered sonication for 1 hour at 15% power. The 

slurry was then coated, using a doctor blade, onto a silicon wafer with a thickness of 200 µm and 

submerged into 1 L deionized water for 10 minutes for the phase inversion process to occur. The newly 

formed asymmetric membrane structure containing antimony nanobelts underwent pyrolysis at 500°C for 
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4 hours protected by a 100 sccm flow of high purity helium gas (99.9999%, Airgas He UHP300). This 

process was done using a Lindber/Blue MTM 1100°C tube furnace. The sample was named Sb NB PAN.  

3.2.3 Fabrication of asymmetric membranes containing antimony powder 

2.0 grams of as-purchased antimony powder were added to a solution with 0.2 g carbon black 

(CB TIMCAL SUPER C45 with a surface area of 45 m2 g-1), 0.65 g polyacrylonitrile (PAN) 

(Mn=150,000; Pfaltz & Bauer), and 10 mL N-methyl-2-pyrrolidone (NMP) (Sigma Aldirch, >99.5%). The 

slurry was subjected to the same procedure as described for Sb NB PAN: high-powered sonication, phase 

inversion, and pyrolysis. The sample was named Sb PAN.  

3.2.4 Fabrication of dip-coated antimony nanobelt asymmetric membrane  

A slurry made of 0.11 g carbon black, 0.38 g polyacrylonitrile, and 10 mL NMP solvent was 

created. The Sb NB PAN sample was submerged in the as-prepared slurry. The sample was immediately 

placed in 1 L deionized water for the phase inversion process to occur, to create an extra layer of carbon 

coating on the surface. The sample underwent pyrolysis for 2 hours at 500°C to remove all non-carbon 

elements from the newly formed porous carbon top layer. The sample was named dip-coated Sb NB PAN.  

3.2.5 Characterization Methods  

Morphological, compositional, and structural characterization was accomplished using a field 

emission scanning electron microscope (JEOL JSM-7600F) equipped with a transmission electron 

detector (TED). RAMAN spectroscopy studies were accomplished using a Thermo Scientific DXR 

SmartRaman Spectrometer using 0.4-1.0 mW 532 nm laser, x10 objective lens, and a 30-120s integration 

time. A thermogravimetric analyzer (TGA, TA Instruments Q50 TGA) was also used to characterize 

samples with high purity compressed air gas (Ultra Zero, Airgas) with a flow rate of 20 mL/min. The 

oven temperature during TGA analysis was ramped at 10 °C/min until 120 °C, then held for 10 minutes to 

remove all water present in the sample. The temperature was then ramped at 10 °C/min until 500 °C, then 

held for 30 minutes. Powder X-ray diffraction (PXRD, PANalytical Empyrean) was used to characterize 
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samples using Cu Ka radiation (l = .1542 nm) from 10° to 90° (2q) with a step rate of 0.1°/s for a total of 

32 scans, with an acceleration voltage of 40 kV and current of 40 mA.  

3.2.6 Electrode preparation  

Approximately 1-2 mg of Sb containing asymmetric membranes were glued to aluminum current 

collectors with diameter and thickness of 15 mm and 11 μm, respectively. A slurry made of 0.15 g carbon 

black, 0.10 g carboxymethyl cellulose (ACROS ORGANICS, average M.W. 9000) binder, and 3 mL 

deionized water was used as the glue to keep the asymmetric membranes attached to the current collector. 

Electrodes were then dried at 80 °C for 24 hours under vacuum. The aluminum current collector and 

asymmetric membrane were then assembled into a 2032-type coin cell. For the electrolyte, 1 M NaClO4 

(ACROS ORGANICS, Sodium perchlorate, ACS reagent, anhydrous) was dissolved in a mixture that 

was, by volume, 95% 50/50 propylene carbonate (PC)/ethylene carbonate (EC) and 5% fluoroethylene 

carbonate (FEC) (Alfa Aesar, propylene carbonate, 99%, ACROS ORGANICS, ethylene carbonate 

>99%, and Alfa Aesar, fluoroethylene carbonate, 98%). Sodium metal was used as a counter electrode for 

coin cell assembly. Glass fiber membranes (Whatman, GLASS MICROFIBER FILTERS, Diameter 

25mm) were used as the membrane separator. All assembly was performed in a glove box (LCPW, LC 

Technology Solutions, Inc.), keeping moisture and oxygen concentrations below 1ppm. 

3.2.7 Electrochemical Analysis 

Galvanostatic cycling tests were conducted on all samples using a multi-channel Potentiostat/EIS 

(BIO-LOGIC VMP3). Two formation cycles were allowed to proceed at a current density of 15 mA g-1, 

to create a stable SEI layer. Rate performance tests were carried out with current densities of 15, 30, 60, 

and 120 mA g-1.  All charge/discharge tests were performed in the voltage range of 0.01 V-2.00 V (vs. 

Na/Na+). For cyclic voltammetry testing, the voltage scan window was 0.01 V-2.00 V. For 

electrochemical impedance spectroscopy (EIS), a frequency range of 0.1 Hz – 1.00 MHz was used with 

an AC perturbation of 10 mV.  
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3.3 Results and Discussion  

3.3.1 Fabrication of antimony asymmetric membranes 

Originally, the fabrication process for antimony asymmetric membranes was to be done using 

ball-milling, but as discussed in the previous chapter, the nanobelt morphology caused the viscosity of the 

slurry to be too high. Boron carbide was then used as an additive for the fabrication process with the 

hopes of lowering the viscosity by “breaking” the ultralong nanobelt morphology into shorter nanobelts. 

This addition lowered the viscosity but resulted in slightly lower specific capacity for the samples, as 

boron carbide contributes a negligible capacity and interrupts the contact between the active material and 

the conductive carbon matrix in the asymmetric membrane structure. High-powered sonication led to a 

reduced viscosity for the samples, without the need for boron carbide. As the volume expansion of active 

materials is significantly higher in SIB due to sodium’s larger ionic radius, the polymer selection for the 

asymmetric membrane structure was adjusted. Originally, polysulfone and polyacrylonitrile were both 

tested, with polyacrylonitrile resulting in better performance. As shown in figure 16, it is determined from 

chapter 2 that polyacrylonitrile results in an asymmetric membrane with much larger pores throughout the 

structure, which should provide more room for the volume expansion to occur, making it a better choice 

for sodium-ion batteries.  

 
Figure 16. Scanning Electron Microscope Images of Different Polymeric Membranes. a) polysulfone 

asymmetric membrane; b) polyacrylonitrile asymmetric membrane. 
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3.3.2 Characterization 

First, characterization of the synthesized antimony nanobelts and the as purchased antimony 

powder were performed. To investigate the morphology, scanning electron microscopy (SEM) was used. 

The obtained images show that the as purchased antimony powder (figure 17a) has an irregular shape 

with diameters ranging from single-digit micrometers to ~80 µm. The antimony nanobelts were measured 

using the measuring feature available on the instrument, with belts having diameters of approximately 17 

nm and width of 150-200 nm. (figure 17b,c).  

 
Figure 17.  Scanning Electron Microscope Images of Sb Active Materials. a) antimony powder; b) 

overview of antimony nanobelts; c) measured single antimony nanobelt. 
 

Scanning electron microscope and energy-dispersive X-ray spectroscopy were used to investigate 

the morphology and elemental composition of the asymmetric membranes as well. First, the morphology 
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of the antimony particles and nanobelts were examined after the carbonization of the asymmetric 

membrane structure. Figures 18a and 18b show that all the antimony particle diameters are decreased 

from ~5-80 µm to <10 µm. Figures 18c and 18d shows the belt-like morphology of the antimony 

nanobelts is retained after reduction during carbonization. It is also noted that the length and width of the 

antimony nanobelts have been reduced. This is believed to be due to the high-powered sonication, which 

is able to break long Sb nanobelts and thus lower the viscosity of the slurry; it is also believed to be 

related to the reduction of Sb2O3 to elemental Sb during carbonization. 

 
Figure 18. Scanning Electron Microscope Images of Sb Samples After Carbonization. a) cross-sectional 
view and b) increased magnification cross-sectional view of Sb PAN; c) increased magnification cross-

sectional view of Sb NB PAN; d) transmission electron microscope image of Sb nanobelt after 
carbonization. 

 
Top, bottom, and cross-sectional views of the Sb PAN and Sb NB PAN are shown in figure 19 and 

figure 20, respectively. It is determined that both samples contain a porous carbon framework to provide 
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ample voids for the volume expansion of active materials upon sodiation. The top and bottom surfaces of 

both samples have an extremely dense top face with a bottom face consisting of pores with diameters of 

roughly ~3-6 µm. While these pores are not as large as the polysulfone asymmetric membranes seen in 

chapter 2, the pores found in the cross-sectional views are larger in the polyacrylonitrile asymmetric 

membranes.  

 
Figure 19. Scanning Electron Microscope Images of Sb PAN. a) top surface view; b) bottom surface 

view; c) cross-sectional view of Sb PAN. Note: all scale bars are 10 µm. 
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Figure 20. Scanning Electron Microscope Images of Sb NB PAN. a) top surface view; b) bottom surface 

view; c) cross-sectional view of Sb NB PAN. Note: all scale bars are 10 µm. 
 

 
It is observed in figure 20c that some large antimony particles are present throughout the 

asymmetric membrane structure, although the sample was believed to only have antimony nanobelts. 

These antimony particles are left over from the antimony powder used for the nanobelt synthesis. 

Antimony powder has a dark-colored appearance, opposed to the antimony oxide nanobelts which have a 

white-colored appearance. After synthesis, a trace amount of dark material is seen at the bottom of the 

reaction vessel, correlating with the SEM images showing larger antimony particles in the sample. The 

presence of large (>10 µm) antimony particles in samples in which the primary active species is the much 

smaller (<100 nm) antimony nanobelt particle could inhibit the electrochemical performance by causing 

unnecessary fracturing of the membrane structure after multiple cycles. Increased sodiation times could 

also be caused by the larger radius of the material, as per the equation 𝑡 = )!

*
, l being diffusion length, D 

being the diffusion coefficient, and t being diffusion time.  

For the dip-coated Sb NB PAN sample (figure 21), SEM imaging revealed that the asymmetric 

membrane structure is maintained after the second carbonization process. It is also shown that the dip-
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coating process creates a porous carbon coating on the surface of the sample, with a thickness of ~4 µm. 

Using energy-dispersive X-ray (EDX) analysis, elemental mapping was performed on the cross-section of 

the dip-coated Sb NB PAN (figure 22); elemental mapping was also conducted with an increased 

magnification on the carbon coating. It can be observed that the top carbon coating is composed of nearly 

all carbon. During carbonization, some antimony may be vaporized, leading to a trace amount present in 

the carbon coating. The dip-coated carbon layer is used for two purposes. First, the extra layer is hoped to 

increase cycling stability by creating another barrier between active material and electrolyte, as to prevent 

the leaching of any cracked materials out during cycling. Secondly, the extra layer of carbon will allow 

for the formation of a stable solid-electrolyte-interface (SEI) further away from antimony materials, 

which may otherwise be consumed in the formation of the SEI layer, thus decreasing capacity over time. 

The porosity of this carbon layer is desired so that sodium ions can easily pass through during the 

charging/discharging of the cell.  

 

 
 Figure 21. Scanning Electron Microscope Images of Dip-coated Sb NB PAN. a) top surface view; b) 

cross-sectional view c) increased magnification cross-sectional view of dip-coated Sb NB PAN. 
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Figure 22. Energy-dispersive X-ray (EDX) Analysis of Dip-coated Sb NB PAN. a) cross-section electron 

image; b) elemental mapping of carbon; c) elemental mapping of antimony; d) elemental mapping of 
oxygen. 

 

Upon completion of morphology characterization, the composition of the materials was 

confirmed using both RAMAN spectroscopy and X-ray diffraction (XRD). RAMAN spectroscopy was 

employed for the antimony oxide nanobelts, and revealed strong peaks at 142, 190, 220, 298, 443, 505, 

597, and 685 cm-1 (figure 23). These peaks are consistent with previous literature in that the peaks at 597 

and 685 cm-1 correspond to asymmetric (vas) and symmetric (vs) stretching modes, and the peaks centered 

at 443 and 505 cm-1 are due to the asymmetric (δas) and symmetric (δs) bending modes of SbO3 

pyramids.51   
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Figure 23. RAMAN Spectrum of As-synthesized Antimony Oxide (Sb2O3) Nanobelts.  

 
  

Powder X-ray diffraction (PXRD) was employed for all samples (figure 24). PXRD of the Sb2O3 

nanobelts demonstrated major patterns characteristic of antimony oxide centered at 2q of 19.3, 28.6, and 

36.4°, corresponding to the (110), (040), and (200) crystallographic orientations, respectively (ICDD: 01-

072-2738). This, in combination with RAMAN spectroscopy, confirms that the synthesized nanobelts 

consist of orthorhombic Sb2O3. PXRD of Sb NB PAN showed three major patterns characteristic of 

rhombohedral antimony at 28.6, 40.1, and 41.9°, corresponding to (012), (104), and (110), respectively 

(ICDD: 01-073-7856). Sb PAN also showed these peaks, confirming both samples consist of elemental 

antimony. The two samples containing boron carbide are also shown in figure 23. The main difference 

noted is the addition of the two peaks at 37.8° and 39.1°, which correspond to the (021) and (113) planes 

of rhombohedral boron carbide as to be expected. It is believed that the reduction of Sb2O3 during the 

carbonization process is responsible for the presence of antimony (shown below). 

𝑆𝑏!𝑂' + 3𝐶 → 2𝑆𝑏 + 3𝐶𝑂 

0

1000

2000

3000

4000

5000

6000

7000

100 200 300 400 500 600 700 800 900 1000

In
te

ns
ity

 (a
.u

.)

Wavenumber (cm-1)

Antimony oxide nanobelts 



52 
 

This is supported by the observed presence of molybdenum dioxide after carbonization of samples 

containing molybdenum trioxide as the only molybdenum source described in chapter 2.   

 

 
Figure 24. X-ray Diffraction Patterns of all Sb Samples. (top to bottom): Sb powder asymmetric 

membrane with boron carbide, Sb nanobelt asymmetric membrane with boron carbide, Sb powder, Sb 
powder asymmetric membrane, Sb nanobelt asymmetric membrane, and Sb2O3 nanobelts.  

 
3.3.3 Electrochemical Analysis 

Initially, the success of sodium-ion batteries in our lab was limited. The first control samples 

tested all led to shortening, extremely low capacity, very high charge transfer resistance, or other issues 

inhibiting electrochemical performance. Two of the largest issues that plague sodium-ion battery 

assembly are water and oxygen. Sodium is extremely reactive with water, even more so than lithium. 

Sodium is a larger atom than lithium, so the valence electron of sodium is more easily given up in a 
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reaction due to the shielding effect from the inner electrons. Sodium readily gives up its 3s electron to 

reduce water as seen in the following equation. 

2𝑁𝑎(𝑠) + 2𝐻!𝑂 → 2𝑁𝑎𝑂𝐻(𝑎𝑞) + 𝐻!(𝑔) 

In the presence of oxygen, the surface of the sodium will react to form sodium oxide. An equation 

for this is shown below. 

4𝑁𝑎(𝑠) + 𝑂!(𝑔) → 2𝑁𝑎!𝑂(𝑠) 

Although all battery assembly is performed inside a glove box to reduce moisture and oxygen 

content, trace amounts are still present. To prevent water from coming into contact with the sodium metal, 

it is submerged inside a container of mineral oil inside the glove box until it is to be used. Upon retrieving 

the sodium metal, it is cleaned with hexane and the surface is brushed thoroughly to remove any sodium 

oxide that may be formed. Another area where water may be a contaminant is the electrolyte solution, 

which is kept inside a sealed glass container. To keep water contamination to a minimum, molecular 

sieves were purchased to be placed inside the solution to absorb any water that may be present. 

Originally, the electrolyte solution used was composed of 1M NaClO4 dissolved in 50% ethylene 

carbonate (EC) and 50% propylene carbonate (PC). Upon extensive review of literature, it was revealed 

that other groups have successfully used 1M NaClO4 dissolved in organic solvents with 5% 

fluoroethylene carbonate (FEC).30 Upon the addition of both molecular sieves and FEC, the performance 

of the control sodium-ion batteries in our lab increased tremendously. The mechanism of this 

performance increase has been previously investigated in literature.30 It is believed the addition of FEC in 

small quantities can prevent components of the solid-electrolyte-interphase (SEI) layer from becoming 

detached from the electrode surface and becoming free floating in electrolyte.30 Literature has also lead to 

the conclusion that with increasing concentration (>5%) of FEC additive, harmful performance impact is 

observed due to the inability of the SEI layer monomers to form larger dimers.30 
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Another issue during the assembly of control sodium-ion batteries was the charge-transfer 

resistance. If the resistances obtained during electrochemical impedance spectroscopy (EIS) are too high, 

it will be practically impossible to charge and discharge a battery. The as-purchased separator membranes 

were found to increase the charge transfer resistance because of their ~600 µm thickness. The separator 

membranes were believed to be too thick for sodium ions to travel through in a timely manner. To address 

this, several layers of the separator membrane were “peeled” off using double sided tape attached to the 

surface of the separator membrane. The resulting separator membranes had a thickness of ~300 µm. 

Using the thinner separator membranes decreased the charge-transfer resistance significantly, so the 

assembled batteries could be charged/discharged appropriately, especially at high current densities.  

The Sb PAN sample was the first sample to undergo electrochemical testing. The sample 

demonstrated an initial capacity loss (ICL) of 25.5%. The initial capacity loss is attributed to the 

formation of the solid-electrolyte-interphase which is accomplished by the decomposition of electrolyte 

onto the surface of the electrode material, which consumes active material in the process. As seen in 

figure 18a and 18b, the 8b, the Sb PAN sample has a top and bottom face that is plagued with antimony 

particles, which may undergo irreversible reactions with the electrolyte to generate a relatively high ICL. 

This sample demonstrated poor capacity retention, with only 34.1% remaining capacity after 50 cycles. 

This poor capacity retention is due to the massive volume expansion during sodiation caused by the 

relatively large size of the antimony powder particles. The larger particles result in more localized volume 

expansion, which results in membrane pulverization that continually allows the active material to lose 

contact with the conductive carbon matrix, thereby decreasing capacity. The Sb NB PAN sample 

demonstrated 58.6% capacity retention after 50 cycles, with an ICL of 24.1%. This relatively improved 

cycling performance is due to two critical aspects of the nanobelts. The much smaller thickness relative to 

antimony powder allows for the asymmetric membrane structure to remain intact better than the antimony 

powder, as larger particles will cause a greater pulverization during cycling. The nanobelts also allow for 
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a greater contact area between the active material and conductive additive, while also creating a more 

efficient pathway for electrons to pass through.  

While the cycling performance of antimony nanobelt samples is improved from antimony 

powder, it is still not significant enough. To further improve the performance, the Sb NB PAN was coated 

with another layer of porous carbon and named dip-coated Sb NB PAN. The cycling performance of dip-

coated Sb NB PAN revealed capacity retention of 99.4% after 50 cycles. The sample also experienced an 

ICL of 13.8%, comparable to that of antimony nanobelt membrane. It can be seen in figure 25 that the Sb 

NB PAN exhibits much higher specific capacity (312 mAh g-1) relative to Sb PAN (163 mAh g-1). The Sb 

material found throughout Sb PAN (figure 19) consists of very large particles that make it difficult for 

sodium ion diffusion to occur. The Sb nanobelts are of a thin diameter, enhancing the diffusion of sodium 

ions during cycling. The dip-coated sample exhibits not only the best cycling performance, but also the 

highest specific capacity (540 mAh g-1). The initial capacity loss of the dip-coated sample is only 13.8%, 

while the other two samples have nearly 26% ICL. As mentioned prior, the porous carbon coating is used 

to aid in the solid-electrolyte-interphase formation, as well as provide another barrier to prevent loss of 

active material during cycling. By allowing the carbon coating to create a stable SEI layer, this avoids the 

need for active material to be consumed during the SEI layer formation. A summary of the ICL, capacity 

retention, and coulombic efficiency after 50 cycles is shown in table 4. The cycling performance for the 

first 50 cycles is also shown in figure 25. The specific capacities of all samples are based on electrode 

mass. 

 Sb PAN Sb NB PAN Dip-coated Sb NB PAN 

Initial Capacity Loss 25.5% 24.1% 13.8% 

Capacity Retention 
after 50 cycles 

34.1% 58.6% 99.4% after 50 cycles 

Average Coulombic 
Efficiency  

97.1% 97.9% 99.7% after 50 cycles 

Table 4. Summary of the Electrochemical Performance of all Sb Samples. 
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Figure 25. Cycling Performance of 50 Cycles for all Sb Samples. Sb PAN, Sb NB PAN, dip-coated Sb NB 

PAN, Sb nanobelt control sample, and Sb Powder control sample. 
 

As the dip-coated Sb NB PAN exhibited the best electrochemical performance, further testing was 

performed on this sample. Continued cycling revealed a capacity retention of 99.5% after 25 cycles 

(neglecting the initial capacity loss attributed to the SEI layer formation), with an average coulombic 

efficiency of 99% (figure 26). 
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Figure 26. Cycling Performance and Coulombic Efficiency of Dip-coated Sb NB PAN. 

 

Cyclic voltammetry (CV) was performed with scan rates of 0.1, 0.2, 0.4, and 0.8 mV/s to 

investigate sodium ion diffusivities in the dip-coated Sb NB PAN sample. As seen in figure 27, there exist 

a sharp peak below 0.2 V that is due to the formation of the SEI layer. There also exist two redox couples 

at 0.65/0.93 and 0.40/0.78 V. The two reduction peaks can be attributed to the alloying reactions of Sb 

with the sodium ions, as shown below, with the first reaction occurring at 0.65 V and the second 

occurring at 0.40 V. 

𝑆𝑏 + 𝑁𝑎% + 𝑒# → 𝑁𝑎𝑆𝑏 

𝑁𝑎𝑆𝑏 + 2𝑁𝑎% + 2𝑒# → 𝑁𝑎'𝑆𝑏 

The two oxidation peaks shown at 0.78 and 0.93 V can be attributed to the de-alloying reactions 

shown below, with the first reaction occurring at 0.78 V and the second occurring at 0.93 V.  
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𝑁𝑎'𝑆𝑏 → 𝑁𝑎𝑆𝑏 + 2𝑁𝑎% + 2𝑒# 

𝑁𝑎𝑆𝑏 → 𝑆𝑏 + 𝑁𝑎% + 𝑒# 

The CV results are in good agreement with literature and the voltage profiles obtained from 

galvanostatic charge-discharge testing.52 Figure 28 shows that there exists small, yet existing, plateaus at 

~0.65 V and ~0.40 V for sodiation, while there also exist two plateaus at ~0.78 V and ~0.93 V for de-

sodiation. This supports the notion that the two sodiation reactions and two de-sodiation reactions are 

contributing to the overall capacity of the assembled SIB. The voltage profiles also indicate that very little 

change can be observed between cycle 1 and cycle 50, indicating the dip-coated structure is able to create 

a very stable SEI layer while preventing any cracked materials from being removed from the electrode 

over cycling.  

 
Figure 27. Cyclic Voltammetry of Dip-coated Sb NB PAN. 
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Figure 28. Voltage Profiles of Dip-coated Sb NB PAN. 

 
 

Electrochemical impedance spectroscopy (EIS) and rate performance testing will be performed 

for all samples at a later date. EIS will be used with an equivalent circuit to extract the charge-transfer 

resistance, ohmic resistance, and SEI layer resistance. Rate performance testing will be used to determine 

the nanobelt morphology’s impact on capacity retention during more extreme current densities.  

3.4 Conclusion 

We have presented preliminary data demonstrating a scalable, low cost, efficient method of 

creating high-capacity anode materials for sodium-ion batteries (SIB). It has been discovered that the 

polymer selection for the asymmetric membrane structure plays a role in cycling performance, owing to 

the significant volume expansion experienced by the active materials upon sodiation. It is demonstrated 

that using macroparticle containing asymmetric membranes leads to relatively poor cycling performance, 
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likely due to the large volume expansion of larger particles. The asymmetric membranes containing 

antimony nanobelts experience improved cycling performance compared to antimony macroparticles, 

owing to the two-dimensional structure creating more contact points between conductive additives and 

active materials, as well as the significantly smaller diameter of the materials allowing for a more 

tolerable volume expansion. Creating an additional layer of porous carbon on the surface of the 

asymmetric membranes containing antimony nanobelts further aids in the cycling performance of the 

electrodes, by maintaining a capacity retention of 99.5% after 25 cycles, relative to 34.1% and 58.6% for 

asymmetric membranes containing antimony macroparticles and asymmetric membranes containing 

antimony nanobelts each after 50 cycles, respectively. Further examination of the conductive additives, 

polymeric membrane structure, and active material morphology should be conducted to create the most 

optimal material(s) for sodium-ion battery anode materials. Investigation of the dip-coated carbon layer 

thickness should be performed, as creating a layer too thick could impede the ability for sodium-ions to 

reach the active material; a coating layer too thin could result in the inability of the coating layer to keep 

cracked materials from becoming free-floating in the electrolyte during long-term cycling. As seen in 19c, 

macroparticles of antimony exist within the nanobelt sample. This should be eliminated for further 

testing, as large particles cause unnecessary pulverization of the asymmetric membrane structure. 

Electrochemical impedance spectroscopy (EIS) should be used to investigate the impact of long-term 

cycling on charge transfer resistance, SEI layer resistance, and ohmic resistance. Rate performance testing 

should be performed on the samples to determine the impact the nanobelt morphology may have on 

capacity retention at increasingly higher current densities.  
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CHAPTER 4 

CONCLUSION/FUTURE WORK 

The use of an asymmetric membrane structure, in combination with other active materials, has 

proven to be a functional method of creating high-capacity anode materials for lithium-ion batteries and 

sodium-ion batteries alike. The inclusion of the void spaces found throughout the asymmetric membrane 

structure provides areas for molybdenum oxides and antimony to expand during lithiation/sodiation, 

without the pulverization of the electrode structure. Molybdenum dioxide nanobelts do not provide a 

higher capacity or better cycling performance than nanoparticles as the inherently slow lithium-ion 

diffusion is a limiting factor; however, both nanoparticles and nanobelts embedded in an asymmetric 

membrane can be used as stable, high-capacity electrodes. The one-dimensional antimony nanobelts 

exhibit a higher capacity and superior cycling performance than as-purchased antimony powder, likely 

due to the continuous framework of nanobelts that allows for more efficient electron transport; the smaller 

diameter of the nanobelt morphology can also allow for faster sodium ion diffusion. The phase inversion 

method of fabrication is relatively simple, and more cost effective compared to other methods of 

accommodating the volume expansion of active materials. The choice of polymer and conductive additive 

can provide unique properties such as enhanced conductivity, improved cycling performance, and 

increased capacity. The addition of a porous carbon layer can also inhibit the consumption of active 

material during the formation of the solid-electrolyte interphase, as well as prevent any fractured 

nanobelts from becoming detached from the conductive asymmetric membrane structure which would 

further decrease capacity over time.  

There still exist issues to be addressed, however. The carbonization step has demonstrated a 

reduction of metal oxides to lower oxidation states and even to the metal, which can be detrimental to 

electrode performance. To avoid the reduction of active materials, a conductive polymer such as 

polyaniline could be used so that no carbonization is needed. Studying different conductive additives such 

as modified graphene or carbon nanotubes could prove beneficial to increase the conductivity of the 

active materials. Determining the optimal thickness of the dip-coated porous carbon layer should be 
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investigated as having a layer too thick could inhibit the sodium ion’s ability to reach the active material, 

while a layer too thin may not prevent fractured active materials from becoming detached from the 

membrane structure over time.  
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